Fakultät für Informatik

Semantics of Programming Languages

Exercise Sheet 4

From this sheet onward, you should write all your (non-trivial) proofs in Isar!

Exercise 4.1 Rule Inversion

Recall the evenness predicate $e v$ from the lecture:

```
inductive ev :: "nat }=>\mathrm{ bool" where
    ev0:"ev 0" |
    evSS:"ev n\Longrightarrowev(Suc (Suc n))"
```

Prove the converse of rule evSS using rule inversion. Hint: There are two ways to proceed. First, you can write a structured Isar-style proof using the cases method:

```
lemma"ev (Suc (Suc n)) \Longrightarrowev n"
proof -
    assume "ev (Suc (Suc n))" then show "ev n"
    proof (cases)
    qed
qed
```

Optional: Alternatively, you can write a more automated proof by using the inductive_cases command to generate elimination rules. These rules can then be used with "auto elim:". (If given the [elim] attribute, auto will use them by default.)
inductive_cases evSS_elim: "ev (Suc (Suc n))"

Next, prove that the natural number three (Suc (Suc (Suc 0))) is not even. Hint: You may proceed either with a structured proof, or with an automatic one. An automatic proof may require additional elimination rules from inductive_cases.
lemma" \neg ev (Suc (Suc (Suc 0)))"

Exercise 4.2 (Deterministic) labeled transition systems

A labeled transition system is a directed graph with edge labels. We represent it by a predicate that holds for the edges.
type_synonym $\left({ }^{\prime} q,{ }^{\prime} l\right)$ lts $={ }^{\prime} ' q \Rightarrow{ }^{\prime} l \Rightarrow{ }^{\prime} q \Rightarrow$ bool"
I.e., for an LTS δ over nodes of type ' q and labels of type ${ }^{\prime} l, \delta p l q$ means that there is an edge from p to q labeled with l.

A word from source node u to target node v is the sequence of edge labels one encounters when going from u to v.
Define a predicate word, such that word $\delta u w v$ holds iff w is a word from u to v.
inductive word :: "('q,'l) lts $\Rightarrow^{\prime} q \Rightarrow{ }^{\prime} l$ list $\Rightarrow{ }^{\prime} q \Rightarrow$ bool" for δ
A deterministic LTS has at most one transition for each node and label
definition"det $\delta \equiv \forall p l q 1 q 2 . \delta p l q 1 \wedge \delta p l q 2 \longrightarrow q 1=q 2$ "
Show: For a deterministic LTS, the same word from the same source node leads to at most one target node, i.e., the target node is determined by the source node and the path

lemma

assumes det: "det δ "
shows "word δp ls $q \Longrightarrow$ word δp ls $q^{\prime} \Longrightarrow q=q^{\prime \prime}$

Exercise 4.3 Counting Elements

Recall the count function, that counts how often a specified element occurs in a list:

```
fun count :: "' \(a \Rightarrow\) 'a list \(\Rightarrow\) nat" where
    "count \(x[]=0 "\)
\(\mid\) "count \(x(y \# y s)=(\) if \(x=y\) then Suc (count \(x\) ys) else count \(x\) ys)"
```

Show that, if an element occurs in the list (its count is positive), the list can be split into a prefix not containing the element, the element itself, and a suffix containing the element one times less

```
lemma"count a xs = Suc n\Longrightarrow\existsps ss.xs=ps@ a # ss ^count a ps=0^ count a ss=
``` \(n\) "

\section*{Homework 4.1 Paths in Graphs}

Submission until Sunday, Nov 29, 23:59.

\section*{Give all your proofs in Isar, not apply style}

A graph is specified by a set of edges: \(E::\left({ }^{\prime} v \times^{\prime} v\right)\) set. A path in a graph from u to v is a list of vertices \(\left[u_{1}, \ldots, u_{n}\right]\) such that \(u=u_{1},\left(u_{i}, u_{i+1}\right) \in E\), and \(\left(u_{n}, v\right) \in E\). Moreover, the empty list is a path from any node to itself.

For example, in the graph: \(\{(i, i+1) \mid i \in \mathbb{N}\}\), we have that \([3,4,5]\) is a path from 3 to 6 , and [] is a path from 1 to 1.
Note that not including the last node of the path into the list simplifies the formalization.
Formalize an inductive predicate is_path
inductive is_path \(::\) " \(\left(' v \times{ }^{\prime} v\right)\) set \(\Rightarrow^{\prime} v \Rightarrow^{\prime} v\) list \(\Rightarrow^{\prime} v \Rightarrow\) bool"
Test your formalization for some examples:
lemma"is_path \(\{(i, i+1) \mid i::\) nat. True \(\}\) 3 [3, 4, 5] 6"
lemma"is_path \(\{(i, i+1) \mid i::\) nat. True \(\}\) 1[] 1"

Prove the following two lemmas that allow you to glue together and split paths:
theorem path_appendI:
"【is_path E u p1 v; is_path Evp2w】 \(\Longrightarrow\) is_path \(E u(p 1\) @ p2) \(w\) "
*Hint: For the next lemma, use induction on \(p 1\) and case analysis.
theorem path_appendE:
"is_path \(E u(p 1\) @ p2) \(w \Longrightarrow \exists v\). is_path \(E u p 1 v \wedge\) is_path Evp2w"

\section*{Bonus exercise (5 points)}

Bonus points are added to your total, but not to the maximum number of points.
Show that if there is a path from \(u\) to \(w\), then also there exists a path from \(u\) to \(w\) where all the nodes are distinct (using the pre-defined distinct).
*Hint: Reason over path length, using the less_induct induction rule.
thm less_induct
theorem path_distinct:
"is_path \(E\) u \(p v \Longrightarrow \exists p^{\prime}\). distinct \(p^{\prime} \wedge\) is_path \(E u p^{\prime} v\) "

\section*{Homework 4.2 Grammars}

Submission until Sunday, Nov 29, 23:59.

\section*{Give all your proofs in Isar, not apply style}

We define a grammar for strings of the form \(a^{n} b^{n}\), where \(a\) and \(b\) are defined via the type \(a b\) :
datatype \(a b=a \mid b\)
We define the language of all strings of the form \(a^{n} b^{n}\) by means of the following rules:
\[
S \rightarrow a S b \mid \epsilon
\]
inductive \(S\) :: "ab list \(\Rightarrow\) bool" where
add: "S w \(\Longrightarrow S(a \# w @[b]) "\)
| nil: "S []"

Your task is to show that the grammar fulfills the informal specification of the language, i.e.
theorem S_correct:
" \(S w \longleftrightarrow(\exists n \cdot w=\) replicate \(n a @\) replicate \(n b)\) "
Here, replicate is a pre-defined function, with replicate \(n x\) producing a list consisting of \(n\) copies of \(x\).```

