Einführung in die Theoretische Informatik

Sommersemester 2020 – Übungsblatt Lösungsskizze 9

AUFGABE 9.1. (Wichtige Begriffe)

Stufe A

Überprüfen Sie, dass Sie die Folgenden Begriffe korrekt definieren können.

• semi-entscheidbar

• Satz von Rice(-Shapiro)

• rekursiv-aufzählbar

• Triviale Teilmenge

AUFGABE 9.2. (Reductio ad absurdum)

Stufe B

Sei $A := \{w \in \Sigma^* \mid \exists i \in \mathbb{N}_0. \mid w \mid = 5i + 3\}$ mit $\Sigma = \{a, b\}$. Erklären Sie, warum die angegebenen Funktionen keine Reduktionen gemäß Vorlesungsdefinition sind.

- (a) Behauptung: $H_0 \leq A$
 - Reduktion: Definiere $f: H_0 \to A$ mit f(w) := aaa.
- (b) Behauptung: $H_0 \leq A$

Reduktion:

$$f(w) = egin{cases} \mathsf{aaa} & \mathsf{falls}\ w \in \mathsf{H}_0 \\ \mathsf{b} & \mathsf{sonst} \end{cases}$$

- (c) Behauptung: $A < H_0$
 - Reduktion: f bildet jedes Element $x \in \Sigma^*$ auf die Kodierung einer TM M_x ab, die wie folgt definiert ist: Die TM M_x löscht die Eingabe und schreibt x aufs Band, bestimmt dann die Länge von x, zieht 3 ab und prüft anschließend, ob das Ergebnis durch 5 teilbar ist. Dementsprechend gibt die Maschine "Ja" (1) oder "Nein" (0) aus.
- (d) Behauptung: $\overline{H_0} \leq H_0$
 - Reduktion: f bildet jedes $w \in \{0,1\}^*$ auf die Kodierung f(w) einer TM $\mathsf{M}_{f(w)}$ ab, die $\mathsf{M}_w[\varepsilon]$ simuliert. Falls $\mathsf{M}_w[\varepsilon]$ hält, geht $\mathsf{M}_{f(w)}$ in eine Endlosschleife. Falls $\mathsf{M}_w[\varepsilon]$ nicht hält, hält $\mathsf{M}_{f(w)}$.
- (e) Behauptung: $H_{\Sigma^*} \leq \mathsf{H}_0$ mit $H_{\Sigma^*} \coloneqq \{w \in \{0,1\}^* \mid \forall x \in \Sigma^*. \; \mathsf{M}_w[x] \downarrow \}.$ Reduktion: f bildet jedes $w \in \{0,1\}^*$ auf die Kodierung f(w) einer TM $\mathsf{M}_{f(w)}$ ab, die erst die Eingabe löscht, dann nichtdeterministisch $x \in \Sigma^*$ erzeugt und dann $\mathsf{M}_w[x]$ simuliert.

$L\ddot{o}sungsskizze$

- (a) f ist undefiniert auf $\{0,1\}^* \setminus H_0 \neq \emptyset$ und somit nicht total.
- (b) f ist unberechenbar, da H_0 unentscheidbar ist und somit χ_{H_0} unberechenbar ist.
- (c) f bildet auf Kodierungen von Turing-Maschinen ab, die immer terminieren. Da a ∉ A, aber f(a) ∈ H₀, erfüllt die Funktion f nicht die Definition einer Reduktion.
 - Außerdem ist die Notation M_x ungünstig, da wir einen Index einer TM in der Regel verwenden, um anzuzeigen, dass M_w die TM ist, die von w encodiert wird. In dieser Reduktion hat M_x aber eine andere Bedeutung.
- (d) f ist nicht wohldefiniert. Wenn $\mathsf{M}_{f(w)}$ die Berechnung von $\mathsf{M}_w[\varepsilon]$ simuliert und $\mathsf{M}_w[\varepsilon]$ nicht hält, dann hält definitiv $M_{f(w)}$ auch nicht.
- (e) Sei w die Kodierung einer TM mit $\mathsf{M}_w[\varepsilon] \downarrow$ und $\mathsf{M}_w[0] \uparrow$. Dann gilt $w \not\in H_{\Sigma^*}$ und $f(w) \in \mathsf{H}_0$.

AUFGABE 9.3. (Vier Fäuste gegen Rice)

Stufe C

Sei Σ ein beliebiges Alphabet. Entscheiden Sie, ob die folgenden Mengen unentscheidbar sind und begründen Sie Ihre Antworten mit dem Satz von Rice (falls anwendbar). Geben Sie dabei die Menge F genau an und argumentieren Sie, warum die Menge nicht trivial ist (d.h. weder alle berechenbare Funktionen enthält noch leer

- (a) $\mathsf{L}_1 = \{ w \in \{0,1\}^* \mid \{ u \in \Sigma^* \mid \varphi_w(u) = 1 \} \text{ ist regulär} \}$ (b) $\mathsf{L}_2 = \{ w \in \{0,1\}^* \mid \forall n \in \mathbb{N}_0. \ \varphi_w(n) = n * (n-23) + 42 \}$
- (c) $\mathsf{L}_3 \coloneqq \{ w \in \{0,1\}^* \mid \forall x \in \Sigma^*. \ \varphi_w(x) \neq |w| \}$
- (d) $\mathsf{L}_4 = \{w \in \{0,1\}^* \mid \forall p \in \mathbb{N}_0. \ (|w| > p \land p \text{ ist prim}) \implies w_p = 0\}, \text{ wobei } w_p \in \Sigma \text{ den Buchstaben an der } v_p \in \Sigma$ p-ten Stelle im Wort w bezeichnet.

Lösungsskizze

(a) Sei $\mathcal{F} = \{f \mid f \text{ ist berechenbar } \wedge f^{-1}(1) \text{ ist regulär}\}$. Sei nun $g, h \text{ mit } g(w) \coloneqq 1 \text{ und}$

$$h(w) := \begin{cases} 1 & \text{falls } \exists i \ge 0. \ w = 0^i 1^i \\ 0 & \text{sonst} \end{cases}$$

zwei berechenbare Funktionen. Dann gilt $g \in \mathcal{F}$ und $h \notin \mathcal{F}$. Somit ist \mathcal{F} nicht die Menge aller berechenbarer Funktionen. Damit folgt aus dem Satz von Rice, dass L_1 unentscheidbar ist.

- (b) Sei $\mathcal{F} = \{f \mid f \text{ ist berechenbar } \land \forall n \in \mathbb{N}_0. \ f(n) = n*(n-23)+42\}$. Dann gilt für die konstante Nullfunktion g, dass $g \notin \mathcal{F}$. Somit ist \mathcal{F} nicht die Menge aller berechenbarer Funktionen. Weiterhin ist \mathcal{F} auch nicht leer, da das Polynom in der Definition berechenbar ist. Somit ist nach Satz von Rice L_2 unentscheidbar.
- (c) Die Menge ist unentscheidbar, jedoch ist der Satz von Rice nicht anwendbar. Für den Satz von Rice müsste es eine nicht-triviale Menge \mathcal{F} an berechenbaren Funktionen geben, sodass $\mathsf{L}_3 = \{w \in \{0,1\}^* \mid \varphi_w \in \mathcal{F}\}$. Das Problem ist nun, das zwei Turingmaschinenkodierungen verschiedener Längen existieren können, sodass die Maschinen dieselbe Funktion berechnen, die eine Kodierung die Bedingung erfüllt, die andere jedoch nicht Formaler:

Je nach Kodierungsfunktion können $v, w \in \{0, 1\}^*$ mit $|v| \neq |w|$ existieren, sodass $\varphi_v = \varphi_w, \varphi_w(x) = |w|$ für ein $x \in \Sigma^*$ und $\varphi_v(x) \neq |v|$ für alle $x \in \Sigma^*$. Somit ist weder $\varphi_w(=\varphi_v) \in \mathcal{F}$ noch $\varphi_v(=\varphi_w) \notin \mathcal{F}$ und somit ist \mathcal{F} nicht definierbar.

Der Beweis für die Unentscheidbarkeit erfolgt analog zu Aufgabe 9.4 (a).

(d) L_3 ist entscheidbar. Eine TM kann alle Primzahlen kleiner |w| berechnen und an diesen Stellen in w prüfen, ob $w_p=0$ gilt.

AUFGABE 9.4. (Sie nannten ihn Rice)

Stufe C

Sei Σ ein beliebiges Alphabet. Betrachten Sie die folgende Menge:

$$A := \{ w \in \{0, 1\}^* \mid \forall x \in \Sigma^*. \ \varphi_w(x) \neq |x| \},$$

Zeigen Sie:

- (a) A ist nicht semi-entscheidbar durch geeignete Reduktion eines nicht semi-entscheidbaren Problemes.
- (b) A ist nicht semi-entscheidbar mit dem Satz von Rice-Shapiro.

$L\ddot{o}sungsskizze$

- (a) Reduktion von $\overline{\mathsf{H}_0}$:
 - (i) Sei $w \in \{0,1\}^*$ beliebig. Wir berechnen die Kodierung w' einer Turing-Maschine, die bei jeder Eingabe x die Länge von x auf ein zweites Band schreibt, die Eingabe dann löscht, dann $M_w[\varepsilon]$ ausführt und sobald $M_w[\varepsilon]$ hält, das erste Band löscht und |x| zurückschreibt. Die Reduktion gibt w' zurück.
 - (ii) Die Reduktion ist total: Für jede Eingabe w wird die Ausgabe w' erzeugt.
 - (iii) Die Reduktion ist berechenbar: Die En- und Dekodierungsfunktionen für Turing-Maschinen sind berechenbar. Eine TM kann alle Zeichen auf dem Band, die nicht dem Leerzeichen entsprechen, durch geeignete Übergänge überschreiben. Ebenso können wir die Länge von |x| anfangs zählen, auf einem zweiten Band zwischenspeichern und am Ende zurückschreiben.
 - (iv) Die Reduktion ist korrekt:

$$w \in \overline{\mathsf{H}_0} \iff M_w[\varepsilon] \uparrow \qquad \qquad \text{(Def. } \overline{\mathsf{H}_0}\text{)}$$

$$\iff \forall x \in \Sigma^*. \ M_{w'}[x] \uparrow \qquad \qquad (M_{w'} \text{ führt stets } M_w \text{ auf leerem Band aus)}$$

$$\iff \forall x \in \Sigma^*. \ \varphi_{w'}(x) \neq |x| \qquad \qquad (*)$$

$$\iff w' \in A \qquad \qquad \text{(Def. } A)$$

Beweis von (*):

 \implies : Wenn $M_{w'}$ nie terminiert, wird insbesondere nie |x| zurückgegeben.

 \Leftarrow : Kontraposition: Wenn $M_{w'}$ für ein x terminiert, dann ist die Rückgabe |x| nach Konstruktion.

(b) Sei $\mathcal{F} = \{f \mid f \text{ ist berechenbar } \land \forall x \in \Sigma^*. f(x) \neq |x|\}$. Die überall undefinierte Funktion g ist Element von \mathcal{F} . Die Wortlängenfunktion $|\cdot| \supset g$ hingegen ist kein Element von \mathcal{F} . Nach Satz von Rice-Shapiro ist somit A nicht semi-entscheidbar.

AUFGABE 9.5. (*Kurzer Prozess*)

Stufe B/C

Entscheiden Sie, ob die folgenden Behauptungen wahr oder falsch sind. Begründen Sie Ihre Antwort mit einer Beweisskizze oder geben Sie ein passendes Gegenbeispiel an.

- (a) Sei $\Sigma = \{0, 1\}$. Für alle $A \subseteq \Sigma^*$ mit $A \neq \emptyset$ und $A \neq \Sigma^*$ gilt $A \leq \overline{A}$.
- (b) Das Problem, ob $L(M) \neq \emptyset$ für eine gegebene Turingmaschine M gilt, ist semi-entscheidbar.
- (c) Das Problem, ob $L(M) = \emptyset$ für eine gegebene Turingmaschine M gilt, ist semi-entscheidbar.

Lösungsskizze

- (a) Falsch. Sei $A := \overline{H_0}$. Nach Vorlesung wissen wir, $\overline{H_0}$ ist nicht semi-entscheidbar und $\overline{H_0}$ ist semi-entscheidbar. Insbesondere sind die Mengen nicht trivial. Angenommen (a) gilt, dann haben wir $\overline{H_0} \le \overline{\overline{H_0}} = H_0$. Damit ist H_0 nicht semi-entscheidbar. Widerspruch!
- (b) Wahr. Eine NTM M', kann nichtdeterministisch ein Wort w auf das Band schreiben und dann die TM M ausführen. Wenn $w \in L(M)$, dann hält M und somit auch M'. Diese NTM kann von einer DTM simuliert werden und terminiert gdw. L(M) nicht leer ist. Andernfalls terminiert die Simulation nie.
 - Direkte DTM Konstruktion: Verwende einen wachsenden Zähler $i=0,1,\ldots$ und simuliere $\mathsf{M}[w]$ für i Schritte und für alle $w\in\Sigma^*$ mit $|w|\leq i$. Falls irgendeine $\mathsf{M}[w]$ hält, stoppe Simulation und gib "1" aus. Dieses Prinzip wird auch "Dovetailing" genannt.
- (c) Falsch. Wir reduzieren H₀ auf das Problem der Aufgabe (b). Damit ist das Problem (b) unentscheidbar und somit das Komplement, nämlich Problem (c), nicht semi-entscheidbar:
 - Bilde gegebenes w auf die Codierung w' folgender TM ab: Bei Eingabe $x \neq \varepsilon$, lehne x ab. Ansonsten simuliere $M_w(\varepsilon)$ bis sie terminiert und akzeptiere. Somit akzeptiert $M_{w'}$ höchstens ε und das genau dann, wenn M_w auf ε terminiert.

Alternativ mit Rice-Shapiro:

Annahme zum Widerspruch: $\mathsf{L}(M) = \emptyset$ ist semi-entscheidbar. Sei $\mathcal{F} = \{f \mid f \text{ ist berechenbar } \land \forall x \in \Sigma^*. f(x) = \bot\} = \{\emptyset\}$. Nach Annahme ist $C_{\mathcal{F}} = \{w \mid \varphi_w \in \mathcal{F}\} = \{w \mid \mathsf{L}(M_w) = \emptyset\}$ semi-entscheidbar. Für jede an zumindest einer Stelle definierte Funktion gilt $f \notin \mathcal{F}$. Mit dem Satz von Rice-Shapiro folgern wir, dass es keine endliche Funktion $g \subseteq f$ mit $g \in \mathcal{F}$ gibt. Jedoch ist die überall undefinierte Funktion $g = \emptyset \subseteq f$ in \mathcal{F} . Widerspruch!