
Technische Universität München WS 2020/21
Fakultät für Informatik 21.12.2020

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Semantics of Programming Languages
Exercise Sheet 08

Exercise 8.1 Knaster-Tarski Fixed Point Theorem

The Knaster-Tarski theorem tells us that for each set P of fixed points of a monotone
function f we have a fixpoint of f which is a greatest lower bound of P . In this exercise,
we want to prove the Knaster-Tarski theorem.

First we give a construction of the greatest lower bound of all fixed points P of the
function f. This is the union of all sets u smaller than P and f u. Then the task is to
show that this is a fixed point, and that it is the greatest lower bound of all sets in P.

Let us define Inf fixp:

definition Inf fixp :: “ (′a set ⇒ ′a set) ⇒ ′a set set ⇒ ′a set” where
“Inf fixp f P =

⋃
{u. u ⊆

⋂
P ∩ f u }”

To work directly with this definition is a little cumbersome, we propose to use the
following two theorems:

lemma Inf fixp upperbound : “X ⊆
⋂

P =⇒ X ⊆ f X =⇒ X ⊆ Inf fixp f P”
by (auto simp: Inf fixp def)

lemma Inf fixp least : “ (
∧

u. u ⊆
⋂

P =⇒ u ⊆ f u =⇒ u ⊆ X) =⇒ Inf fixp f P ⊆ X”
by (auto simp: Inf fixp def)

Now prove, that Inf fixp is acually a fixed point of f.

Hint: First prove Inf fixp f P ⊆ f (Inf fixp f P), this will be used for the other direction.
It may be helpful to first think about the structure of your proof using pen-and-paper
and then translate it into Isar.

lemma Inf fixp:
assumes f : “mono f”
assumes P : “

∧
p. p ∈ P =⇒ f p = p”

shows “Inf fixp f P = f (Inf fixp f P)”

Now we prove that it is a lower bound:

lemma Inf fixp lower : “Inf fixp f P ⊆
⋂

P”

And that it is the greatest lower bound:

lemma Inf fixp greatest :
assumes “f q = q” “q ⊆

⋂
P” shows “q ⊆ Inf fixp f P”

1

Exercise 8.2 Denotational Semantics

Define a denotational semantics for REPEAT-loops, and show its equivalence to the
bigstep semantics.

datatype com = SKIP
| Assign vname aexp (“ ::= ” [1000 , 61] 61)
| Seq com com (“ ;;/ ” [60 , 61] 60)
| If bexp com com (“ (IF / THEN / ELSE)” [0 , 0 , 61] 61)
| While bexp com (“ (WHILE / DO)” [0 , 61] 61)
| Repeat com bexp (“ (REPEAT / UNTIL)” [0 , 61] 61)

inductive
big step :: “com × state ⇒ state ⇒ bool” (infix “⇒” 55)

where
Skip: “ (SKIP ,s) ⇒ s” |
Assign: “ (x ::= a,s) ⇒ s(x := aval a s)” |
Seq : “ [[(c1,s1) ⇒ s2; (c2,s2) ⇒ s3]] =⇒ (c1;;c2, s1) ⇒ s3” |
IfTrue: “ [[bval b s; (c1,s) ⇒ t]] =⇒ (IF b THEN c1 ELSE c2, s) ⇒ t” |
IfFalse: “ [[¬bval b s; (c2,s) ⇒ t]] =⇒ (IF b THEN c1 ELSE c2, s) ⇒ t” |
WhileFalse: “¬bval b s =⇒ (WHILE b DO c,s) ⇒ s” |
WhileTrue:

“ [[bval b s1; (c,s1) ⇒ s2; (WHILE b DO c, s2) ⇒ s3]]
=⇒ (WHILE b DO c, s1) ⇒ s3”

Proof automation:

lemmas [intro] = big step.intros
lemmas big step induct = big step.induct [split format(complete)]

inductive cases SkipE [elim!]: “ (SKIP ,s) ⇒ t”
inductive cases AssignE [elim!]: “ (x ::= a,s) ⇒ t”
inductive cases SeqE [elim!]: “ (c1 ;;c2 ,s1) ⇒ s3”
inductive cases IfE [elim!]: “ (IF b THEN c1 ELSE c2 ,s) ⇒ t”
inductive cases WhileE [elim]: “ (WHILE b DO c,s) ⇒ t”

Execution is deterministic:

theorem big step determ: “ [[(c,s) ⇒ t ; (c,s) ⇒ u]] =⇒ u = t”
by (induction arbitrary : u rule: big step.induct) blast+

type synonym com den = “ (state × state) set”

definition W :: “ (state ⇒ bool) ⇒ com den ⇒ (com den ⇒ com den)” where
“W db dc = (λdw . {(s,t). if db s then (s,t) ∈ dc O dw else s=t})”

fun D :: “com ⇒ com den” where
“D SKIP = Id” |
“D (x ::= a) = {(s,t). t = s(x := aval a s)}” |
“D (c1 ;;c2) = D(c1) O D(c2)” |
“D (IF b THEN c1 ELSE c2)

2

= {(s,t). if bval b s then (s,t) ∈ D c1 else (s,t) ∈ D c2}” |
“D (WHILE b DO c) = lfp (W (bval b) (D c))”
lemma W mono: “mono (W b r)”
by (unfold W def mono def) auto

lemma R mono: “mono (R b r)”
by (unfold R def mono def) auto

lemma D While If :
“D(WHILE b DO c) = D(IF b THEN c;;WHILE b DO c ELSE SKIP)”

proof−
let ?w = “WHILE b DO c” let ?f = “W (bval b) (D c)”
have “D ?w = lfp ?f” by simp
also have “ . . . = ?f (lfp ?f)” by(rule lfp unfold [OF W mono])
also have “ . . . = D(IF b THEN c;;?w ELSE SKIP)” by (simp add : W def)
finally show ?thesis .

qed

Equivalence of denotational and big-step semantics:

lemma D if big step: “ (c,s) ⇒ t =⇒ (s,t) ∈ D(c)”
proof (induction rule: big step induct)

case WhileFalse
with D While If show ?case by auto

next
case WhileTrue
show ?case unfolding D While If using WhileTrue by auto

nextqed auto

abbreviation Big step :: “com ⇒ com den” where
“Big step c ≡ {(s,t). (c,s) ⇒ t}”

lemma Big step if D : “ (s,t) ∈ D(c) =⇒ (s,t) : Big step c”
proof (induction c arbitrary : s t)

case Seq thus ?case by fastforce
next

case (While b c)
let ?B = “Big step (WHILE b DO c)” let ?f = “W (bval b) (D c)”
have “?f ?B ⊆ ?B” using While.IH by (auto simp: W def)
from lfp lowerbound [where ?f = “?f”, OF this] While.prems
show ?case by auto

nextqed (auto split : if splits)

theorem denotational is big step:
“ (s,t) ∈ D(c) = ((c,s) ⇒ t)”
by (metis D if big step Big step if D [simplified])

3

Homework 8.1 Be Original!

Submission until Sunday, Jan 10, 23:59. In total, this exercise is worth 15 points, plus
bonus points for nice submissions.

You should now have a topic to formalize, for example:

• Prove some interesting result about algorithms/graphs/automata/formal language
theory

• Formalize some results from mathematics

• Find interesting modifications of IMP material and prove interesting properties
about them

• ...

Do the formalization! You can submit your work via the submission system or by email.

You should set yourself a time limit before starting your project. Also incomplete/unfinished
formalizations are welcome and will be graded!

Please comment your formalization well, such that we can see what it does/is intended
to do.

Merry Christmas!

4

