
Technische Universität München WS 2018/19
Fakultät für Informatik 16.10.2018

Dr. Peter Lammich
Simon Wimmer

Semantics of Programming Languages
Exercise Sheet 1

Before beginning to solve the exercises, open a new theory file named Ex01.thy and add
the the following three lines at the beginning of this file.

theory Ex01

imports Main

begin

Exercise 1.1 Calculating with natural numbers

Use the value command to turn Isabelle into a fancy calculator and evaluate the fol-
lowing natural number expressions:

“2 + (2 ::nat)” “ (2 ::nat) ∗ (5 + 3 )” “ (3 ::nat) ∗ 4 − 2 ∗ (7 + 1 )”

Can you explain the last result?

Exercise 1.2 Natural number laws

Formulate and prove the well-known laws of commutativity and associativity for addition
of natural numbers.

Exercise 1.3 Counting elements of a list

Define a function which counts the number of occurrences of a particular element in a
list.

fun count :: “ ′a list ⇒ ′a ⇒ nat”

Test your definition of count on some examples and prove that the results are indeed
correct.

Prove the following inequality (and additional lemmas if necessary) about the relation
between count and length, the function returning the length of a list.

theorem “count xs x ≤ length xs”

1



Exercise 1.4 Adding elements to the end of a list

Recall the definition of lists from the lecture. Define a function snoc that appends an
element at the right end of a list. Do not use the existing append operator @ for lists.

fun snoc :: “ ′a list ⇒ ′a ⇒ ′a list”

Convince yourself on some test cases that your definition of snoc behaves as expected,
for example run:

value “snoc [] c”

Also prove that your test cases are indeed correct, for instance show:

lemma “snoc [] c = [c]”

Next define a function reverse that reverses the order of elements in a list. (Do not use
the existing function rev from the library.) Hint: Define the reverse of x # xs using the
snoc function.

fun reverse :: “ ′a list ⇒ ′a list”

Demonstrate that your definition is correct by running some test cases, and proving that
those test cases are correct. For example:

value “reverse [a, b, c]”
lemma “reverse [a, b, c] = [c, b, a]”

Prove the following theorem. Hint: You need to find an additional lemma relating reverse
and snoc to prove it.

theorem “reverse (reverse xs) = xs”

Homework 1.1 More Finger Exercise with Lists

Submission until Tuesday, October 23, 10:00am.

Submission Instructions

Submissions are handled via https://competition.isabelle.systems/.

• Register an account in the system and send the tutor an e-mail with your username.

• Select the competition “Semantics” and submit your solution following the instruc-
tions on the website.

• The system will check that your solution can be loaded in Isabelle2018 without
any errors and reports how many of the main theorems you were able to prove.

• You can upload multiple times; the last upload before the deadline is the one that
will be graded.

2

https://competition.isabelle.systems/


• If you have any problems uploading, or if the submission seems to be rejected for
reasons you cannot understand, please contact the tutor.

General hints:

• If you cannot prove a lemma, that you need for a subsequent proof, assume this
lemma by using sorry.

• Define the functions as simply as possible. In particular, do not try to make them
tail recursive by introducing extra accumulator parameters — this will complicate
the proofs!

• All proofs should be straightforward, and take only a few lines.

Define a function fold right that iteratively applies a function to the elements of a list.
More precisely fold right f [x 1, x 2, . . . , xn] a should compute f x 1 (f x 2 (. . . (f xn a))).
The following evaluate to true, for instance:

value “fold right (+) [1 ,2 ,3 ] (4 :: nat) = 10”
value “fold right (#) [a,b,c] [] = [a,b,c]”

Prove that fold right applied to the result of map can be contracted into a single
fold right :

lemma
“fold right f (map g xs) a = fold right (f o g) xs a”

Here o is the regular composition operator on functions, i.e. f o g = (λx . f (g x )).

Prove the following lemma on fold right and append :

lemma
“fold right f (xs @ ys) a = fold right f xs (fold right f ys a)”

For the remainder of the homework we will consider the special case where f is the
addition operation on natural numbers. Prove that sums over natural numbers can be
“pulled apart”:

lemma
“fold right (+) (xs @ ys) (0 :: nat) = fold right (+) xs 0 + fold right (+) ys 0”

The notation (+) is just a shorthand for λx y . x + y.

Finally prove that calculating the sum from the right and from the left yields the same
result:

lemma
“fold right (+) (reverse xs) (x :: nat) = fold right (+) xs x”

You may need a lemma about snoc and fold right.

3


