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Abstract. Traditionally a rigorous mathematical document consists of
a sequence of definition – statement – proof. Taking this basic outline as
starting point we investigate how these three categories of text can be
represented adequately in the formal language of Isabelle/Isar.
Proofs represented in human-readable form have been the initial motiva-
tion of Isar language design 10 years ago. The principles developed here
allow to turn deductions of the Isabelle logical framework into a format
that transcends the raw logical calculus, with more direct description of
reasoning using pseudo-natural language elements.
Statements describe the main result of a theorem in an open format as
a reasoning scheme, saying that in the context of certain parameters
and assumptions certain conclusions can be derived. This idea of turning
Isar context elements into rule statements has been recently refined to
support the dual form of elimination rules as well.
Definitions in their primitive form merely name existing elements of the
logical environment, by stating a suitable equation or logical equivalence.
Inductive definitions provide a convenient derived principle to describe a
new predicate as the closure of given natural deduction rules. Again there
is a direct connection to Isar principles, rules stemming from an inductive
characterization are immediately available in structured reasoning.
All three categories benefit from replacing raw logical encodings by native
Isar language elements. The overall formality in the presented mathemat-
ical text is reduced. Instead of manipulating auxiliary logical connectives
and quantifiers, the mathematical concepts are emphasized.

1 Introduction

Isabelle/Isar [13, 14, 15] enables to produce formal mathematical documents with
full proof checking. Similar in spirit to the Mizar system [12, 11], the user writes
text in a formal language that is checked by the machine. As a side-effect of this,
Isabelle/Isar produces high-quality documents using existing LATEX technology:
the present paper is an example of such a formally processed document.

Rigorous mathematics is centered around proofs, and this view is taken to the
extreme in Isabelle/Isar. The demands for human-readable proofs, which is the
hardest part in formalized mathematics, are taken as guidelines for the design
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of the much simpler elements of statements and definitions. While the initial
conception of the Isar proof language dates back almost 10 years, some more
recent additions help to express structured statements and inductive definitions
even more succinctly, in a “logic-free” style. This enables higher Isar idioms
to focus on the mathematics of the application at hand, instead of demanding
recurrent exercises in formal logic from the user. So mathematical reasoning is
emphasized, and auxiliary logical constructions are left behind eventually.

Our basic approach works essentially in bottom-up manner, starting from
primitive logical principles towards mathematical reasoning that is eventually
free from the logic (which better serves in the background for foundational pur-
poses only). As the art of human-readable formal reasoning evolves further, we
hope to move towards a stage that meets with other approaches that are coming
the top-down way from informal mathematics.

Overview. §2 reviews the original idea of “natural deduction” due to Gentzen,
and its implementation in the Isabelle/Pure framework. §3 gives an overview
of the Isar proof language as a linearized expression of structured proofs in the
underlying logical framework. §4 introduces structured Isar statements, which
enable to state and prove reasoning schemes conveniently, without going through
the logical framework again. §5 covers a recent refinement of the well-known
concept of inductive definitions, which enables to obtain natural deduction rules
directly from basic definitions, without intermediate statements or proofs. §6
illustrates the benefits of the native “logic-free” style of Isar definitions, state-
ments, and proofs by an example about well-founded multiset ordering.

2 Natural Deduction Revisited

About 75 years ago Gentzen introduced a logical calculus for “natural deduc-
tion” [3] that was intended to formalize the way mathematical reasoning actually
works, unlike earlier calculi due to Hilbert and Russel. Since we share the moti-
vation to approximate mathematical reasoning, we briefly review some aspects
of traditional natural deduction as relevant for Isabelle/Isar.

Gentzen uses a two-dimensional diagrammatic representation of reasoning
patterns, which may be composed to proof trees according to certain princi-
ples. Each logical connective is characterized by giving introduction rules and
elimination rules. This is illustrated for −→ and ∀ as follows (in our notation):

[A]....
B

A −→ B
(−→I ) A −→ B A

B
(−→E )

[a]....
B(a)
∀ x . B(x )

(∀ I )
∀ x . B(x )

B(a)
(∀E )
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Inferences work by moving from assumptions (upper part) to conclusions (lower
part). Nested inferences, as indicated by three dots and brackets, allow to refer
to local assumptions or parameters, which are discharged when forming the final
conclusion. Note that in (∀ I ) we have treated the locally “fresh” parameter a
analogous to an assumption, which reflects the formal treatment in the Isabelle
framework. Traditional logic texts often treat this important detail merely as a
footnote (“eigenvariable condition”).

The Isabelle/Pure framework [8, 9] implements a generic version of higher-
order natural deduction, without presupposing any particular object-logic. Natu-
ral deduction rules are represented in Isabelle as propositions of the “meta-logic”,
which provides the framework connectives of implication A =⇒ B and quantifi-
cation

∧
x . B x. This first-class representations of primitive and derived natu-

ral deduction rules is supported by two main operations: resolution for mixed
forward-backward chaining of partial proof trees, and assumption for closing
branches. Both may involve higher-order unification, which results in a very
flexible rule-calculus that resembles higher-order logic programming [15, §2.2].

According to the initial “logical framework” idea of Isabelle [8, 9], the user
may specify a new object-logic by declaring connectives as (higher-order) term
constants, and rules as axioms. For example, the minimal logic of −→ and ∀
could be declared as follows (using type i for individuals and o for propositions):

imp :: o ⇒ o ⇒ o (infix −→)
impI :

∧
A B . (A =⇒ B) =⇒ A −→ B

impE :
∧

A B . (A −→ B) =⇒ A =⇒ B
all :: (i ⇒ o) ⇒ o (binder ∀ )
allI :

∧
B . (

∧
a. B a) =⇒ ∀ x . B x

allE :
∧

a B . (∀ x . B x ) =⇒ B a

Note that outermost
∧

is usually left implicit. The above rules merely reflect
the minimal logic of =⇒ and

∧
of the framework. The idea of generic natural

deduction becomes more apparent when the object-logic is enriched by further
connectives, for example:

conj :: o ⇒ o ⇒ o (infix ∧)
conjI : A =⇒ B =⇒ A ∧ B
conjE : A ∧ B =⇒ (A =⇒ B =⇒ C ) =⇒ C
disj :: o ⇒ o ⇒ o (infix ∨)
disjI 1 : A =⇒ A ∨ B
disjI 2 : B =⇒ A ∨ B
disjE : A ∨ B =⇒ (A =⇒ C ) =⇒ (B =⇒ C ) =⇒ C
ex :: (i ⇒ o) ⇒ o (binder ∃ )
exI : B a =⇒ ∃ x . B x
exE : (∃ x . B x ) =⇒ (

∧
a. B a =⇒ C ) =⇒ C

These rules for predicate logic follow Gentzen [3], except for conjunction elimina-
tion. Instead of two projections A ∧ B =⇒ A and A ∧ B =⇒ B, our conjE rule
enables to assume local facts A and B, independently from the main goal. Other
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typical situations of elimination are represented by disjE, which splits the main
goal into two cases with different local assumptions, and exE, which augments
the main goal by a local parameter a such that B a may be assumed.

This uniform presentation of eliminations is typical for Isabelle/Pure [8, 9],
but often appears peculiar to users without a strong background in formal logic.
Even in Gentzen’s original article, the disjE and exE rules are explained with
special care, while “the other rules should be easy to understand” [3]. In the
Isar proof language (§3), we shall provide a refined view on elimination, that
expresses directly the idea of being able to assume local assumptions over local
parameters, potentially with a case-split involved.

The examples for natural deduction presented so far have referred to tra-
ditional connectives of predicate logic: −→, ∀ , ∧, ∨, ∃ etc. There is nothing
special about these in the generic framework of Isabelle/Pure. We may just as
well reason directly with concepts of set theory, lattice theory etc. without going
through predicate logic again. Here are natural deduction rules for x ∈ A ∩ B :

interI : x ∈ A =⇒ x ∈ B =⇒ x ∈ A ∩ B
interE : x ∈ A ∩ B =⇒ (x ∈ A =⇒ x ∈ B =⇒ C ) =⇒ C

In practice, such domain-specific rules are not axiomatized, but derived from the
definitions of the underlying concepts. In fact, the majority of rules will be of the
latter kind — after the initial object-logic axiomatization, regular users proceed
in this strictly definitional manner. Thus the role of the logical framework as
foundation for new logics is changed into that of a tool for plain mathematical
reasoning with derived concepts. Then the main purpose of the special con-
nectives =⇒ and

∧
is to outline reasoning patterns in a “declarative” fashion.

Guided by the indicated structure of natural deduction rules, structured proofs
are composed internally by means of the resolution and assumption principles.

The remaining question is how to obtain natural deduction rules conveniently.
As we shall see later (§5), a refined version of the well-known concept of inductive
definitions allows to produce elimination rules quite naturally from a “logic-free”
specification of the introduction rules only. The system will derive a proper
predicate definition internally, and derive the corresponding rules, which may
then be turned immediately into Isar proof texts in the application.

3 Isar Proofs

The Isar proof language [13, 14, 15] enables to express formal natural deduction
proofs in a linear form that approximates traditional mathematical reasoning.
Gentzen [3] admits that his calculus looses information present in the “narrated”
version of informal reasoning: it is unclear where to start reading two-dimensional
proof trees. This linguistic structure is recovered in Isabelle/Isar: proof texts are
written with pseudo-natural language elements, which are interpreted by the Isar
proof processor in terms of the underlying logical framework of Isabelle/Pure,
see [15, §3.3] for further details.
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It is important to understand that Isar is not another calculus, but a language
that is interpreted by imposing certain policies on the existing rule calculus
of Isabelle/Pure. To this end, Isar introduces non-logical concepts to organize
formal entities notably the proof context, the goal state (optional), and a register
for the latest result. The overall proof configuration is arranged as a stack over
these components, which enables block-structured reasoning within a flat logic.

An Isar proof body resembles a mathematical notepad: statements of various
kinds may be written down, some refer to already established facts (note), some
extend the context by new parameters and assumptions (fix and assume), some
produce derived results (have and show, followed by a sub-proof). Moreover,
there are several elements to indicate the information flow between facts and
goals, notably then, from, with, using, also, finally, moreover, ultimately.

Previous facts may be referenced either by name, or by a literal proposition
enclosed in special parentheses. For example, in the scope of assume a: A, both
a and 〈A〉 refer to the same (hypothetical) result. In the subsequent examples,
we mostly use the latter form for clarity. The labelled version is preferable in
larger applications, when propositions are getting bigger. The special name this
always refers to the result of the last statement.

From the perspective of the logical framework, the main purpose of Isar is
to produce and compose natural deduction rules. The most elementary way to
produce a rule works by concluding a result within the local scope of some extra
hypotheses, which are discharged when leaving the scope. For example:

{
fix x and y
assume A x and B y
have C x y 〈proof 〉
}
note 〈

∧
x y . A x =⇒ B y =⇒ C x y〉

Within the body of a sub-proof, fix–assume–show yields a rule as above,
but the result is used to refine a pending subgoal (matching both the assumptions
and conclusion as indicated in the text). The structure of the goal tells which
assumptions are admissible in the sub-proof, but there is some flexibility due to
the way back-chaining works in the logical framework. For example:

have
∧

x y . A x =⇒ B y =⇒ C x y
proof −

fix x and y
assume A x and B y
show C x y 〈proof 〉

qed

have
∧

x y . A x =⇒ B y =⇒ C x y
proof −

fix y assume B y
fix x assume A x
show C x y 〈proof 〉

qed

The proof and qed elements are not just delimiters, but admit initial and
terminal refinements of pending goals. The default for proof is to apply a canon-
ical elimination or introduction rule declared in the background context, using
the “rule” method. The default for qed is to do nothing; in any case the final
stage of concluding a sub-proof is to finish pending sub-goals trivially by assump-
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tion. Further abbreviations for terminal proofs are “by method1 method2” for
“proof method1 qed method2”, and “..” for “by rule”, and “.” for “by this”.

With standard introduction and elimination rules declared in the library, we
can now rephrase natural deduction schemes (§2) as linear Isar text:

have A −→ B
proof

assume A
show B 〈proof 〉

qed

assume A −→ B and A
then have B ..

have ∀ x . B x
proof

fix a
show B a 〈proof 〉

qed

assume ∀ x . B x
then have B a ..

Here we have mimicked Gentzen’s diagrammatic reasoning, composing proof
texts according to the structure of the underlying rules. Isar is much more flex-
ible in arranging natural deduction proof outlines, though. Some of the rule
premises may be established beforehand and pushed into the goal statement; the
proof body will only cover the remaining premises. This allows mixed forward-
backward reasoning according to the following general pattern:

from facts1 have props using facts2 proof (method1) body qed (method2)

For example, premise A −→ B could be provided either as “from 〈A −→ B 〉”
before the goal, as “using 〈A −→ B 〉” after the goal, or as “show A −→ B” in
the body. It is up to the author of the proof to arrange facts adequately, to gain
readability by the most natural flow of information. Sub-structured premises are
usually addressed within a sub-proof, using fix–assume–show in backwards
mode, as seen in the above introduction proofs of −→ and ∀ .

The other rules from §2 can be directly turned into Isar proof texts as well,
but eliminations of the form . . . =⇒ (

∧
a. B a =⇒ C ) =⇒ C demand special

attention. A naive rendering in Isar would require the main goal C given be-
forehand, and a sub-proof that proves the same C in a context that may be
enriched by additional parameters and assumptions. Isar’s obtain element [15,
§3.1] supports this style of reasoning directly, in a logic-free fashion. For example:

{
obtain x and y where A x and B y 〈proof 〉
have C 〈proof 〉
}
note 〈C 〉

The proof obligation of “obtain x and y where A x and B y” corresponds
to the rear-part of an eliminations rule: (

∧
x y . A x =⇒ B y =⇒ thesis) =⇒

thesis for a hypothetical thesis that is arbitrary, but fixed. Having finished that
proof, the context is augmented by “fix x and y assume A x and B y”.
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Results exported from that scope are unaffected by these additional assumptions,
provided the auxiliary parameters are not mentioned in the conclusion!

We can now spell out the remaining natural deduction schemes of §2 ade-
quately, only disjE requires explicit sub-proofs involving the main conclusion C,
because obtain cannot split a proof text into several cases.

assume A and B
then have A ∧ B ..

assume A ∧ B
then obtain A and B ..

assume A
then have A ∨ B ..

assume B
then have A ∨ B ..

assume A ∨ B
then have C
proof

assume A
then show C 〈proof 〉

next
assume B
then show C 〈proof 〉

qed

assume B a
then have ∃ x . B x ..

assume ∃ x . B x
then obtain a where B a ..

4 Isar Statements

Isar proof composition is centered around natural deduction rules of the logical
framework. Such rules may be established as regular theorems like this:

theorem r :
∧

x y . A x =⇒ B y =⇒ C x y
proof −

fix x and y
assume A x and B y
show C x y 〈proof 〉

qed

This is slightly unsatisfactory, because the structure of the result is specified
redundantly in the main statement and the proof body, using framework connec-
tives

∧
/=⇒ vs. Isar proof elements fix–assume–show, respectively. Moreover,

exposing the Isabelle/Pure rendering of the intended reasoning scheme gives the
head statement a rather technical appearance. This is even worse for elimination
rules, due to extra rule nesting . . . =⇒ (

∧
a. B a =⇒ C ) =⇒ C etc.

Isar statements address these issues by introducing first-class notation for
certain rule schemes. As seen in the initial example in §3, proof blocks allow to
produce natural deduction rules on the spot, by discharging local parameters
and assumptions, e.g. “{ fix x assume A x have B x 〈proof 〉 }” for

∧
x . A x

=⇒ B x. Based on this idea we introduce three kinds of clausal Isar statements.

1. Big clauses have the form “fixes vars assumes props shows props” and
specify the outermost structure of a natural deduction reasoning pattern.
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The given fixes and assumes elements determine a local context, shows
poses simultaneous local goals within that. The subsequent proof proceeds
directly within the local scope; the final result emerges by discharging the
context, producing corresponding

∧
/=⇒ rule structure behind the scenes.

2. Dual clauses have the form “fixes vars assumes props obtains vars where
props” and abbreviate certain big clauses: “obtains a where B a” expands
to “fixes thesis assumes

∧
a. B a =⇒ thesis shows thesis”. Case-splits

may be indicated by several clauses separated by “|”, which corresponds
to multiple branches of the form

∧
ai. B i ai =⇒ thesis. According to the

principles behind big clauses, the resulting rule will have exactly the elim-
ination format described in §2. Within the proof body, each obtains case
corresponds to a different hypothetical rule to conclude the main thesis; one
of these possibilities has to be chosen eventually.

3. Small clauses are of the form “B x if A x for x” and indicate the second-level
rule structure of framework propositions within big clauses. This corresponds
directly to

∧
x . A x =⇒ B x, but clausal notation may not be nested further.

The basic fixes–assumes–shows form of big clauses has been available in
Isabelle/Isar for many years. The dual form is a recent addition, which has
first appeared officially in Isabelle2007. Small clauses are not available in official
Isabelle yet, but are an experimental addition for the present paper only.

Our initial proof of
∧

x y . A x =⇒ B y =⇒ C x y is now rephrased as follows:

theorem r :
fixes x and y
assumes A x and B y
shows C x y 〈proof 〉

See also §6 for proofs involving obtains. To continue our running example of
predicate logic, we rephrase the previous natural deduction rules from §2:

theorem impI : assumes B if A shows A −→ B
theorem impE : assumes A −→ B and A obtains B

theorem allI : assumes B a for a shows ∀ x . B x
theorem allE : assumes ∀ x . B x obtains B a

theorem conjI : assumes A and B shows A ∧ B
theorem conjE : assumes A ∧ B obtains A and B

theorem disjI 1: assumes A shows A ∨ B
theorem disjI 2: assumes B shows A ∨ B
theorem disjE : assumes A ∨ B obtains A | B

theorem exI : assumes B a shows ∃ x . B x
theorem exE : assumes ∃ x . B x obtains a where B a

In other words, we have managed to express the inherent structure of reasoning
schemes without demanding auxiliary logical connectives, not even those of the
Isabelle/Pure framework. Only concepts of the application, which happens to be
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predicate logic as an object-language here, and native Isar elements are involved.
The same works for domain-specific rules, e.g. those for set theory seen before:

theorem interI : assumes x ∈ A and x ∈ B shows x ∈ A ∩ B
theorem interE : assumes x ∈ A ∩ B obtains x ∈ A and x ∈ B

5 Inductive Definitions

Inductive predicates provide a convenient way to define concepts by specifying a
collection of characteristic introduction rules. Support for inductive definitions is
available in many theorem provers. Melham [6] describes a version for the HOL
system using an impredicative encoding, meaning that the definition involves
universal quantification over predicate variables, whereas Harrison’s inductive
definition package for HOL [4] uses an encoding based on the Knaster-Tarski
fixpoint theorem. The Coq system [2] is based on the Calculus of Inductive Con-
structions introduced by Paulin-Mohring, which contains inductive definitions
as a primitive concept [7]. Inductive definitions in Isabelle were first introduced
by Paulson [10], using fixpoints over the lattice of sets. Our refined version works
on generic lattices, which subsume predicates in HOL.

Many well-known concepts of mathematics can be viewed as an inductive
predicate. E.g. the transitive closure of a relation can be defined as follows:

inductive trcl for R :: α ⇒ α ⇒ bool
where

trcl R x x for x
| trcl R x z if R x y and trcl R y z for x y z

The rules of inductive may be specified using the format of “small clauses”
introduced in §4. Internally, the system derives further natural deduction rules
that may be turned into Isar proofs as discussed in §3. By virtue of its definition
as the least predicate closed under these rules, any inductive predicate admits
an induction and an inversion principle (case analysis). For example:

assume trcl R a b
then have P a b
proof (rule trcl .induct)

fix x
show P x x 〈proof 〉 — induction base

next
fix x y z
assume R x y and trcl R y z and P y z
then show P x z 〈proof 〉 — induction step

qed

This induction principle is a consequence of trcl being defined as the least fixpoint
of a predicate transformer of type (α ⇒ α ⇒ bool) ⇒ α ⇒ α ⇒ bool :

trcl ≡
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λR. lfp (λp x1 x2.
(∃ x . x1 = x ∧ x2 = x ) ∨
(∃ x y z . x1 = x ∧ x2 = z ∧ R x y ∧ p y z ))

The body of the function (λp x 1 x 2. . . .) is a disjunction, whose two parts
correspond to the two introduction rules for trcl. Using the fact that the predicate
transformer is monotonic, the induction principle follows from this definition
using the Knaster-Tarski theorem for least fixpoints on complete lattices:

mono f f (lfp f u P) v P

lfp f v P

The ordering relation v and the infimum operator u is defined on the complete
lattice of n-ary predicates in a pointwise fashion:

P v Q ≡ ∀ x 1 . . . xn. P x 1 . . . xn −→ Q x 1 . . . xn

P u Q ≡ λx 1 . . . xn. P x 1 . . . xn ∧ Q x 1 . . . xn

The premise f (lfp f u P) v P of the fixpoint theorem is established by the
proofs of the induction base and the induction step in the above proof pattern.

Case analysis corresponds to the observation that if an inductive predicate
holds, one of its introduction rules must have been used to derive it. This princi-
ple can be viewed as a degenerate form of induction, since there is no induction
hypothesis. For the transitive closure, the case analysis scheme is:

assume trcl R a b
then have Q
proof (rule trcl .cases)

fix x
assume a = x and b = x
then show Q 〈proof 〉

next
fix x y z
assume a = x and b = z and R x y and trcl R y z
then show Q 〈proof 〉

qed

Although the case analysis rule could be derived from the above least fixpoint
theorem as well, it is proved from the fixpoint unfolding theorem mono f =⇒
lfp f = f (lfp f ) which has the advantage that exactly the same proof technique
can also be used in the case of coinductive predicates, using gfp in place of lfp.

Inductive predicates are very convenient to formalize mathematical concepts
succinctly, even if there is no recursion involved. For example, the composition
of two relations R and S can be defined as follows:

inductive comp for R :: α ⇒ β ⇒ bool and S :: β ⇒ γ ⇒ bool
where comp R S x z if R x y and S y z for x y z

For comp, the underlying primitive definition is comp ≡ λR S . lfp (λp x 1 x 2.
∃ x y z . x 1 = x ∧ x 2 = z ∧ R x y ∧ S y z ). For fixpoints of constant functions
like the above we have lfp (λx . t) = t, which easily follows from the fixpoint
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unfolding theorem. Using the same principles, we can even characterize basic
operators of predicate logic as inductive predicates with zero arguments. E.g.

inductive and for A B :: bool
where and A B if A and B

inductive or for A B :: bool
where or A B if A | or A B if B

inductive exists for B :: α ⇒ bool
where exists B if B a for a

Again, these operators are just examples. Real applications would introduce their
genuine notions directly as inductive definitions.

6 Case-study: Well-founded Multiset Ordering

To illustrate the “logic-free” style of definitions, statements and proofs in Isar,
we formalize some aspects of well-founded multiset ordering. A multiset is a fi-
nite “bag” of items, which can be modeled as a function from items to natural
numbers that yields a non-zero value only on a finite domain. Multiset notation
is reminiscent of plain sets: {|a, a, b, b, b, c|} for enumeration, a ∈ B for member-
ship, A ] B for union etc. The structure of multisets can also be characterized
inductively, with base case {||} and step case B ] {|a|} for a multiset B.

Given an ordering on items, multisets can be ordered by the following in-
tuitive process: one item of the bag is removed and replaced by the content of
another bag of strictly smaller items; this is repeated transitively. The main theo-
rem states that the resulting relation on multisets is well-founded, provided that
the item ordering is well-founded. Below we merely cover the basic definitions
and a technical lemma required for the well-foundedness proof.1

Our development refers to a locally fixed less relation, which is introduced
by commencing the following locale context (see also [1]).

locale less-relation = fixes less :: α ⇒ α ⇒ bool (infix ≺ 50)
begin

The locale already contributes to the “logic-free” approach, since it avoids ex-
plicit abstraction or quantification over that parameter.

A bag of items is compared to a single item in point-wise manner as follows:

definition lesser (infix ≺ 50) where B ≺ a ↔ (∀ b. b ∈ B −→ b ≺ a)

lemma lesserI : assumes b ≺ a for b shows B ≺ a
using assms unfolding lesser-def by auto

1 See http://isabelle.in.tum.de/dist/library/HOL/Library/Multiset.html for
a rather old version of the complete formalization that mixes quite different styles;
the main well-foundedness theorem is called wf-mult there.
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lemma lesserE : assumes B ≺ a and b ∈ B obtains b ≺ a
using assms unfolding lesser-def by auto

Obviously, the primitive predicate definition of B ≺ a is not logic-free, since it
uses ∀ and −→ connectives. The two extra “boiler plate” lemmas amend this by
providing an alternative characterization in natural deduction style. (In the bits
of proof shown below, we never need to analyze the lesser relation, though).

Next we define the main idea of the multiset ordering process. The subsequent
inductive predicate N ≺≺ M expresses a single step of splitting off an element
from M = B ] {|a|} and replacing it by a point-wise smaller multiset. (The full
ordering emerges as the transitive closure of that relation.)

inductive less-multiset (infix ≺≺ 50)
where B ] C ≺≺ B ] {|a|} if C ≺ a for a B C

This rather succinct logic-free definition characterizes the relation by a single
clause — there are no other cases and no recursion either. Even this degenerate
form of inductive definition is very convenient in formal reasoning. Here the
decomposition of the two multisets is specified directly via pattern matching,
with side-conditions and parameters expressed as native clauses of Isabelle/Isar.

In contrast, the original formulation from the Isabelle/HOL library uses an
encoding that involves intermediate layers of predicate logic and set theory, with
separate equations to express the decomposition.

definition less-mult =
{(N , M ). ∃ a B C . M = B ] {|a|} ∧ N = B ] C ∧ C ≺ a}

While this might look familiar to anybody trained in logic, manipulating such
auxiliary structure in formal proof requires extra steps that do not contribute
to the application. Nevertheless, even rather bulky encodings do often happen
to work out in practice by means of reasonably strong “proof automation”. We
illustrate this by proving formally that both definitions are equivalent.

lemma N ≺≺ M ↔ (N , M ) ∈ less-mult
unfolding less-mult-def

proof
assume N ≺≺ M
then obtain a B C where M = B ] {|a|} and N = B ] C and C ≺ a

by (rule less-multiset .cases)
then show (N , M ) ∈ {(N , M ). ∃ a B C . M = B ] {|a|} ∧ N = B ] C ∧ C ≺ a}

by auto
next

assume (N , M ) ∈ {(N , M ). ∃ a B C . M = B ] {|a|} ∧ N = B ] C ∧ C ≺ a}
then obtain a B C where M = B ] {|a|} and N = B ] C and C ≺ a

by auto
from 〈C ≺ a〉 have B ] C ≺≺ B ] {|a|} by (rule less-multiset .intros)
with 〈M = B ] {|a|}〉 and 〈N = B ] C 〉 show N ≺≺ M by simp

qed

This rather lengthy proof merely shuffles logical connectives back and forth, with-
out being very informative. The auto method involved here is a fully-featured

12



combination of classical proof search with equational normalization; it success-
fully bridges the gap between the intermediate statements given in the text. On
the other hand, this extra overhead can be avoided by the logic-free characteri-
zation of the inductive definition from the very beginning. So we continue in that
style now, working on the mathematics of multiset orderings instead of doing
exercises in formal logic and automated reasoning.

The proof of the main theorem combines well-founded induction over the
relation ≺ of items with structural induction over multisets. At some point in
the induction step, the multiset ordering N ≺≺ B ] {|a|} needs to be analyzed:

lemma less-add-cases:
assumes N ≺≺ B ] {|a|}
obtains

(1) M where M ≺≺ B and N = M ] {|a|}
| (2) C where C ≺ a and N = B ] C

Ultimately, the rule resulting from this goal statement will split an arbitrary fact
N ≺≺ B ] {|a|} into two cases as specified above. In the present proof context, we
are still in the course of establishing this claim. Here N ≺≺ B ] {|a|} is available
as a local fact, and there are two possibilities to finish the hypothetical main
thesis, namely rule 1: thesis if M ≺≺ B and N = M ] {|a|} for M and rule 2:
thesis if C ≺ a and N = B ] C for C.

This means the subsequent proof already starts out in a nicely decomposed
version of the idea of splitting cases and obtaining local parameters and assump-
tions, without having to work through auxiliary ∨, ∧, ∃ connectives again:

proof −
from 〈N ≺≺ B ] {|a|}〉
obtain a ′ B ′ C where

B ] {|a|} = B ′ ] {|a ′|} and
N = B ′ ] C and
C ≺ a ′

by (rule less-multiset .cases) simp-all
from 〈B ] {|a|} = B ′ ] {|a ′|}〉 show thesis
proof (rule add-eq-cases)

assume B = B ′ and a = a ′

with 〈C ≺ a ′〉 and 〈N = B ′ ] C 〉

have C ≺ a and N = B ] C by simp-all
then show thesis by (rule 2)

next
fix C ′ assume B ′ = C ′ ] {|a|} and B = C ′ ] {|a ′|}
show thesis
proof (rule 1)

from 〈C ≺ a ′〉 have C ′ ] C ≺≺ C ′ ] {|a ′|} by (rule less-multiset .intros)
with 〈B = C ′ ] {|a ′|}〉 show C ′ ] C ≺≺ B by simp
from 〈B ′ = C ′ ] {|a|}〉 and 〈N = B ′ ] C 〉

show N = C ′ ] C ] {|a|} by (simp add : union-ac)
qed

qed
qed
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Above the initial obtain statement augments the local context by means of
standard elimination of the N ≺≺ M relation, using the corresponding cases
rule. The sub-proof via add-eq-cases involves another obtains rule proven in
the background library; its statement is structurally similar to less-add-cases.

So our proof manages to maintain the logic-free style, no auxiliary connectives
are involved, only some algebraic operators from the application domain. The
old proof in the Isabelle/HOL library requires about two times more text, even
though it uses many abbreviations for sub-terms and local facts. Moreover, it
needs more automation to work through extraneous logical structure.

end

7 Conclusion and Related Work

Isabelle/Isar shares the mission of formal reasoning that approximates tradi-
tional mathematical style with the pioneering Mizar system [12, 11]. There are
many similarities and dissimilarities, see also [17, 16] for some comparison.

Concerning the logical foundations, Isar uses the Isabelle/Pure framework
[8, 9] which implements a generic higher-order version of Gentzen’s natural de-
duction calculus [3]. In contrast, Mizar works specifically with classical first-order
logic, and the style of reasoning is modeled after the “supposition calculus” due
to Jaskowski [5]. The basic paradigm of structured proof composition in Mizar
is quite different from Isar. Where Isar revolves around natural deduction rules
that emerge from local proof bodies and refine pending goals eventually, Mizar
allows to operate more directly on the logical structure of a claim in consecu-
tive refinement steps: let to move past universal quantification, assume to move
past an implication etc. In contrast, fix and assume in Isar do not operate on a
goal structure, but construct a context that will impose a certain rule structure
on the final show result. This can make a difference in practice: in proving an
implication a Mizar proof needs to say assume A invariably, while in Isar the
corresponding “assume A” is only required if that fact is actually used later.

Essentially, there are Mizar proof elements for each of the logical connec-
tives of ∧, ∨, −→, ∀ , ∃ , but English words are used here both for the con-
nectives and the corresponding proof elements. For example, the proposition
for x holds A[x] can be established by let x and a proof of A[x] in that
scope. Thus Mizar enables to produce a proof text according to principles from
classical first-order logic, while Isar is more puristic in referring to generic nat-
ural deduction, where predicate logic is just one example. This different at-
titude is best illustrated by existential elimination, which works in Mizar via
consider a such that B[a] and is closely tied to actual existential quantifi-
cation ex x st B[x]. In Isar “obtain a where B a” merely espresses the more
elementary idea of being able to augment the local scope by a hypothetical entity
a with property B a. This might follow from a fact ∃ x . B x, but the elimination
is better performed by a domain-specific rule . . . =⇒ (

∧
a. B a =⇒ C ) =⇒ C,

or “obtains a where B a” as explained in the present paper. Our inductive
definitions are particularly well suited to produce such rules.
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This means certain aspects of Mizar are about predicate logic, rather than
mathematics. In contrast, our “logic-free” style in Isar enables more direct ex-
pression of definitions, statements, and proofs — reducing the overall formality
of the text.
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