Implementation of a Coherent Logic Prover for Isabelle

Stefan Berghofer
Institut fur Informatik
Technische Universitat Miinchen

joint work with

Marc Bezem
Institutt for Informatikk
Universitetet i Bergen

Automating Coherent Logic, Oslo, 13.6.2008

Roadmap

1. Background
2. Isabelle’'s Logic
3. Coherent Logic in Isabelle

4. Conclusion

Automating Coherent Logic, Oslo, 13.6.2008

Background

Automating Coherent Logic, Oslo, 13.6.2008

Isabelle

e Developed (since 1986) by Larry Paulson (Cambridge) and Tobias Nipkow
e Interactive theorem prover

e Logical Framework
Description of various object logics using a meta logic (Isabelle/Pure)

e Most well-developed object logic: Isabelle/HOL

e Design philosophy
— Inferences may only be performed by a small kernel (“LCF approach™)
— Definitional theory extension

New concepts (such as inductive datatypes and predicates) must be defined using
already existing concepts.

“The method of ‘postulating’ what we want has many advantages;
they are the same as the advantages of theft over honest toil.
Let us leave them to others and proceed with our honest toil.”

Bertrand Russell, Introduction to Mathematical Philosophy

Automating Coherent Logic, Oslo, 13.6.2008

A short history of theorem provers

2000

1940 1950 1960 1970 1980 1982 1984 1986 1988 1990 1992 1994
I I I I I I I I i | | |
Nuprl
Martin—-Lof _~"[Constable]
Type Theory .
[Magnusson]
LF Elf

[C. Coquand]

[Harper] [Pfenning]

[Pfenning, Schirmann]

Isabelle Isabelle/HOL
[Paulson] _ [Nipkow]
Simple Theory LCF Stanford Edinburgh Cambridge / ,’/
of Types — Scoft LCF — LCF LCF
[Church] [Scotl ™ miner] [Milner] [Paulson]\
HOL 88 _____HoL9o
\ [Gordon] ~ [Slind]
Calculus of - c
System F - oq
[I(Iairard] Constructions [Coquand, Paulin, Huet]
[Coquand, Huet] \
LEGO
Automath
[De Bruijn] [Pollack]
Ngthm ACL2
[Boyer, Moore] [Moore, Kaufmann]
PVS

Automating Coherent Logic, Oslo, 13.6.2008

[Owre, Shankar, Rushby]

HOL98 —— HOL4

Epigram
[McBride]

Architectue of Isabelle/Pure

term.ML
/
sorts.ML
ﬁ term_subst.ML
type.ML
type_infer.ML envir.ML
logic.ML
consts.ML
/'
sign.ML defs.ML
Y
pattern.ML theory.ML
unify.ML proofterm.ML
\ \
thm.ML

Automating Coherent Logic, Oslo, 13.6.2008

dnjurd1y

T

SI00.L Yy

siseg 1auqa0ID

[CISUBE

Yuvu|

J19pIO” Jeaul] asuaQg _ _ suoneey AInbg _ _w:oﬁmmcmu::ohm\sv

_ sepIIg _ _ uonoenx3 _ _ Jaqun4 _ _ anjey _

201040 HaqIIH _ _ 1MOduone|ey _ _ 19Mod _ adfiereq

T

| 1N [ved eiqissaooy

UOISINI®Y_PapUNOJ|[OM

9INS0D_ SANISURI |

Theory hierarchy of Isabelle/HOL

annonpuj

| pi002Y] | uoiejay] | JUI0gpoxId
<
| 2dA1"wns] [edfionpoid]
| —— |
[pegpuebun] | uny] | JopadA L]
| dnoiopalapio] | 105]

s9ome]

Automating Coherent Logic, Oslo, 13.6.2008

Isabelle’s Logic

Automating Coherent Logic, Oslo, 13.6.2008

Formalizing logics in Isabelle

Meta logic Isabelle/Pure

e Terms:t=x|c| T t|tt

o Types: T =a | (7q,...,Tn)tc where tc € {=-, prop, ...

e Logical operators:

Implication — Prop = Prop = Prop
Universal quantifier A (o = prop) = prop
Equality = a = o = prop

Object logic Isabelle/HOL

e Terms and types: as in Isabelle/Pure
e Logical operators:

Truth predicate |...] = bool = prop
Conjunction A . bool = bool = bool
Disjunction V bool = bool = bool

Implication — 2 bool = bool = bool
Universal quantifier v :: (a0 = bool) = bool
Existential quantifier 3 (¢ = bool) = bool

Automating Coherent Logic, Oslo, 13.6.2008

Proof representation in Isabelle/Pure

Proofs as)\-terms

p,q = h Hypothesis
| cra—7 Proof constant (reference to axiom / theorem)
| p-t /\ -elimination
| p-gq — -elimination
| Az oT.p /\ -introduction
| Ah:p.p —> -introduction

Proof checking

3(c) = ¢
C,h:t,I"Fh:t 't cmor @ e{a— 7T}
'Ep: ANxauT.0 THET b1k p:o
'Fp-t: P{x— t} 'FXxaTr.p: N1
I'EFp:pop=11Yv I'kq:p I'h:popbFEp:y I'FE @i prop
'Fp-q: vy 'EXh:p.p:p—

Automating Coherent Logic, Oslo, 13.6.2008 10

Natural deduction calculus [Gentzen 1933]

Introduction rules Elimination rules
P.Q
prd (AD) PAQ R (\p)
7 @
hon plon PYR R B
i
b2 oD P—=2 P _p
+ (LE)

Automating Coherent Logic, Oslo, 13.6.2008 11

More rules

7]
e TR
va.p (71" Pli/a] 7P
7]
Zg/ If] (arn 3“22 Q (3m)4

*Variable condition:
VI: x not free in the assumptions
JE: x not free in () or any assumption except P

Automating Coherent Logic, Oslo, 13.6.2008

12

Inference rules of Isabelle/HOL

conjl: |P| = |Q] = |PANQ] conjE: [PAQ| =
([P] = Q] = [R]) = |R]
disjll: |P| = |PV Q] disiE: |PV Q| = (|P| = |R|) =
disjl2: |Q] = [PV Q) ([Q] = [R]) = |R]
impl: ([P] = [Q]) = [P — Q] mp: ([P — QJ) = |P] = Q]
FalseE: | False| = | P|
notl: (| P| = | False]) = |- P] notE: |-P| = |P| = | Q]
alll: (Az. |P x|) = |Vx. P x| spec: |Vz. P x| = | P x|
exl: |P x| = |Jx. P x| exE: |Jz. P x| =

Az |Pz] = [Q]) = [CQ]

Automating Coherent Logic, Oslo, 13.6.2008

Unstructured vs. structured proofs

theorem ezi: (3z.Vy. Pzy) — (Vy. 3z. Pz y)

apply (rule impl)

apply (erule exFE)

apply (rule alll)

apply (rule exl)

apply (drule spec)

apply assumption

done

theorem ex2: (dz.Vy. Pxy) — (Vy. Jz. Pxy)
proof (rule impl)
assume Jdz. Vy. Pxy then show Vy. dz. Pz y
proof (rule exF)
fix x assume h: Vy. Pz yshow Vy. dx. Pz y
proof (rule alll)
fix y from h have P x y by (rule spec) then show 3 z. P z y by (rule exl)
ged
ged
ged

Automating Coherent Logic, Oslo, 13.6.2008

14

Coherent Logic in Isabelle

Automating Coherent Logic, Oslo, 13.6.2008

15

General elimination rules

e Since Isabelle is a logical framework, the CL prover should work with any object logic
(e.g. HOL, FOL, ZF, ...)

e Can we express CL rules just using the meta logic Isabelle/Pure?

Ay A NAy, — (38 BEA .. ABMYY v .. v (34, BLA ...\ Bkn)

n

A= - = A, —= (\dl.Bl= ... = Bl —= pP) — ...

— (AN2y,. Bl = ... = B — P) =P

Rules used in the translation

A

(ANB = C)
(AVB = (C) = ()
(Fz. P) = Q)

Automating Coherent Logic, Oslo, 13.6.2008

16

Linking external provers to Isabelle

Translate Isabelle formula to format understood by prover
Write formula to file

Call external prover

External prover writes result (proof) to log file

ok =

Reconstruct Isabelle proof from log file

e Approach used in first attempt to link Marc’s CL Prover (written in Prolog) to Isabelle
e Backend for producing Isabelle proof terms was derived from existing Coq backend

Problems

e Overhead for translating, parsing and printing

e Difficult to maintain: needs Prolog compiler to execute, must adapt Isabelle interface to
changes of input or output format of external prover

e Scalability: proof terms might get too large

Automating Coherent Logic, Oslo, 13.6.2008 17

An internal prover

e Written in Isabelle’s implementation language (Standard ML)
e No parsing and printing of “external” formats
e Can work directly on Isabelle's data structure for terms (and theorems)

e Uses existing infrastructure for
— unification / matching
— backtracking ~» sequences / lazy lists
— managing large sets of facts ~» discrimination nets

Automating Coherent Logic, Oslo, 13.6.2008

18

Data structures

Rules
theorem types of d-quantified variables
TN : —))
thm * term list * (typ list * term list) list
premises conjuncts
conclusion
Proofs

datatype cl_prf = ClPrf of

thm * theorem applied in proof step
(Type.tyenv * Envir.tenv) x* instantiation for vars in premises of theorem
((indexname * typ) * term) list * instantiation for extra vars

int list * indices of facts used for solving premises

(term list * cl_prf) list proofs for cases generated by theorem

Automating Coherent Logic, Oslo, 13.6.2008 19

The main loop

Construct the following (lazy) list:

" For all rules

" For all combinations of facts that make premises valid

" For all instantiations of extra variables in conlusion

If conclusion is invalid, include (rule, facts, instantiation) in list
Otherwise do nothing

e order of rules matters (because of DFS strategy)

e try “oldest” facts first

Consider the first element of this list

e If there is no such element, we have found a countermodel

e If conclusion of chosen rule equals goal, we are done

e Otherwise recursively produce proofs of goal in all cases of conclusion of chosen rule

Automating Coherent Logic, Oslo, 13.6.2008

20

The main loop

fun validO thy rules goal dom facts nfacts nparams =
let val seq = Seq.of_list rules |> Seq.maps (fn (th, ps, cs) =>
valid_conj thy facts empty_env ps |> Seq.maps (fn (env, is) =>
let val cs’ = (apply env to cs)
in inst_extra_vars thy dom cs’ |[>
Seq.map_filter (fn (inst, cs’’) =>
if is_valid_disj thy facts cs’’ then NONE
else SOME (th, env, inst, is, cs’’))
end))
in case Seq.pull seq of
NONE => NONE
| SOME ((th, env, inst, is, cs), _) =>
if cs = [([], [goall)] then SOME (ClPrf (th, env, inst, is, []))
else (case valid2 thy rules goal dom facts nfacts nparams cs of
NONE => NONE
| SOME prfs => SOME (Cl1lPrf (th, env, inst, is, prfs)))
end

Automating Coherent Logic, Oslo, 13.6.2008 21

Case analysis

and valid2 thy rules goal dom facts nfacts nparams [] = SOME []
| valid2 thy rules goal dom facts nfacts nparams ((Ts, ts) :: ds) =
let
val params = (invent new parameters with types Ts);
val ts’ = map_index (fn (i, t) =>
(subst_bounds (params, t), nfacts + i)) ts;
val dom’ = (add params to dom);
val facts’ = (add ts’ to facts)
in
case validO thy rules goal dom’ facts’
(nfacts + length ts) (nparams + length Ts) of
NONE => NONE
| SOME prf =>
(case valid2 thy rules goal dom facts nfacts nparams ds of
NONE => NONE

| SOME prfs => SOME ((params, prf) :: prfs))
end;

Automating Coherent Logic, Oslo, 13.6.2008

Proof Reconstruction

fun thm_of_cl_prf thy goal asms (ClPrf (th, env, insts, is, prfs)) =

let
val th’ = Drule.implies_elim_list
(apply env and inst to th) (map (nth asms) is);
val (_, cases) = dest_elim (prop_of th’)
in
case (cases, prfs) of
(CCl, (21, [1) => th’
| o, D1, [, prf)l) =>
thm_of_cl_prf thy goal (asms @ [th’]) prf
| _ => Drule.implies_elim_list
(instantiate proposition var in th’ with goal)

(map (thm_of_case_prf thy goal asms) (prfs ~~

end

Automating Coherent Logic, Oslo, 13.6.2008

cases))

23

Proof Reconstruction — Case analysis

and thm_of_case_prf thy goal asms ((params, prf), (_, asms’)) =
let
val cparams = map (cterm_of thy) params;
val asms’’ = map (cterm_of thy o
curry subst_bounds (rev params)) asms’
in
Drule.forall_intr_list cparams (Drule.implies_intr_list asms’’
(thm_of_cl_prf thy goal (asms @ map Thm.assume asms’’) prf))
end;

Automating Coherent Logic, Oslo, 13.6.2008

24

Automating Coherent Logic, Oslo, 13.6.2008

Conclusion

25

Future Work

e Use unification rather than enumeration of instantiations for extra variables in
conclusion of a rule
~> use ideas from free variable tableaux / hyper-tableaux [Furbach, Baumgartner]

e Extension to handling of function symbols
e Preprocessor / Translation from FOL to CL ~» Andrew's talk
e Different search strategies: BFS

Automating Coherent Logic, Oslo, 13.6.2008

26

Automating Coherent Logic, Oslo, 13.6.2008

Questions?

27

