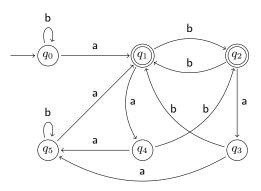
K. Kappelmann, J. Rädle, L. Stevens ABGABE 18.05.2020, 23:59 (Σ 5 P.)

Lehrstuhl für Logik und Verifikation

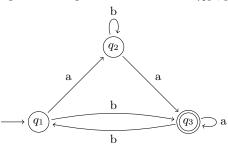
Einführung in die Theoretische Informatik

Sommersemester 2020 - Übungsblatt 3


AUFGABE 3.1. $(HTML\ 1:0\ RegEx)$

Glaubt man diesem berühmten Stack Overflow-Post, so ist HTML keine reguläre Sprache. So berühmt der Post auch sein mag, gibt er jedoch keinen expliziten Beweis für diese Behauptung. Wir bleiben skeptisch, bis ein Beweis vorhanden ist: Zeigen Sie, dass HTML in der Tat nicht mit einem regulären Ausdruck – wie in der Vorlesung definiert – geparsed werden kann. Sie dürfen die Aussage für eine vereinfachte Variante $\mathsf{HTML}^{<\mathbf{b}>}$ über dem Alphabet $\Sigma \coloneqq \{<,>,/,\mathbf{b}\}$ zeigen, die ausschließlich aus balancierten $<\mathbf{b}>...</\mathbf{b}>$ Elementen besteht. Balanciert bedeutet dabei, dass

- (a) jeder geöffnete
b> Tag auch wieder mit geschlossen wird und
- (b) ein **b**-Element immer erst geöffnet werden muss, bevor es geschlossen werden kann. Hier ein paar Beispiele:


AUFGABE 3.2.

Minimieren Sie den folgenden DFA.

AUFGABE 3.3.

Gegeben sei folgender Automat $M = (\{q_1, q_2, q_3\}, \{a, b\}, \delta, q_1, \{q_3\})$:

Berechnen Sie mit dem Gauß-Verfahren und Ardens Lemma einen regulären Ausdruck α mit $L(\alpha) = L(M)$.

AUFGABE 3.4. (Rekursive Prozedur)

Geben Sie eine rekursive Prozedur insert(x,r) an, die für einen gegebenen regulären Ausdruck r einen neuen regulären Ausdruck berechnet, sodass gilt $\mathsf{L}(insert(x,r)) = \{uxv \mid \exists w \in \mathsf{L}(r).w = uv\}$. Die Sprache $\mathsf{L}(insert(x,r))$ soll also alle Wörter enthalten, die man durch das Einfügen eines Zeichens x in ein Wort aus der Sprache $\mathsf{L}(r)$ erhalten kann. Für Ihre Definition sollten Sie das folgende Gerüst verwenden:

1,5 Punkte

1 Punkt

1 Punkt

1,5 Punkte

- $insert(x, \emptyset) =$
- insert(x, a) =
- $insert(x, \varepsilon) =$

- $insert(x, \alpha\beta) =$ $insert(x, \alpha \mid \beta) =$ $insert(x, \alpha^*) =$

Beweisen Sie mittels struktureller Induktion, dass Ihre Definition korrekt ist, wobei Sie den Fall $r=\alpha\beta$ weglassen dürfen.

Parsing HTML with regex summons tainted souls into the realm of the living.

— bobince