Fakultät für Informatik

## Semantics of Programming Languages

Exercise Sheet 09

## Exercise 9.1 Hoare Logic

In this exercise, you shall prove correct some Hoare triples.

Step 1 Write a program that stores the maximum of the values of variables $a$ and $b$ in variable $c$.
definition Max :: com

Step 2 Prove these lemmas about max:
lemma [simp]: " $(a:: i n t)<b \Longrightarrow \max a b=b "$
lemma [simp]: " $\neg(a::$ int $)<b \Longrightarrow \max a b=a "$
Show that ex09.Max satisfies the following Hoare triple:
lemma " $\vdash\{\lambda s$. True $\} \operatorname{Max}\left\{\lambda s . s^{\prime \prime} c^{\prime \prime}=\max \left(s^{\prime \prime} a^{\prime \prime}\right)\left(s^{\prime \prime} b^{\prime \prime}\right)\right\} "$

Step 3 Now define a program $M U L$ that returns the product of $x$ and $y$ in variable $z$. You may assume that $y$ is not negative.
definition $M U L$ :: com where

Step 4 Prove that $M U L$ does the right thing.
lemma " $\vdash\left\{\lambda s .0 \leq s^{\prime \prime} y^{\prime \prime}\right\} \operatorname{MUL}\left\{\lambda s . s^{\prime \prime} z^{\prime \prime}=s^{\prime \prime} x^{\prime \prime} * s^{\prime \prime} y^{\prime \prime}\right\} "$
Hints:

- You may want to use the lemma algebra_simps, containing some useful lemmas like distributivity.
- Note that we use a backward assignment rule. This implies that the best way to do proofs is also backwards, i.e., on a semicolon $c_{1} ; c_{2}$, you first continue the proof for $c_{2}$, thus instantiating the intermediate assertion, and then do the proof for $c_{1}$. However, the first premise of the Seq-rule is about $c_{1}$. In an Isar proof, this is no problem. In an apply-style proof, the ordering matters. Hence, you may want to use the [rotated] attribute:

```
lemmas Seq_bwd = Seq[rotated]
```

lemmas hoare_rule[intro?] $=$ Seq_bwd Assign Assign' If

Step 5 Note that our specifications still have a problem, as programs are allowed to overwrite arbitrary variables.
For example, regard the following (wrong) implementation of ex09.Max:
definition"MAX_wrong $=\left({ }^{\prime \prime} a^{\prime \prime}::=N 0 ; ;{ }^{\prime \prime} b^{\prime \prime}::=N 0 ; ;{ }^{\prime \prime} c^{\prime \prime}::=N 0\right) "$
Prove that MAX_wrong also satisfies the specification for ex09.Max:
lemma" $\vdash\{\lambda s$. True $\}$ MAX_wrong $\left\{\lambda s . s^{\prime \prime} c^{\prime \prime}=\max \left(s^{\prime \prime} a^{\prime \prime}\right)\left(s^{\prime \prime} b^{\prime \prime}\right)\right\} "$
What we really want to specify is, that ex09.Max computes the maximum of the values of $a$ and $b$ in the initial state. Moreover, we may require that $a$ and $b$ are not changed. For this, we can use logical variables in the specification. Prove the following more accurate specification for ex09.Max:

```
lemma " \(\vdash\left\{\lambda s . a=s{ }^{\prime \prime} a^{\prime \prime} \wedge b=s^{\prime \prime} b^{\prime \prime}\right\}\)
    \(\operatorname{Max}\left\{\lambda s . s^{\prime \prime} c^{\prime \prime}=\max a b \wedge a=s^{\prime \prime} a^{\prime \prime} \wedge b=s^{\prime \prime} b^{\prime \prime}\right\} "\)
```

The specification for $M U L$ has the same problem. Fix it!

## Exercise 9.2 Forward Assignment Rule

Think up and prove correct a forward assignment rule, i.e., a rule of the form $\vdash\{P\} x$ $::=a\{Q\}$, where $Q$ is some suitable postcondition. Hint: To prove this rule, use the completeness property, and prove the rule semantically.
lemmas fwd_Assign $^{\prime}=$ weaken_post $[O F$ fwd_Assign $]$
Redo the proofs for ex09.Max and MUL from the previous exercise, this time using your forward assignment rule.

```
lemma"\vdash {\lambdas.True} Max {\lambdas. s}\mp@subsup{s}{}{\prime\prime}\mp@subsup{c}{}{\prime\prime}=\operatorname{max}(\mp@subsup{s}{}{\prime\prime}\mp@subsup{a}{}{\prime\prime})(\mp@subsup{s}{}{\prime\prime}\mp@subsup{b}{}{\prime\prime})}
lemma"
```


## Homework 9.1 Fixed point reasoning

Submission until Sunday, Jan 17, 23:59.
In the course, you have seen the Knaster-Tarski least fixed point theorem. The relevant constant is lfp :: $\left({ }^{\prime} a \Rightarrow^{\prime} a\right) \Rightarrow^{\prime} a$, which assumes a complete lattice order $\leq$ on ${ }^{\prime} a$ and returns, for each monotonic operator $f::{ }^{\prime} a \Rightarrow^{\prime} a$, its least fixed point lfp $f$.

So far, we've only dealt with the case where ' $a$ is ' $b$ set (the type of sets over an arbitrary type 'b) and $\leq$ is $\subseteq$ (set inclusion). In this exercise, you will prove a different kind of fixed point theorem. It says that if there are two injective functions, one from ' $a$ to ' $b$, and one the other way round, then there also exists an bijection between ' $a$ and ' $b$ :

```
theorem
    assumes"inj \(\left(f::{ }^{\prime} a \Rightarrow{ }^{\prime} b\right)\) " and"inj \(\left(g:: ' b \Rightarrow^{\prime} a\right) "\)
    shows " \(\exists h::{ }^{\prime} a \Rightarrow{ }^{\prime} b\). inj \(h \wedge \operatorname{surj} h "\)
```

This is a fixed point theorem because we will use a least fixed point for the construction of $h$. Follow the proof outline below to finish the proof.

```
theorem fixp:
    assumes"inj \(\left(f::{ }^{\prime} a \Rightarrow{ }^{\prime} b\right)\) " and"inj \(\left(g:: ' b \Rightarrow^{\prime} a\right)\) "
    shows " \(\exists h::\) ' \(a \Rightarrow{ }^{\prime} b\). inj \(h \wedge \operatorname{surj} h "\)
proof
    define \(S\) where " \(S \equiv l f p\left(\lambda X .-\left(g^{\prime}\left(-\left(f^{\prime} X\right)\right)\right)\right)\) "
    let \(? g^{\prime}=\) "inv \(g "\)
    define \(h\) where " \(h \equiv \lambda z\). if \(z \in S\) then \(f z\) else ? \(g^{\prime} z\) "
    have " \(S=-\left(g^{\prime}\left(-\left(f^{\prime} S\right)\right)\right)\) "
        have \(*: " ? g^{\prime} \cdot(-S)=-\left(f^{\prime} S\right) "\)
    show"inj \(h \wedge\) surj \(h\) "
    proof
        from * show "surj h"
            have "inj_on \(f S\) "
            moreover have "inj_on ? \(g^{\prime}(-S)\) "
            moreover \{
        fix \(a b\)
        assume " \(a \in S " " b \in-S\) " and \(e q: " f a=? g^{\prime} b "\)
            have False
            \}
        ultimately show "inj \(h\) "
            qed
qed
```


## Homework 9.2 A Hoare Calculus with Execution Times

Submission until Sunday, Jan 17, 23:59.
In this homework, we will consider a Hoare calculus with execution times.

Step 1 We first give a modified big-step semantics to account for execution times. A judgement of the form $(c, s) \Rightarrow{ }^{\wedge} n t$ has the intended meaning that we can get from state $s$ to state $t$ by an terminating execution of program $c$ that takes exactly $n$ time steps.

```
inductive
    big_step_t \(::\) "com \(\times\) state \(\Rightarrow\) nat \(\Rightarrow\) state \(\Rightarrow\) bool" ("_ \(\Rightarrow\) ^/_ _" 55)
where
Skip:" \((S K I P, s) \Rightarrow{ }^{\wedge} 1 s " \mid\)
Assign: " \((x::=a, s) \Rightarrow{ }^{\wedge} 1 s(x:=\) aval \(a s) " \mid\)
Seq: "【 \(\left(c_{1}, s_{1}\right) \Rightarrow{ }^{\wedge} n_{1} s_{2} ;\left(c_{2}, s_{2}\right) \Rightarrow{ }^{\wedge} n_{2} s_{3} ; n_{1}+n_{2}=n_{3} \rrbracket \Longrightarrow\left(c_{1} ; ; c_{2}, s_{1}\right) \Rightarrow{ }^{\wedge} n_{3} s_{3} " \mid\)
IfTrue: "【bval b s; \(\left(c_{1}, s\right) \Rightarrow{ }^{\wedge} n_{1} t ; n_{3}=\) Suc \(n_{1} \rrbracket \Longrightarrow\left(\right.\) IF b THEN \(\left.c_{1} E L S E c_{2}, s\right) \Rightarrow{ }^{\wedge} n_{3} t\) "
IfFalse: " \(\llbracket\) bval b \(s ;\left(c_{2}, s\right) \Rightarrow{ }^{\wedge} n_{2} t ; n_{3}=S u c n_{2} \rrbracket \Longrightarrow\left(\right.\) IF b THEN \(\left.c_{1} E L S E c_{2}, s\right) \Rightarrow{ }^{\wedge} n_{3} t\) "
|
WhileFalse: "【 \(\neg\) bval bs \(\rrbracket(\) WHILE \(b D O c, s) \Rightarrow^{\wedge} 1 s " \mid\)
WhileTrue:
"【bval b \(s_{1} ; ~\left(c, s_{1}\right) \Rightarrow{ }^{\wedge} n_{1} s_{2} ; ~\left(\right.\) WHILE b DO \(\left.c, s_{2}\right) \Rightarrow{ }^{\wedge} n_{2} s_{3} ; n_{1}+n_{2}+1=n_{3} \rrbracket\)
    \(\Longrightarrow\left(W H I L E b D O c, s_{1}\right) \Rightarrow{ }^{\wedge} n_{3} s_{3}\) "
```

Step 2 Some theoretical background：We need extended natural numbers．These are provided by the HOL－Library．Extended＿Nat theory．We can imagine extended natural numbers as the union of all natural numbers $\mathbb{N}$ and $\infty$ ．Here are some examples to illustrate their arithmetic behaviour：

```
value "3::enat" - 3
value " }\infty::\mathrm{ enat" - }
value "(3::enat) + 4"-7
value"(3::enat) +\infty"-\infty
value "eSuc 3" - 4
value "eSuc \infty" - \infty
```

Step 3 Next，we define a Hoare calculus that also accounts for execution times．As－ sertions are still the same（of type state $\Rightarrow$ bool），but we introduce new quantitative assertions of type state $\Rightarrow$ enat．

```
type_synonym assn ="state }=>\mathrm{ bool"
type_synonym qassn = "state = enat"
```

It is thought that the result of a qassn represents a potential，where $\infty$ corresponds to a False assertion in classical Hoare calculus．We can hence embed assertions into quantitative assertions：

```
fun \(e m b\) :: "bool \(\Rightarrow\) enat" (" \(\downarrow\) ") where
    "emb False \(=\infty\) "
| "emb True = 0"
```

We can define what it means for a quantitative Hoare triple to be valid：

```
definition hoare_Qvalid :: "qassn \(\Rightarrow\) com \(\Rightarrow\) qassn \(\Rightarrow\) bool"
    (" \(=_{Q}\left\{\left(1_{-}\right)\right\} /(-) /\left\{\left(1_{-}\right)\right\}\)" 50) where
\("=Q\{P\} c\{Q\} \longleftrightarrow\left(\forall s . P s<\infty \longrightarrow\left(\exists t p .\left((c, s) \Rightarrow^{\wedge} p t\right) \wedge P s \geq p+Q t\right)\right) "\)
```

Finally, we define quantitative Hoare judgements. The idea is that both pre- and postcondition assign an enat to a state that is then decreased as the execution progresses. We will see an example in the next step.
inductive hoare $Q::$ "qassn $\Rightarrow$ com $\Rightarrow$ qassn $\Rightarrow$ bool" $\left(" \vdash_{Q}\left(\left\{\left(1_{-}\right)\right\} /(-) /\left\{\left(1_{-}\right)\right\}\right)\right.$" 50) where

- Skipping and assignment both decrease the potential.

SkipQ: " $\vdash_{Q}\{\lambda$ s.eSuc $(P$ s $)\} \operatorname{SKIP}\{P\} " \mid$
AssignQ: " $\vdash_{Q}\{\lambda s . e \operatorname{Suc}(P(s[a / x]))\} x::=a\{P\} " \mid$

- IF _ THEN _ ELSE _ is a bit tricky: We decrease the potential by one before executing either branch. Then we add 0 to the branch that gets executed and $\infty$ to the branch that does not get executed. This is similar to how in classical Hoare calculus, the branch that does not get executed gets False as precondition.

```
IfQ:"\llbracket }\mp@subsup{}{Q}{}{\lambdas.Ps+\downarrow(\mathrm{ bval b s)} c c { {Q};
    \vdash}\mp@subsup{\vdash}{Q}{{\lambdas.Ps+\downarrow(\neg\mathrm{ bval b s)} c}2{\mp@code{Q}\rrbracket}]
```



- Sequence works about as expected.

SeqQ:" $\llbracket \vdash_{Q}\left\{P_{1}\right\} c_{1}\left\{P_{2}\right\} ; \vdash_{Q}\left\{P_{2}\right\} c_{2}\left\{P_{3}\right\} \rrbracket \Longrightarrow \vdash_{Q}\left\{P_{1}\right\} c_{1} ; ; c_{2}\left\{P_{3}\right\}$ "|

- WHILE _ DO _ is a combination of conditional and sequence. The invariant is also a function to enat.


## WhileQ:

$$
\begin{aligned}
& " \vdash_{Q}\{\lambda s . I s+\downarrow(\text { bval b } s)\} c\{\lambda t . I t+1\} \\
& \Longrightarrow \vdash_{Q}\{\lambda s . I s+1\} \text { WHILE bDO } c\{\lambda s . I s+\downarrow(\neg \text { bval } b s)\} " \mid
\end{aligned}
$$

- The consequence rule also works like in the classic Hoare calculus.
conseq $Q: " \llbracket \vdash_{Q}\{P\} c\{Q\} ; \bigwedge s . P s \leq P^{\prime} s ; \bigwedge s . Q^{\prime} s \leq Q s \rrbracket \Longrightarrow$
$\vdash_{Q}\left\{P^{\prime}\right\} c\left\{Q^{\prime}\right\} "$

Step 4 To exercise our newly-introduce Hoare calculus with timing, we will prove a Hoare triple for an example program that computes the sum of numbers from 1 to $n$. However, we are only interested in computing the total runtime and disregard correctness properties.
definition wsum :: com where

```
"wsum =
    " \(y^{\prime \prime}\) ": = N 0 ;;
    WHILE Less ( \(N\) 0) ( \(V^{\prime \prime} x^{\prime \prime}\) )
    DO (" \(y^{\prime \prime}::=\) Plus \(\left(V^{\prime \prime} y^{\prime \prime}\right)\left(V^{\prime \prime} x^{\prime \prime}\right) ;\);
    " \(x^{\prime \prime}::=\) Plus \(\left.\left(V^{\prime \prime} x^{\prime \prime}\right)(N(-1))\right) "\)
```

The following lemma states the the wsum program will take at most $2+3 * n$ steps to complete. Prove it!

```
theorem wsum: " \(\vdash_{Q}\left\{\lambda\right.\) s. enat \((2+3 * n)+\downarrow\left(s^{\prime \prime} x^{\prime \prime}=\right.\) int \(\left.\left.n\right)\right\}\) wsum \(\{\lambda s .0\}\) "
unfolding wsum_def
apply (rule SeqQ[rotated])
```

```
apply(rule conseqQ)
    apply(rule WhileQ[where I="\lambdas. enat (3 * nat (s "' }\mp@subsup{x}{}{\prime\prime}))"]
```

Step 5 You task is to prove a fragment of soundness (without the while case). The SKIP-case is already demonstrated below. Prove the remaining extracted lemmas. You don't need to prove the final theorem.

```
lemma Skip_sound: " \(=_{Q}\{\lambda a . e S u c(P a)\}\) SKIP \(\{P\}\) "
unfolding hoare_Qvalid_def proof (safe)
    fix \(s\) assume " \(e S u c(P s)<\infty\) "
    then have " \((S K I P, s) \Rightarrow^{\wedge} 1 s \wedge\) enat \(1+P s \leq e S u c(P s) "\)
        using Skip eSuc_def by (auto split: enat.splits)
    thus " \(\exists t n\). \((S K I P, s) \Rightarrow{ }^{\wedge} n t \wedge\) enat \(n+P t \leq e S u c(P s) "\)
        by blast
qed
```

```
theorem Assign_sound: " \(\models_{Q}\{\lambda b\). eSuc \((P(b[a / x]))\} x::=a\{P\} "\)
theorem conseq_sound:
    assumes hyps: " \(\wedge s . P s \leq P^{\prime} s\) "" \(\wedge s . Q^{\prime} s \leq Q s\) "
    assumes \(I H: " \models_{Q}\{P\}\) c \(\{Q\}\) "
    shows " \(==_{Q}\left\{P^{\prime}\right\} c\left\{Q^{\prime}\right\}\) "
theorem If_sound:
    assumes " \(=_{Q}\{\lambda a . P a+\downarrow(\) bval \(b a)\} c_{1}\{Q\} "\)
    assumes " \(\models_{Q}\{\lambda a . P a+\downarrow(\neg\) bval \(b a)\} c_{2}\{Q\}\) "
    shows " \(=_{Q}\{\lambda a\). eSuc \((P a)\}\) IF b THEN \(c_{1} E L S E c_{2}\{Q\} "\)
theorem Seq_sound:
    assumes " \(\models_{Q}\left\{P_{1}\right\} c_{1}\left\{P_{2}\right\}\) "
    assumes " \(=_{Q}\left\{P_{2}\right\} c_{2}\left\{P_{3}\right\}\) "
    shows " \(\models_{Q}\left\{P_{1}\right\} c_{1} ; ; c_{2}\left\{P_{3}\right\}\) "
theorem hoareQ_sound: " \(\vdash_{Q}\{P\} c\{Q\} \Longrightarrow \mid \models_{Q}\{P\} c\{Q\}\) "
```


## Homework 9.3 Traces (Bonus Exercise)

Submission until Sunday, Jan 17, 23:59. This is a bonus exercise worth 4 points.
In this exercise, we explore a new computational model: event traces.
An event is either an action which has an effect (in our IMP language, an assignment), or a test:
datatype event $=$ Action string aexp $\mid$ Test bexp
A trace is a sequence of events, which corresponds to a computation.
Given an event trace and a starting state, the exec function 'replays' the computation.
All of the tests in the event trace should succeed; if one fails, the execution stops:
fun exec :: "state $\Rightarrow$ event list $\Rightarrow$ state option" where
"exec s [] = Some s"
"exec $s($ Action $x$ a $\# t s)=\operatorname{exec}(s(x:=$ aval a $s)) t s " \mid$
"exec $s($ Test $b \# t s)=($ if bval $b$ s then exec $s$ ts else None)"
abbreviation "example $\equiv\left[\right.$ Action " $x^{\prime \prime}\left(\begin{array}{l}\text { N 1) }) \text {, Test (Less ( }\end{array}\right.$ 0 0) ( $\left.V^{\prime \prime} x^{\prime \prime}\right)$ )]"
value "case (exec $<>$ example) of Some $t \Rightarrow t^{\prime \prime} x^{\prime \prime \prime}$ "
We now want to compute the set of possible event traces for a given command. For instance, $I F$ (Bc True) THEN ${ }^{\prime \prime} x^{\prime \prime}::=\left(\begin{array}{ll}N & 1) \\ \text { ) ELSE SKIP has the traces }\{[\text { Test }(B c)\end{array}\right.$ True), Action "x" (N 1)], [Test (Not (Bc True)) $]\}$.
Start by defining an predicate trace, which characterizes traces for a command:
inductive trace :: "com $\Rightarrow$ event list $\Rightarrow$ bool"
From this it should be easy to define the set of all possible traces:
abbreviation traces :: "com $\Rightarrow$ event list set"
Prove that that every big step has a corresponding trace:
theorem big_traces: " $(c, s) \Rightarrow t \Longrightarrow \exists t s \in$ traces $c$. exec $s t s=$ Some $t "$
Next, prove the other direction:
theorem trace_big: "【trace cts; exec sts=Some $t \rrbracket \Longrightarrow(c, s) \Rightarrow t "$
Finally, the equivalence to big-step semantics follows.
lemma" $(c, s) \Rightarrow t \longleftrightarrow(\exists$ ts $\in$ traces $c$. exec $s t s=$ Some $t) "$
using big_traces trace_big by auto

