Fakultät für Informatik

Semantics of Programming Languages

Exercise Sheet 12

Exercise 12.1 Termination for sign analysis

Recall the abstract interpreter from the last sheet:

```
datatype sign = Pos | Zero | Neg|Any
instantiation sign :: semilattice_sup_top
begin
definition less_eq_sign where " }x\leqy=(y=Any\veex=y)
definition less_sign where " }x<y=(x\leqy\wedge\negy\leq(x::sign))
definition sup_sign where " }x\sqcupy=(\mathrm{ if }x=y\mathrm{ then }x\mathrm{ else Any)"
definition top_sign where " }\top=Any
instance by standard (auto simp: less_eq_sign_def less_sign_def sup_sign_def top_sign_def)
end
fun \gamma_sign :: "sign }=>\mathrm{ val set" where
" }\mp@subsup{\gamma}{-}{}\mathrm{ sign Neg ={i.i<0}"।
" \gamma_sign Pos ={i.i>0}"|
" }\mp@subsup{\gamma}{-}{}\mathrm{ sign Zero ={0}" |
" }\mp@subsup{\gamma}{-}{
fun num_sign :: "val }=>\mathrm{ sign" where
"num_sign i = (if i=0 then Zero else if i>0 then Pos else Neg)"
fun plus_sign :: "sign = sign }=>\mathrm{ sign" where
"plus_sign y Zero = y"
"plus_sign Zero y = y"
"plus_sign x y = (if x = y then x else Any)"
global_interpretation Val_semilattice
    where \gamma= \gamma_sign and num' = num_sign and plus' = plus_sign
```

```
proof (standard, goal_cases)
    case (4 - a1 _ a2) thus ?case
        by (induction a1 a2 rule: plus_sign.induct) (auto simp add:mod_add_eq)
qed (auto simp: less_eq_sign_def top_sign_def)
global_interpretation Abs_Int
    where \(\gamma=\gamma_{\_}\)sign and \(n u m^{\prime}=n u m \_s i g n\) and plus \(^{\prime}=\) plus_sign
    defines aval_sign \(=a v a l^{\prime}\) and step_sign \(=\) step \(^{\prime}\) and \(A I_{-}\)sign \(=A I\)
```

Define a measure function on the abstract domain, which can be used to prove that the analysis always terminates. Define a function m_{-}sign from the sign domain into the natural numbers such that

- $x<y \Longrightarrow m_{-} \operatorname{sign} x>m_{-} \operatorname{sign} y$
- m_sign $x \leq h _s i g n$
where h_{-}sign is the height of the sign domain.

```
abbreviation h_sign :: nat
fun m_sign :: "sign = nat"
global_interpretation Abs_Int_mono
    where }\gamma=\mp@subsup{\gamma}{_}{}\mathrm{ sign and num' = num_sign and plus' = plus_sign
global_interpretation Abs_Int_measure
where }\gamma=\mp@subsup{\gamma}{_}{\primesign and num' = num_sign and plus' = plus_sign
and m= m_sign and h=h_sign
```


Exercise 12.2 Inverse Analysis

Consider a similar analysis based on this abstract domain:

```
datatype sign0 \(=\) None \(\mid\) Neg \(\mid\) Pos0 \(\mid\) Any
fun \(\gamma_{-} 0\) :: "sign0 \(\Rightarrow\) val set" where
" \(\gamma_{-} 0\) None \(=\{ \} " \mid\)
" \(\gamma_{-} 0\) Neg \(=\{i . i<0\} "\)
\(" \gamma_{-} 0\) Pos0 \(=\{i . i \geq 0\} " \mid\)
" \(\gamma_{-} 0\) Any \(=U N I V "\)
```

Define inverse analyses for "+" and "<" and prove the required correctness properties:
fun inv_plus $^{\prime}::$ "sign0 $\Rightarrow \operatorname{sign0} \Rightarrow \operatorname{sign0} \Rightarrow \operatorname{sign0} * \operatorname{sign0"}$
lemma
$" \llbracket$ inv_plus' a a1 a2 = ($\left.11^{\prime}, a 2^{\prime}\right) ; ~ i 1 \in \gamma_{-} 0 a 1 ; ~ i 2 \in \gamma_{-} 0 a 2 ; i 1+i 2 \in \gamma_{-} 0 a \rrbracket$ $\Longrightarrow i 1 \in \gamma_{-} 0 a 1^{\prime} \wedge i 2 \in \gamma_{-} 0 a 2^{\prime} "$
fun inv_less' $::$ "bool $\Rightarrow \operatorname{sign0} \Rightarrow \operatorname{sign0} \Rightarrow \operatorname{sign0} * \operatorname{sign0"}$
lemma

$$
\begin{aligned}
& " \llbracket \text { inv_less' bv a1 a2 }=\left(a 1^{\prime}, a 2^{\prime}\right) ; i 1 \in \gamma_{-} 0 a 1 ; \quad i 2 \in \gamma_{-} 0 a 2 ;(i 1<i 2)=b v \rrbracket \\
& \Longrightarrow i 1 \in \gamma_{-} 0 \text { a1' } \wedge i 2 \in \gamma_{-} 0 a 2^{\prime} "
\end{aligned}
$$

Homework 12.1 AI Table

Submission until Sunday, Feb 7, 23:59.
Consider the following ImP program:

```
r := 11;
a := 11 + 11;
WHILE b DO (
    r := r + 1;
    a := a - 2
);
r := a + 1
```

Add annotations for parity analysis to this program, and iterate on it the step ${ }^{\prime}$ function until a fixed point is reached. (More precisely, let C be the annotated program; you need to compute $\left(\text { step }^{\prime} \top\right)^{0} C,\left(\text { step }{ }^{\prime} \top\right)^{1} C,\left(\text { step }^{\prime} \top\right)^{2} C$, etc.). Document the results of each iteration in a table. For brevity, only write down changed values, and denote x, y for $\{r:=x, a:=y\}$.

Homework 12.2 Al for finite words

Submission until Sunday, Feb 7, 23:59.
We change the language of arithmetic expression in IMP to bitwise arithmetic on 4bit words. First, we define a type word that holds precisely four elements. We can instantiate this with bool to obtain a type for 4-bit words.

```
datatype 'a word = Word 'a 'a'a 'a
type_synonym vname = string
type_synonym val="bool word"
type_synonym state ="vname => val"
datatype aexp = N val|V vname | Bit_And aexp aexp | Bit_Or aexp aexp
```

The abstract interpretation framework is already set up for this IMP variant.
Your task is to define abstract interpretation that assigns each bit in a word True, False, either, or none.

```
datatype parity \(=T|F|\) Either \(\mid\) None
```

First, instantiate the abstract interpreter with termination:
fun γ_{-}parity
fun conj_parity
fun disj_parity
fun num_parity
instantiation parity :: "\{order, semilattice_sup_top, bounded_lattice $\}$ "

begin

definition less_eq_parity
definition less_parity
definition sup_parity
definition inf_parity
definition top_parity
definition bot_parity
instance
end
type_synonym word_parity $=$ "parity word"
fun γ_{-}word_parity :: "word_parity \Rightarrow val set"
definition and_parity :: "word_parity \Rightarrow word_parity \Rightarrow word_parity"
definition or_parity :: "word_parity \Rightarrow word_parity \Rightarrow word_parity"
definition num_word_parity :: "val \Rightarrow word_parity"
global_interpretation Val_semilattice
where $\gamma=\gamma_{-}$word_parity and $n u m^{\prime}=$ num_word_parity and and ${ }^{\prime}=$ and_parity and $o r^{\prime}=$ or_parity
global_interpretation Abs_Int
where $\gamma=\gamma_{-}$word_parity and num $^{\prime}=$ num_word_parity and $a n d^{\prime}=a n d _p a r i t y$ and $o r^{\prime}=$ or_parity
defines step_parity $=$ step $^{\prime}$ and AI_parity $=A I$
global_interpretation Abs_Int_mono
where $\gamma=\gamma$ _word_parity and $n u m^{\prime}=$ num_word_parity and $a n d^{\prime}=$ and_parity and $o r^{\prime}=$ or_parity
proof (standard, goal_cases)
Then, instantiate the inverse analysis framework:
global_interpretation Val_lattice_gamma
where $\gamma=\gamma_{-}$word_parity and $n u m^{\prime}=$ num_word_parity and $a n d^{\prime}=a n d _p a r i t y$ and $o r^{\prime}=$ or_parity
definition test_num_word_parity :: "val \Rightarrow word_parity \Rightarrow bool"
definition inv_and_word_parity ::
"word_parity \Rightarrow word_parity \Rightarrow word_parity \Rightarrow (word_parity \times word_parity)"
definition inv_or_word_parity ::
"word_parity \Rightarrow word_parity \Rightarrow word_parity \Rightarrow (word_parity \times word_parity)"
Your inverse analysis of the less may be rather approximative, but not trivial.
For a more precise analysis, up to three bonus points are awarded.

```
definition inv_less_word_parity ::
    "bool \(\Rightarrow\) word_parity \(\Rightarrow\) word_parity \(\Rightarrow\) (word_parity \(\times\) word_parity)"
global_interpretation Abs_Int_inv
    where \(\gamma=\gamma_{-}\)word_parity and num \(^{\prime}=\) num_word_parity and \(a n d^{\prime}=\) and_parity and \(o r^{\prime}=\)
or_parity
    and test_num \({ }^{\prime}=\) test_num_word_parity and inv_and \(^{\prime}=\) inv_and_word_parity
```

and inv_or $^{\prime}=$ inv_or_word_parity and inv_less $^{\prime}=$ inv_less_word_parity defines step_parity $^{\prime}=$ step $^{\prime}$ and $A I_{\text {_parity }}{ }^{\prime}=A I^{\prime}$

