
Verification of Dependable Software using Spark
and Isabelle

Stefan Berghofer?

secunet Security Networks AG
Ammonstraße 74, 01067 Dresden, Germany

Abstract. We present a link between the interactive proof assistant
Isabelle/HOL and the Spark/Ada tool suite for the verification of high-
integrity software. Using this link, we can tackle verification problems
that are beyond reach of the proof tools currently available for Spark. To
demonstrate that our methodology is suitable for real-world applications,
we show how it can be used to verify an efficient library for big numbers.
This library is then used as a basis for an implementation of the RSA
public-key encryption algorithm in Spark/Ada.

1 Introduction

Software for security-critical applications, such as a data encryption algorithm in
a virtual private network (VPN) gateway, needs to be particularly trustworthy.
If the encryption algorithm does not work as specified, data transmitted over
the network may be decrypted or manipulated by an adversary. Moreover, flaws
in the implementation may also make the VPN gateway vulnerable to overflows,
enabling an attacker to obtain access to the system, or cause the whole gateway
to crash. If such a gateway is part of the VPN of a bank, implementation flaws
can easily cause considerable financial damage. For that reason, there is a strong
economic motivation to avoid bugs in software for such application areas.

Since software controls more and more areas of daily life, software bugs have re-
ceived increasing attention. In 2006, a bug was introduced into the key generation
tool of OpenSSL that was part of the Debian distribution. As a consequence of
this bug, the random number generator for producing the keys no longer worked
properly, making the generated keys easily predictable and therefore insecure
[6]. This bug went unnoticed for about two years.

Although it is commonly accepted that the only way to make sure that software
conforms to its specification is to formally prove its correctness, it was not until
recently that verification tools have reached a sufficient level of maturity to
be industrially applicable. A prominent example of such a tool is the Spark
system [2]. It is developed by Altran Praxis and is widely used in industry,
notably in the area of avionics. Spark is currently being used to develop the
UK’s next-generation air traffic control system iFACTS, and has already been

? Supported by Federal Office for Information Security (BSI) under grant 880

successfully applied to the verification of a biometric software system in the
context of the Tokeneer project funded by the NSA [3]. The Spark system
analyzes programs written in a subset of the Ada language, and generates logical
formulae that need to hold in order for the programs to be correct. Since it
is undecidable in general whether a program meets its specification, not all of
these generated formulae can be proved automatically. In this paper, we therefore
present the HOL-Spark verification environment that couples the Spark system
with the interactive proof assistant Isabelle/HOL [13].

Spark imposes a number of restrictions on the programmer to ensure that pro-
grams are well-structured and thus more easily verifiable. Pointers and GOTOs
are banned from Spark programs, and for each Spark procedure, the program-
mer must declare the intended direction of dataflow. This may sound cumber-
some, but eventually leads to code of much higher quality. In standard program-
ming languages, requirements on input parameters or promises about output
parameters of procedures, also called pre- and postconditions, such as “i must
be smaller than the length of the array A” or “x will always be greater than 1”
are usually written as comments in the program, if at all. These comments are
not automatically checked, and often they are wrong, for example when a pro-
grammer modified a piece of code but forgot to ensure that the comment still
reflects the actual behaviour of the code. Spark allows the programmer to write
down pre- and postconditions of a procedure as logical formulae, and a link be-
tween these conditions and the code is provided by a formal correctness proof
of the procedure, which makes it a lot easier to detect missing requirements.
Moreover, the obligation to develop the code in parallel with its specification
and correctness proof facilitates the production of code that immediately works
as expected, without spending hours on testing and bug fixing. Having a formal
correctness proof of a program also makes it easier for the programmer to ensure
that changes do not break important properties of the code.

The rest of this paper is structured as follows. In §2, we give some background
information about Spark and our verification tool chain. In §3, we illustrate the
use of our verification environment with a small example. As a larger application,
we discuss the verification of a big number library in §4. A brief overview of
related work is given in §5. Finally, §6 contains an evaluation of our approach
and an outlook to possible future work.

2 Basic Concepts

2.1 Spark

Spark [2] is a subset of the Ada language that has been designed to allow veri-
fication of high-integrity software. It is missing certain features of Ada that can
make programs difficult to verify, such as access types, dynamic data structures,
and recursion. Spark allows to prove absence of runtime exceptions, as well as
partial correctness using pre- and postconditions. Loops can be annotated with
invariants, and each procedure must have a dataflow annotation, specifying the

2

dependencies of the output parameters on the input parameters of the proce-
dure. Since Spark annotations are just written as comments, Spark programs
can be compiled by an ordinary Ada compiler such as GNAT. Spark comes with
a number of tools, notably the Examiner that, given a Spark program as an
input, performs a dataflow analysis and generates verification conditions (VCs)
that must be proved in order for the program to be exception-free and partially
correct. The VCs generated by the Examiner are formulae expressed in a lan-
guage called FDL, which is first-order logic extended with arithmetic operators,
arrays, records, and enumeration types. For example, the FDL expression

for_all(i: integer, ((i >= min) and (i <= max)) ->

(element(a, [i]) = 0))

states that all elements of the array a with indices greater or equal to min and
smaller or equal to max are 0. VCs are processed by another Spark tool called
the Simplifier that either completely solves VCs or transforms them into simpler,
equivalent conditions. The latter VCs can then be processed using another tool
called the Proof Checker. While the Simplifier tries to prove VCs in a completely
automatic way, the Proof Checker requires user interaction, which enables it to
prove formulae that are beyond the scope of the Simplifier. The steps that are
required to manually prove a VC are recorded in a log file by the Proof Checker.
Finally, this log file, together with the output of the other Spark tools mentioned
above, is read by a tool called POGS (Proof ObliGation Summariser) that pro-
duces a table mentioning for each VC the method by which it has been proved.
In order to overcome the limitations of FDL and to express complex specifica-
tions, Spark allows the user to declare so-called proof functions. The desired
properties of such functions are described by postulating a set of rules that can
be used by the Simplifier and Proof Checker [2, §11.7]. An obvious drawback of
this approach is that incorrect rules can easily introduce inconsistencies.

2.2 HOL-Spark

The HOL-Spark verification environment, which is built on top of Isabelle’s
object logic HOL, is intended as an alternative to the Spark Proof Checker,
and improves on it in a number of ways. HOL-Spark allows Isabelle to directly
parse files generated by the Examiner and Simplifier, and provides a special
proof command to conduct proofs of VCs, which can make use of the full power
of Isabelle’s rich collection of proof methods. Proofs can be conducted using
Isabelle’s graphical user interface, which makes it easy to navigate through larger
proof scripts. Moreover, proof functions can be introduced in a definitional way,
for example by using Isabelle’s package for recursive functions, rather than by
just stating their properties as axioms, which avoids introducing inconsistencies.

Figure 1 shows the integration of HOL-Spark into the tool chain for the verifica-
tion of Spark programs. HOL-Spark processes declarations (*.fdl) and rules
(*.rls) produced by the Examiner, as well as simplified VCs (*.siv) produced
by the Spark Simplifier. Alternatively, the original unsimplified VCs (*.vcg)

3

Source files
(*.ads, *.adb)

Examiner

FDL declarations
(*.fdl)

VCs
(*.vcg)

Rules
(*.rls)

Simplifier

Simplified VCs
(*.siv)

HOL-Spark
Theory files

(*.thy)

Proof review files
(*.prv)

POGS

Summary file
(*.sum)

Fig. 1. Spark program verification tool chain

produced by the Examiner can be used as well. Processing of the Spark files
is triggered by an Isabelle theory file (*.thy), which also contains the proofs
for the VCs contained in the *.siv or *.vcg files. Once that all verification
conditions have been successfully proved, Isabelle generates a proof review file
(*.prv) notifying the POGS tool of the VCs that have been discharged.

3 Verifying an Example Program

In this section, we explain the usage of the Spark verification environment by
proving the correctness of an example program for computing the greatest com-
mon divisor of two natural numbers shown in Fig. 2, which has been taken from
the book about Spark by Barnes [2, §11.6]. In order to specify that the Spark
procedure G C D behaves like its mathematical counterpart, Barnes introduces a
proof function Gcd in the package specification.

4

package Greatest_Common_Divisor

is
--# function Gcd (A, B : Natural) return Natural;

procedure G_C_D (M, N : in Natural; G : out Natural);

--# derives G from M, N;

--# post G = Gcd (M, N);

end Greatest_Common_Divisor;

package body Greatest_Common_Divisor

is
procedure G_C_D (M, N : in Natural; G : out Natural)

is
C, D, R : Natural;

begin
C := M; D := N;

while D /= 0

--# assert Gcd (C, D) = Gcd (M, N);

loop
R := C mod D;

C := D; D := R;

end loop;
G := C;

end G_C_D;

end Greatest_Common_Divisor;

Fig. 2. Spark program for computing the greatest common divisor

3.1 Importing Spark VCs into Isabelle

Invoking the Examiner and Simplifier on this program yields a file g c d.siv con-
taining the simplified VCs, as well as files g c d.fdl and g c d.rls, containing
FDL declarations and rules, respectively. For G C D the Examiner generates nine
VCs, seven of which are proved automatically by the Simplifier. We now show
how to prove the remaining two VCs interactively using HOL-Spark. For this
purpose, we create a theory Greatest Common Divisor, which is shown in Fig. 3.
Each proof function occurring in the specification of a Spark program must be
linked with a corresponding Isabelle function. This is accomplished by the com-
mand spark proof functions, which expects a list of equations name = term,
where name is the name of the proof function and term is the corresponding
Isabelle term. In the case of gcd, both the Spark proof function and its Isabelle
counterpart happen to have the same name. Isabelle checks that the type of the
term linked with a proof function matches the type of the function declared in
the *.fdl file. We now instruct Isabelle to open a new verification environment
and load a set of VCs. This is done using the command spark open, which

5

theory Greatest_Common_Divisor

imports SPARK GCD

begin

spark proof functions
gcd = "gcd :: int ⇒ int ⇒ int"

spark open "out/greatest_common_divisor/g_c_d.siv"

spark vc procedure_g_c_d_4

using ‘0 < d‘ ‘gcd c d = gcd m n‘

by (simp add: gcd_non_0_int)

spark vc procedure_g_c_d_9

using ‘0 ≤ c‘ ‘gcd c 0 = gcd m n‘

by simp

spark end

end

Fig. 3. Correctness proof for the greatest common divisor program

must be given the name of a *.siv or *.vcg file as an argument. Behind the
scenes, Isabelle parses this file and the corresponding *.fdl and *.rls files, and
converts the VCs to Isabelle terms.

3.2 Proving the VCs

The two open VCs are procedure_g_c_d_4 and procedure_g_c_d_9, both of which
contain the gcd proof function that the Simplifier does not know anything about.
The proof of a particular VC can be started with the spark vc command. The
VC procedure_g_c_d_4 requires us to prove that the gcd of d and the remainder
of c and d is equal to the gcd of the original input values m and n, which is the
invariant of the procedure. This is a consequence of the following theorem

0 < y =⇒ gcd x y = gcd y (x mod y)

The VC procedure_g_c_d_9 says that if the loop invariant holds when we exit
the loop, which means that d = 0, then the postcondition of the procedure will
hold as well. To prove this, we observe that gcd c 0 = c for non-negative c.
This concludes the proofs of the open VCs, and hence the Spark verification
environment can be closed using the command spark end. This command checks
that all VCs have been proved and issues an error message otherwise. Moreover,
Isabelle checks that there is no open Spark verification environment when the
final end command of a theory is encountered.

6

4 A verified big number library

We will now apply the HOL-Spark environment to the verification of a library
for big numbers. Libraries of this kind form an indispensable basis of algorithms
for public key cryptography such as RSA or elliptic curves, as implemented
in libraries like OpenSSL. Since cryptographic algorithms involve numbers of
considerable size, for example 256 bytes in the case of RSA, or 40 bytes in the
case of elliptic curves, it is important for arithmetic operations to be performed
as efficiently as possible.

4.1 Introduction to modular multiplication

An operation that is central to many cryptographic algorithms is the computa-
tion of x · y modm, which is called modular multiplication. An obvious way of
implementing this operation is to apply the standard multiplication algorithm,
followed by division. Since division is one of the most complex operations on big
numbers, this approach would not only be very difficult to implement and verify,
but also computationally expensive. Therefore, big number libraries often use a
technique called Montgomery multiplication [10, §14.3.2]. We can think of a big
number x as an array of words x0, . . . , xn−1, where 0 ≤ xi and xi < b, and

x =
∑

0≤i<n

bi · xi

In implementations, b will usually be a power of 2. For two big numbers x and
y, Montgomery multiplication (denoted by x⊗ y) yields

x⊗ y = x · y ·R−1 modm

where R = bn, and R−1 denotes the multiplicative inverse of R modulo m. Now,
in order to compute the product of two numbers x and y modulo m, we first
compute the residues x̃ and ỹ of these numbers, where x̃ = x ·Rmodm and
ỹ likewise. A residue x̃ can be computed by a Montgomery multiplication of x
with R2 modm, since

x⊗ (R2 modm) = x ·R2 ·R−1 modm = x ·Rmodm

We then have that

x̃⊗ ỹ = x ·R · y ·R ·R−1 modm = x · y ·Rmodm = x̃ · y

The desired result of the modular multiplication can be obtained by performing
a Montgomery multiplication of x̃ · y with 1, since

x̃ · y ⊗ 1 = x · y ·R · 1 ·R−1 modm = x · y modm

Before we come to the implementation and verification of Montgomery multipli-
cation, we try to give an intuitive explanation of how the algorithm works. Our

7

a← 0
for i = n− 1 downto 0 do
a← a · b+ xi · y

end for

a← 0
for i = 0 to n− 1 do
a← (a+ xi · y)/b

end for

0 · 10 =
0 +

4 · 789 3156 =

3156 · 10 =
31560 +

5 · 789 3945 =

35505 · 10 =
355050 +

6 · 789 4734 =

359784

0 +
6 · 789 4734 =

4734 / 10 =

473.4 +
5 · 789 3945 =

4418.4 / 10 =

441.84 +
4 · 789 3156 =

3597.84 / 10 =

359.784

Fig. 4. Two variants of multiplication

exposition is inspired by a note due to Kochanski [9]. As a running example, we
take b = 10 and assume we would like to multiply 456 with 789. Fig. 4 shows
two multiplication algorithms in pseudocode notation, and the tables below the
algorithms illustrate the computation steps performed by them. The algorithm
on the left is the usual “school multiplication”: the multiplier x is processed from
left to right, i.e. starting with the most significant digit, and the accumulator a
is shifted to the left, i.e. multiplied with 10 in each step. In contrast, the algo-
rithm on the right processes the multiplier from right to left, i.e. starting with
the least significant digit, and shifts the accumulator to the right, i.e. divides it
by 10. Consequently, the algorithm on the right computes x · y ·R−1 instead of
x ·y. We now explain how the algorithm on the right can be modified to perform
modular multiplication. It might seem that the algorithm requires computations
involving floating point numbers, since a+xi · y is not necessarily divisible by b.
However, when working modulo m, this can easily be fixed by adding a suitable
multiple of m to a + xi · y, which does not change the result modulo m. The
factor by which we have to multiply m is u = (a0 + xi · y0) ·m′ mod b, where
m′ = −m−10 mod b is the additive inverse of the multiplicative inverse of m0

modulo b, i.e. (1 +m′ ·m0)mod b = 0 and 0 ≤ m′ < b. The inverse only exists if
m0 and b are coprime, i.e. gcd(m0, b) = 1, which is the case in practical applica-
tions, since b will usually be a power of 2 and m will be a large prime number.
Note that in order to compute u, we only have to consider the least significant
words a0, y0 and m0 of the numbers a, y and m, respectively. It is easy to see
that a + xi · y + u ·m is divisible by b, since

(a + xi · y + u ·m) mod b = (a0 + xi · y0 + (a0 + xi · y0) ·m′ ·m0) mod b =
(a0 + xi · y0) · (1 + m′ ·m0) mod b = 0

Fig. 5 shows the pseudocode for the Montgomery multiplication algorithm, which
employs the ideas described above. As for the other algorithms, we also include

8

a← 0
for i = 0 to n− 1 do
u← (a0 + xi · y0) ·m′ mod b
a← (a+ xi · y + u ·m)/b

end for
if a ≥ m then
a← a−m

end if

0 +
6 · 789 4734 =

4734 +
8 · 987 7896 =

12630 / 10 =

1263 +
5 · 789 3945 =

5208 +
6 · 987 5922 =

11130 / 10 =

1113 +
4 · 789 3156 =

4269 +
3 · 987 2961 =

7230 / 10 =

723

Fig. 5. Montgomery multiplication algorithm

a table illustrating the computation. We again multiply the numbers 456 and
789, and use 987 as a modulus. Note that m′ = 7, since (1 + 7 · 7) mod 10 = 0.
The result of the multiplication is easily seen to be correct, since

723 · 1000 mod 987 = 516 = 456 · 789 mod 987

After termination of the loop, it may be necessary to subtract m from a, since
a may not be smaller than m, although it will always be smaller than 2 ·m− 1.

4.2 Overview of the big number library

In this section, we give an overview of the big number library and its interface. We
have chosen to represent big numbers as unconstrained arrays of 64-bit words,
where the array indices can range over the natural numbers. All procedures
in the big number library operate on segments of unconstrained arrays that are
selected by specifying the first and last index of the segment. In situations where
a procedure operates on several segments, all of which must have the same length,
the last index is usually omitted. The prelude of the Bignum library containing
the basic declarations is shown in Fig. 6. The big number library provides the
following operations:

– Basic big number operations: doubling, subtracting, and comparing
– Precomputation of the values R2 modm and −m−10 mod b
– Montgomery multiplication
– Exponentiation using Montgomery multiplication

The value R2 modm =
((

2k
)n)2

modm = 22·k·n modm can be computed by
initializing an accumulator with 1 and applying the doubling operation to it 2·k·n

9

package Bignum

is
Word_Size : constant := 64;

Base : constant := 2 ** Word_Size;

type Word is mod Base;

type Big_Int is array (Natural range <>) of Word;

--# function Num_Of_Big_Int (A: Big_Int; K, I: Natural)

--# return Universal_Integer;

--# function Num_Of_Boolean (B: Boolean)

--# return Universal_Integer;

--# function Inverse (M, X: Universal_Integer)

--# return Universal_Integer;

. . .
end Bignum;

Fig. 6. Prelude of the big number library

times. After each doubling step, we check whether a carry bit was produced or
the resulting number is greater or equal to m, in which case we have to subtract
m from the current value of the accumulator. The value −m−10 mod b can be
computed by a variant of Euclid’s algorithm shown in §3.

Since the specification of the big number operations will make use of constructs
that cannot be easily expressed with Spark’s annotation laguage, we have to
introduce a number of proof functions. First of all, we need a function that
abstracts a big number to a number in the mathematical sense. This function,
which is called Num Of Big Int, takes an array A, together with the first index
K and the length I of the segment representing the big number, and returns a
result of type Universal Integer. The Isabelle counterpart of this function is

num_of_big_int :: (int ⇒ int) ⇒ int ⇒ int ⇒ int

num_of_big_int A k i = (
∑

j = 0..<i. Basej * A (k + j))

An array with elements of type τ is represented by the function type int ⇒ τ

in Isabelle. Function num_of_big_int enjoys the following summation property

num_of_big_int A k (i + j) =

num_of_big_int A k i + Basei * num_of_big_int A (k + i) j

It is important to note that it would not have been adequate to choose Integer

instead of Universal Integer as a result type, since the former corresponds
to machine integers limited to a fixed size, whereas the latter corresponds to
the mathematical ones. When dealing with operations returning carry bits, it is
often useful to have a function for converting boolean values to numbers, where

10

procedure Mont_Mult

(A : out Big_Int; A_First : in Natural; A_Last : in Natural;

X : in Big_Int; X_First : in Natural;

Y : in Big_Int; Y_First : in Natural;

M : in Big_Int; M_First : in Natural;

M_Inv : in Word);

--# derives
--# A from
--# A_First, A_Last, X, X_First, Y, Y_First, M, M_First, M_Inv;

--# pre
--# A_First in A’Range and A_Last in A’Range and
--# A_First < A_Last and
--# X_First in X’Range and
--# X_First + (A_Last - A_First) in X’Range and
--# . . .
--# Num_Of_Big_Int (Y, Y_First, A_Last - A_First + 1) <

--# Num_Of_Big_Int (M, M_First, A_Last - A_First + 1) and
--# 1 < Num_Of_Big_Int (M, M_First, A_Last - A_First + 1) and
--# 1 + M_Inv * M (M_First) = 0;

--# post
--# Num_Of_Big_Int (A, A_First, A_Last - A_First + 1) =

--# (Num_Of_Big_Int (X, X_First, A_Last - A_First + 1) *

--# Num_Of_Big_Int (Y, Y_First, A_Last - A_First + 1) *

--# Inverse (Num_Of_Big_Int (M, M_First, A_Last - A_First + 1),

--# Base) ** (A_Last - A_First + 1)) mod
--# Num_Of_Big_Int (M, M_First, A_Last - A_First + 1);

Fig. 7. Specification of Montgomery multiplication

False and True are converted to 0 and 1, respectively. This is accomplished by
the proof function Num Of Boolean. Finally, for writing down the specification of
Montgomery multiplication, we also need the proof function Inverse denoting
the multiplicative inverse of X modulo M. It corresponds to the Isabelle function
minv::int ⇒ int ⇒ int, which has the following central property

coprime x m =⇒ 0 < x =⇒ 1 < m =⇒ x * minv m x mod m = 1

Moreover, if n’ is the multiplicative inverse of n modulo m, multiplying k by n’

is equivalent modulo m to dividing k by n, provided that k is divisible by n:

n * n’ mod m = 1 =⇒ k mod n = 0 =⇒ k div n mod m = k * n’ mod m

This property does not hold if k mod n 6= 0. For example, 5 * 13 mod 16 = 1

and 10 * 13 mod 16 = 2 = 10 div 5, but 9 * 13 mod 16 = 5 6= 1 = 9 div 5.

11

4.3 Montgomery multiplication

The central operation in the big number library is Montgomery multiplication,
whose specification is shown in Fig. 7. It multiplies X with Y and stores the
result in A. The precondition requires the second factor Y to be smaller than
the modulus M. Due to the construction of the algorithm, the first factor X is
not required to be smaller than M in order for the result to be correct. For
technical reasons, A Last must be greater than A First, i.e. the length of the
big number must be at least 2. This is not a serious restriction, since big numbers
of length 1 would be rather pointless. Moreover, the modulus is required to be
greater than 1. The precondition 1 + M Inv * M (M First) = 0 states that
M Inv must be the additive inverse of the multiplicative inverse modulo b of the
least significant word of the modulus. The postcondition essentially states that
a = x · y · (b−1)n modm, where n is the length of the big numbers involved, and
a, x, y, m are the numbers represented by the arrays A, X, Y, M, respectively.

We are now ready to describe the implementation of Montgomery multiplication,
which is shown in Fig. 8. Recall that in each step of the Montgomery multiplica-
tion algorithm outlined in §4.1, we have to compute (a+ xi · y + u ·m)/b, where
xi and u are words, and a, y and m are big numbers. In our code for computing
this value, we use an optimization technique suggested by Myreen [12, §3.2],
which he used for the verification of an ARM machine code implementation of
Montgomery multiplication in HOL4. The idea is to perform the two multiplica-
tions of a word with a big number, as well as the two addition operations in one
single loop. The computation will be done in-place, meaning that the old value
of a will be overwritten with the new value. Moreover, since a + xi · y + u ·m
is divisible by b, we also shift the array containing the result by one word to
the left while performing the computation, which corresponds to a division by
b. This is accomplished by the procedure Add Mult Mult with postcondition

Num_Of_Big_Int (A~, A_First + 1, A_Last - A_First + 1) +

Num_Of_Big_int (Y, Y_First, A_Last - A_First + 1) * XI +

Num_Of_Big_int (M, M_First, A_Last - A_First + 1) * U +

Carry1~ + Base * Carry2~ =

Num_Of_Big_Int (A, A_First, A_Last - A_First + 1) +

Base ** (A_Last - A_First + 1) * (Carry1 + Base * Carry2)

The array representing (a + xi · y + u ·m)/b needs to be one word longer than
the length of y and m, although the final result of Montgomery multiplica-
tion will have the same length as the input numbers. We therefore store the
most significant word of a in a separate variable A MSW that is discarded at the
end of the computation. To simplify the implementation of the computation de-
scribed above, we first implement an auxiliary procedure Single Add Mult Mult

for computing aj + xi · yj + u ·mj , where all the operands involved are words.
Procedure Add Mult Mult just iteratively applies this auxiliary procedure to the
elements of the big numbers involved.

The assert annotation after the for command in Fig. 8 specifies the loop invari-
ant, which is

12

procedure Mont_Mult

. . .
is

Carry : Boolean;

Carry1, Carry2, A_MSW, XI, U : Word;

begin
Initialize (A, A_First, A_Last); A_MSW := 0;

for I in Natural range A_First .. A_Last

--# assert . . .
loop

Carry1 := 0; Carry2 := 0;

XI := X (X_First + (I - A_First));

U := (A (A_First) + XI * Y (Y_First)) * M_Inv;

Single_Add_Mult_Mult

(A (A_First), XI, Y (Y_First),

M (M_First), U, Carry1, Carry2);

Add_Mult_Mult

(A, A_First, A_Last - 1,

Y, Y_First + 1, M, M_First + 1,

XI, U, Carry1, Carry2);

A (A_Last) := A_MSW + Carry1;

A_MSW := Carry2 + Word_Of_Boolean (A (A_Last) < Carry1);

end loop;

if A_MSW /= 0 or else
not Less (A, A_First, A_Last, M, M_First) then
Sub_Inplace (A, A_First, A_Last, M, M_First, Carry);

end if;
end Mont_Mult;

Fig. 8. Implementation of Montgomery multiplication

(Num_Of_Big_Int (A, A_First, A_Last - A_First + 1) +

Base ** (A_Last - A_First + 1) * A_MSW) mod
Num_Of_Big_Int (M, M_First, A_Last - A_First + 1) =

(Num_Of_Big_Int (X, X_First, I - A_First) *

Num_Of_Big_Int (Y, Y_First, A_Last - A_First + 1) *

Inverse (Num_Of_Big_Int (M, M_First, A_Last - A_First + 1),

Base) ** (I - A_First)) mod
Num_Of_Big_Int (M, M_First, A_Last - A_First + 1) and
Num_Of_Big_Int (A, A_First, A_Last - A_First + 1) +

Base ** (A_Last - A_First + 1) * A_MSW <

2 * Num_Of_Big_Int (M, M_First, A_Last - A_First + 1) - 1

Using a more compact mathematical notation, this invariant can be written as

amodm = (x|j · y · b−j) modm ∧ a < 2 ·m− 1

13

where x|j denotes the number represented by the segment of the array X of length
j = I− A First starting at index X First. The result a computed by the loop
can be greater or equal to the modulus, in which case we have to subtract the
modulus M in order to get the desired result. If A MSW 6= 0, this obviously means
that m < a. If A MSW = 0, we have to check whether m ≤ a Since a < 2 ·m− 1,
it suffices to subtract the modulus at most once [10, §14.3.2].

5 Related Work

The design of HOL-Spark is heavily inspired by the HOL-Boogie environment
by Böhme et al. [4] that links Isabelle with Microsoft’s Verifying C Compiler
(VCC) [5]. The Victor tool by Jackson [8], which is distributed with the latest
Spark release, uses a different approach. Victor is a command-line tool that can
parse files produced by the Spark tools, and can transform them into a variety of
formats, notably input files for SMT-solvers. Victor has recently been extended
to produce Isabelle theory files as well. The drawback of using Victor in connec-
tion with Isabelle is that theory files have to be regenerated whenever there is a
change in the files produced by Spark. This can happen quite frequently in the
development phase, for example when the user notices that some loop invariant
has to be strengthened, or the code has to be restructured in order to simplify
verification. The Frama-C system and its Jessie plugin [11] for the verification
of C code can generate VCs for a number of automatic and interactive provers,
including Coq and Isabelle.

A similar big number library written in a C-like language has been proved cor-
rect in Isabelle/HOL by Fischer [7] using a verification environment due to
Schirmer [14]. This library also includes division, but no Montgomery multi-
plication. Due to the use of linked lists with pointers instead of arrays, Fischer’s
formalization is a bit more complicated than ours. Apart from Myreen’s work
mentioned above, an implementation of Montgomery multiplication in MIPS
assembly has been formalized using Coq by Affeldt and Marti [1].

6 Conclusion

We have developed a verification environment for Spark, which is already part
of the Isabelle 2011 release, and have applied it to the verification of a big number
library. Our implementation of RSA based on this library reaches about 40% of
the speed of OpenSSL when compiled with the -O3 option on a 64-bit platform.
This is quite acceptable, given that OpenSSL uses highly-optimized and hand-
written assembly code. A further performance gain could be achieved by using
a sliding window exponentiation algorithm instead of the simpler square-and-
multiply technique. The library has 743 LOCs, 316 of which (i.e. 43%) are Spark
annotations. The length of the Isabelle files containing correctness proofs of
all procedures in the library, as well as necessary background theory, is 1753

14

lines, of which 391 lines are taken up by the correctness proof for Montgomery
multiplication. Development of the library, including proofs, took about three
weeks. In the future, we plan to use the library as a basis for an implementation
of elliptic curve cryptography. A more long-term goal is to embed the Spark
semantics into Isabelle, to further increase the trustworthiness of VC generation.

Acknowledgement I would like to thank Magnus Myreen for sharing the HOL4
proof scripts of his formalization of Montgomery multiplication with me. Sascha
Böhme, Robert Dorn and Alexander Senier commented on draft versions of this
paper and helped with optimizations and performance measurements.

References

1. R. Affeldt and N. Marti. An approach to formal verification of arithmetic functions
in assembly. In M. Okada and I. Satoh, editors, 11th Annual Asian Computing
Science Conf. 2006, volume 4435 of LNCS, pages 346–360. Springer, 2008.

2. J. Barnes. The Spark Approach to Safety and Security. Addison-Wesley, 2006.
3. J. Barnes, R. Chapman, R. Johnson, J. Widmaier, D. Cooper, and B. Everett.

Engineering the tokeneer enclave protection software. In A. Hall and J. Wing,
editors, 1st International Symposium on Secure Software Engineering. IEEE, 2006.

4. S. Böhme, M. Moskal, W. Schulte, and B. Wolff. HOL-Boogie — An interactive
prover-backend for the Verifying C Compiler. Journal of Automated Reasoning,
44(1–2):111–144, Feb. 2010.

5. E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies. VCC: A practical system for verifying concurrent C.
In S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel, editors, Theorem Proving
in Higher Order Logics (TPHOLs 2009), Munich, Germany, August 17-20, 2009.
Proceedings, volume 5674 of LNCS, pages 23–42. Springer, 2009.

6. Debian Security Advisory. DSA-1571-1 OpenSSL – predictable random number
generator. Available online at http://www.debian.org/security/2008/dsa-1571.

7. S. Fischer. Formal verification of a big integer library written in C0. Master’s
thesis, Saarland University, 2006.

8. P. B. Jackson and G. O. Passmore. Proving Spark Verification Conditions with
SMT solvers, 2009.

9. M. Kochanski. Montgomery multiplication: a surreal technique. Available online
at http://www.nugae.com/encryption/fap4/montgomery.htm.

10. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, October 1996.

11. Y. Moy and C. Marché. Jessie plugin tutorial. Technical report, INRIA, 2010.
http://frama-c.com/jessie.html.

12. M. O. Myreen and M. J. C. Gordon. Verification of machine code implementations
of arithmetic functions for cryptography. In K. Schneider and J. Brandt, editors,
Theorem Proving in Higher Order Logics: Emerging Trends Proceedings. Dept. of
Computer Science, University of Kaiserslautern, August 2007. Tech. report 364/07.

13. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer-Verlag, 2002.

14. N. Schirmer. A verification environment for sequential imperative programs in
Isabelle/HOL. In F. Baader and A. Voronkov, editors, Logic for Programming,
Artificial Intelligence, and Reasoning, volume 3452, pages 398–414, 2005.

15

A RSA Encryption / Decryption

The implementation of the RSA encryption and decryption algorithm is shown
in Fig. 9. The procedure Crypt computes c = memodn, where c, m, e and n are
the numbers represented by the arrays C, M, E and N, respectively. When used for
encryption, c is the ciphertext, m the plaintext message, e the public exponent,
and n the modulus, where n is the product of two prime numbers p and q, and
e · d mod ((p − 1) · (q − 1)) = 1. The same procedure can be used to compute
the plaintext from an encrypted message, i.e. m = cd mod n. Before calling the
Montgomery exponentiation algorithm explained in Appendix B, the procedure
precomputes the values R2 mod n and −n−10 mod b. Since the exponentiation
algorithm requires several auxiliary arrays for storing intermediate results of the
computation, we define an array type of fixed length, which will be used for the
message M, the modulus N and the ciphertext C:

subtype Mod_Range is Natural range 0 .. 63;

subtype Mod_Type is Bignum.Big_Int (Mod_Range);

This allows the Crypt function to allocate memory for the auxiliary arrays,
rather than requiring the caller of Crypt to pass suitable arrays as arguments.
We have set the length of Mod Type to 64, meaning that it can contain values
with 64 · 64 = 4096 bits, which is sufficient for most practical applications.
However, the algorithm and its correctness proof would work equally well for
different lengths of Mod Type. Note that the length of the exponent E is still
unconstrained and need not be the same as the length of the modulus. Indeed,
it is quite common to choose public and private exponents that have a different
length.

B Exponentiation

The implementation of exponentiation using Montgomery multiplication is shown
in Fig. 10. This procedure computes the result a = xemodm, where a, x, e and
m are the numbers represented by the arrays A, X, E and M, respectively. The
algorithm needs a number of auxiliary variables to store intermediate values.
These intermediate values are big numbers whose size is not known at compile
time, but depends on the size of the unconstrained arrays passed as arguments
to the procedure. Since Spark does not allow the dynamic allocation of memory
for data structures, these auxiliary variables need to be created by the caller,
and passed to the procedure as arguments, too. This is why Mont Exp has the
extra arguments Aux1, Aux2, and Aux3. The parameter RR must contain the big
number R2 modm, and 1 + M Inv ·m0 mod b = 0. We start by initializing Aux1

with the big number 1. The variable Aux3, which we use as an accumulator for
computing the result, is set to 1̃ = Rmodm using Mont Mult (see §4.1). More-
over, we store x̃ in Aux2. The algorithm uses the square-and-multiply approach.
It processes the exponent from the most significant bit to the least significant
bit. In each iteration Aux3 is squared, and the result stored in A. If the current

16

procedure Crypt

(E : in Bignum.Big_Int;

N : in Mod_Type;

M : in Mod_Type;

C : out Mod_Type)

is
Aux1, Aux2, Aux3, RR : Mod_Type;

N_Inv : Types.Word32;

begin
Bignum.Size_Square_Mod

(N, N’First, N’Last, RR, RR’First);

N_Inv := Bignum.Word_Inverse (N (N’First));

Bignum.Mont_Exp

(C, C’First, C’Last,

M, M’First,

E, E’First, E’Last,

N, N’First,

Aux1, Aux1’First,

Aux2, Aux2’First,

Aux3, Aux3’First,

RR, RR’First,

N_Inv);

end Crypt;

Fig. 9. Implementation of RSA algorithm

bit of the exponent is set, A is multiplied with Aux2 (containing x̃), and the result
is stored in Aux3 again, otherwise A is just copied back to Aux3. The invariant
of the inner loop is

Num_Of_Big_Int (Aux1, Aux1_First, A_Last - A_First + 1) = 1 and
Num_Of_Big_Int (Aux2, Aux2_First, A_Last - A_First + 1) =

Num_Of_Big_Int (X, X_First, A_Last - A_First + 1) *

Base ** (A_Last - A_First + 1) mod
Num_Of_Big_Int (M, M_First, A_Last - A_First + 1) and
Num_Of_Big_Int (Aux3, Aux3_First, A_Last - A_First + 1) =

Num_Of_Big_Int (X, X_First, A_Last - A_First + 1) **

(Num_Of_Big_Int (E, I + 1, E_Last - I) * 2 ** (Word_Size - 1 - J) +

Universal_Integer (E (I)) / 2 ** (J + 1)) *

Base ** (A_Last - A_First + 1) mod
Num_Of_Big_Int (M, M_First, A_Last - A_First + 1)

After termination of the loop, Aux3 is converted from “Montgomery format” to
the “normal format” again by Montgomery-multiplying it with 1 and storing the
result in A.

17

procedure Mont_Exp

(A : out Big_Int; A_First : in Natural; A_Last : in Natural;

X : in Big_Int; X_First : in Natural;

E : in Big_Int; E_First : in Natural; E_Last : in Natural;

M : in Big_Int; M_First : in Natural;

Aux1 : out Big_Int; Aux1_First : in Natural;

. . .
RR : in Big_Int; RR_First : in Natural;

M_Inv : in Word)

is
begin

Initialize (Aux1, Aux1_First, Aux1_First + (A_Last - A_First));

Aux1 (Aux1_First) := 1;

Mont_Mult

(Aux3, Aux3_First, Aux3_First + (A_Last - A_First),

RR, RR_First, Aux1, Aux1_First, M, M_First, M_Inv);

Mont_Mult

(Aux2, Aux2_First, Aux2_First + (A_Last - A_First),

X, X_First, RR, RR_First, M, M_First, M_Inv);

for I in reverse Natural range E_First .. E_Last

loop
for J in reverse Natural range 0 .. Word_Size - 1

--# assert . . .
loop

Mont_Mult

(A, A_First, A_Last,

Aux3, Aux3_First, Aux3, Aux3_First,

M, M_First, M_Inv);

if (E (I) and 2 ** J) /= 0 then
Mont_Mult

(Aux3, Aux3_First, Aux3_First + (A_Last - A_First),

A, A_First, Aux2, Aux2_First,

M, M_First, M_Inv);

else
Copy (A, A_First, A_Last, Aux3, Aux3_First);

end if;
end loop;

end loop;

Mont_Mult

(A, A_First, A_Last,

Aux3, Aux3_First, Aux1, Aux1_First, M, M_First, M_Inv);

end Mont_Exp;

Fig. 10. Implementation of exponentiation

18

