
Technische Universität München WS 2020/21
Fakultät für Informatik 14.12.2020

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Semantics of Programming Languages
Exercise Sheet 7

Exercise 7.1 Available Expressions

Regard the following function AA, which computes the available assignments of a com-
mand. An available assignment is a pair of a variable and an expression such that the
variable holds the value of the expression in the current state. The function AA c A
computes the available assignments after executing command c, assuming that A is the
set of available assignments for the initial state.

Available assignments can be used for program optimization, by avoiding recomputation
of expressions whose value is already available in some variable.

fun AA :: “com ⇒ (vname × aexp) set ⇒ (vname × aexp) set” where
“AA SKIP A = A”
| “AA (x ::= a) A = (if x /∈ vars a then {(x , a)} else {})
∪ {(x ′, a ′). (x ′, a ′) ∈ A ∧ x /∈ {x ′} ∪ vars a ′}”

| “AA (c1;; c2) A = (AA c2 ◦ AA c1) A”
| “AA (IF b THEN c1 ELSE c2) A = AA c1 A ∩ AA c2 A”
| “AA (WHILE b DO c) A = A ∩ AA c A”

Show that available assignment analysis is a gen/kill analysis, i.e., define two functions
gen and kill such that

AA c A = (A ∪ gen c) − kill c.

Note that the above characterization differs from the one that you have seen on the
slides, which is (A − kill c) ∪ gen c. However, the same properties (monotonicity, etc.)
can be derived using either version.

fun gen :: “com ⇒ (vname × aexp) set”
and kill :: “com ⇒ (vname × aexp) set”
lemma AA gen kill : “AA c A = (A ∪ gen c) − kill c”

Hint: Defining gen and kill functions for available assignments will require mutual recur-
sion, i.e., gen must make recursive calls to kill, and kill must also make recursive calls
to gen. The and-syntax in the function declaration allows you to define both functions
simultaneously with mutual recursion. After the where keyword, list all the equations
for both functions, separated by | as usual.

Now show that the analysis is sound:

1

theorem AA sound :
“ (c, s) ⇒ s ′ =⇒ ∀ (x , a) ∈ AA c {}. s ′ x = aval a s ′”

Hint: You will have to generalize the theorem for the induction to go through.

Exercise 7.2 Security type system: bottom-up with subsumption

Recall security type systems for information flow control from the lecture. Such a type
systems can either be defined in a top-down or in a bottom-up manner. Independently
of this choice, the type system may or may not contain a subsumption rule (also called
anti-monotonicity in the lecture). The lecture discussed already all but one combination:
a bottom-up type system with subsumption.

1. Define a bottom-up security type system for information flow control with sub-
sumption rule (see below, add the subsumption rule).

2. Prove the equivalence of the newly introduced bottom-up type system with the
bottom-up type system without subsumption rule from the lecture.

inductive sec type2 ′ :: “com ⇒ level ⇒ bool” (“ (` ′′ :)” [0 ,0] 50) where
Skip2 ′: “` ′ SKIP : l” |
Assign2 ′: “sec x ≥ sec a =⇒ ` ′ x ::= a : sec x” |
Seq2 ′: “ [[` ′ c1 : l ; ` ′ c2 : l]] =⇒ ` ′ c1 ;; c2 : l” |
If2 ′: “ [[sec b ≤ l ; ` ′ c1 : l ; ` ′ c2 : l]] =⇒ ` ′ IF b THEN c1 ELSE c2 : l” |
While2 ′: “ [[sec b ≤ l ; ` ′ c : l]] =⇒ ` ′ WHILE b DO c : l”
lemma “` c : l =⇒ ` ′ c : l”
lemma “` ′ c : l =⇒ ∃ l ′ ≥ l . ` c : l ′”

theory hw07 imports “HOL−IMP .Sec Type Expr” “HOL−IMP .Def Init Small” begin

Homework 7.1 Security type systems: bottom-up vs. top-down

Submission until Sunday, Dec 20, 23:59.

Prove the equivalence of the bottom-up system (` :) and the top-down system (`)
without subsumption rule. Carry out a direct correspondence proof in both directions
without using the ` ′ system.

lemma “` c : l =⇒ l ` c”
lemma top down impl bottom up: “l ` c =⇒ ∃ l ′ ≥ l . ` c : l ′”

2

Homework 7.2 Definite Initialization Analysis

Submission until Sunday, Dec 20, 23:59.

In the lecture, you have seen a definite initialization analysis that was based on the
big-step semantics. Definite initialization analysis can also be based on a small-step
semantics. Furthermore, the ternary predicate D from the lecture can be split into
two parts: a function AV :: com ⇒ name set (“assigned variables”) which collects the
names of all variables assigned by a command and a binary predicate D :: name set ⇒
com ⇒ bool which checks that a command accesses only previously assigned variables.
Conceptually, the ternary predicate from the lecture (call it D lec) and the two-step
approach should relate by the equivalence D V c ←→ D lec V c (V ∪ AV c)

hide const D

Define the functions AV, and D (which checks a command accesses only assigned vari-
ables, assuming the variables in the argument set are already assigned).

fun AV :: “com ⇒ vname set”
fun D :: “vname set ⇒ com ⇒ bool”

Progress is already proven for you as the proof is quite similar to D lec. If the proof
doesn’t work, check your definitions!

theorem D progress:
assumes “c 6= SKIP”
shows “D (dom s) c =⇒ ∃ cs ′. (c,s) → cs ′”
using assms

proof (induction c arbitrary : s)
case Assign thus ?case by auto (metis aval Some small step.Assign)

next
case (If b c1 c2)
then obtain bv where “bval b s = Some bv” by (auto dest !: bval Some)
then show ?case
by(cases bv) (auto intro: small step.IfTrue small step.IfFalse)

qed (fastforce intro: small step.intros)+

Now we want to prove preservation of D with respect to the small-step semantics, and
from progress and preservation conclude soundness of D. You may use (and then need
to prove) the lemmas D incr and D mono.

Proofs like this can often seem magical when using the full proof automation of Isabelle,
which makes them very hard to read. Hence, your proofs for this exercise may not
contain any of the advanced solvers like fastforce, smt, blast, etc.

This means that only the following proof methods should be used:

• cases/induction

• rule

• ./..

3

• simp/simp all

• auto without arguments, if the context (this) contains at most a single fact

Of course all of the isar syntax (fix, obtain, ...), forward proofs, instantiation, local
lemmas, etc. are still allowed.

Give the proofs in Isar, not apply-style!

lemma D incr : “ (c,s) → (c ′,s ′) =⇒ dom s ∪ AV c ⊆ dom s ′ ∪ AV c ′”

lemma D mono: “A ⊆ A ′ =⇒ D A c =⇒ D A ′ c”

theorem D preservation: “ (c,s) → (c ′,s ′) =⇒ D (dom s) c =⇒ D (dom s ′) c ′”

theorem D sound : “ (c,s) →∗ (c ′,s ′) =⇒ c ′ 6= SKIP =⇒ D (dom s) c =⇒ ∃ cs ′′. (c ′,s ′) →
cs ′′”

Homework 7.3 Be Original! (Topic Selection)

Submission until Sunday, Dec 20, 23:59. Think up a nice topic to formalize yourself, for
example

• Prove some interesting result about algorithms/graphs/automata/formal language
theory

• Formalize some results from mathematics

• Find interesting modifications of IMP material and prove interesting properties
about them

• ...

This week, you should select the topic and start to formalize some concepts from it. Be
creative! You will have time until after the winter break (Jan 10) to finish the project.
In total, this exercise will be worth 15 points, plus bonus points for nice submissions.

You are welcome to discuss your plans with the tutor (via e-mail) before starting. This
is, however, not a necessity by any means.

For the actual formalization, note the following:

• you should set yourself a time limit before you start

• also incomplete/unfinished formalizations are welcome and will be graded

• comment your formalization well, such that we can see what it does/is intended
to do

4

