
Random testing in Isabelle/HOL

Stefan Berghofer and Tobias Nipkow
Technische Universität München

Institut für Informatik, Boltzmannstraße 3, 85748 Garching, Germany
http://www.in.tum.de/~{berghofe,nipkow}/

Abstract

When developing non-trivial formalizations in a the-
orem prover, a considerable amount of time is devoted to
“debugging” specifications and conjectures by failed proof
attempts. To detect such problems early in the proof and
save development time, we have extended the Isabelle the-
orem prover with a tool for testing specifications by eval-
uating propositions under an assignment of random val-
ues to free variables. Distribution of the test data is opti-
mized via mutation testing. The technical contributions
are an extension of earlier work with inductive defini-
tions and a generic method for randomly generating ele-
ments of recursive datatypes.

1. Introduction

When developing non-trivial formalizations in a the-
orem prover, a considerable amount of time is devoted
to “debugging” specifications and theorems. Typically,
incorrect specifications or theorems are discovered dur-
ing failed proof attempts. This is an expensive form of
debugging. Therefore it is often useful to test conjec-
tures before embarking on a proof. A possible way of
doing this is to assign random values to the free vari-
ables of the conjecture and then evaluate it. This ap-
proach has already been successfully used in the func-
tional programming community and is implemented
e.g. in the QuickCheck library [3] for testing Haskell
programs. We describe an implementation of such a
testing tool for the theorem prover Isabelle/HOL. It
is important to note that QuickCheck is essentially
a framework for writing random test case generators,
where the implementation of generators for specific
datatypes is left to the user. In contrast, our testing
tool automatically derives test case generators from
datatype definitions in a canonical way, using a tech-
nique reminiscent of polytypic programming [8, 12].

Roughly speaking, Isabelle/HOL is a functional pro-
gramming language augmented with predicate logic.
For example, we can define inductive datatypes such
as the datatype of lists

datatype ′a list =

Nil ([]) | Cons ′a (′a list) (infixr # 65)

and define recursive functions such as take and drop:

consts take:: nat ⇒ ′a list ⇒ ′a list
primrec
take n [] = []
take n (x # xs) = (case n of
0 ⇒ [] | Suc m ⇒ x # take m xs)

consts drop:: nat ⇒ ′a list ⇒ ′a list
primrec
drop n [] = []
drop n (x # xs) = (case n of

0 ⇒ x # xs | Suc m ⇒ drop m xs)

We can now try to formulate a commutation prop-
erty for take and drop:

theorem take j (drop i xs) = drop i (take j xs)

quickcheck

Before attempting to prove such a statement, it is a
good idea to run a counterexample generator on it. This
is done using the quickcheck command of Isabelle
shown above, which produces the following output:

Test data size: 0
Test data size: 1
Test data size: 2

Counterexample found:
i = Suc 0
j = Suc 0
xs = [1 ,−1]

This shows that our above statement was wrong, since

take (Suc 0) (drop (Suc 0) [1 ,−1]) = [−1] and
drop (Suc 0) (take (Suc 0) [1 ,−1]) = []

http://www.in.tum.de/~{berghofe,nipkow}/

Fortunately, this error can easily be corrected. Thus,
we abort our failed proof attempt and prove a slightly
modified version of the above statement:

theorem
∧

i j . take j (drop i xs) = drop i (take (i+j) xs)

2. Related work

Testing is a huge field, even when limited to formal
specifications. Even model checking can be viewed as a
clever form of exhaustive testing. In the theorem prov-
ing field testing has long had a bad name — after all,
isn’t testing the very thing theorem proving is trying
to replace? Nevertheless, the idea of searching for fi-
nite (counter)models of first-order formulae has been
around for some time (e.g. [11, 14]). Thus our work
should be viewed as a new application of mostly known
techniques. In particular, we have made use of the fol-
lowing ideas:

• Executing HOL specifications, which we described
earlier [1], and which is reminiscent of functional-
logic programming [6].

• Random testing à la QuickCheck, which we lift
from the purely functional to the functional-logic
level.

• Mutation testing to determine suitable parameters
of our test framework.

An approach closely related to ours has been pro-
posed by Dybjer, Qiao and Takeyama [5] in the context
of the Agda proof assistant, which implements Martin-
Löf type theory and can roughly be viewed as an ex-
tension of Haskell with dependent types. Their work
uses ideas from the QuickCheck library, too, but is re-
stricted to recursive functions, while our approach cov-
ers inductively defined predicates as well. Moreover, in
their framework, test data generators are defined and
executed inside the language of Agda, rather than pro-
gramming them in Haskell. On the one hand, this has
the advantage that properties of test case generators
can be proved inside the system, but on the other hand
has the possible drawback of slower execution speed
when applied to larger specifications.

A very influential tool for debugging formal spec-
ifications is the Alloy Analyzer [7] which enumerates
small finite models of the specification to find coun-
terexamples to given conjectures. Essentially, Alloy
specifications are first-order formulae and the search for
finite models is performed by an external SAT solver.
Tjark Weber has carried this idea over to HOL [13].
The two forms of counter-example search are quite
complementary: the QuickCheck approach is limited
to executable formulae but is not very sensitive to the

Code generator

Test case

Datatypes,
functions

generators

TheoryProposition

Counterexample

Isabelle/HOL ML

Figure 1: Architecture of testing framework

size of the specification. Searching for finite models can
handle non-executable constructs like quantifiers but is
very sensitive to the size and complexity of the formu-
lae involved.

The fact that computers have made testing much
easier than proving has not escaped mathematicians
either. In 1992 the journal Experimental Mathematics
was founded to allow the publication of conjectures for-
mulated on the basis of experiments, i.e. testing.

3. Overview

Testing specifications involves the evaluation of ex-
pressions. In principle, this could be done using
Isabelle’s built-in term rewriting engine, the so-called
simplifier. However, this would involve the construc-
tion of a proof in equational logic, which is too slow for
processing large amounts of test cases. Since a large
subset of Isabelle/HOL specifications is actually ex-
ecutable, the approach taken in this work is there-
fore to compile specifications to functional programs in
the ML programming language that are efficiently ex-
ecutable. The executable fragment of Isabelle/HOL
contains the following constructs:

• Inductive datatypes

• Recursive functions on datatypes

• Inductive predicates

Compiling inductive datatypes and recursive functions
to ML is fairly straightforward, and we do not ex-
plain it here. The compilation of inductive predicates
is more challenging, and is discussed in more detail in
§5. Recursive functions and predicates may also be in-
termixed, i.e. a recursive function may be called from
within an inductive predicate, and vice versa.

2

mk -gen Γ i α = genα

mk -gen Γ i (τ1, . . . , τn)t =

{
gent (mk -gen Γ i τ1) · · · (mk -gen Γ i τn) if t 6∈ Γ
gen ′

t (mk -gen Γ i τ1) · · · (mk -gen Γ i τn) i if t ∈ Γ

fun gen ′
t genα1

· · · genαk
i j = frequency

[(i, fn () => one_of

[fn () => C1 (mk-gen {t} (i-1) τ1
1 j) · · · (mk-gen {t} (i-1) τr1

1 j),

...,

fn () => Cm (mk-gen {t} (i-1) τ1
m j) · · · (mk-gen {t} (i-1) τrm

m j)] ()),

(1, fn () => one_of

[fn () => D1 (mk-gen {t} (i-1) σ1
1 j) · · · (mk-gen {t} (i-1) σs1

1 j),

...,

fn () => Dn (mk-gen {t} (i-1) σ1
n j) · · · (mk-gen {t} (i-1) σsn

n j)] ())] ()

and gent genα1
· · · genαk

i = gen ′
t genα1

· · · genαk
i i

Figure 2: General construction scheme for random data generators

The overall architecture of the implemented tool is
shown in Fig. 1. From a proposition ϕ with free vari-
ables x1, . . ., xn given by the user, which is to be in-
terpreted relative to a specific theory, the code gener-
ator produces ML code for the actual proposition, as
well as the datatypes and functions used in it. For this
to work, the proposition is interpreted as a function

f = λx1 . . . xn. ϕ :: τ1 ⇒ · · · τn ⇒ bool

Moreover, a test case generator is constructed for each
datatype. These generators are then invoked by a test
driver, which generates random values r1, . . ., rn of
type τ1, . . ., τn and then evaluates f r1 . . . rn. If the re-
sult of the evaluation is false, the arguments ri are re-
turned as a counterexample.

4. Test Data Generators

As a basis for the definition of random data genera-
tors, we assume the following functions:

random: int -> int -> int

one_of: ’a list -> ’a

frequency: (int * ’a) list -> ’a

Function random l h generates a random integer num-
ber r with equal distribution, where l ≤ r ≤ h. Func-
tion one of xs chooses one of the elements of the list
xs, where each element has the same probability of be-
ing chosen. Function frequency takes a list of pairs
[(k1, x1), . . ., (kn, xn)] and chooses one of the el-
ements x1, . . ., xn. Here, the integer values ki are inter-
preted as weights, i.e. the probability of xi to be chosen
is

Pi = ki∑n

j=1
kj

A generator for a type τ is a function of type int ⇒ τ ,
where the integer argument of the function specifies
the size of the test data to be generated. Using the
above functions, we can define generators for the ba-
sic types of booleans and integers as follows:

fun gen_bool i = one_of [false, true];

fun gen_int i = one_of [~1, 1] * random 0 i;

We now come to a more general description of
the construction of generators for arbitrary datatypes.
Types in Isabelle can either be type variables, which we
denote by greek letters α, β, γ, . . ., or complex type ex-
pressions, which have the form (τ1, . . . , τn)t, where t is
a type constructor and τi are the argument types. Each
n-ary type constructor t is associated with a function

gent :: (int ⇒ α1) ⇒ · · · ⇒ (int ⇒ αn) ⇒ int ⇒ (α1, . . . , αn)t

that, given generators for the types αi, yields a gener-
ator for the type (α1, . . . , αn)t. For example, the gen-
erator gen list for the type α list is defined as fol-
lows:

fun gen_list’ aG i j = frequency

[(i, fn () => aG j :: gen_list’ aG (i-1) j),

(1, fn () => [])] ()

and gen_list aG i = gen_list’ aG i i;

where aG is a generator for elements of type α. The
actual test data generation is done by the function
gen list’ that takes two size arguments instead of just
one. The first of these arguments is decremented with
every recursive call, while the other is left unchanged
and is simply passed on to the generator aG for the ar-
gument type α. The probability that gen list aG i
generates a list with k elements, where 0 ≤ k ≤ i, is

i

i + 1
· i− 1

i
· · · i− (k − 1)

i− (k − 1) + 1
· 1
i− k + 1

=
1

i + 1

3

This is independent of the value of k, i.e. the length of
the generated lists is equally distributed.

For a complex type expression, a suitable genera-
tor can be constructed by recursion on the structure of
the type. This is accomplished by the function mk -gen
shown in Fig. 2. For example, the generator for a list
of lists of integers can be constructed as follows:

mk -gen {} i (int list list) = gen list (gen list gen int) i

The additional argument Γ of function mk -gen is a set
of type constructors describing the context in which
the invocation of the generator function takes place. If
a generator for datatype ti is called recursively from
within the definition of the generators for the mutually
recursive datatypes t1, . . ., tn, then Γ = {t1, . . . , tn},
and therefore mk -gen will produce a call to the auxil-
iary function gen ′

ti
with an additional size argument. In

contrast, if ti is called from elsewhere, mk -gen will pro-
duce a call to genti

. We now consider the general re-
cursive datatype definition

datatype (α1, . . . , αk)t =
C1 τ1

1 · · · τr1
1 | · · · | Cm τ1

m · · · τrm
m

|D1 σ1
1 · · · σs1

1 | · · · |Dn σ1
n · · · σrn

n

The constructors C1, . . ., Cm are recursive, i.e.

∀1 ≤ i ≤ m. ∃1 ≤ j ≤ ri. τ j
i = (α1, . . . , αk)t

whereas D1, . . ., Dn are non-recursive, i.e.

∀1 ≤ i ≤ n. ∀1 ≤ j ≤ si. σj
i 6= (α1, . . . , αk)t

The scheme for constructing a generator for this type is
shown in Fig. 2. The first choice the generator makes
is whether a recursive or a non-recursive constructor
should be selected. In either case, one of the avail-
able constructors is selected with equal probability. The
probability for a recursive constructor to be chosen is
initially higher than for a non-recursive constructor,
and decreases with every recursive call. As in the above
definition of gen list, this makes sure that the size of
the generated test data is equally distributed and does
not exceed the limit specified by the user.

5. Inductive predicates

Inductively defined predicates (or sets) are used in
many areas of computer science. An inductive defini-
tion specifies the smallest set closed under a list of in-
ference rules, which are called the introduction rules of
the predicate. For example, programming language se-
mantics or type systems are often presented in the form
of such inference rules. Introduction rules are Prolog-
style Horn Clauses, which have the form

(t11, . . . , t
1
n1) ∈ p1 =⇒ · · · =⇒ (tm

1 , . . . , tm
nm

) ∈ pm =⇒
(t01, . . . , t

0
n0) ∈ p0

where p0, . . ., pm are inductively defined predicates. In
addition to premises of the form (ti1, . . . , t

i
ni

) ∈ pi, we
also allow other side conditions, i.e. executable boolean
expressions, which can be thought of as a kind of “fil-
ter” for the computed results. To simplify the expo-
sition, we will treat side conditions only informally in
this section.

5.1. Mode analysis

In contrast to Prolog, whose execution model is
based on unification and resolution, inductive pred-
icates in Isabelle are executed by translating them
into functional programs. This is done by perform-
ing a dataflow analysis, which assigns a set of possible
dataflow directions to each inductive predicate. These
dataflow directions, which are also called modes, parti-
tion arguments of inductive predicates into input and
output arguments. In the sequel, we will denote a mode
by the set of indices of the input arguments. Usually,
there is more than one possible direction of dataflow
for a predicate. For example, the predicate

(Nil , ys, ys) ∈ app
(xs, ys, zs) ∈ app =⇒ (Cons x xs, ys,Cons x zs) ∈ app

may be given two lists xs = [1, 2] and ys = [3, 4] as
input, the output being the list zs = [1, 2, 3, 4]. We
may as well give a list zs = [1, 2, 3, 4] as an input,
the output being a sequence of pairs of lists xs and ys,
where zs is the result of appending xs and ys, namely
xs = [1, 2, 3, 4] and ys = [], or xs = [1, 2, 3] and
ys = [4], or xs = [1, 2] and ys = [3, 4], etc. Another
possibility would be to give all three lists xs, ys and
zs as an input, the output being either True (encoded
by the singleton sequence consisting only of the nullary
tuple) if zs is the result of appending xs and ys, and
False (encoded by the empty sequence) otherwise.

In order to execute the above clause of predicate p0,
a suitable order of execution needs to be chosen for the
predicates (ti1, . . . , t

i
ni

) ∈ pi (1 ≤ i ≤ m) in the clause
body, such that all variables appearing in the input ar-
guments of a predicate to be executed appear either in
the output arguments of previously executed predicates
or in input arguments in the clause head. This makes
sure that the values of all input arguments of a pred-
icate are known at the point of execution. When exe-
cuting a side condition, the values of all variables oc-
curring in it must be known. More formally, the above
clause for p0 is said to be well-moded if there is a per-
mutation π and modes Mi ⊆ {1, . . . , ni} such that for
all 1 ≤ i ≤ m

Vars(inπ(i)) ⊆ Vars(in0) ∪
⋃

1≤j<i
Vars(outπ(j)) and

Vars(out0) ⊆ Vars(in0) ∪
⋃

1≤j≤m
Vars(outj)

4

where ini and out i denote the list of input and output
arguments of predicate pi with respect to mode Mi:

ini =
[
ti
j |1 ≤ j ≤ ni ∧ j ∈ Mi

]
out i =

[
ti
j |1 ≤ j ≤ ni ∧ j /∈ Mi

]
An inductive predicate is well-moded if all its clauses
are well-moded.

5.2. Code generation

Well-moded inductive predicates can easily be trans-
lated into functional programs that only use the built-
in pattern matching mechanism of the underlying func-
tional programming lanuguage instead of unification.
To account for possible nondeterminism, the function
generated from an inductive predicate returns a se-
quence of output values for a given input value. Since
the number of output values can also be infinite, lazy
lists have to be used. Lazy lists are represented by the
type ’a seq, for which we assume the following oper-
ations:

Seq.empty : ’a seq

Seq.single : ’a -> ’a seq

Seq.append : ’a seq * ’a seq -> ’a seq

Seq.map : (’a -> ’b) -> ’a seq -> ’b seq

Seq.flat : ’a seq seq -> ’a seq

In the sequel, we will write s1 ++ s2 instead of
Seq.append (s1, s2). In addition, we define the op-
erator

fun s :-> f = Seq.flat (Seq.map f s)

that will be used to compose subsequent calls of predi-
cates. Using the above operators, the predicate p0 can
be translated to ML as follows:

fun p0 inp =

Seq.single inp :->

(fn in0 => pπ(1) inπ(1) :->

(fn outπ(1) => pπ(2) inπ(2) :->

...

(fn outπ(m) => Seq.single out0
| _ => Seq.empty)

...

| _ => Seq.empty)

| _ => Seq.empty)

++

. . .;

Side conditions, which are just boolean expressions, can
easily be embedded into this translation scheme with
the help of the following combinator:

fun ?? b = if b then Seq.single () else Seq.empty

The purpose of this combinator is to make a boolean
expression behave like an inductive predicate with no
output arguments. An expression evaluating to False
corresponds to the empty sequence, whereas an expres-
sion evaluating to True corresponds to a singleton se-
quence consisting only of the nullary tuple.

5.3. Inductive characterization of predi-
cate logic operators

The usual way of evaluating a propositional logic for-
mula such as ϕ ∧ ϕ′ is to evaluate the subformulae ϕ1

and ϕ2, and then compute the value of the formula us-
ing the truth-table semantics for ∧. Unfortunately, this
approach does not extend to formulae of predicate logic
such as ∃x. ϕ x or ∀x. ϕ x, unless the domain of quan-
tification is finite. An alternative approach, which also
allows predicate logic formulae to be given a computa-
tional interpretation, is to phrase such formulae in the
form of an inductive definition. A predicate logic for-
mula of the form

(∃~x1. ϕ1
1 ~x1 ~y ∧ . . . ∧ ϕn1

1 ~x1 ~y)
∨ . . .
∨ (∃~xm. ϕ1

m ~xm ~y ∧ . . . ∧ ϕnm
m ~xm ~y)

with free variables ~y corresponds to an inductive pred-
icate R, which is characterized by the clauses

ϕ1
1 ~x1 ~y =⇒ · · · =⇒ ϕn1

1 ~x1 ~y =⇒ ~y ∈ R
...

ϕ1
m ~xm ~y =⇒ · · · =⇒ ϕnm

m ~xm ~y =⇒ ~y ∈ R

As is common in logic programming languages such as
Prolog, free variables in clauses are implicitly univer-
sally quantified. Thus, free variables only occurring in
the body of a clause are implicitly existentially quanti-
fied. Inductive encodings of logical operators in a theo-
rem prover have first been proposed by Paulin-Mohring
[10], who used them in the Coq system based on the
Calculus of Inductive Constructions.

In order to transform an arbitrary predicate logic
formula into a formula of the above form, the follow-
ing rewrite rules have to be applied in a preprocessing
step:

(∀x. P x) = (¬∃x. ¬P x) (¬∀x. P x) = (∃x. ¬P x)
(P −→ Q) = (¬P ∨Q)

¬¬P = P
(∃x. P x ∨Q x) = (∃x. P x) ∨ (∃x. Q x)

(∃x. P x) ∧Q = (∃x. P x ∧Q)
¬(P ∨Q) = ¬P ∧ ¬Q ¬(P ∧Q) = ¬P ∨ ¬Q

P ∧ (Q ∨R) = P ∧Q ∨ P ∧R
(P ∨Q) ∧R = P ∧R ∨Q ∧R

We now describe how the above translation scheme can
be applied to formulae with preconditions, a notori-

5

ously problematic case for testing. Consider the for-
mula

(x, y) ∈ I −→ P x y

where I is an inductive predicate with the modes {1}
and {1, 2}. A naive strategy for testing this formula
would be to evaluate it under an assignment of ran-
dom values to the variables x and y (where the mode
{1, 2} is used for I). However, if I represents a non-
trivial property, it is quite unlikely that a random data
generator produces suitable combinations of values for
both x and y such that (x, y) ∈ I will evaluate to True.
Therefore, the precondition (x, y) ∈ I will evaluate to
False for most values of x and y, and so the whole for-
mula will evaluate to True. Thus, this strategy is un-
likely to find counterexamples. A better approach is to
generate values for y in a more goal-directed way: If we
add an explicit quantification over y, the resulting for-
mula ∀y. (x, y) ∈ I −→ P x y can be transformed as
follows:

∀y. (x, y) ∈ I −→ P x y
= ∀y.¬(x, y) ∈ I ∨ P x y
= ¬∃y. (x, y) ∈ I ∧ ¬P x y

After introducing an inductively defined auxiliary pred-
icate R with the introduction rule

(x, y) ∈ I =⇒ ¬P x y =⇒ x ∈ R

the above formula can be rephrased as ¬x ∈ R. This
time, when evaluating the auxiliary predicate R, the
predicate I will be evaluated with mode {1}, i.e. for a
given value of x, values of y will be generated such that
(x, y) ∈ I holds. This transformation easily generalizes
to formulae

∀~y1 . . . ~yn. (~x1, ~y1) ∈ I1 −→ · · · −→ (~xn, ~yn) ∈ In −→
P ~x1 . . . ~xn ~y1 . . . ~yn

with several inductive predicates as premises. By iter-
ated application of the translation rules shown above,
we can turn this formula into

¬∃~y1 . . . ~yn. (~x1, ~y1) ∈ I1 ∧ · · · ∧ (~xn, ~yn) ∈ In ∧
¬P ~x1 . . . ~xn ~y1 . . . ~yn

6. Case studies

In this section, we demonstrate the applicability of
our testing framework by two case studies: The formal-
ization of a small programming language and red-black
trees.

6.1. A programming language with paral-
lelism and nondeterminism

While the behaviour of sequential programs is of-
ten relatively easy to grasp, it is quite hard to de-

velop an intuitive understanding of programs involv-
ing parallelism and nondeterminism. Parallel programs
are substantially harder to verify than sequential ones,
since parts of a program running in parallel may inter-
fere with each other. Testing and counterexample gen-
eration is therefore particularly helpful when reason-
ing about such programs. This section demonstrates
the applicability of our testing framework to the op-
erational semantics of a programming language with
parallelism and nondeterminism. Programs operate on
a state, which is a mapping from addresses to values.
Both addresses and values are encoded as natural num-
bers (type nat). States are encoded as lists of natural
numbers1, where the ith element of the list denotes the
value stored at address i.

types state = nat list

Moreover, our programming language contains arith-
metic and boolean expressions, represented by the
datatypes aexp and bexp, respectively.

datatype aexp = PLUS aexp aexp (infixl⊕ 65)
|MINUS aexp aexp (infixl	 65)
| V nat | C nat

datatype bexp = AND bexp bexp | NOT bexp

| LE aexp aexp (infix � 50)

where V n denotes a variable, C n a constant, and �

means “less than”. The definitions of the evaluation
functions

consts
evala :: state ⇒ aexp ⇒ nat

evalb :: state ⇒ bexp ⇒ bool

for expressions are fairly standard, and we omit them
here. The datatype

datatype com = SKIP
| Assign nat aexp (- := - 60)
| Semi com com (-; - [60 , 60] 10)
| Cond bexp com com (IF - THEN - ELSE - 60)
| Par com com (- ‖ - [8 , 7] 7)

| Choice com com (- ++ - [6 , 5] 5)

of commands consists of the SKIP command that does
nothing, as well as the usual operators := and ; for as-
signment and sequential composition. To simplify mat-
ters, we take IF - THEN - ELSE - as the only control
structure and omit WHILE to avoid non-termination
issues. The most important ingredients are the op-
erators ‖ and ++ for parallel composition and non-
deterministic choice. Fig. 3 shows the inductive defini-

1 It might seem more abstract to encode states as functions from
addresses to values, but this would render equality between
states undecidable.

6

inductive evalc1
intros
Skip: 〈SKIP , s〉 −→1 〈s〉
Assign: 〈x := a, s〉 −→1 〈s[x :=evala s a]〉

Semi1 : 〈c0 ,s〉 −→1 〈s ′〉=⇒ 〈c0 ;c1 ,s〉 −→1 〈c1 ,s ′〉
Semi2 : 〈c0 ,s〉 −→1 〈c0 ′,s ′〉=⇒ 〈c0 ;c1 ,s〉 −→1 〈c0 ′;c1 ,s ′〉

Par1 : 〈c0 , s〉 −→1 〈c0 ′, s ′〉=⇒ 〈c0 ‖ c1 , s〉 −→1 〈c0 ′ ‖ c1 , s ′〉
Par1 ′: 〈c0 , s〉 −→1 〈s ′〉=⇒ 〈c0 ‖ c1 , s〉 −→1 〈c1 , s ′〉
Par2 : 〈c1 , s〉 −→1 〈c1 ′, s ′〉=⇒ 〈c0 ‖ c1 , s〉 −→1 〈c0 ‖ c1 ′, s ′〉
Par2 ′: 〈c1 , s〉 −→1 〈s ′〉=⇒ 〈c0 ‖ c1 , s〉 −→1 〈c0 , s ′〉

Choice1 : 〈c0 ++ c1 , s〉 −→1 〈c0 , s〉
Choice2 : 〈c0 ++ c1 , s〉 −→1 〈c1 , s〉

IfTrue: evalb s b =⇒ 〈IF b THEN c1 ELSE c2 ,s〉 −→1 〈c1 ,s〉
IfFalse: ¬ evalb s b =⇒ 〈IF b THEN c1 ELSE c2 ,s〉 −→1 〈c2 ,s〉

inductive evalc1-tr
intros
tr1 : (c, s)−→1

∗ (c, s)
tr2 : (c, s)−→1 (c ′, s ′) =⇒ (c ′, s ′)−→1

∗ (c ′′, s ′′) =⇒ (c, s)−→1
∗ (c ′′, s ′′)

Figure 3: Inductive definition of operational semantics

tion of the small-step semantics for the above program-
ming language, consisting of a single-step execution re-
lation −→1 as well as its transitive closure −→1

∗. The
execution relation operates on a configuration that is ei-
ther a pair 〈c, s〉 consisting of a residual command c
and a state s, if the execution is not fully completed,
or just a (final) state 〈s〉 reached after complete execu-
tion of a command.

As a first “theorem”, one might try to prove that the
behaviour of the parallel composition of a program c
with a program incrementing the variable 0 twice by 1
can be simulated by the parallel composition of c with
a program incrementing the variable 0 by two in one
step:

theorem
〈(0 := V 0 ⊕ C 1 ; 0 := V 0 ⊕ C 1) ‖ c, s〉 −→1

∗ 〈s ′〉=⇒
〈0 := V 0 ⊕ C 2 ‖ c, s〉 −→1

∗ 〈s ′〉
quickcheck

This is obviously wrong, and quickcheck easily finds the
following counterexample of size 1 :

c = 0 := C 0
s = [Suc 0]
s ′ = [Suc 0]

Even though this is a formula with a precondition,
the counterexample can be found without applying the
transformation described in §5.3. There are only few
states with at most one address and values ≤ 1, and al-

most any command c that assigns a value to the vari-
able 0 will make the statement wrong. In contrast, the
other direction

theorem 〈0 := V 0 ⊕ C 2 ‖ c, s〉 −→1
∗ 〈s ′〉=⇒

〈(0 := V 0 ⊕ C 1 ; 0 := V 0 ⊕ C 1) ‖ c, s〉 −→1
∗ 〈s ′〉

is correct, and quickcheck does not find a counterex-
ample. As a more complex example, we try to prove
that parallel composition can be simulated by nonde-
terministic choice:

theorem 〈c1 ‖ c2 , s〉 −→1
∗ 〈s ′〉=⇒

〈(c1 ; c2) ++ (c2 ; c1), s〉 −→1
∗ 〈s ′〉

This time, finding a counterexample directly by gener-
ating random values for all free variables is hopeless:
There are too many degrees of freedom. We therefore
apply the transformation technique from §5.3 and in-
troduce the following auxiliary predicate:

consts test :: (com × com × state) set
inductive test
intros
〈c1 ‖ c2 , s〉 −→1

∗ 〈s ′〉=⇒
¬ 〈(c1 ; c2) ++ (c2 ; c1), s〉 −→1

∗ 〈s ′〉=⇒ (c1 , c2 , s) ∈ test

Using test, we can reformulate our goal as follows2:

2 It should be noted that this transformation need not be done
manually by the user, but is performed by the system behind
the scenes. It is only shown here for illustration.

7

theorem ¬ (c1 , c2 , s) ∈ test

quickcheck

For this goal, quickcheck can find the following coun-
terexample:

c1 = IF C 0 � V 0
THEN 0 := C (Suc 0) ELSE SKIP

c2 = 0 := C 0
s = [Suc 0]

To see why this is a counterexample, consider the fol-
lowing execution sequence for c1 ‖ c2 : First, the con-
dition C 0 � V 0 of the IF statement in c1 is evalu-
ated. Since the value of V 0 is currently Suc 0, the first
branch 0 := C (Suc 0) of the IF statement is chosen.
However, before its execution, control is handed over
to c2, which sets variable 0 to 0. Now control switches
back to c1 again, and the branch of the IF statement
is executed, which resets variable 0 to Suc 0. This be-
haviour cannot be simulated by (c1 ; c2) ++ (c2 ; c1).
When executing (c1 ; c2), variable 0 is left unchanged
by c1 and then set to 0 by c2. In contrast, when exe-
cuting (c2 ; c1) variable 0 is set to 0 by c2 and again
left unchanged by c1.

6.2. Red-Black trees

As a second case study, we reconsider a formaliza-
tion of a functional implementation of red-black trees in
Isabelle/HOL done by the software engineering group
at the University of Freiburg [9]. The formalization was
based on the library that is part of the Standard ML of
New Jersey distribution.

Red-black trees are binary trees, whose nodes have
an extra colour attribute, which can be either red or
black. Assuming that the data items to be stored in
the tree are integers, we can define the datatype of
red-black trees as follows:

datatype colour = R | B
datatype tree = E | T colour tree int tree

Red-black trees must satisfy two important invari-
ants. The red invariant says that the two children of
a red node must be black, whereas the black invariant
says that the number of black nodes must be the same
for all paths from the root of the tree to the leaves.
During the formalization, it turned out that the imple-
mentation of the delete function in the Standard ML li-
brary contained an error, which led to the violation of
one of the above invariants. Interestingly, quickcheck
can find a relatively small counterexample that exhibits
this error. The specification that the delete function is
supposed to satisfy can be expressed as follows:

theorem isord t ∧ isin x t ∧ redinv t ∧ blackinv t −→
redinv (delete x t) ∧ blackinv (delete x t)

More informally, given an ordered tree t that sat-
isfies the red and black invariants, and an element x
that is contained in t, the tree obtained after deletion
of the element must again satisfy the red and black in-
variants. This is not always the case, as the following
counterexample found by quickcheck shows:

t = T B (T B E −1 E) 0 (T B E 1 E)
x = 0

Deleting the element at the root of t yields the tree

T B (T B E −1 E) 1 E

that violates the black invariant, since one path from
the root to the leaves contains two black nodes, while
the other contains just one. However, when deleting a
different element, everything works as expected. For ex-
ample, deleting the element 1 yields

T B (T R E −1 E) 0 E

which satisfies the black invariant, since the node con-
taining −1 has changed its colour to red.

7. Evaluation

This section is concerned with an assessment of the
quality of the testing strategy described in the previ-
ous sections. In particular, we examine how the perfor-
mance of the testing strategy is influenced by its pa-
rameters, namely the size of the test data and the num-
ber of iterations, i.e. the number of times a test is run
with a particular test data size. A technique for ana-
lyzing test case generators, which is frequently used in
software engineering, is mutation testing [4, 2]. From a
valid theorem, such as3

(ys @ xs = zs @ xs) = (ys = zs)

which is taken from the database of the theorem
prover, several variants (so-called mutants) are gen-
erated by applying certain syntactic transformations
(so-called mutation strategies) on the term represent-
ing the proposition of the theorem. These mutants are
then analyzed by the testing tool. Some of these mu-
tated propositions may still be true, but many of them
are likely to be false. The number of mutants that are
detected to be false can be taken as a measure for the
quality of the testing strategy. In this section, we fo-
cus on the following two mutation strategies:

3 Note thatweuse=todenoteequalityonboth listsandbooleans
(i.e. “if and only if”). Also, like in Standard ML, @ is the oper-
ator for appending two lists.

8

iterations

size
aaaa 10 20 30 40 50 60 70 80 90 100

1 1509 1291 1251 1201 1178 1168 1159 1149 1145 1138
2 1149 998 947 895 874 858 854 839 829 839
3 1063 930 901 862 845 822 814 806 803 799
4 1011 908 877 829 825 820 805 792 788 795
5 1015 894 865 835 824 805 804 793 794 773
6 986 905 867 835 819 795 793 800 791 786
7 971 898 851 824 818 820 796 793 786 780
8 982 885 842 834 823 806 798 791 791 783
9 972 875 855 838 814 809 789 795 797 792

10 960 890 851 818 816 813 802 798 794 786

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 10 20 30 40 50 60 70 80 90 100

ac
ce

pt
ed

 m
ut

an
ts

number of iterations

size=1
size=2
size=3
size=4

size=10

Figure 4: Dependency of number of accepted mutants on size of test data and number of iterations

1. Two subterms of a term having the same type are
exchanged with each other. Since we want to gen-
erate as many false mutants as possible, we ex-
clude mutants that are obtained by just exchang-
ing the two arguments of a commutative opera-
tor such as =. A way to achieve this is to canon-
ize the mutated terms by putting the arguments t
and u of a commutative operator � into a canoni-
cal order wrt. a term ordering ≺, i.e. rewrite t� u
to u� t if u ≺ t. From the above theorem, 16 dif-
ferent mutants can be obtained by exchanging two
subterms. For example, the canonical form of the
first 4 mutants is

(ys = zs) = (xs @ zs = ys @ xs)
(ys = zs) = (xs = zs @ ys @ xs)
(ys = zs) = (xs = ys @ zs @ xs)
(ys = ys @ xs) = (zs = zs @ xs)

The first 3 of these mutants are false, whereas the
last one is true.

2. A constant occurring in a term is replaced by a con-
stant of the same type taken from a given signa-
ture. Using this strategy, we can produce the fol-
lowing mutants from the above theorem:

(ys @ xs = zs @ xs) ∧ (ys = zs)
(ys @ xs = zs @ xs)−→ (ys = zs)
(ys @ xs = zs @ xs) ∨ (ys = zs)

Of these 3 mutants, the second one is true. Since
the signature contains no other functions of type
′a list ⇒ ′a list ⇒ ′a list, the only possible mutation
is to replace = by other boolean operators.

We have applied a combination of these two mutation
strategies to all theorems from the theory of lists, which
is part of Isabelle/HOL, and used the testing frame-
work to detect false mutants. The result of this experi-
ment is shown in Fig. 4. The x axis of the diagram de-
notes the number of iterations (i.e. test runs), while
the y axis denotes the number of accepted mutants.
Each curve in the diagram visualizes the dependency

9

of the number of accepted mutants on the number of it-
erations for a specific maximum size of the generated
test data. The curves converge to the number of mu-
tants for which no counterexample of the given size ex-
ists. The number of accepted mutants stabilizes after
approximately 100 iterations. Assuming a number of
100 iterations, the influence of the test data size on the
number of accepted mutants is as follows: With a max-
imum test data size of 1, a lot of false mutants remain
undetected, since increasing the test data size to 2 re-
duces the number of accepted mutants by about 300.
When increasing the size to 4, another 40 mutants are
excluded. A further increase in the size of the test data
does not seem to lead to a substantial improvement.
For most practical applications a maximum data size
of 10 seems to be reasonable. In order to obtain coun-
terexamples that are as small as possible, our testing
tool gradually increases the size limit for the test data,
until either a counterexample is found or the size limit
exceeds a specified value.

8. Conclusion

We have described what appears to be the first au-
tomatic testing framework for a higher-order theorem
prover covering both recursive functions and inductive
predicates. The difficulties of estimating or measuring
the effectiveness of testing in practice are well known.
Currently we can only cite the positive experience with
Haskell’s QuickCheck [3] and our personal experience.
The latter has been very favourable in the early stages
of a development when one has not yet built up a clear
mental model and is likely to try and prove many non-
theorems.

Our next aim is to realize an idea of Larry Paul-
son’s (personal communication) and make testing an
invisible part of any interactive proof attempt: mod-
ern hardware has enough spare cycles to devote some
of them to finding counterexamples (by any means pos-
sible). This should be particularly helpful for novices.
We believe that testing conjectures will occupy a much
more prominent position in the theorem proving area
in the future and could even lead to a shift from prov-
ing to refuting.

References

[1] S. Berghofer and T. Nipkow. Executing higher order
logic. In P. Callaghan, Z. Luo, J. McKinna, and R. Pol-
lack, editors, Types for Proofs and Programs (TYPES
2000), volume 2277 of Lecture Notes in Computer Sci-
ence, pages 24–40. Springer-Verlag, 2002.

[2] P. E. Black, V. Okun, and Y. Yesha. Mutation Oper-
ators for Specifications. In 15th Automated Software

Engineering Conference (ASE2000), Grenoble, France
(September 2000), pages 81–88. IEEE Computer Soci-
ety, 2000.

[3] K. Claessen and J. Hughes. QuickCheck: a lightweight
tool for random testing of Haskell programs. In Proceed-
ings of the Fifth ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP ’00), volume 9
of SIGPLAN Notices, pages 268–279. ACM, September
2000.

[4] R.A.DeMillo,R. J. Lipton, andF.G. Sayward. Hints on
test data selection: help for the practicing programmer.
Computer, 11(4):34–41, Apr. 1978.

[5] P. Dybjer, Q. Haiyan, and M. Takeyama. Combin-
ing testing and proving in dependent type theory. In
D. Basin and B. Wolff, editors, 16th International Con-
ference on Theorem Proving in Higher Order Logics
(TPHOLs 2003), Rome, Italy, volume 2758 of Lecture
Notes in Computer Science, pages 188–203. Springer-
Verlag, 2003.

[6] M. Hanus. The integration of functions into logic pro-
gramming: From theory to practice. J. Logic Program-
ming, 19&20:583–628, 1994.

[7] D. Jackson. Automating first-order relational logic. In
Proc. 8th ACM SIGSOFT Int. Symp. Foundations of
software engineering, pages 130–139. ACM Press, 2000.

[8] J. Jeuring and P. Jansson. Polytypic programming. In
J. Launchbury, E. Meijer, and T. Sheard, editors, Ad-
vanced Functional Programming, Second International
School, volume 1129 of Lecture Notes in Computer Sci-
ence, pages 68–114. Springer-Verlag, 1996.

[9] A. Kimming. Red-black trees of SmlNJ. Studienarbeit,
Universität Freiburg, January 2004.

[10] C. Paulin-Mohring. Inductive Definitions in the Sys-
tem Coq - Rules and Properties. In M. Bezem and J.-
F. Groote, editors, Proceedings of the conference Typed
Lambda Calculi and Applications, number 664 in Lec-
ture Notes in Computer Science, 1993. LIP research re-
port 92-49.

[11] J. Slaney. FINDER, finite domain enumerator. In
A. Bundy, editor, Automated Deduction (CADE-12),
volume 814 of Lecture Notes in Computer Science, pages
798–801. Springer-Verlag, 1994.

[12] K. Slind and J. Hurd. Applications of Polytypism in
Theorem Proving. In D. Basin and B. Wolff, editors,
16th International Conference on Theorem Proving in
Higher Order Logics (TPHOLs 2003), Rome, Italy, vol-
ume 2758 of Lecture Notes in Computer Science, pages
103–119. Springer-Verlag, 2003.

[13] T.Weber. Boundedmodel generation for Isabelle/HOL.
In 2nd Int. Joint Conf. Automated Reasoning (IJCAR
2004), Workshop on Disproving – Non-Theorems, Non-
Validity, Non-Provability, 2004.

[14] J. Zhang and H. Zhang. SEM: a system for enumerat-
ing models. In Proc. Int. Joint Conf. on Artificial Intel-
ligence (IJCAI95), pages 298–303, 1995.

10

	Introduction
	Related work
	Overview
	Test Data Generators
	Inductive predicates
	Mode analysis
	Code generation
	Inductive characterization of predicate logic operators

	Case studies
	A programming language with parallelism and nondeterminism
	Red-Black trees

	Evaluation
	Conclusion

