Fakultät für Informatik

Semantics of Programming Languages

Exercise Sheet 08

Exercise 8.1 Knaster-Tarski Fixed Point Theorem

The Knaster-Tarski theorem tells us that for each set P of fixed points of a monotone function f we have a fixpoint of f which is a greatest lower bound of P. In this exercise, we want to prove the Knaster-Tarski theorem.
First we give a construction of the greatest lower bound of all fixed points P of the function f. This is the union of all sets u smaller than P and $f u$. Then the task is to show that this is a fixed point, and that it is the greatest lower bound of all sets in P.
Let us define Inf_fixp:
definition Inf_fixp :: "('a set \Rightarrow 'a set) \Rightarrow 'a set set \Rightarrow 'a set" where
"Inf_fixp $f P=\bigcup\{u . u \subseteq \bigcap P \cap f u\} "$
To work directly with this definition is a little cumbersome, we propose to use the following two theorems:

```
lemma Inf_fixp_upperbound: " \(X \subseteq \bigcap P \Longrightarrow X \subseteq f X \Longrightarrow X \subseteq\) Inf_fixp \(f\) P"
    by (auto simp: Inf_fixp_def)
```

```
lemma Inf_fixp_least:" \((\bigwedge u . u \subseteq \bigcap P \Longrightarrow u \subseteq f u \Longrightarrow u \subseteq X) \Longrightarrow\) Inf_fixp \(f P \subseteq X\) "
    by (auto simp: Inf_fixp_def)
```

Now prove, that $I n f_{-}$fixp is acually a fixed point of f.
Hint: First prove $\operatorname{Inf} f_{-} \operatorname{fixp} f P \subseteq f\left(\operatorname{Inf} f_{-} f i x p f P\right)$, this will be used for the other direction. It may be helpful to first think about the structure of your proof using pen-and-paper and then translate it into Isar.

```
lemma Inf_fixp:
    assumes f: "mono f"
    assumes }P:"\p.p\inP\Longrightarrowfp=p
    shows"Inf_fixp f P = f(Inf_fixp f P)"
```

Now we prove that it is a lower bound:
lemma Inf_fixp_lower: "Inf_fixp f $P \subseteq \bigcap P$ "
And that it is the greatest lower bound:
lemma Inf_fixp_greatest:
assumes " $q=q$ " " $q \subseteq \bigcap P$ " shows " $q \subseteq$ Inf_-fixp f P "

Exercise 8．2 Denotational Semantics

Define a denotational semantics for REPEAT－loops，and show its equivalence to the bigstep semantics．

```
datatype \(\mathrm{com}=\) SKIP
    | Assign vname aexp ("-::= _"[1000, 61] 61)
    Seq com com ("-;;/ _" [60,61] 60)
    | If bexp com com ("(IF _/ THEN _/ ELSE _)" [0, 0, 61] 61)
    | While bexp com ("(WHILE _/ DO _)" [0, 61] 61)
    | Repeat com bexp ("(REPEAT _/ UNTIL _)" [0, 61] 61)
```

inductive
big_step $::$ "com \times state \Rightarrow state \Rightarrow bool" (infix " \Rightarrow " 55)
where
Skip: " $(S K I P, s) \Rightarrow s " \mid$
Assign: " $(x::=a, s) \Rightarrow s(x:=$ aval $a s) " \mid$
Seq: "【 $\left(c_{1}, s_{1}\right) \Rightarrow s_{2} ; \quad\left(c_{2}, s_{2}\right) \Rightarrow s_{3} \rrbracket \Longrightarrow\left(c_{1} ; ; c_{2}, s_{1}\right) \Rightarrow s_{3} " \mid$
IfTrue: "【 bval bs; $\left(c_{1}, s\right) \Rightarrow t \rrbracket \Longrightarrow\left(\right.$ IF b THEN c_{1} ELSE $\left.c_{2}, s\right) \Rightarrow t " \mid$
IfFalse: " \llbracket bval $b s ; \quad\left(c_{2}, s\right) \Rightarrow t \rrbracket \Longrightarrow\left(\right.$ IF b THEN $\left.c_{1} E L S E c_{2}, s\right) \Rightarrow t " \mid$
WhileFalse: " \neg bval $b s \Longrightarrow($ WHILE b DO $c, s) \Rightarrow s " \mid$
WhileTrue:
"【bval b $s_{1} ;\left(c, s_{1}\right) \Rightarrow s_{2} ;\left(\right.$ WHILE b DO $\left.c, s_{2}\right) \Rightarrow s_{3} \rrbracket$
$\Longrightarrow\left(\right.$ WHILE $\left.b D O c, s_{1}\right) \Rightarrow s_{3} "$

Proof automation：
lemmas $[$ intro $]=$ big＿step．intros
lemmas big＿step＿induct $=$ big＿step．induct［split＿format $($ complete $)]$
inductive＿cases $S k i p E[e l i m!]:$＂$(S K I P, s) \Rightarrow t$＂
inductive＿cases AssignE［elim！］：＂$(x::=a, s) \Rightarrow t "$
inductive＿cases SeqE［elim！］：＂$(c 1 ; ; c 2, s 1) \Rightarrow s 3 "$
inductive＿cases IfE［elim！］：＂（IF b THEN c1 ELSE c2，s）$\Rightarrow t$＂
inductive＿cases WhileE［elim］：＂（WHILE b DO $c, s) \Rightarrow t "$
Execution is deterministic：

```
theorem big_step_determ: \(" \llbracket(c, s) \Rightarrow t ;(c, s) \Rightarrow u \rrbracket \Longrightarrow u=t "\)
    by (induction arbitrary: \(u\) rule: big_step.induct) blast+
type_synonym com_den \(=\) " \((\) state \(\times\) state \()\) set"
definition \(W::\) " state \(\Rightarrow\) bool \() \Rightarrow\) com_den \(\Rightarrow\) (com_den \(\Rightarrow\) com_den)" where
" \(W d b d c=(\lambda d w .\{(s, t)\). if \(d b\) s then \((s, t) \in d c O d w\) else \(s=t\})\) "
fun \(D\) :: "com \(\Rightarrow\) com_den" where
"D SKIP = Id"
" \(D(x::=a)=\{(s, t) \cdot t=s(x:=\) aval \(a s)\} "\)
" \(D(c 1 ; ; c 2)=D(c 1) O D(c 2) " \mid\)
"D (IF b THEN c1 ELSE c2)
```

```
={(s,t). if bval b s then (s,t) \inD c1 else (s,t) \inD c2}" |
"D(WHILE b DO c) =lfp (W (bval b) (D c))"
lemma W_mono: "mono (W b r)"
by (unfold W_def mono_def) auto
lemma R_mono:"mono (R b r)"
by (unfold R_def mono_def) auto
lemma D_While_If:
    "D(WHILE b DO c) = D(IF b THEN c;;WHILE b DO c ELSE SKIP)"
proof
    let ?w = "WHILE b DO c" let ?f = "W (bval b) (D c)"
    have "D ?w = lfp ?f" by simp
    also have "... = ?f (lfp ?f)" by(rule lfp_unfold [OF W_mono])
    also have "... = D (IF b THEN c;;?w ELSE SKIP)" by (simp add: W_def)
    finally show ?thesis.
qed
```

Equivalence of denotational and big-step semantics:

```
lemma D_if_big_step: " \((c, s) \Rightarrow t \Longrightarrow(s, t) \in D(c) "\)
proof (induction rule: big_step_induct)
    case WhileFalse
    with \(D_{-}\)While_If show ?case by auto
next
    case WhileTrue
    show ?case unfolding \(D_{\text {_ }}\) While_If using WhileTrue by auto
nextqed auto
abbreviation Big_step :: "com \(\Rightarrow\) com_den" where
"Big_step \(c \equiv\{(s, t) .(c, s) \Rightarrow t\}\) "
lemma Big_step_if_D: " \((s, t) \in D(c) \Longrightarrow(s, t)\) : Big_step \(c\) "
proof (induction \(c\) arbitrary: \(s t\) )
    case Seq thus?case by fastforce
next
    case (While bc)
    let ? \(B=\) "Big_step \((\) WHILE b DO \(c) "\) let ?f \(=" W\) (bval b) \((D c) "\)
    have "?f ?B \(\subseteq\) ? \(B\) " using While.IH by (auto simp: W_def)
    from lfp_lowerbound \([\) where ?f \(=\) "?f", OF this] While.prems
    show ?case by auto
nextqed (auto split: if_splits)
theorem denotational_is_big_step:
    " \((s, t) \in D(c)=((c, s) \Rightarrow t) "\)
    by (metis D_if_big_step Big_step_if_D[simplified])
```


Homework 8.1 Be Original!

Submission until Sunday, Jan 10, 23:59. In total, this exercise is worth 15 points, plus bonus points for nice submissions.
You should now have a topic to formalize, for example:

- Prove some interesting result about algorithms/graphs/automata/formal language theory
- Formalize some results from mathematics
- Find interesting modifications of IMP material and prove interesting properties about them
- ...

Do the formalization! You can submit your work via the submission system or by email. You should set yourself a time limit before starting your project. Also incomplete/unfinished formalizations are welcome and will be graded!
Please comment your formalization well, such that we can see what it does/is intended to do.

Merry Christmas!

