
Technische Universität München WS 2012/13
Institut für Informatik 15. 1. 2013

Prof. Tobias Nipkow, Ph.D.
Andrei Popescu, Peter Lammich

Semantics of Programming Languages
Exercise Sheet 12

Homework 12 Verification Condition Generator for Total Correctness
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In this homework, your task is to implement a verification condition generator for total
correctness, which is also optimized for handling automatically the termination of certain
FOR-like while loops.

We start by defining the datatype of total-correctness annotated programs. Notice,
compared to the partial correctness case, the extra measure argument of Awhile, of type
state ⇒ nat, aimed at handling termination.

datatype acom =
ASKIP |
Aassign vname aexp (“ ( ::= )” [1000 , 61 ] 61 ) |
Aseq acom acom (“ ;/ ” [60 , 61 ] 60 ) |
Aif bexp acom acom (“ (IF / THEN / ELSE )” [0 , 0 , 61 ] 61 ) |
Awhile assn “state ⇒ nat” bexp acom (“ ({ , }/ WHILE / DO )” [0 , 0 , 61 ] 61 )

The types of both commands and annotated commands are made instances of the vars
class by defining suitable operators (see the homework template).

instantiation com :: vars
instantiation acom :: vars

Recall from homework 6 the following facts about the interaction betwee evaluation/execution
and vars:

lemma aval vars: “ [[s1 = s2 on X ; vars a ⊆ X ]] =⇒ aval a s1 = aval a s2”
lemma confinement : “ (c,s) ⇒ t =⇒ s = t on (UNIV − vars c)”

1. Write a function for identifying certain annotated while loops trivially well-behaved
w.r.t. termination, which we call “FOR loops”. Namely, a FOR loop is an annotated
command of the form Awhile I M (Less (V x ) a) (c ; x ::= (Plus (V x ) (N 1 ))) where
x does not appear in a or c and the sets of variables of a and c are disjoint. FOR loops
should be identified via a function isF, where isF b d tests if Awhile I M b d is a FOR
loop:
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fun isF :: “bexp ⇒ acom ⇒ bool” where

isF should be executable—some tests are found in the template.

2. Define a verification condition generator vc for total correctness. The “precondition”
function, pre similar to that from the partial-correctness case, is given in the template:

fun pre :: “acom ⇒ assn ⇒ assn” where

The recursive clauses for vc are essentially the ones from the partial-correctness case,
except for the case of WHILE loops, where you need to take two further aspects into
account:

• incorporate the measure annotation M in the generated conditions (hint: by con-
trast to the partial-correctness case, use pre c (λs ′. I s ′ ∧ M s ′ < M s) s and
vc c (λs ′. I s ′ ∧ M s ′ < M s) instead of pre c I and vc c I );

• the above only if the WHILE is not a FOR loop—otherwise, M should be ignored.

fun vc :: “acom ⇒ assn ⇒ bool” where

Note that, unlike for partial correctness, here vc has type acom ⇒ assn ⇒ bool instead
of acom ⇒ assn ⇒ assn. Here, vc c Q should play a similar role as ∀ s. vc c Q s from
partial correctness.

Some tests for your definition of vc are given in the template.

3. Define a function that strips away annotations:

fun strip :: “acom ⇒ com” where

4. Prove the following facts about your operators (analogous to the partial-correctness
case), culminating with soundness. For the theorem vc sound, in the WHILE case, you
will need to distinguuish between FOR loops and non FOR loops, and provide a suitable
measure in the case of the former. (Recall that the verification condition generator
should ignore the measure annotation at FOR loops.)

lemma pre mono: “ ∀ s. P s −→ P ′ s =⇒ pre c P s =⇒ pre c P ′ s”

lemma vc mono: “ ∀ s. P s −→ P ′ s =⇒ vc c P =⇒ vc c P ′”

lemma vc sound : “vc c Q =⇒ `t {pre c Q} strip c {Q}”

corollary vc sound ′: “vc c Q ∧ (∀ s. P s −→ pre c Q s) =⇒ `t {P} strip c {Q}”
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