Semantics of Programming Languages

Exercise Sheet 11

Exercise 11.1 Using the VCG, Total correctness

For each of the three programs given here, you must prove partial correctness and total correctness. For the partial correctness proofs, you should first write an annotated program, and then use the verification condition generator from VC.thy. For the total correctness proofs, use the Hoare rules from HoareT.thy.

Some abbreviations, freeing us from having to write double quotes for concrete variable names:
abbreviation " $a a \equiv{ }^{\prime \prime} a^{\prime \prime \prime}$ " abbreviation " $b b \equiv{ }^{\prime \prime} b^{\prime \prime \prime}$ abbreviation" $c c \equiv{ }^{\prime \prime} c$ ""
abbreviation " $d d \equiv{ }^{\prime \prime} d^{\prime \prime \prime}$ abbreviation "ee $\equiv{ }^{\prime \prime} d^{\prime \prime \prime}$ " abbreviation " $f f \equiv " f$ """
abbreviation " $p p \equiv{ }^{\prime \prime} p$ "" abbreviation " $q q \equiv{ }^{\prime \prime} q^{\prime \prime \prime}$ abbreviation" $r r \equiv{ }^{\prime \prime} r$ ""
Some useful simplification rules:
declare algebra_simps[simp] declare power2_eq_square[simp]
Rotated rule for sequential composition:
lemmas SeqTR = HoareT.Seq[rotated]
Prove the following syntax-directed conditional rule (for total correctness):
lemma IfT:
assumes " $\vdash_{t}\{P 1\} c_{1}\{Q\}$ " and " $\vdash_{t}\{P 2\} c_{2}\{Q\}$ "
shows ${ }^{\prime} \vdash_{t}\{\lambda s$. $($ bval $b s \longrightarrow P 1 s) \wedge(\neg$ bval $b l \longrightarrow P 2 s)\}$ IF b THEN $c_{1} E L S E c_{2}\{Q\}$ "
A convenient loop construct:

```
abbreviation For :: "vname }=>\mathrm{ aexp }=>\mathrm{ aexp }=>\mathrm{ com }=>\mathrm{ com"
    ("(FOR _/ FROM _/ TO _/ DO _)" [0, 0, 0, 61] 61) where
    "FOR v FROM a1 TO a2 DO c \equiv
        v::=a1; WHILE (Less (V v) a2) DO (c;v::= Plus (V v) (N 1))"
abbreviation Afor :: "assn = vname }=>\mathrm{ aexp }=>\mathrm{ aexp }=>\mathrm{ acom }=>\mathrm{ acom"
    ("({-}/ FOR _/ FROM _/ TO _/ DO _)" [0, 0, 0, 0, 61] 61) where
    "{b} FOR v FROM a1 TO a2 DO c \equiv
        v ::=a1; {b} WHILE (Less (Vv) a2) DO (c;v ::=Plus (Vv) (N 1))"
```

Multiplication. Consider the following program MULT for performing multiplication and the following assertions $P_{-} M U L T$ and $Q_{-} M U L T$:

```
definition MULT2 :: com where
    "MULT2 三
    FOR dd FROM (N 0) TO (V aa) DO
        \(c c::=\) Plus \((V c c)(V b b)\) "
definition MULT :: com where "MULT \(\equiv c c::=N 0 ; M U L T 2 "\)
definition \(P_{-} M U L T\) :: "int \(\Rightarrow\) int \(\Rightarrow\) assn" where
"P_MULT \(i j \equiv \lambda s . s a a=i \wedge s b b=j \wedge 0 \leq i\) "
definition \(Q_{-} M U L T\) :: "int \(\Rightarrow\) int \(\Rightarrow\) assn" where
"Q_MULT \(i j \equiv \lambda s . s c c=i * j \wedge s a a=i \wedge s b b=j\) "
```

Define an annotated program AMULT $i j$, so that when the annotations are stripped away, it yields MULT. (The parameters i and j will appear only in the loop annotations.)

Hint: The program AMULT $i j$ will be essentially $M U L T$ with an invariant annotation $i M U L T i j$ at the FOR loop, which you have to define:

```
definition \(i M U L T\) :: "int \(\Rightarrow\) int \(\Rightarrow\) assn" where
definition AMULT2 :: "int \(\Rightarrow\) int \(\Rightarrow\) acom" where
    "AMULT2 \(i j \equiv\)
    \{iMULT i j \(\}\)
FOR dd FROM ( \(N\) o) TO (V aa) DO
        \(c c::=\) Plus \((V c c)(V b b) "\)
definition \(A M U L T\) :: "int \(\Rightarrow\) int \(\Rightarrow\) acom" where
"AMULT \(i j \equiv(c c::=N 0) ;\) AMULT2 \(i j "\)
lemmas \(M U L T\) _defs \(=\)
MULT2_def MULT_def P_MULT_def Q_MULT_def
\(i M U L T \_d e f\) AMULT2_def \(A M U L T \_d e f\)
```

lemma strip_AMULT: "strip (AMULTij) = MULT"

Once you have the correct loop annotations, then the partial correctness proof can be done in two steps, with the help of lemma vc_sound '.
lemma MULT_correct: " ${ }^{2}$ \{P_MULT i j\} MULT $\{$ Q_MULT i j \}"
The total correctness proof will look much like the Hoare logic proofs from Exercise Sheet 9, but you must use the rules from HoareT.thy instead. Also note that when using rule HoareT. While', you must instantiate both the predicate P :: state \Rightarrow bool and the measure $f::$ state \Rightarrow nat. The measure must decrease every time the body of the loop is executed. You can define the measure first:
definition $m M U L T$:: "state \Rightarrow nat" where

Division. Define an annotated version of this division program, which yields the quotient and remainder of $a a / b b$ in variables " q " and " r ", respectively.

```
definition DIV1 :: com where "DIV1 \equivqq ::= N 0 ; rr ::= N 0"
definition DIV_IF :: com where
"DIV_IF \equiv
    IF Less (Vrr) (V bb) THEN SKIP
    ELSE (rr ::= N 0 ; qq ::= Plus (V qq) (N 1))"
definition"DIV2 \equivrr ::= Plus (Vrr) (N 1);DIV_IF"
definition DIV :: com where
"DIV \equivDIV1 ; FOR cc FROM (N 0) TO (V aa) DO DIV2"
lemmas DIV_defs = DIV1_def DIV_IF_def DIV2_def DIV_def
definition P_DIV :: "int }=>\mathrm{ int }=>\mathrm{ assn" where
"P_DIV ij \equiv \s.s aa= i^sbb=j^0\leqi^0<j"
definition Q_DIV ::"int }=>\mathrm{ int }=>\mathrm{ assn" where
"Q_DIV ij \equiv
    \lambdas.i=sqq*j+srr^0\leqsrr^srr<j^saa=i^sbb=j"
definition iDIV :: "int }=>\mathrm{ int }=>\mathrm{ assn" where
definition ADIV1 :: acom where"ADIV1\equivqq ::= N 0 ; rr ::= N 0"
definition ADIV_IF :: acom where
"ADIV_IF \equiv
    IF Less (V rr) (V bb) THEN ASKIP
    ELSE (rr ::= N 0 ; qq ::= Plus (V qq) (N 1))"
definition ADIV2 :: acom where "ADIV2 \equivrr ::= Plus (Vrr) (N 1);ADIV_IF"
definition ADIV :: "int => int => acom" where
"ADIV ij \equivADIV1 ; {iDIV i j} FOR cc FROM (N 0) TO (V aa) DO ADIV2"
lemmas ADIV_defs = ADIV1_def ADIV_IF_def ADIV2_def ADIV_def
lemma strip_ADIV:"strip (ADIV ij) = DIV"
lemma DIV_correct:"\vdash {P_DIV i j} DIV {Q_DIV i j}"
definition mDIV :: "state }=>\mathrm{ nat" where
lemma DIV_totally_correct: " }\mp@subsup{\vdash}{t}{}{\mp@subsup{P}{-}{\prime}DIV ij} DIV {Q_DIV ij}"
```

Square roots. Define an annotated version of this square root program, which yields the square root of input $a a$ (rounded down to the next integer) in output $b b$.

```
definition SQR2 :: com where
"SQR2 \equiv
    bb ::= Plus (V bb) (N 1);
    cc ::= Plus (V cc) (V bb);
    cc ::= Plus (V cc) (V bb);
    cc ::= Plus (V cc) (N 1)"
```

definition $S Q R 1$:: com where "SQR1 三bb ::= N $0 ; c c::=N 1 "$
definition $S Q R$:: com where
$" S Q R \equiv S Q R 1 ;($ WHILE (Not (Less $(V a a)(V c c)))$ DO SQR2)"
lemmas $S Q R_{-} d e f s=S Q R 1 _d e f ~ S Q R 2 _d e f ~ S Q R _d e f$
definition $P_{-} S Q R$:: "int \Rightarrow assn" where
"P_SQR $i \equiv \lambda s$ s s $a a=i \wedge 0 \leq i$ "
definition $Q_{-} S Q R$::"int \Rightarrow assn" where
"Q_SQR $i \equiv \lambda s . s a a=i \wedge(s b b)^{\wedge} 2 \leq i \wedge i<(s b b+1)^{\wedge} 2 "$

Homework 11 Be Original

Submission until Tuesday, 15. 1. 2013, 10:00am.
Deadline of previous homework was extended, so polish your submission a bit!

