
LFMTP 2006

A Head-to-Head Comparison of
de Bruijn Indices and Names

Stefan Berghofer1 and Christian Urban2

Institut für Informatik
Technische Universität München

Boltzmannstraße 3, 85748 Garching, Germany

Abstract
Often debates about pros and cons of various techniques for formalising lambda-calculi
rely on subjective arguments, such as de Bruijn indices are hard to read for humans or
nominal approaches come close to the style of reasoning employed in informal proofs. In
this paper we will compare four formalisations based on de Bruijn indices and on names
from the nominal logic work, thus providing some hard facts about the pros and cons of
these two formalisation techniques. We conclude that the relative merits of the different
approaches, as usual, depend on what task one has at hand and which goals one pursues
with a formalisation.

Key words: Proof assistants, lambda-calculi, de Bruijn indices, nominal
logic work, Isabelle/HOL.

1 Introduction

When formalising lambda-calculi in a theorem prover, variable-binding and the
associated notion of alpha-equivalence can cause some difficult problems. To mit-
igate these problems several formalisation techniques have been introduced. How-
ever, discussions about the merits of these formalisation techniques seem to be
governed mainly by personal preference than by facts (see [1]). In this paper, we
will study four examples and compare two formalisation techniques—de Bruijn in-
dices [6] and names from nominal logic work [10,15]—in order to shed more light
on their respective strengths and weaknesses.

In terms of ease and convenience the standard to which techniques for for-
malising lambda-calculi have to measure up is, in our opinion, the vast corpus of
informal proofs in the existing literature. Even if one can find several works about
lambda-calculi containing faulty reasoning, on the whole the informal reasoning

1 Email: berghofe@in.tum.de
2 Email: urbanc@in.tum.de

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Berghofer and Urban

on “paper” seems to be quite robust, in particular issues arising from binders and
alpha-equivalence seem to cause little problems and introduce almost no overhead.
(The point of formalising lambda-calculi is to achieve 100% correctness, to pro-
vide easy maintenance of proofs and to allow for proofs about languages where a
human reasoner is overwhelmed by the sheer number of cases and subtleties to be
considered [3].)

When engineering a formal proof in a theorem prover, blindly applying auto-
matic proof tools often leads to a dead end. Usually more successful is the strategy
to start with a rough sketch containing a proof idea, and then to try to translate
this idea into actual proof steps in the theorem prover. This style of formalising
proofs is very much encouraged by the Isar-language of Isabelle [16]. In case of
the substitution lemma in the lambda-calculus

Substitution Lemma: If x 6≡ y and x 6∈ FV (L), then

M [x := N][y := L] ≡ M [y := L][x := N [y := L]].

one might start with the following informal proof given by Barendregt [4]:

Proof: By induction on the structure of M .

Case 1: M is a variable.

Case 1.1. M ≡ x. Then both sides equal N [y := L] since x 6≡ y.

Case 1.2. M ≡ y. Then both sides equal L, for x 6∈ FV (L)
implies L[x := . . .] ≡ L.

Case 1.3. M ≡ z 6≡ x, y. Then both sides equal z.

Case 2: M ≡ λz.M1. By the variable convention we may assume that
z 6≡ x, y and z is not free in N, L. Then by induction hypothesis

(λz.M1)[x := N][y := L] ≡ λz.(M1[x := N][y := L])

≡ λz.(M1[y := L][x := N [y := L]])

≡ (λz.M1)[y := L][x := N [y := L]].

Case 3: M ≡ M1M2. The statement follows again from the induction
hypothesis. 2

In order to translate this informal proof to proof steps in a theorem prover,
one has to decide how to encode lambda-terms and how to define the substitution
operation. A naı̈ve choice would be to represent the lambda-terms as the datatype

datatype lam = Var name | App lam lam | Lam name lam(1)

where the type name can, for example, be strings or natural numbers. Since the
term-constructor Lam has a concrete name, one has to prove the substitution lemma

2

Berghofer and Urban

modulo an explicit notion of alpha-equivalence, that is one has to prove

M [x := N][y := L] ≈α M [y := L][x := N [y := L]] .

For the substitution operation one might follow Church [5] and define

(Var y)[x := N]
def
=

 N if x ≡ y

Var y otherwise

(App M1 M2)[x := N]
def
= App (M1[x := N]) (M2[x := N])

(Lam x M1)[x := N]
def
= Lam x M1

(Lam y M1)[x := N]
def
= Lam z (M1[y := z][x := N])

(2)

where in the last clause it is assumed that y 6≡ x, and if x 6∈ FV (M1) or y 6∈
FV (N) then z ≡ y, otherwise z is the first variable in the sequence v0, v1, v2, . . .
not in M1 or N .

Unfortunately, with these naı̈ve choices the translation of the informal proof
into actual reasoning steps is a nightmare: Already the simple property stating that
L[x := . . .] ≈α L provided x 6∈ FV (L) is a tour de force. In nearly all reasoning
steps involving Lam one needs the property

if M ≈α M ′ and N ≈α N ′ then M [x := N] ≈α M ′[x := N ′]

in order to manually massage the lambda-terms to a suitable form. The “rough
sketches” Curry gives for this property extend over 10 pages [5, Pages 94–104].
As can be easily imagined, implementing these sketches results in a rather unpleas-
ant experience with theorem provers—nothing of the sort that makes formalising
proofs “addictive in a videogame kind of way” [8, Page 53]. One reason for the
difficulties is the fact that Curry’s substitution operation is not equivariant—that
means is not independent under renamings [10].

The main point of de Bruijn indices and names from the nominal logic work
is to allow for more clever methods of representing binders and to substantially
reduce the amount of effort needed to formalise proofs. In Section 2 we illustrate
this in the context of the substitution lemma. Section 3 contains a brief sketch of
the formalisations for the narrowing and transitivity proof of subtyping from the
POPLmark-Challenge [3]. Section 4 draws some conclusions.

2 The Substitution Lemma Formalised

2.1 Version using de Bruijn Indices

De Bruijn indices are sometimes labelled as a hack 3 since they are a very useful
implementation technique, but are often dismissed as being unfit for consumption
by a human reader. Yet six out of the eleven solutions currently submitted for the
theorem proving part of the POPLmark-Challenge are based on some form of de
Bruijn indices. This indicates that de Bruijn indices are quite respectable amongst

3 personal communication with N. G. de Bruijn

3

Berghofer and Urban

theorem proving experts. In this section, for the benefit of casual users of theorem
provers, we want to study in minutiae detail a formalisation of the substitution
lemma using this formalisation technique.

We assume the reader is familiar with the de Bruijn notation of lambda-terms
using for example the datatype:

datatype dB = Var nat | App dB dB | Lam dB

One central notion when working with de Bruijn indices is the lifting operation,
written ↑n

k where n is an offset by which the indices greater or equal than k are
incremented; k is the upper bound of indices that are regarded as locally bound.
This operation can be defined as:

↑n
k (Var i)

def
=

Var i if i < k

Var (i + n) otherwise

↑n
k (App M1 M2)

def
= App (↑n

k M1) (↑n
k M2)

↑n
k (Lam M1)

def
= Lam (↑n

k+1 M1)

The substitution of a term N for a variable with index k, written as [k := N], can
then be defined as follows:

(Var i)[k := N]
def
=

Var i if i < k

↑k
0 N if i = k

Var (i− 1) if i > k

(App M1 M2)[k := N]
def
= App (M1[k := N]) (M2[k := N])

(Lam M)[k := N]
def
= Lam (M [k + 1 := N])

Since the type dB is a completely standard datatype, both definitions can be im-
plemented by primitive recursion. The substitution lemma then takes the following
form:

Substitution Lemma with de Bruijn Indices: For all indices i, j,
with i ≤ j we have that

M [i := N][j := L] = M [j + 1 := L][i := N [j − i := L]] .

Note that one proves an equation, rather than an alpha-equivalence. Because equa-
tional reasoning is usually much better supported by theorem provers or is even a
basic notion in their logics, the de Bruijn indices version avoids the manual massag-
ing of terms with respect to alpha-equivalence needed in the version with concrete
names. This fact alone already relieves one of much work when formalising this
lemma. Notice also that the condition i ≤ j is necessary, otherwise the equation
does not hold in general.

Like the informal proof by Barendregt, the formalised proof proceeds by in-
duction on the structure of M . Unlike the informal proof, however, the induc-
tion hypothesis needs to be strengthened to quantify over all indices i and j. This

4

Berghofer and Urban

strengthening is necessary in the de Bruijn version in order to get the Lam-case
through. With this strengthening the Lam and App case are completely routine.
The non-routine case in the de Bruijn version is the Var -case where we have to
show that

(Var n)[i := N][j := L] = (Var n)[j + 1 := L][i := N [j − i := L]](3)

holds for an arbitrary n. Like in the informal proof, we need to distinguish cases
so that we can apply the definition of substitution. There are several ways to order
the cases; below we have given the cases as they are suggested by the definition of
substitution (namely n< i, n = i and n> i):

• Case n < i: We know by the assumption i ≤ j that also n < j and n < j + 1.
Therefore both sides of (3) are equal to Var n.

• Case n = i: The left-hand side of (3) is therefore equal to (↑i
0 N)[j := L] and

because we know by the assumption i ≤ j that n < j + 1, the right-hand side
is equal to ↑i

0 (N [j − i := L]). Now we have to show that both terms are equal.
For this we prove first the lemma

∀i, j. if i ≤ j and j ≤ i + m then ↑n
j (↑m

i N) =↑m+n
i N(4)

which can be proved by induction on N . (The quantification over i and j is
necessary in order to get the Lam-case through.) This lemma helps to prove the
next lemma

∀k, j. if k ≤ j then ↑i
k (N [j := L]) = (↑i

k N)[j + i := L](5)

which too can be proved by induction on N . (Again the quantification is crucial
to get the induction through.) We can now instantiate this lemma with k 7→ 0
and j 7→ j − i, which makes the precondition trivially true and thus we obtain
the equation

↑i
0 (N [j − i := L]) = (↑i

0 N)[j − i + i := L] .

The term (↑i
0 N)[j − i + i := L] is equal to (↑i

0 N)[j := L], as we had to
show. However this last step is surprisingly not immediate: it depends on the
assumption that i ≤ j. This is because in theorem provers like Isabelle/HOL
and Coq subtraction over natural numbers is defined so that 0 − n = 0 and
consequently the equation j − i + i = j does not hold in general!

• Case n > i: Since the right-hand side of (3) equals (V ar(n − 1))[j := L], we
distinguish further three subcases (namely n− 1 <j, n− 1 = j and n− 1> j):

• Subcase n− 1< j: We therefore know also that n< j + 1 and thus both sides
of (3) are equal to Var (n− 1).

• Subcase n−1 = j: Taking into account that n> i implies 0 < n, we have also
n = j + 1 (remember that because of the “quirk” with subtraction, this is not
obvious). Hence we can calculate that the left-hand side of (3) equals ↑j

0 L and
the right-hand side equals (↑j+1

0 L)[i := N [j − i := L]]. To show that these
terms are equal we need the lemma

∀k, i. if k ≤ i and i < k + (j + 1) then (↑j+1
k L)[i := P] =↑j

k L(6)

5

Berghofer and Urban

proved by induction on L. Instantiating this lemma with k 7→ 0, i 7→ i and
using the assumption i ≤ j, we can infer that the preconditions of this lemma
hold and thus can conclude that (↑j+1

0 L)[i := N [j − i := L]] =↑j
0 L.

• Subcase n− 1> j: We therefore also know that n> j + 1. These inequalities
in turn imply that both sides of (3) are equal to Var (n− 2).

This concludes the proof of the substitution lemma. 2

In this formalisation considerable ingenuity is needed when inventing the lemmas
(4), (5) and (6). Also they are quite “brittle”—in the sense that they seem to go
through just in the form stated. To find them can be a daunting task for an inex-
perienced user of theorem provers (they are only in little part inspired by the facts
needed in the main proof). In practice however they seem to cause few problems,
because they “carry over” from language to language, and hence one does not need
to “invent the wheel” again for a new language. Theorem proving experts just copy
these lemmas from existing formalisations. Indeed when submitting his solution
of the POPLmark-Challenge, the first author only minimally adapted to System
F<: the proofs Nipkow [9] gave in Isabelle/HOL for the lambda-calculus. Nip-
kow in turn got his collection of lemmas from Rasmussen [12] who worked with
Isabelle/ZF. Nipkow wrote [9, Page 57]:

“ Initially I tried to find and prove these lemmas from scratch but soon de-
cided to steal them from Rasmussen’s ZF proofs instead, which has obvious
advantages:

– I did not have to find this collection of non-obvious lemmas myself. . . ”

Rasmussen seems to have gotten his lemmas from a formalisation by Huet [7] in
Coq.

In light of the subtleties and quirks in the proof based on de Bruijn indices, it
might be surprising that one does not end up with a proof script of more than 100
lines of code. In fact the formalised proof by Nipkow consists of only a few lines—
similar numbers for the lemmas corresponding to (4), (5) and (6). The reason is that
one can “optimise” proof scripts by employing automatic proof tools. Such proof
tools can make case distinctions and apply definitions without manual interference.
However such optimisations are done after one has a formal proof like the one
described above. As we mentioned earlier, just blindly attacking a problem with
automatic proof tools leads to dead ends, except in the most trivial proofs, and the
substitution lemma is already too complicated. This is not surprising considering
how much ingenuity one needs to invent the lemmas (4), (5) and (6). However,
once one knows how the proof proceeds, one can guide the automatic proof tools
by providing explicitly the lemmas that lead to a proof. In case of the de Bruijn
indices version of the substitution lemma, however, this kind of post-processing
is not without pitfalls. For example it helps if the lemma is stated the other way
around, namely as

M [j + 1 := L][i := N [j − i := L]] = M [i := N][j := L]

6

Berghofer and Urban

otherwise the simplifier can easily loop. As we shall see next, the proof based on
names is much more robust in this respect.

2.2 Version using the Nominal Datatype Package

The nominal datatype package [13,15] eases the reasoning with “named” alpha-
equivalent lambda-terms; one can define them by

nominal datatype lam = Var name | App lam lam | Lam 〈〈name〉〉lam(7)

where name is a type representing atoms [10]—in informal proofs atoms are usu-
ally referred to as variables; 〈〈 . . . 〉〉 indicates that a name is bound in Lam . This
definition allows one to write lambda-terms as Lam a (Var a). Unlike the naı̈ve
representation mentioned in the Introduction, however, the nominal datatype lam
stands for alpha-equivalence classes, that means one has equations such as

Lam x (Var x) = Lam y (Var y) .

When formalising the substitution lemma, this will allow us to reap the benefits of
equational reasoning. However, it raises a small obstacle for the definition of the
substitution operation. Using the infrastructure of the nominal datatype package
one can define this operation as

(Var y)[x := N]
def
=

 N if x ≡ y

Var y otherwise

(App M1 M2)[x := N]
def
= App (M1[x := N]) (M2[x := N])

(Lam y M1)[x := N]
def
= Lam y (M1[x := N]) provided y # (x, N)

where the side-constraint y # (x, N) means that y 6= x and y not free in N . How-
ever to ensure that one has indeed defined a function, one needs to verify some
properties of the clauses by which substitution is defined (see [11,13] for the de-
tails). This requires some small proofs that have no counterpart in the informal
proof and in the formalisation based on de Bruijn indices. This need of verifying
some properties arises whenever a function is defined by recursion over the struc-
ture of alpha-equated lambda-terms.

With the definition of the nominal datatype lam comes the following strong
structural induction principle [14,15]:

∀c x. P (Var x) c

∀c M1 M2. (∀d. P M1 d) ∧ (∀d. P M2 d) ⇒ P (App M1 M2) c

∀c z M. z # c ∧ (∀d. P M d) ⇒ P (Lam z M) c

P M c

This induction principle states that if one wants to establish a property P for all
lambda-terms M , then, as expected, one has to prove it for the constructors Var ,
App and Lam . It is called strong induction principle because it has Barendregt’s
variable convention already built in. Barendregt assumes in his informal proof

7

Berghofer and Urban

that in the lambda-case the binder z is not equal to x and y, and is not free in N
and L. Using the strong induction principle, we will be able to mimic the vari-
able convention by instantiating c, we call this the context of the induction, with
c 7→ (x, y, N, L). 4 When it then comes to establishing the Lam-case, we can as-
sume that the binder z is fresh for (x, y, N, L), that means is not equal to x and y,
and is not free in N and L. As a result, the induction in the substitution lemma
will go through smoothly, just like in Barendregt’s informal proof. If the nomi-
nal datatype package had not provided such strong induction principles, reasoning
would be quite inconvenient: one would have to rename binders so that, for exam-
ple, substitutions can be moved under lambdas.

Despite the excellent notes from Barendregt conveying very well the proof idea,
for the formalisation of the substitution lemma we need to supply some details that
are left out in his notes. For example in Case 1.2 the details are left out for how to
prove the property of

x # L implies that L[x := P] = L .(8)

where x # L stands for x 6∈ FV (L). This fact can be proved by an induction over L
using the strong induction principle. For this we make the following instantiations:

P 7→ λL.λ(x, P). x # L ⇒ L[x := P] = L

M 7→ L

c 7→ (x, P)

As a result, the variable and application case are completely routine. In the lambda-
case we have to show that x # (Lam z L1) implies (Lam z L1)[x := P] =
(Lam z L1) with the assumption that z # (x, P) and the induction hypothesis

∀x, P. x # L1 ⇒ L1[x := P] = L1 .

From the assumption that z is not equal to x and not free in P , we can infer from
x # (Lam z L1) that x # L1 holds and by applying the definition of substitution
that (Lam z L1)[x := P] = Lam z (L1[x := P]) holds. Now we just need to apply
the induction hypothesis and are done.

Although not obvious from first glance, also in Case 2, in the last step of the
calculation where the substitution is pulled back from under the binder λz, there
are some details missing from Barendregt’s informal proof. In order to get from
Lam z (M1[y := L][x := N [y := L]]) to (Lam z M1)[y := L][x := N [y := L]],
we need the property that:

if z # N and z # L then z # (N [y := L]) .(9)

where the preconditions are given by his use of the variable convention. This prop-
erty, too, can be easily proved by strong induction over the structure of N . In this
induction we instantiate the induction context with c 7→ (z, y, L), because then we
can in the Lam-case, say instantiated as (Lam x N1), move the substitution under

4 An aspect we do not dwell on here is the fact that the induction context must always be finitely
supported, i.e. mentions only finitely many free names, see [10,15].

8

Berghofer and Urban

the binder x and also infer from the assumption z # (Lam x N1) that z is also
fresh for N1 (this reasoning step depends on z 6= x). Consequently we can apply
the induction hypothesis and infer that z # (N1[y := L]) holds. Again since z 6= x,
also z # (Lam x N1[y := L]) holds and we are done.

The formalisation of the substitution lemma

Substitution Lemma with Names: If x 6= y and x # L then

M [x := N][y := L] = M [y := L][x := N [y := L]] .

now follows almost to the word Barendregt’s informal proof. The variable-case,
say with the instantiation (Var z), proceeds by a case-analysis with z = x, z 6=
x ∧ z = y and z 6= x ∧ z 6= y. The calculations involved are routine using in
the second case the property in (8). The application case does not need any special
attention. The lambda-case, too, is relatively easy: by instantiating the induction
context with c 7→ (x, y, N, L), the strong induction principle allows us to assume
that the binder is not equal to x and y, and is not free in Nand L. Consequently we
can reason like Barendregt:

(Lam z M1)[x := N][y := L] = Lam z (M1[x := N][y := L])

= Lam z (M1[y := L][x := N [y := L]])

= (Lam z M1)[y := L][x := N [y := L]]

where, as mentioned earlier, in the last equation we make use of the property in (9).
The resulting formalised proof is quite simple: one only has to manually set up

the induction and supply the properties (8) and (9) to the automatic proving tools
for which it is a straightforward task to complete the proof (similar for the two side
lemmas). We take this as an indicator that the formalised proof using names is
“simpler” than the one based on de Bruijn indices.

3 Transitivity and Narrowing for Subtyping

Another proof where we can compare names and de Bruijn indices is the transi-
tivity and narrowing proof for the subtyping relation described in the POPLmark-
Challenge. This proof is quite tricky involving a simultaneous outer induction over
a type and two inner inductions on the definition of the subtyping relation. The
“rough notes” from which we can start the formalisations are given in [3] by the
authors of this challenge.

3.1 Version using the Nominal Datatype Package

Using the nominal datatype package the types can be defined as

nominal datatype ty = Tvar name | Top | Fun ty ty | All ty 〈〈name〉〉ty

with typing contexts being lists of pairs consisting of a name and a type. A type
T is well-formed w.r.t. a typing context Γ, written Γ ` T , provided (supp T) ⊆

9

Berghofer and Urban

(dom Γ)—that means all free names of T , i.e. its support [10], must be included
in the domain of the typing context Γ. A valid typing context, written valid Γ, is
defined inductively by:

valid []

valid Γ X # (dom Γ) Γ ` T

valid ((X, T) ::Γ)

The subtyping relation, written Γ ` S <: Q, can then be inductively defined as
follows:

valid Γ Γ ` S
Γ ` S <: Top

Top
valid Γ X ∈ (dom Γ)

Γ ` Tvar X <: Tvar X
Refl

(X, S) ∈ Γ Γ ` S <: T

Γ ` Tvar X <: T
Trans

Γ ` T1 <: S1 Γ ` S2 <: T2

Γ ` Fun S1 S2 <: Fun T1 T2
Fun

Γ ` T1 <: S1 X # Γ (X, T1) ::Γ ` S2 <: T2

Γ ` All S1 X S2 <: All T1 X T2
All

These definitions are quite close to the “rough notes” from the POPLmark-Chal-
lenge; the only difference is that we had to ensure validity of the typing contexts in
the leaves and to explicitly require that the binder X is fresh for Γ in the All -rule.
The transitivity and narrowing lemma can then be stated as

Transitivity and Narrowing with Names: For all Γ, S, T , ∆, X , P , M , N :

• Γ ` S <: Q and Γ ` Q <: T implies Γ ` S <: T , and

• ∆@(X, Q)@Γ ` M <: N and Γ ` P <: Q

implies ∆@(X, P)@Γ ` M <: N .

About the proof of this lemma the POPLmark-paper states:

“ The two parts are proved simultaneously, by induction on the size of Q. The
argument for part (2) assumes that part (1) has been established already
for the Q in question; part (1) uses part (2) only for strictly smaller Q.”

The main point we want to make here is that the formal proof using names proceeds
exactly as stated, while as we shall see later this is not the case for the de Bruijn
indices version. The main inconvenience with the named approach is, however, that
the proof then proceeds by two inner inductions on the definition of the subtyping
relation and in order to follow the reasoning on “paper” one has to provide manually
a strong version of the induction principle for subtyping. This strong induction
principle has the form (showing only the premise for the All -inference rule):

. . .

∀Γ X S1 S2 T1 T2 c. X # (c, Γ, T1, S1) ∧ Γ ` T1 <: S1 ∧
(∀d. P Γ T1 S1 d) ∧ Γ ` S2 <: T2 ∧ (∀d. P Γ S2 T2 d)

⇒ P Γ (All S1 X S2) (All T1 X T2) c

Γ ` S <: T ⇒ P Γ S T c

10

Berghofer and Urban

where we can assume that X # (c, Γ, S1, T1). These freshness condition are crucial
to get the induction through without the need of renaming binders. Unlike the
strong structural induction principle that comes with a nominal datatype definition
for “free”, establishing the strong induction principle for subtyping is quite a task—
something one does not want to burden up to the users of the nominal package. But
so far, unfortunately, it is entirely burdened onto them. (This might change however
in future versions of the nominal datatype package.)

3.2 Version using de Bruijn Indices

Two out of the three solution currently submitted that solve all theorem proving
parts of the POPLmark-Challenge use de Bruijn indices. 5 The solution of the first
author defines types as:

datatype dbT = Tvar nat | Top | Fun dbT dbT | All dbT dbT

with the lifting operation given by:

↑n
k (Tvar i)

def
=

Tvar i if i < k

Tvar (i + n) otherwise

↑n
k Top

def
= Top

↑n
k (Fun S T)

def
= Fun (↑n

k S)(↑n
k T)

↑n
k (All S T)

def
= All (↑n

k S) (↑n
k+1 T)

Note that the lifting operation preserves the size of a dbT -type. This often allows
one to establish facts involving lifting using inductions over the size, if an induction
over the structure is not strong enough.

Typing contexts are lists of types and the predicate for valid contexts is defined
like in the named variant, except that we do not need freshness constraints when
working with de Bruijn indices. One way for defining when a type is well-formed
is by using the function

frees j (Tvar i)
def
=

 ∅ if i < j

{i− j} otherwise

frees j (Top)
def
= ∅

frees j (Fun S T)
def
= (frees j S) ∪ (frees j T)

frees j (All S T)
def
= (frees j S) ∪ (frees (j + 1) T)

and then define the well-formedness judgement Γ ` T as the proposition (∀i ∈
(frees 0 T). i < |Γ|) where |Γ| stands for the length of the list Γ. The look-up
function for typing context is written Γ(i) and returns the type on the ith place in

5 The third uses higher-order abstract syntax in Twelf.

11

Berghofer and Urban

the list Γ. The inductive definition of the subtyping relation with de Bruijn indices
takes then the following form:

valid Γ Γ ` S
Γ ` S <: Top

Top valid Γ Γ ` Tvar i
Γ ` Tvar i <: Tvar i

Tvar

Γ(i) = S Γ ` (↑i+1
0 S) <: T

Γ ` Tvar i <: T
Trans

Γ ` T1 <: S1 Γ ` S2 <: T2

Γ ` Fun S1 S2 <: Fun T1 T2
Fun

Γ ` T1 <: S1 T1 ::Γ ` S2 <: T2

Γ ` All S1 S2 <: All T1 T2
All

Whether these definitions require much ingenuity w.r.t. the informal rules given in
the POPLmark-paper is a matter of taste, but an undebatable fact is that the proof for
the transitivity and narrowing lemma formulated with de Bruijn indices as follows

Transitivity and Narrowing with de Bruijn Indices: For all Γ, S, T , ∆
P , M , N :

• Γ ` S <: Q and Γ ` Q <: T implies Γ ` S <: T , and

• ∆@Q@Γ ` M <: N and Γ ` P <: Q

implies ∆@P@Γ ` M <: N .

does not proceed as stated in the informal proof of the POPLmark-Challenge. Once
one has set up the (outer) simultaneous induction over the size of Q, the inner
induction for transitivity needs to be strengthened to apply not just for Q, but also
for all types that have the same size as Q. That means the inner induction does not
establish the property

∀Γ S T. Γ ` S <: Q ∧ Γ ` Q <: T ⇒ Γ ` S <: T

rather the strengthened property

∀Q′ Γ S T. (size Q) = (size Q′) ∧ Γ ` S <: Q′ ∧ Γ ` Q′ <: T

⇒ Γ ` S <: T

This strengthened property is needed in the narrowing part of the lemma where in
the Trans-case one needs transitivity not for Q, but for a lifted version of Q, where
however the lifted version has the same size as Q. The interesting details in this
case are as follows: the statement to be proved is

∀∆ Γ M N P. ∆@Q@Γ ` M <: N ⇒ Γ ` P <: Q ⇒ ∆@P@Γ ` M <: N

and its proof procceds by an (inner) induction over the left-most subtyping relation.
With the induction infrastructure [17] of Isabelle, we can implement this induc-
tion as stated above, without having to introduce ”seemingly pointless equalities” 6

that handle syntactic constraints, such as the typing-context being of the form
∆@Q@Γ. By induction hypothesis we know that ∆@P@Γ ` (↑i+1

0 S) <: T and
(∆@Q@Γ)(i) = S, and we must show that ∆@P@Γ ` Tvar i <: T holds. The

6 See solutions of the POPLmark-challenge by Chlipala and by Stump in Coq.

12

Berghofer and Urban

non-straightforward subcase is where i = |∆|, because then (∆@P@Γ)(i) = P
and we can infer that S equals Q. We have Γ ` P <: Q by assumption and hence
∆@P@Γ ` (↑i+1

0 P) <: (↑i+1
0 Q) by weakening. Since S = Q we can now use the

transitivity property to infer that ∆@P@Γ ` (↑i+1
0 P) <: T . As can be seen, one

needs transitivity for (↑i+1
0 Q) rather than for Q as stipulated in the informal proof.

We then can conclude by applying the Trans-inference rule.

4 Conclusion

We have studied formalisations based on de Bruijn indices and on names from the
nominal logic work. The former approach is already well-tested featuring in many
formalisations, while the latter is still under heavy development in the nominal
datatype package. Extrapolating an amazing amount from the submissions to the
POPLmark-Challenge, it seems that all problems occurring in programming meta-
theory can, in principle, be solved by theorem proving experts using de Bruijn
indices. Further, the reasoning infrastructure needed for de Bruijn indices (mainly
arithmetic over natural numbers) has been part of theorem provers, for example Coq
and Isabelle/HOL, for a long time. In contrast, the nominal datatype package has
been implemented in Isabelle/HOL, only. Except some preliminary work reported
in [2], there is little work about replicating our results in non-HOL-based theorem
provers.

Another advantage of de Bruijn indices is that they do not introduce any clas-
sical reasoning into the formalisation process. In contrast, the nominal datatype
package employs in several places classical reasoning principles. It is currently un-
known whether a constructive variant of the nominal datatype package that offers
the same convenience is attainable. Connected with the aspect of constructivity is
the infrastructure to extract programs from proofs, which exists in Isabelle for the
proofs with de Bruijn indices, but does not exist at all for proofs using the nominal
datatype package.

The biggest disadvantage we see with using the nominal datatype package is
the amount of infrastructure that needs to be implemented. So far, this package
supports only single binders (although iteration is possible and they can occur any-
where in a term-constructor). One can imagine situations where this is not gen-
eral enough or requires some unpleasant encodings. Unfortunately, if more gen-
eral binding structures need to be supported, a considerable body of code must be
adapted.

One big advantage of the nominal datatype package, we feel, is the relatively
small “gap” between an informal proof on “paper” and an actual proof in a theorem
prover. An important point we would like to highlight with this paper is that in the
context of theorem proving the fact about de Bruijn indices being hard to read for
humans is not the worst aspect: the biggest source of grief for us is the substantial
amount of ingenuity needed to translate informal proofs to versions using de Bruijn
indices. Since we are also the kind of theorem prover users who copied from ex-
isting formalisations when doing our own formalisations with de Bruijn indices,

13

Berghofer and Urban

we were quite surprised how much reasoning is involved, if one unravels all the
steps needed for the substitution lemma. This is an important aspect if one is in
the business of educating students about formal proofs in the lambda-calculus: it
is not difficult to imagine that a student will give up with great disgust, if one tries
to explain the subtleties of de Bruijn indices in the substitution lemma. We hope
therefore that the nominal datatype package will make broad inroads in this area.
The slickness with which difficult proofs involving Barendregt’s variable conven-
tion can be formalised using the nominal datatype package is something we cannot
live without anymore.

The conclusion we draw from the comparisons is that the decision about favour-
ing de Bruijn indices or names from the nominal logic work very much depends on
what task one has at hand. It would be quite desirable to know how the other main
formalisation technique—higher order abstract syntax—fares. But alas, we are not
(yet) experts in Twelf, where this technique has been extensively employed.

Acknowledgements: The first author received funding via the BMBF project Verisoft. The
second author is supported by an Emmy-Noether fellowship from the German Research
Council.

References

[1] POPLmark maling list,
http://lists.seas.upenn.edu/pipermail/poplmark/.

[2] Aydemir, B., A. Bohannon and S. Weirich, Nominal Reasoning Techniques in Coq
(Work in Progress), in: Proc. of the International Workshop on Logical Frameworks
and Meta-Languages: Theory and Practice (LFMTP), Electronic Notes in Theoretical
Computer Science, 2006.

[3] Aydemir, B. E., A. Bohannon, M. Fairbairn, J. N. Foster, B. C. Pierce, P. Sewell,
D. Vytiniotis, G. Washburn, S. Weirich and S. Zdancewic, Mechanized Metatheory for
the Masses: The PoplMark Challenge, in: Proc. of the 18th International Conference
on Theorem Proving in Higher Order Logics (TPHOLs), LNCS 3603, 2005, pp. 50–65.

[4] Barendregt, H., “The Lambda Calculus: Its Syntax and Semantics,” Studies in Logic
and the Foundations of Mathematics 103, North-Holland, 1981.

[5] Curry, H. B. and R. Feys, “Combinatory Logic Vol. I,” Studies in Logic and the
Foundations of Mathematics, North-Holland, 1958.

[6] de Bruijn, N. G., Lambda-Calculus Notation with Nameless Dummies, a Tool for
Automatic Formula Manipulation, with Application to the Church-Rosser Theorem,
Indagationes Math. 34 (1972), pp. 381–392.

[7] Huet, G., Residual Theory in Lambda-Calculus: A Formal Development, Journal of
Functional Programming 4 (1994), pp. 371–394.

14

http://lists.seas.upenn.edu/pipermail/poplmark/

Berghofer and Urban

[8] Leroy, X., Formal Certification of a Compiler Back-End, or: Programming a Compiler
with a Proof Assistant, in: Proc. of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL) (2006), pp. 42–54.

[9] Nipkow, T., More Church-Rosser Proofs (in Isabelle/HOL), Journal of Automated
Reasoning 26 (2001), pp. 51–66.

[10] Pitts, A. M., Nominal Logic, A First Order Theory of Names and Binding, Information
and Computation 186 (2003), pp. 165–193.

[11] Pitts, A. M., Alpha-Structural Recursion and Induction (Extended Abstract), in:
Proc. of the 18th International Conference on Theorem Proving in Higher Order
Logics (TPHOLs), LNCS 3603, 2005, pp. 17–34.

[12] Rasmussen, O., The Church-Rosser Theorem in Isabelle: A Proof Porting Experiment,
Technical Report 364, Cambridge University (1995).

[13] Urban, C. and S. Berghofer, A Recursion Combinator for Nominal Datatypes
Implemented in Isabelle/HOL, in: Proc. of the 3rd International Joint Conference on
Automated Reasoning (IJCAR), LNAI 4130, 2006, pp. 498–512.

[14] Urban, C. and M. Norrish, A Formal Treatment of the Barendregt Variable Convention
in Rule Inductions, in: Proc. of the 3rd International ACM Workshop on Mechanized
Reasoning about Languages with Variable Binding and Names (MERLIN), 2005, pp.
25–32.

[15] Urban, C. and C. Tasson, Nominal Techniques in Isabelle/HOL, in: Proc. of the 20th
International Conference on Automated Deduction (CADE), LNCS 3632, 2005, pp.
38–53.

[16] Wenzel, M., Isar — A Generic Interpretative Approach to Readable Formal Proof
Documents, in: Proc. of the 12th International Conference on Theorem Proving in
Higher Order Logics (TPHOLs), number 1690 in LNCS, 1999, pp. 167–184.

[17] Wenzel, M., Structured Induction Proofs in Isabelle/Isar, in: Proc. of the 5th
International Conference on Mathematical Knowledge Management (MKM), LNAI
4108, 2006.

15

	Introduction
	The Substitution Lemma Formalised
	Version using de Bruijn Indices
	Version using the Nominal Datatype Package

	Transitivity and Narrowing for Subtyping
	Version using the Nominal Datatype Package
	Version using de Bruijn Indices

	Conclusion
	References

