
A Recursion Combinator for Nominal Datatypes
Implemented in Isabelle/HOL

Christian Urban and Stefan Berghofer

Technische Universität München
{urbanc,berghofe}@in.tum.de

Abstract. The nominal datatype package implements an infrastructure
in Isabelle/HOL for defining languages involving binders and for rea-
soning conveniently about alpha-equivalence classes. Pitts stated some
general conditions under which functions over alpha-equivalence classes
can be defined by a form of structural recursion and gave a clever proof
for the existence of a primitive-recursion combinator. We give a version
of this proof that works directly over nominal datatypes and does not
rely upon auxiliary constructions. We further introduce proving tools
and a heuristic that made the automation of our proof tractable. This
automation is an essential prerequisite for the nominal datatype package
to become useful.

Keywords: Lambda-calculus, proof assistants, nominal logic, primitive
recursion

1 Introduction

The infrastructure provided by various datatype packages [2,6] dramatically sim-
plifies the embedding of languages without binders inside HOL-based proof as-
sistants [4]. Because such proof assistants emphasise the development of theories
by definition rather than axiom postulation, simple tasks like reasoning about
lists would be fiendishly complicated without such an infrastructure.

The purpose of the nominal datatype package1 is to provide an infrastructure
in Isabelle/HOL for embedding languages with binders and for reasoning con-
veniently about them. Many ideas for this package originate from the nominal
logic work by Pitts ([7], see also [11]). Using this package, the user can define
the terms of, for example, the lambda-calculus as follows:

atom decl name

nominal datatype lam = Var "name"

| App "lam" "lam"

| Lam "〈〈name〉〉lam"

(1)

where name is declared to be the type for variables and where 〈〈. . .〉〉 indicates that
a name is bound in a lambda-term. Despite similarities with the usual datatype
declaration of Isabelle/HOL and despite the fact that after this declaration one

1 Available from http://isabelle.in.tum.de/nominal/ .

can, as usual, write (Var a), (App t1 t2) and (Lam a t) for the lambda-terms, the
code above does not define a datatype in the usual sense, but rather defines
alpha-equivalence classes. Indeed we can show that the equation

(Lam a (Var a)) = (Lam b (Var b)) (2)

holds for the nominal datatype lam.
By using alpha-equivalence classes and strong induction principles, that is

induction principles which have the usual variable convention already built-
in [10,11], one can often formalise with great ease informal proofs about lan-
guages involving binders. One example2 is Barendregt’s informal proof of the
substitution lemma shown in Fig. 1. This lemma establishes a “commutation-
property” for the function of capture-avoiding substitution. This substitution
function is usually defined by the three clauses:

(Var a)[b := t′] = if a = b then t′ else (Var a)

(App t1 t2)[b := t′] = App (t1[b := t′]) (t2[b := t′])

(Lam a t)[b := t′] = Lam a (t[b := t′])

(3)

where the last clause has the side-constraint that a 6= b and a # t′ (the latter
is the nominal logic terminology for a not being free in t′). While it is trivial to
define functions by primitive recursion over datatypes, this is not so for nomi-
nal datatypes, because there functions need to respect equations such as (2); if
not, then one can easily prove false in Isabelle/HOL. Consider for example the
following two definitions that are intended, respectively, to calculate the set of
bound names and to return the set of immediate subterms of a lambda-term:

bn (Var a) = ∅
bn (App t1 t2) = (bn t1) ∪ (bn t2)

bn (Lam a t) = {a} ∪ (bn t)

ist (Var a) = ∅
ist (App t1 t2) = {t1, t2}

ist (Lam a t) = {t}

If bn and ist were functions, then they must return the same result for the two
terms in (2)—that means {a} = {b} in case of bn and {Var a} = {Var b} in case
of ist; however, if we assume a 6= b, then both equations lead to contradictions.
Pitts gave in [8,9] some general conditions that allow to define the substitution
function by the clauses in (3), but exclude definitions such as bn and ist.

In earlier versions of the nominal datatype package one could define functions
on a case-by-case basis, but this involved some rather non-trivial reasoning—
there was no uniform method for defining functions over the structure of nominal
datatypes. Pitts gave in [9] two proofs for the existence of a primitive recursion
operator that allows one to define functions by stating a clause for each term-
constructor. His first proof is fairly complicated and involves auxiliary construc-
tions: for example he does not show the existence directly for alpha-equivalence
classes, but indirectly via the existence of primitive recursion for the correspond-
ing “un-quotient” type (in case of the lambda-calculus “un-quotient” means
2 Other examples such as Church-Rosser and strong normalisation can be found in

the distribution of the nominal datatype package.

2

Substitution Lemma.

If x 6≡ y and x 6∈ FV (L), then
M [x := N][y := L] ≡ M [y := L][x := N [y := L]].

Proof. By induction on the structure of M .

Case 1: M is a variable.

Case 1.1. M ≡ x. Then both sides equal N [y := L] since x 6≡ y.

Case 1.2. M ≡ y. Then both sides equal L, for x 6∈ FV (L) implies
L[x := . . .] ≡ L.

Case 1.3. M ≡ z 6≡ x, y. Then both sides equal z.

Case 2: M ≡ λz.M1. By the variable convention we may assume that
z 6≡ x, y and z is not free in N, L. Then by induction hypothesis

(λz.M1)[x := N][y := L] ≡ λz.(M1[x := N][y := L])

≡ λz.(M1[y := L][x := N [y := L]])

≡ (λz.M1)[y := L][x := N [y := L]].

Case 3: M ≡ M1M2. The statement follows again from the induction hy-
pothesis. ut

lemma forget:

assumes asm: "x#L"

shows "L[x:=P] = L"

using asm by (nominal_induct L avoiding: x P rule: lam.induct)

(auto simp add: abs_fresh fresh_atm)

lemma fresh_fact:

fixes z::"name"

assumes asm: "z#N" "z#L"

shows "z#(N[y:=L])"

using asm by (nominal_induct N avoiding: z y L rule: lam.induct)

(auto simp add: abs_fresh fresh_atm)

lemma substitution_lemma:

assumes asm: "x6=y" "x#L"

shows "M[x:=N][y:=L] = M[y:=L][x:=N[y:=L]]"

using asm by (nominal_induct M avoiding: x y N L rule: lam.induct)

(auto simp add: fresh_fact forget)

Fig. 1. The informal proof shown at the top is taken from Barendregt [1]. In the
lambda-case, the variable convention allows him to move the substitutions under
the binder, to apply the induction hypothesis and finally to pull the substitutions
back out from under the binder. Using the nominal datatype package one can
formalise this proof in Isabelle/HOL by establishing first the lemmas forget and
fresh fact. Although hidden by the auto-tactic, the formal proof follows quite
closely Barendregt’s reasoning, including his use of the variable convention. One
important part of this formalisation is the definition of the function for capture-
avoiding substitution.

3

lambdas are defined having the type name×lam). Norrish formalised this proof
quite faithfully, but needed, despite using the quotient package by Homeier [5]
that automated some parts of the proof, approximately 600 lines of extremely
dense HOL4-code. It is a fair comment3 to say that this formalisation and the one
included in early versions of the nominal datatype package are far too difficult
for an automation.

We present in this paper a formalisation of Pitts second proof whose length
is in case of the lambda-calculus only 150 lines of readable Isar-code. In contrast
to [9], our proof is a direct proof not relying on any auxiliary constructions; also
we prove directly the existence of a recursion combinator and do not make a
detour via an iteration combinator. The automation of this proof will be part of
the forthcoming release of the nominal datatype package. To ease the automa-
tion, we introduce here a heuristic that allowed us to write a tactic for solving
some re-occurring proof obligations to do with finite support.

The paper introduces in Sec. 2 the central notions from the nominal logic
work and some brief comments on the implementation of the nominal datatype
package. Sec. 3 gives the proof of the structural recursion combinator for the
type lam. Some examples are given in Sec. 4. The general case for all nomi-
nal datatypes is mentioned very briefly in Sec. 5; Sec. 6 draws conclusions and
mentions related work.

2 Preliminaries

As can be seen from the declaration of lam shown in (1), there is a single type of
variables in the lambda-calculus. We denote this type here by name and in the
tradition of the nominal logic work call its elements atoms. While the structure
of atoms is immaterial, two properties need to hold for the type name: one has
to be able to distinguishing different atoms and one needs to know that there
are countably infinitely many of them.

Permutations are finite bijective mappings from atoms to atoms; as in [11]
permutations are implemented as finite lists whose elements are swappings (that
is pairs of atoms). We write such permutations as (a1 b1)(a2 b2) · · · (an bn); the
empty list [] stands for the identity permutation. A permutation π acting on an
atom a is defined as:

[]·a def= a

((a1 a2) :: π)·a def=

a2 if π·a = a1

a1 if π·a = a2

π·a otherwise

(4)

where (a b) :: π is the composition of a permutation followed by the swapping
(a b). The composition of π followed by another permutation π′ is given by list-
concatenation, written as π′@π, and the inverse of a permutation is given by
list reversal, written as π−1. Our representation of permutations as lists does
3 personal communication with Norrish

4

not give unique representatives: for example, the permutation (a a) is “equal” to
the identity permutation. We equate the representations of permutations with a
relation ∼:

Definition 1 (Permutation Equality). Two permutations are equal, written
π1 ∼ π2, provided π1·a = π2·a for all atoms a.

To generalise the notion given in (4) of a permutation acting on an atom,
the nominal datatype package takes advantage of the overloading mechanism in
Isabelle by declaring a constant, written infix as (−)·(−), with the polymorphic
type (name × name) list ⇒ α ⇒ α. A definition of the permutation action can
then be given separately for each type-constructor; for lists, products, unit, sets
and functions the definitions are as follows:

α list : π·[] def= []
π·(x :: t) def= (π·x) :: (π·t)

α1 × α2 : π·(x1, x2)
def= (π·x1, π·x2)

unit : π·() def= ()
α set : π·X def= {π·x |x ∈ X}
α1 ⇒ α2 : π·fn def= λx.π·(fn (π−1·x))

(5)

The nominal datatype package also defines a permutation action for the type
lam, which behaves as follows:

π·(Var a) = Var (π·a)
π·(App t1 t2) = App (π·t1) (π·t2)

π·(Lam a t) = Lam (π·a) (π·t)
(6)

(Since we have not yet derived a mechanism for defining functions by structural
recursion over nominal datatypes, this permutation action cannot yet be defined
directly, but needs to be lifted from the representing type for lam.)

The nominal datatype package assumes that every permutation action de-
fined for a type satisfies three basic properties. For this we use the terminology
from [11] of a permutation type:

Definition 2 (Permutation Type). A type α will be referred to as permu-
tation type, written ptα, provided the permutation action satisfies the following
three properties:

(i) []·x = x

(ii) (π1@π2)·x = π1·(π2·x)
(iii) if π1 ∼ π2 then π1·x = π2·x

These properties entail that the permutations action behaves on elements of
permutation types as one expects, for example we have π−1·(π·x) = x. We note
that:

5

Lemma 1. Given ptα, ptα1 and ptα2 , the types name, unit, α list, α set,
α1 × α2, α1 ⇒ α2 and lam are also permutation types.

Proof. All properties follow by unwinding the definition of the corresponding
permutation action and routine inductions. The property ptα1⇒α2 uses the fact
that π1 ∼ π2 implies π−1

1 ∼ π−1
2 . ut

The permutation action on a function-type, say α1 ⇒ α2 with α1 being a per-
mutation type, is defined so that for every function fn we have the equation

π·(fn x) = (π·fn)(π·x) (7)

in Isabelle/HOL; this is because we have π−1·(π·x) = x for x of type α1.
The most interesting feature of the nominal logic work is that as soon as

one fixes a permutation action for a type, then the support for the elements of
this type, very roughly speaking their set of free atoms, is fixed as well [3]. The
definition of support and the derived notion of freshness is:

Definition 3 (Support and Freshness).

• The support of x, written supp(x), is the set of atoms defined as

supp(x)
def
= {a | infinite{b | (a b)·x 6= x}}

• An atom a is said to be fresh for an x, written a # x, provided a 6∈ supp(x).

The advantage of the quite unusual definition of support is that it generalises
the notion of a free variable to functions (a fact that will play an important rôle
later on). Unwinding this definition and the permutation action given in (5) and
(6), one can calculate the support for the types:

name: supp(a) = {a}
α1 × α2: supp(x1, x2) = supp(x1) ∪ supp(x2)
unit: supp(()) = ∅
α list: supp([]) = ∅

supp(x :: xs) = supp(x) ∪ supp(xs)
lam: supp(Var a) = {a}

supp(App t1 t2) = supp(t1) ∪ supp(t2)
supp(Lam a t) = supp(t)− {a}

(8)

where the last clause uses the fact that alpha-equivalence for the type lam is
given by:

Lam a t = Lam b t′ ⇔ (a = b ∧ t = t′) ∨ (a 6= b ∧ t = (a b)·t′ ∧ a # t′) (9)

For permutation types the notion of support and freshness have very good prop-
erties as mentioned next (proofs are in [11]):

π·a # π·x if and only if a # x (10)
if a # x and b # x then (a b)·x = x (11)

A further restriction on permutation types filters out all those that contain
elements with infinite support:

6

Definition 4 (Finitely Supported Permutation Types). A permutation
type α is said to be finitely supported, written fsα, if every element of α has
finite support.

We shall write finite(supp(x))/infinite(supp(x)) to indicate that an element x
from a permutation type has finite/infinite support. The following holds:

Lemma 2. Given fsα, fsα1
and fsα2

, the types name, unit, α list, α1×α2 and
lam are also finitely supported permutation types.

Proof. Routine proofs using the calculations given in (8).

The crucial property entailed by Def. 4 is that if an element, say x, of a
permutation type has finite support, then there must be a fresh atom for x,
since there are infinitely many atoms. Therefore we have:

Proposition 1. If x of permutation type has finite support, then there exists an
atom a with a # x.

As a result, whenever we need to choose a fresh atom for an x of permutation
type, we have to make sure that x has finite support. This task can be automat-
ically performed by Isabelle’s axiomatic type-classes [12] for most constructions
occurring in informal proofs: Isabelle has to just examine the types of the con-
struction using Lem. 2. Unfortunately, this is more difficult in case of functions,
because not all functions have finite support, even if their domain and codomain
are finitely supported permutation types (see [9, Example 9]). Therefore we have
to establish whether a function has finite support on a case-by-case basis. In or-
der to automate the corresponding proof obligations, we use the auxiliary notion
of supports [3].

Definition 5. A set S of atoms supports an x, written S supports x, provided:

∀ a b. a 6∈ S ∧ b 6∈ S ⇒ (a b)·x = x .

This notion allows us to approximate the support of an x from “above”, because
we can show that:

Lemma 3. If a set S is finite and S supports x, then supp(x) ⊆ S.

Proof. By contradiction we assume supp(x) 6⊆ S, then there exists an atom
a ∈ supp(x) and a 6∈ S. From S supports x follows that for all b 6∈ S we have
(a b)·x = x. Hence the set {b | (a b)·x 6= x} is a subset of S, and since S is
finite by assumption, also {b | (a b)·x 6= x} must be finite. But this implies that
a 6∈ supp(x) which gives the contradiction. ut

Lem. 3 gives us in many cases some effective means to decide relatively easily
whether a function has finite support: one only needs to find a finite set of
atoms and then verify whether this set supports the function. For this we use
the following heuristic:

7

Heuristic 1 Assume an HOL-function, say fn, is given as a lambda-term. The
support of the tuple consisting of the free variables of fn supports this function,
more formally we have supp(FV (fn)) supports fn, where we assume FV is de-
fined as usual, except that we group the free variables in tuples, instead of finite
sets.

This is a heuristic, because it can very likely not be established as a lemma in-
side Isabelle/HOL, since it is a property about HOL-functions. Nevertheless the
heuristic is extremely helpful for deciding whether a function has finite support.
Consider the following two examples:

Example 1. Given a function fn def= f1 c where f1 is a function of type name⇒ α.
We also assume that f1 has finite support. The question is whether fn has finite
support? The free variables of fn are f1 and c, that means FV (fn) = (f1, c).
According to our heuristic we have to verify whether supp(f1, c) supports fn,
which amounts to showing that

∀a b. a 6∈ supp(f1, c) ∧ b 6∈ supp(f1, c) ⇒ (a b)·fn = fn

To do so we can assume by the definition of freshness (Def. 3) that a # (f1, c)
and b # (f1, c) and show that (a b)·fn = fn. This equation follows from the
calculation that pushes the swapping (a b) inside fn:

(a b)·fn def= (a b)·(f1 c)
by (7)

= ((a b)·f1) ((a b)·c) (∗)
= f1 c

def= fn

where (∗) follows because we know that a # f1 and b # f1 and therefore by (11)
that (a b)·f1 = f1 (similarly for c).

We can conclude that supp(fn) is a subset of supp(f1, c), because the latter
is finite (since f1 has finite support by assumption and c is finitely supported
because the type name is a finitely supported permutation type). So fn must
have finite support. ut

Example 2. Given the function fn ′ def= λπ. f2 (r1 π) (r2 π) where we assume that
the free variables of fn ′, namely f2, r1 and r2, are functions with finite support. In
order to verify that fn ′ has finite support we need to verify (f1, r1, r2) supports fn ′,
that is decide the following equation

(a b)·(λπ. f2 (r1 π) (r2 π)) = λπ. f2 (r1 π) (r2 π)

under the assumptions that a # (f2, r1, r2) and b # (f2, r1, r2). Pushing the
swapping (a b) under the λ and inside the applications using (5) and (7), the
swapping will by (11) “vanish” in front of f1, r1 and r2, and we have two identical
terms. So fn ′ has finite support under the given assumptions. ut

As the examples indicate, by using the heuristic one can infer from a decision
problem involving permutations whether or not a function has finite support.
The main point is that the decision procedure involving permutations can be
relatively easily automated in a special purpose tactic analysing permutations.
This seems much more convenient than analysing the support of a function
directly.

8

3 Recursion for the Lambda-Calculus

In this section we derive from an inductively defined relation the existence of
a recursion combinator that allows us to define functions over the structure of
the type lam. This way of introducing a recursion combinator is standard in
HOL-based theorem provers.

In contrast with the usual datatypes, such as lists and products, where
the term-constructors are always injective, the term-constructors of nominal
datatypes are because of the binders in general not injective, see equation (2).
That means when stating a function definition by characteristic equations like
the ones given for capture-avoiding substitution in (3), it is not obvious whether
the intended function, roughly speaking, preserves alpha-equivalence—we have
seen the counter-examples bn and ist in the Introduction. Pitts [8,9] stated some
general conditions for when functions do preserve alpha-equivalence.

A definition by structural recursion involves in case of the lambda-calculus
three functions (one for each term-constructor) that specify the behaviour of the
function to be defined—let us call these functions f1, f2, f3 for the variable-,
application- and lambda-case respectively and let us assume they have the types:

f1 : name⇒ α
f2 : lam⇒ lam⇒ α ⇒ α ⇒ α
f3 : name⇒ lam⇒ α ⇒ α

with α being a permutation type. Then the first condition by Pitts states that
f3—the function for the lambda case—needs to satisfy the following property:4

Definition 6 (Freshness Condition for Binders (FCB)). A function f
with type name⇒ lam⇒ α ⇒ α satisfies the FCB provided ∃ a. a # f ∧ ∀ t r. a #
f a t r.

As we shall see later on, this condition ensures that the result of f3 is independent
of which particular fresh name one chooses for the binder a. The second condition
states that the functions f1, f2 and f3 have finite support. This condition ensures
that we can use Prop. 1 to chose a fresh name.

With these two conditions we can define a recursion combinator, we call it
rfunf1f2f3

, with the following properties:

Theorem 1 (Characteristic Equations for Recursion). If f1, f2 and f3

have finite support and f3 satisfies the FCB, then:

rfunf1f2f3
(Var a) = f1 a

rfunf1f2f3
(App t1 t2) = f2 t1 t2 (rfunf1f2f3

t1) (rfunf1f2f3
t2)

rfunf1f2f3
(Lam a t) = f3 a t (rfunf1f2f3

t) provided a # (f1, f2, f3)

4 We slightly adapted the definition of Pitts to apply to our recursion combinator.

9

To give a proof of this theorem we start with the following inductive relation,
called recf1f2f3 and of type (lam× α) set where, like above, α is assumed to be
a permutation type:

(Var a, f1 a) ∈ recf1f2f3

(t1, r1) ∈ recf1f2f3 (t2, r2) ∈ recf1f2f3

(App t1 t2, f2 t1 t2 r1 r2) ∈ recf1f2f3

a # (f1, f2, f3) (t, r) ∈ recf1f2f3

(Lam a t, f3 a t r) ∈ recf1f2f3

(12)

With this inductive definition comes the following induction principle:

∀a. P (Var a) (f1 a)
∀t1 t2 r1 r2. P t1 r1 ∧ P t2 r2 ⇒ P (App t1 t2) (f2 t1 t2 r1 r2)
∀a t r. a # (f1, f2, f3) ∧ P t r ⇒ P (Lam a t)

(t, r) ∈ recf1f2f3 ⇒ P t r (13)

We shall show next that the relation recf1f2f3 defines a function in the sense that
for all lambda-terms t there exists a unique r so that (t, r) ∈ recf1f2f3 . From this
we obtain a function from lam to α.

We first show that there exists an r for every t. For this we use the following
strong structural induction principle [9,10,11] that the nominal datatype package
generates for the type lam:

finite(S)
∀a. P (Var a)
∀t1t2. P t1 ∧ P t2 ⇒ P (App t1 t2)
∀a t. a 6∈ S ⇒ P t ⇒ P (Lam a t)

P t (14)

This induction principle is called strong, because in the lambda-case one does
not need to establish the property P for all binders a, but only for binders that
are not in the finite set S. With this structural induction principle the proof of
the next lemma is routine.

Lemma 4 (Totality). Provided f1, f2 and f3 have finite support, then for all
t there exists an r such that (t, r) ∈ recf1f2f3 .

Proof. By the strong induction principle, where we take S to be supp(f1, f2, f3),
which we know by assumption is finite. Then in the lambda-case we can assume
that a 6∈ supp(f1, f2, f3) holds, which is defined to be a # (f1, f2, f3). All cases
are then routine applying the rules in (12).

Next we establish that all r in the relation recf1f2f3 have finite support.

Lemma 5 (Finite Support). If f1, f2 and f3 have finite support, then (t, r) ∈
recf1f2f3 implies that r has finite support.

10

Proof. By the induction principle give in (13). In the variable-case we have to
show that f1 a has finite support, which we inferred in Example 1 using our
heuristic. The application- and lambda-case are similar. ut

In order to establish the “uniqueness” part of Theorem 1, we need the follow-
ing two lemmas establishing that recf1f2f3 is equivariant (see [7]) and that it
preserves freshness.

Lemma 6 (Equivariance). If (t, r) ∈ recf1f2f3 then for all π also (π·t, π·r) ∈
rec(π·f1)(π·f2)(π·f3).

Proof. By the induction principle given in (13). All cases are routine by pushing
the permutation π into t and r, except in the lambda-case where we have to
apply (10) in order to infer (π·a) # (π·(f1, f2, f3)) from a # (f1, f2, f3). ut

Lemma 7 (Freshness). If f1, f2 and f3 have finite support and f3 satisfies
the FCB, then assuming (t, r) ∈ recf1f2f3 and a # (f1, f2, f3, t) implies a # r.

Proof. By the induction principle given in (13); non-routine is the lambda-case.
In this case, say with the instantiations (Lam a′ t), we have that a′ # (f1, f2, f3).
We further have that a # (f1, f2, f3, Lam a′ t) and have to show that a # f3 a′ t r.
In case that a = a′, we know from the FCB, there exists an a′′ such that a′′ # f3

and ∀ t r. a′′ # f3 a′′ t r. Using (10) we apply the swapping (a a′′) to both sides of
our goal which gives a′′ # ((a a′′)·f3) a′′ ((a a′′)·t) ((a a′′)·r). Since a # f3 and
a′′ # f3 we have by (11) that (a a′′)·f3 = f3 and hence we are done. In case
a 6= a′ we can infer from a # (f1, f2, f3, Lam a′ t) that a # (f1, f2, f3, t) holds and
thus apply the induction hypothesis. ut

Now we can show the crucial lemma about recf1f2f3 being a “function”.

Lemma 8 (Uniqueness). If f1, f2 and f3 have finite support and f3 satisfies
the FCB, then (t, r) ∈ recf1f2f3 and (t, r′) ∈ recf1f2f3 implies that r = r′.

Proof. By the induction principle given in (13); again the only non-routine case
is the lambda-case. By assumption we know that (Lam a t, f3 a t r) ∈ recf1f2f3

from which we can infer that a # (f1, f2, f3) and (t, r) ∈ recf1f2f3 ; the induction
hypothesis states that for all r′, (t, r′) ∈ recf1f2f3 implies r = r′. Using the second
assumption (Lam b t′, r′) ∈ recf1f2f3 we need to show that f3 a t r = f3 b t′ r′ holds
for all Lam b t′ such that b # (f1, f2, f3) and Lam a t = Lam b t′. The latter implies
by (9) that either

(a = b ∧ t = t′) or (a 6= b ∧ t = (a b)·t′ ∧ a # t′) .

The first case is routine because by the induction hypothesis we can infer that
r = r′. In the second case we have ((a b)·t, r′) ∈ recf1f2f3 and by Lem. 6 also that
(t, (a b)·r′) ∈ recf1f2f3 (where we also use (11) and the facts a # (f1, f2, f3) and
b # (f1, f2, f3)). By induction hypothesis we can therefore infer that r = (a b)·r′.
Hence we have to show that f3 a ((a b)·t′) ((a b)·r′) = f3 b t′ r′ holds.

11

Since we know that a # t′ and a # (f1, f2, f3), we can use (t′, r′) ∈ recf1f2f3

and Lem. 7 to show that a # r′ holds. With this and the facts that a 6= b,
a # t′ and a # f3, we can infer that a # (f3 b t′ r′) (the latter is because
(f3, b, t

′, r′) supports (f3 b t′ r′) and therefore supp(f3 b t′ r′) ⊆ (f3, b, t
′, r′)).

We now show that also b # (f3 b t′ r′). From the FCB we know that there
exists a b′ such that b′ # f3 and ∀ t r. b′ # f3 b′ t r holds. If b = b′ we are done;
otherwise we use (10) and apply the swapping (b b′) to both sides of b # (f3 b t′ r′)
which gives b′ # ((b b′)·f3) b′ ((b b′)·t′) ((b b′)·r′). Since b # f3 and b′ # f3 we
have by (11) that (b b′)·f3 = f3 and hence we are done.

Knowing that a # (f3 b t′ r′) and b # (f3 b t′ r′) hold, we can infer by (11)
that (a b)·f3 b t′ r′ = f3 b t′ r′. The left-hand side of this equation is equal to
f3 a ((a b)·t′) ((a b)·r′) which is what we had to show. ut

To prove our theorem about structural recursion we define rfunf1f2f3
t to be the

unique r so that (t, r) ∈ recf1f2f3 . This is a standard construction in HOL-based
theorem provers. The characteristic equations for rfunf1f2f3

are given by how
the relation recf1f2f3 is defined.

4 Examples

We are now going to give examples defining three functions by recursion over
the structure of the nominal datatype lam. We use the functions:

sz1 = λ a. 1
sz2 = λ r1 r2. 1 + (max r1 r2)
sz3 = λ a r. 1 + r

frees1 = λ a. {a}
frees2 = λ r1 r2. r1 ∪ r2

frees3 = λ a r. r − {a}

subst1 b t′ = λa. if a = b then t′ else (Var a)
subst2 b t′ = λ r1 r2. App r1 r2

subst3 b t′ = λa r. Lam a r

To verify the precondition for the function sz we need to define π·n = n as
the permutation action over natural numbers. This definition implies that nat
is a permutation type; this also implies that the support of sz1, sz2 and sz3 is
the empty set. Next we need to show that the FCB-condition, namely ∃a. a #
sz3∧∀t′ r. a # sz3 a r, holds. For this we can chose any atom a, because sz3 has
empty support and sz3 a r is a natural number and so has also empty support.

In order to define the function for the set of free names of a lambda-term in
the nominal datatype package, we need to restrict the co-domain of frees to
finite sets. This is because finite sets, as opposed to arbitrary sets, have much
better properties w.r.t. the notion of support. In addition finite sets of names
are permutation types. We can verify that freesn for n = 1, 2, 3 has empty

12

support using our heuristic and the fact that the HOL-functions λx y. x∪ y and
λx y. x − y have empty support. To verify the FCB-condition, namely ∃a. a #
frees3 ∧ ∀t′ r. a # frees3 a r, holds. For this we can chose any atom a, because
frees3 has empty support; next we have to verify that ∀r. a # r−{a} holds, or
equivalently ∀r. a 6∈ supp(r−{a}). Since we restricted the co-domain of frees to
finite sets, we know that r−{a} is finite for all r and further that supp(r−{a}) =
r − {a}. Thus we are done.

For the substitution function we find that supp(b, t′) supports substn b t′ for
n = 1, 2, 3. The set supp(b, t′) is finite, because name and lam are finitely sup-
ported permutation types. The FCB-condition of subst3 holds for all atoms
c with c # (b, t′). Because supp(b, t′) supports substn b t′, the preconditions of
the recursion-combinator in the lambda-case simplify to a # (b, t′) and thus we
obtain the characteristic equation

subst b t′ (Lam a t) = Lam a (subst b t′ t)

with the side-conditions a 6= b and a # t′, as expected.
The “functions” bn and ist from the Introduction do not satisfy the FCB.

In case of bn it is never true that a # r ∪ {a}, and in case of ist there does not
exists an a such that for all t we have that a # {t} holds—it will fail for example
for t = Var a.

5 General Case

The nominal datatype package supports the declaration of more than one atom
type and allows term-constructors to have more than one binder. The notions of
support and freshness (see Def. 3) have in the implementation already polymor-
phic type to take several atom types into account. For the recursion combinator
we have to make sure that the function fi of the characteristic equations have
finite support with respect to every atom type that occurs in binding position.
By binding position we mean the types occurring inside the 〈〈. . .〉〉 that are used
in a nominal datatype declaration. For example, given the term-constructor C
with the type declaration

C "〈〈atm1〉〉 . . . 〈〈atmn〉〉 α"

then we have to consider all atom types atm1 . . . atmn.
Similarly the FCB needs to be generalised for all atom types that occur in

binding position. To explain the generalisations let us consider first the term-
constructor Let "〈〈name〉〉 lam" "lam". The type indicates that if we write, say
Let a t1 t2, then the scope of the binder a is t1. Hence the characteristic equation
for Let is

rfunf1 f2 f3 f4
(Let a t1 t2) = f4 a t1 t2 (rfunf1 f2 f3 f4

t1) (rfunf1 f2 f3 f4
t2)

provided a # (f1, f2, f3, f4, t2)

13

As can be seen, the binder a needs to be fresh for f1, f2, f3 and f4 (like in the
lambda-case), but also for t2. The general rule is that a needs to be fresh for
all terms that are not in its scope—in this example, this applies only to t2. The
FCB for Let is

∃a. a # f4 ∧ ∀t1 t2 r1 r2. a # t2 ⇒ a # f4 a t1 t2 r1 r2

where in the second conjunct we may assume that a is fresh for all terms not in
its scope.

Albeit not yet supported by the current version of the nominal datatype
package, even more interesting is the term-constructor Letrec "〈〈name〉〉(lam ×
〈〈name〉〉lam)" where we have two binders. The characteristic equation for Letrec
is

rfunf1 f2 f3 f4 f5
(Letrec a t1 b t2) = f5 a t1 b t2 (rfunf1 .. f5

t1) (rfunf1 .. f5
t2)

provided a # (f1, f2, f3, f4, f5)
and b # (f1, f2, f3, f4, f5, t1)
and a 6= b

where we need to have b # t1 since t1 is not in the scope of the binder b.
However, in case we have more than one binder in a term-constructor then we
further need to add constraints that make sure every binder is distinct. With
these generalisations the proofs we have given in Sec. 3 scale to all nominal
datatypes.

6 Conclusion

We presented a structural recursion combinator for nominal datatypes. The de-
tails were given for the nominal datatype lam; we mentioned briefly the general
case—further details are given in [9]. For the presentation we adapted the clever
proof given also in [9]. The main difference is that we gave a direct proof for nom-
inal datatypes and did not use auxiliary constructions. There are also a number
of other differences: for example Pitts does not need to prove Lem. 5, which is
however necessary in Isabelle/HOL, because one cannot conveniently introduce
the type of finitely supported functions. In comparison with the formalisation by
Norrish, our proof is much shorter—only about 150 lines of readable Isar-code
compared to approximately 600 dense lines of HOL4-code. Our use of the heuris-
tic that solves proof obligations to do with finite support made it tractable to
automate our proof. The earlier formalisation were far too difficult for such an
automation. This work removes the painful obstacle when defining functions over
the structure of nominal datatypes using earlier versions of the nominal datatype
package. In the future we are aiming at automating the process of verifying the
FCB and finite support-conditions required in the recursion combinator.

Acknowledgements: We are very grateful to Andrew Pitts and Michael Nor-
rish for the many discussions with them on the subject of the paper. The first

14

author is supported by a fellowship from the Alexander-von-Humboldt founda-
tion and by a Emmy-Noether fellowship from the German Research Council.
The second author received funding via the BMBF project Verisoft.

References

1. H. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of
Studies in Logic and the Foundations of Mathematics. North-Holland, 1981.

2. S. Berghofer and M. Wenzel. Inductive Datatypes in HOL - Lessons Learned in
Formal-Logic Engineering. In Proc. of the 12th International Conference Theorem
Proving in Higher Order Logics (TPHOLs), number 1690 in LNCS, pages 19–36,
1999.

3. M. J. Gabbay and A. M. Pitts. A New Approach to Abstract Syntax Involving
Binders. In Logic in Computer Science, pages 214–224. IEEE Computer Society
Press, 1999.

4. M. Gordon. From LCF to HOL: a short history. In G. Plotkin, C. P. Stirling, and
M. Tofte, editors, Proof, Language, and Interaction, pages 169–186. MIT Press,
2000.

5. P. Homeier. A Design Structure for Higher Order Quotients. In Proc. of the 18th
International Conference on Theorem Proving in Higher Order Logics (TPHOLs),
volume 3603 of LNCS, pages 130–146, 2005.

6. T. Melham. Automating Recursive Type Definitions in Higher Order Logic. In
G. Birtwistle and P. A. Subrahmanyam, editors, Current Trends in Hardware Ver-
ification and Automated Theorem Proving, pages 341–386. Springer-Verlag, 1989.

7. A. M. Pitts. Nominal Logic, A First Order Theory of Names and Binding. Infor-
mation and Computation, 186:165–193, 2003.

8. A. M. Pitts. Alpha-Structural Recursion and Induction (Extended Abstract). In
Proc. of the 18th International Conference on Theorem Proving in Higher Order
Logics (TPHOLs), volume 3603 of LNCS, pages 17–34, 2005.

9. A. M. Pitts. Alpha-Structural Recursion and Induction. Journal of the ACM,
200X. to appear.

10. C. Urban and M. Norrish. A Formal Treatment of the Barendregt Variable Con-
vention in Rule Inductions. In Proc. of the 3rd International ACM Workshop on
Mechanized Reasoning about Languages with Variable Binding and Names, pages
25–32, 2005.

11. C. Urban and C. Tasson. Nominal Techniques in Isabelle/HOL. In Proc. of the
20th International Conference on Automated Deduction (CADE), volume 3632 of
LNCS, pages 38–53, 2005.

12. M. Wenzel. Using Axiomatic Type Classes in Isabelle. Manual in the Isabelle
distribution.

15

	Introduction
	Preliminaries
	Recursion for the Lambda-Calculus
	Examples
	General Case
	Conclusion

