
Technische Universität München WS 2012/13
Institut für Informatik 15. 1. 2013

Prof. Tobias Nipkow, Ph.D.
Andrei Popescu, Peter Lammich

Semantics of Programming Languages
Exercise Sheet 12

Homework 12 Verification Condition Generator for Total Correctness

Submission until Tuesday, 22. 1. 2013, 10:00am.

In this homework, your task is to implement a verification condition generator for total
correctness, which is also optimized for handling automatically the termination of certain
FOR-like while loops.

We start by defining the datatype of total-correctness annotated programs. Notice,
compared to the partial correctness case, the extra measure argument of Awhile, of type
state ⇒ nat, aimed at handling termination.

datatype acom =
ASKIP |
Aassign vname aexp (“ (::=)” [1000 , 61] 61) |
Aseq acom acom (“ ;/ ” [60 , 61] 60) |
Aif bexp acom acom (“ (IF / THEN / ELSE)” [0 , 0 , 61] 61) |
Awhile assn “state ⇒ nat” bexp acom (“ ({ , }/ WHILE / DO)” [0 , 0 , 61] 61)

The types of both commands and annotated commands are made instances of the vars
class by defining suitable operators (see the homework template).

instantiation com :: vars
instantiation acom :: vars

Recall from homework 6 the following facts about the interaction betwee evaluation/execution
and vars:

lemma aval vars: “ [[s1 = s2 on X ; vars a ⊆ X]] =⇒ aval a s1 = aval a s2”
lemma confinement : “ (c,s) ⇒ t =⇒ s = t on (UNIV − vars c)”

1. Write a function for identifying certain annotated while loops trivially well-behaved
w.r.t. termination, which we call “FOR loops”. Namely, a FOR loop is an annotated
command of the form Awhile I M (Less (V x) a) (c ; x ::= (Plus (V x) (N 1))) where
x does not appear in a or c and the sets of variables of a and c are disjoint. FOR loops
should be identified via a function isF, where isF b d tests if Awhile I M b d is a FOR
loop:

1

fun isF :: “bexp ⇒ acom ⇒ bool” where

isF should be executable—some tests are found in the template.

2. Define a verification condition generator vc for total correctness. The “precondition”
function, pre similar to that from the partial-correctness case, is given in the template:

fun pre :: “acom ⇒ assn ⇒ assn” where

The recursive clauses for vc are essentially the ones from the partial-correctness case,
except for the case of WHILE loops, where you need to take two further aspects into
account:

• incorporate the measure annotation M in the generated conditions (hint: by con-
trast to the partial-correctness case, use pre c (λs ′. I s ′ ∧ M s ′ < M s) s and
vc c (λs ′. I s ′ ∧ M s ′ < M s) instead of pre c I and vc c I);

• the above only if the WHILE is not a FOR loop—otherwise, M should be ignored.

fun vc :: “acom ⇒ assn ⇒ bool” where

Note that, unlike for partial correctness, here vc has type acom ⇒ assn ⇒ bool instead
of acom ⇒ assn ⇒ assn. Here, vc c Q should play a similar role as ∀ s. vc c Q s from
partial correctness.

Some tests for your definition of vc are given in the template.

3. Define a function that strips away annotations:

fun strip :: “acom ⇒ com” where

4. Prove the following facts about your operators (analogous to the partial-correctness
case), culminating with soundness. For the theorem vc sound, in the WHILE case, you
will need to distinguuish between FOR loops and non FOR loops, and provide a suitable
measure in the case of the former. (Recall that the verification condition generator
should ignore the measure annotation at FOR loops.)

lemma pre mono: “ ∀ s. P s −→ P ′ s =⇒ pre c P s =⇒ pre c P ′ s”

lemma vc mono: “ ∀ s. P s −→ P ′ s =⇒ vc c P =⇒ vc c P ′”

lemma vc sound : “vc c Q =⇒ `t {pre c Q} strip c {Q}”

corollary vc sound ′: “vc c Q ∧ (∀ s. P s −→ pre c Q s) =⇒ `t {P} strip c {Q}”

2

