
Formalizing the Logic-Automaton Connection

Stefan Berghofer? and Markus Reiter

Technische Universität München
Institut für Informatik, Boltzmannstraße 3, 85748 Garching, Germany

Abstract. This paper presents a formalization of a library for automata
on bit strings in the theorem prover Isabelle/HOL. It forms the basis of
a reflection-based decision procedure for Presburger arithmetic, which is
efficiently executable thanks to Isabelle’s code generator. With this work,
we therefore provide a mechanized proof of the well-known connection
between logic and automata theory.

1 Introduction

Although higher-order logic (HOL) is undecidable in general, there are many
decidable logics such as Presburger arithmetic or the Weak Second-order theory
of One Successor (WS1S) that can be embedded into HOL. Since HOL can be
viewed as a logic containing a functional programming language, an interesting
approach for implementing a decision procedure for such a decidable logic in a
theorem prover based on HOL is to write and verify the decision procedure as
a recursive function in HOL itself. This approach, which is called reflection [7],
has been used in proof assistants based on type theory for quite a long time. For
example, Boutin [4] has used reflection to implement a decision procedure for
abelian rings in Coq. Recently, reflection has also gained considerable attention
in the Isabelle/HOL community. Chaieb and Nipkow have used this technique
to verify various quantifier elimination procedures for dense linear orders, real
and integer linear arithmetic, as well as Presburger arithmetic [5, 12]. While the
decision procedures by Chaieb and Nipkow are based on algebraic methods like
Cooper’s algorithm, there are also semantic methods, as implemented e.g. in
the Mona tool [8] for deciding WS1S formulae. In order to check the validity of
a formula, Mona translates it to an automaton on bitstrings and then checks
whether it has accepting states. Basin and Friedrich [1] have connected Mona to
Isabelle/HOL using an oracle-based approach, i.e. they simply trust the answer
of the tool. As a motivation for their design decision, they write:

Hooking an ‘oracle’ to a theorem prover is risky business. The oracle
could be buggy [. . .]. The only way to avoid a buggy oracle is to recon-
struct a proof in the theorem prover based on output from the oracle,
or perhaps verify the oracle itself. For a semantics based decision pro-
cedure, proof reconstruction is not a realistic option: one would have to
formalize the entire automata-theoretic machinery within HOL [. . .].

? Supported by BMBF in the VerisoftXT project under grant 01 IS 07008 F

In this paper, we show that verifying decision procedures based on automata in
HOL is not as unrealistic as it may seem. We develop a library for automata
on bitstrings, including operations like forming the product of two automata,
projection, and determinization of nondeterministic automata, which we then
use to build a decision procedure for Presburger arithmetic. The procedure can
easily be changed to cover WS1S, by just exchanging the automata for atomic
formulae. The specification of the decision procedure is completely executable,
and efficient ML code can be generated from it using Isabelle’s code generator [2].
To the best of our knowledge, this is the first formalization of an automata-based
decision procedure for Presburger arithmetic in a theorem prover.
The paper is structured as follows. In §2, we introduce basic concepts such as
Presburger arithmetic, automata theory, bit vectors, and BDDs. The library for
automata is described in §3. The actual decision procedure together with its
correctness proof is presented in §4, and §5 draws some conclusions. Due to lack
of space, we will not discuss any of the proofs in detail. However, the interested
reader can find the complete formalization on the web1.

2 Basic Definitions

2.1 Presburger Arithmetic

Formulae of Presburger arithmetic are represented by the following datatype:

datatype pf = Eq (int list) int | Le (int list) int | And pf pf | Or pf pf
| Imp pf pf | Forall pf | Exist pf | Neg pf

The atomic formulae are Diophantine (in)equations Eq ks l and Le ks l, where ks
are the (integer) coefficients and l is the right-hand side. Variables are encoded
using de Bruijn indices, meaning that the ith coefficient in ks belongs to the
variable with index i. Thus, the well-known stamp problem

∀ x≥8. ∃ y z . 3 ∗ y + 5 ∗ z = x

can be encoded by

Forall (Imp (Le [−1] −8) (Exist (Exist (Eq [5, 3, −1] 0))))

Like Boudet and Comon [3], we only consider variables ranging over the natural
numbers. The left-hand side of a Diophantine (in)equation can be evaluated
using the function

eval-dioph :: int list ⇒ nat list ⇒ int
eval-dioph (k · ks) (x · xs) = k ∗ int x + eval-dioph ks xs
eval-dioph [] xs = 0
eval-dioph ks [] = 0

1 http://www.in.tum.de/~berghofe/papers/automata

2

where xs is a valuation, x · xs denotes the ‘Cons’ operator, and int coerces a
natural number to an integer. A Presburger formula can be evaluated by

eval-pf :: pf ⇒ nat list ⇒ bool
eval-pf (Eq ks l) xs = (eval-dioph ks xs = l)
eval-pf (Le ks l) xs = (eval-dioph ks xs ≤ l)
eval-pf (Neg p) xs = (¬ eval-pf p xs)
eval-pf (And p q) xs = (eval-pf p xs ∧ eval-pf q xs)
eval-pf (Or p q) xs = (eval-pf p xs ∨ eval-pf q xs)
eval-pf (Imp p q) xs = (eval-pf p xs −→ eval-pf q xs)
eval-pf (Forall p) xs = (∀ x . eval-pf p (x · xs))
eval-pf (Exist p) xs = (∃ x . eval-pf p (x · xs))

2.2 Abstract Automata

The abstract framework for automata used in this paper is quite similar to the
one used by Nipkow [11]. The purpose of this framework is to factor out all
properties that deterministic and nondeterministic automata have in common.
Automata are characterized by a transition function tr of type σ⇒ α⇒ σ, where
σ and α denote the types of states and input symbols, respectively. Transition
functions can be extended to words, i.e. lists of symbols in a canonical way:

steps :: (σ ⇒ α ⇒ σ) ⇒ σ ⇒ α list ⇒ σ
steps tr q [] = q
steps tr q (a · as) = steps tr (tr q a) as

The reachability of a state q from a state p via a word as is defined by

reach :: (σ ⇒ α ⇒ σ) ⇒ σ ⇒ α list ⇒ σ ⇒ bool
reach tr p as q ≡ q = steps tr p as

Another characteristic property of an automaton is its set of accepting states.
Given a predicate P denoting the accepting states, an automaton is said to
accept a word as iff from a starting state s we reach an accepting state via as:

accepts :: (σ ⇒ α ⇒ σ) ⇒ (σ ⇒ bool) ⇒ σ ⇒ α list ⇒ bool
accepts tr P s as ≡ P (steps tr s as)

2.3 Bit Vectors and BDDs

The automata used in the formalization of our decision procedure for Presburger
arithmetic are of a specific kind: the input symbols of an automaton correspond-
ing to a formula with n free variables x0, . . . , xn−1 are bit lists of length n.

x0

...
xn−1

 b0,0

...
bn−1,0

 b0,1

...
bn−1,1

 b0,2

...
bn−1,2

 · · ·
 b0,m−1

...
bn−1,m−1

3

The rows in the above word are interpreted as natural numbers, where the left-
most column, i.e. the first symbol in the list corresponds to the least significant
bit. Therefore, the value of variable xi is

∑m−1
j=0 bi,j2j . The list of values of n

variables denoted by a word can be computed recursively as follows:

nats-of-boolss :: nat ⇒ bool list list ⇒ nat list
nats-of-boolss n [] = replicate n 0
nats-of-boolss n (bs · bss) =

map (λ(b, x). nat-of-bool b + 2 ∗ x) (zip bs (nats-of-boolss n bss))

where zip [b0, b1, . . .] [x 0, x 1, . . .] yields [(b0, x 0), (b1, x 1), . . .], replicate n x
denotes the list [x , . . ., x] of length n, and nat-of-bool maps False and True to
0 and 1, respectively. We can insert a bit vector in the ith row of a word by

insertll :: nat ⇒ α list ⇒ α list list ⇒ α list list
insertll i [] [] = []
insertll i (a · as) (bs · bss) = insertl i a bs · insertll i as bss

where insertl i a bs inserts a into list bs at position i. The interaction between
nats-of-boolss and insertll can be characterized by the following theorem:

If ∀ bs∈bss. is-alph n bs and |bs| = |bss| and i ≤ n then
nats-of-boolss (Suc n) (insertll i bs bss) =
insertl i (nat-of-bools bs) (nats-of-boolss n bss).

Here, is-alph n xs means that xs is a valid symbol, i.e. the length of xs is equal
to the number of variables n, |bs| and |bss| denote the lengths of bs and bss,
respectively, and bs ∈ bss means that bs is a member of the list bss. Moreover,
nat-of-bools is similar to nats-of-boolss, with the difference that it works on a
single row vector instead of a list of column vectors:

nat-of-bools :: bool list ⇒ nat
nat-of-bools [] = 0
nat-of-bools (b · bs) = nat-of-bool b + 2 ∗ nat-of-bools bs

Since the input symbols of our automata are bit vectors, it would be rather inef-
ficient to just represent the transition function for a given state as an association
list relating bit vectors to successor states. For such a list, the lookup operation
would be exponential in the number of variables. When implementing the Mona
tool, Klarlund [8] already observed that representing the transition function as
a BDD is more efficient. BDDs are represented by the datatype2

datatype α bdd = Leaf α | Branch (α bdd) (α bdd)

The functions bdd-map :: (α ⇒ β) ⇒ α bdd ⇒ β bdd and bdd-all :: (α ⇒ bool)
⇒ α bdd ⇒ bool can be defined in a canonical way. The lookup operation, whose
runtime is linear in the length of the input vector, has the definition
2 Since the leaves are not just 0 or 1, Klarlund [8] calls this a multi-terminal BDD.

4

bdd-lookup :: α bdd ⇒ bool list ⇒ α
bdd-lookup (Leaf x) bs = x
bdd-lookup (Branch l r) (b · bs) = bdd-lookup (if b then r else l) bs

This operation only returns meaningful results if the height of the BDD is less
or equal to the length of the bit vector. We write bddh n bdd to mean that the
height of bdd is less or equal to n. Two BDDs can be combined using a binary
operator f as follows:

bdd-binop :: (α ⇒ β ⇒ γ) ⇒ α bdd ⇒ β bdd ⇒ γ bdd
bdd-binop f (Leaf x) (Leaf y) = Leaf (f x y)
bdd-binop f (Branch l r) (Leaf y) =

Branch (bdd-binop f l (Leaf y)) (bdd-binop f r (Leaf y))
bdd-binop f (Leaf x) (Branch l r) =

Branch (bdd-binop f (Leaf x) l) (bdd-binop f (Leaf x) r)
bdd-binop f (Branch l1 r1) (Branch l2 r2) =

Branch (bdd-binop f l1 l2) (bdd-binop f r1 r2)

If the two BDDs have different heights, the shorter one is expanded on the fly.
The following theorem states that bdd-binop yields a BDD corresponding to the
pointwise application of f to the functions represented by the argument BDDs:

If bddh |bs| l and bddh |bs| r then
bdd-lookup (bdd-binop f l r) bs = f (bdd-lookup l bs) (bdd-lookup r bs).

2.4 Deterministic Automata

We represent deterministic finite automata (DFAs) by pairs of type nat bdd
list × bool list, where the first and second component denotes the transition
function and the set of accepting states, respectively. The states of a DFA are
simply natural numbers. Note that we do not mention the start state in the
representation of the DFA, since it will always be 0. Not all pairs of the above
type are well-formed DFAs. The two lists must have the same length, and all
leaves of the BDDs in the list representing the transition function must be valid
states, i.e. be smaller than the length of the two lists. Moreover, the heights of
all BDDs must be less or equal to the number of variables n, and the set of states
must be nonempty. These conditions are captured by the following definition:

dfa-is-node :: dfa ⇒ nat ⇒ bool
dfa-is-node A ≡ λq . q < |fst A|

wf-dfa :: dfa ⇒ nat ⇒ bool
wf-dfa A n ≡

(∀ bdd∈fst A. bddh n bdd) ∧
(∀ bdd∈fst A. bdd-all (dfa-is-node A) bdd) ∧ |snd A| = |fst A| ∧ 0 < |fst A|

Moreover, the transition function and acceptance condition can be defined by

5

dfa-trans :: dfa ⇒ nat ⇒ bool list ⇒ nat
dfa-trans A q bs ≡ bdd-lookup (fst A)[q] bs

dfa-accepting :: dfa ⇒ nat ⇒ bool
dfa-accepting A q ≡ (snd A)[q]

where xs[i] denotes the ith element of list xs. Finally, using the generic functions
from §2.2, we can produce variants of these functions tailored to DFAs:

dfa-steps A ≡ steps (dfa-trans A)
dfa-accepts A ≡ accepts (dfa-trans A) (dfa-accepting A) 0
dfa-reach A ≡ reach (dfa-trans A)

2.5 Nondeterministic Automata

Nondeterministic finite automata (NFAs) are represented by pairs of type bool
list bdd list × bool list. While the second component representing the accepting
states is the same as for DFAs, the transition table is now a list of BDDs mapping
a state and an input symbol to a finite set of successor states, which we represent
as a bit vector. In order for the transition table to be well-formed, the length
of the bit vectors representing the sets must be equal to the number of states
of the automaton, which coincides with the length of the transition table. This
well-formedness condition for the bit vectors is expressed by the predicate

nfa-is-node :: nfa ⇒ bool list ⇒ bool
nfa-is-node A ≡ λqs. |qs| = |fst A|

The definition of wf-nfa can be obtained from the one of wf-dfa by just replacing
dfa-is-node by nfa-is-node. Due to its “asymmetric” type, a transition function
of type nat ⇒ bool list ⇒ bool list would be incompatible with the abstract
functions from §2.2. We therefore lift the function to work on finite sets of natural
numbers rather that just single natural numbers. This is accomplished by

subsetbdd :: bool list bdd list ⇒ bool list ⇒ bool list bdd ⇒ bool list bdd
subsetbdd [] [] bdd = bdd
subsetbdd (bdd ′ · bdds) (b · bs) bdd =

(if b then subsetbdd bdds bs (bdd-binop bv-or bdd bdd ′)
else subsetbdd bdds bs bdd)

where bv-or is the bit-wise or operation on bit vectors, i.e. the union of two
finite sets. Using this operation, subsetbdd combines all BDDs in the first list,
for which the corresponding bit in the second list is True. The third argument
of subsetbdd serves as an accumulator and is initialized with a BDD consisting
of only one Leaf containing the empty set, which is the neutral element of bv-or :

nfa-emptybdd :: nat ⇒ bool list bdd
nfa-emptybdd n ≡ Leaf (replicate n False)

6

Using subsetbdd, the transition function for NFAs can now be defined as follows:

nfa-trans :: nfa ⇒ bool list ⇒ bool list ⇒ bool list
nfa-trans A qs bs ≡ bdd-lookup (subsetbdd (fst A) qs (nfa-emptybdd |qs|)) bs

A set of states is accepting iff at least one of the states in the set is accepting:

nfa-accepting ′ :: bool list ⇒ bool list ⇒ bool
nfa-accepting ′ [] bs = False
nfa-accepting ′ (a · as) [] = False
nfa-accepting ′ (a · as) (b · bs) = (a ∧ b ∨ nfa-accepting ′ as bs)

nfa-accepting :: nfa ⇒ bool list ⇒ bool
nfa-accepting A ≡ nfa-accepting ′ (snd A)

As in the case of DFAs, we can now instantiate the generic functions from §2.2.
In order to check whether we can reach an accepting state from the start state,
we apply accepts to the finite set containing only the state 0.

nfa-startnode :: nfa ⇒ bool list
nfa-startnode A ≡ replicate |fst A| False[0 := True]

nfa-steps A ≡ steps (nfa-trans A)
nfa-accepts A ≡ accepts (nfa-trans A) (nfa-accepting A) (nfa-startnode A)
nfa-reach A ≡ reach (nfa-trans A)

where xs[i := y] denotes the replacement of the ith element of xs by y.

2.6 Depth First Search

The efficiency of the automata constructions presented in this paper crucially
depends on the fact that the generated automata only contain reachable states.
When implemented in a naive way, the construction of a product DFA from
two DFAs having m and n states will lead to a DFA with m ·n states, while the
construction of a DFA from an NFA with n states will result in a DFA having 2n

states, many of which are unreachable. By using a depth-first search algorithm
(DFS) for the generation of the automata, we can make sure that all of their
states are reachable. In order to simplify the implementation of the automata
constructions, as well as their correctness proofs, the DFS algorithm is factored
out into a generic function, whose properties can be proved once and for all. The
DFS algorithm is based on a representation of graphs, as well as a data struc-
ture for storing the nodes that have already been visited. Our version of DFS,
which generalizes earlier work by Nishihara and Minamide [13, 10], is designed
as an abstract module using the locale mechanism of Isabelle, thus allowing the
operations on the graph and the node store to be implemented in different ways
depending on the application at hand. The module is parameterized by a type
α of graph nodes, a type β representing the node store, and the functions

7

succs :: α ⇒ α list ins :: α ⇒ β ⇒ β empt :: β
is-node :: α ⇒ bool memb :: α ⇒ β ⇒ bool invariant :: β ⇒ bool

where succs returns the list of successors of a node, and the predicate is-node
describes the (finite) set of nodes. Moreover, ins x S, memb x S and empt cor-
respond to {x} ∪ S, x ∈ S and ∅ on sets. The node store must also satisfy an
additional invariant. Using Isabelle’s infrastructure for the definition of functions
by well-founded recursion [9], the DFS function can be defined as follows3:

dfs :: β ⇒ α list ⇒ β
dfs S [] = S
dfs S (x · xs) = (if memb x S then dfs S xs else dfs (ins x S) (succs x @ xs))

Note that this function is partial, since it may loop when instantiated with ins,
memb and empt operators not behaving like their counterparts on sets, or when
applied to a list of start values not being valid nodes. However, since dfs is tail
recursive, Isabelle’s function definition package can derive the above equations
without preconditions, which is crucial for the executability of dfs. The central
property of dfs is that it computes the transitive closure of the successor relation:

If is-node y and is-node x then
memb y (dfs empt [x]) = ((x , y) ∈ (succsr succs)∗).

where succsr turns a successor function into a relation:

succsr :: (γ ⇒ δ list) ⇒ γ × δ ⇒ bool
succsr succs ≡ {(x , y) | y ∈ succs x}

3 Automata Construction

In this section, we will describe all automata constructions that are used to
recursively build automata from formulae in Presburger arithmetic. The simplest
one is the complement, which we describe in §3.1. It will be used to model
negation. The product automaton construction described in §3.2 corresponds to
binary operators such as ∨, ∧, and −→, whereas the more intricate projection
construction shown in §3.3 is used to deal with existential quantifiers. Finally,
§3.4 illustrates the construction of automata corresponding to atomic formulae.

3.1 Complement

The complement construction is straightforward. We only exchange the accept-
ing and the non-accepting states, and leave the transition function unchanged:

3 We use dfs S xs as an abbreviation for gen-dfs succs ins memb S xs.

8

prod-succs :: dfa ⇒ dfa ⇒ nat × nat ⇒ (nat × nat) list
prod-succs A B ≡ λ(i , j). add-leaves (bdd-binop Pair (fst A)[i] (fst B)[j]) []

prod-ins :: nat × nat
⇒ nat option list list × (nat × nat) list
⇒ nat option list list × (nat × nat) list

prod-ins ≡
λ(i , j) (tab, ps). (tab[i := tab[i][j := Some |ps|]], ps @ [(i , j)])

prod-memb :: nat × nat ⇒ nat option list list × (nat × nat) list ⇒ bool
prod-memb ≡ λ(i , j) (tab, ps). tab[i][j] 6= None

prod-empt :: dfa ⇒ dfa ⇒ nat option list list × (nat × nat) list
prod-empt A B ≡ (replicate |fst A| (replicate |fst B | None), [])

prod-dfs :: dfa ⇒ dfa ⇒ nat × nat ⇒ nat option list list × (nat × nat) list
prod-dfs A B x ≡
gen-dfs (prod-succs A B) prod-ins prod-memb (prod-empt A B) [x]

binop-dfa :: (bool ⇒ bool ⇒ bool) ⇒ dfa ⇒ dfa ⇒ dfa
binop-dfa f A B ≡
let (tab, ps) = prod-dfs A B (0, 0)
in (map (λ(i , j). bdd-binop (λk l . the tab[k][l]) (fst A)[i] (fst B)[j]) ps,

map (λ(i , j). f (snd A)[i] (snd B)[j]) ps)

Fig. 1. Definition of the product automaton

negate-dfa :: dfa ⇒ dfa
negate-dfa ≡ λ(t , a). (t , map Not a)

A well-formed DFA A will accept a word bss iff it is not accepted by the DFA
produced by negate-dfa:

If wf-dfa A n and ∀ bs∈bss. is-alph n bs then
dfa-accepts (negate-dfa A) bss = (¬ dfa-accepts A bss).

3.2 Product Automaton

Given a binary logical operator f :: bool ⇒ bool ⇒ bool, the product automaton
construction is used to build a DFA corresponding to the formula f P Q from
DFAs A and B corresponding to the formulae P and Q, respectively. As sug-
gested by its name, the state space of the product automaton corresponds to the
cartesian product of the state spaces of the DFAs A and B. However, as already
mentioned in §2.6, not all of the elements of the cartesian product constitute
reachable states. We therefore need an algorithm for computing the reachable
states of the resulting DFA. Moreover, since the automata framework described
in §2.4–2.5 relies on the states to be encoded as natural numbers, we also need

9

to produce a mapping from nat × nat to nat. All of this can be achieved just by
instantiating the abstract DFS framework with suitable functions, as shown in
Fig. 1. In this construction, the store containing the visited states is a pair nat
option list list × (nat × nat) list, where the first component is a matrix denoting
a partial map from nat × nat to nat. The second component of the store is a list
containing all visited states (i , j). It can be viewed as a map from nat to nat ×
nat, which is the inverse of the aforementioned map. In order to compute the list
of successor states of a state (i , j), prod-succs combines the BDDs representing
the transition tables of state i of A, and of state j of B using the Pair oper-
ator, and then collects all leaves of the resulting BDD. The operation prod-ins
for inserting a state into the store updates the entry at position (i , j) of the
matrix tab with the number of visited states, and appends (i , j) to the list ps of
visited states. By definition of DFS, this operation is guaranteed to be applied
only if the state (i , j) has not been visited yet, i.e. the corresponding entry in
the matrix is None and (i , j) is not contained in the list ps. We now produce
a specific version of DFS called prod-dfs by instantiating the generic function
from §2.6, and using the list containing just one pair of states as a start value.
By induction on gen-dfs, we can prove that the matrix and the list computed by
prod-dfs encodes a bijection between the reachable states (i , j) of the product
automaton, and natural numbers k corresponding to the states of the resulting
DFA, where k is smaller than the number of reachable states:

If prod-is-node A B x then
((fst (prod-dfs A B x))[i][j] = Some k ∧ dfa-is-node A i ∧ dfa-is-node B j) =
(k < |snd (prod-dfs A B x)| ∧ (snd (prod-dfs A B x))[k] = (i , j)).

The start state x must satisfy a well-formedness condition prod-is-node, meaning
that its two components must be valid states of A and B. Using this result, as
well as the fact that prod-dfs computes the transitive closure, we can then show
by induction on bss that a state m is reachable in the resulting automaton via a
sequence of bit vectors bss iff the corresponding states s1 and s2 are reachable
via bss in the automata A and B, respectively:

If ∀ bs∈bss. is-alph n bs then
(∃m. dfa-reach (binop-dfa f A B) 0 bss m ∧

(fst (prod-dfs A B (0, 0)))[s1][s2] = Some m ∧
dfa-is-node A s1 ∧ dfa-is-node B s2) =

(dfa-reach A 0 bss s1 ∧ dfa-reach B 0 bss s2).

Finally, bdd-binop produces the resulting product automaton by combining the
transition tables of A and B using the mapping from nat × nat to nat computed
by prod-dfs, and by applying f to the acceptance conditions of A and B. Using the
previous theorem, we can prove the correctness statement for this construction:

If wf-dfa A n and wf-dfa B n and ∀ bs∈bss. is-alph n bs then
dfa-accepts (binop-dfa f A B) bss = f (dfa-accepts A bss) (dfa-accepts B bss).

10

3.3 Projection

Using the terminology from §2.3, the automaton for ∃ x . P can be obtained from
the one for P by projecting away the row corresponding to the variable x. Since
this operation yields an NFA, it is advantageous to first translate the DFA for P
into an NFA, which can easily be done by replacing all the leaves in the transition
table by singleton sets, and leaving the set of accepting states unchanged. The
correctness of this operation called nfa-of-dfa is expressed by

If wf-dfa A n and ∀ bs∈bss. is-alph n bs then
nfa-accepts (nfa-of-dfa A) bss = dfa-accepts A bss.

Given a BDD representing the transition table of a particular state of an NFA,
we can project away the ith variable by combining the two children BDDs of
the branches at depth i using the bv-or operation:

quantify-bdd :: nat ⇒ bool list bdd ⇒ bool list bdd
quantify-bdd i (Leaf q) = Leaf q
quantify-bdd 0 (Branch l r) = bdd-binop bv-or l r
quantify-bdd (Suc i) (Branch l r) =

Branch (quantify-bdd i l) (quantify-bdd i r)

To produce the NFA corresponding to the quantified formula, we just map this
operation over the transition table:

quantify-nfa :: nat ⇒ nfa ⇒ nfa
quantify-nfa i ≡ λ(bdds, as). (map (quantify-bdd i) bdds, as)

Due to its type, we could apply this function repeatedly to quantify over several
variables in one go. The correctness of this construction is summarized by

If wf-nfa A (Suc n) and i ≤ n and ∀ bs∈bss. is-alph n bs then
nfa-accepts (quantify-nfa i A) bss =
(∃ bs. nfa-accepts A (insertll i bs bss) ∧ |bs| = |bss|).

This means that the new NFA accepts a list bss of column vectors iff the original
NFA accepts the list obtained from bss by inserting a suitable row vector bs
representing the existential witness. Matters are complicated by the additional
requirement that the word accepted by the new NFA must have the same length
as the witness. This requirement can be satisfied by appending zero vectors to the
end of bss, which does not change its interpretation. Since the other constructions
(in particular the complement) only work on DFAs, we turn the obtained NFA
into a DFA by applying the usual subset construction. The central idea is that
each set of states produced by nfa-steps can be viewed as a state of a new DFA.
As mentioned in §2.6, not all of these sets are reachable from the initial state
of the NFA. Similar to the product construction, the algorithm for computing
the reachable sets shown in Fig. 2 is an instance of the general DFS framework.
The node store is now a pair of type nat option bdd × bool list list, where the

11

first component is a BDD representing a partial map from finite sets (encoded as
bit vectors) to natural numbers, and the second component is the list of visited
states representing the inverse map. To insert new entries into a BDD, we use

bddinsert :: α bdd ⇒ bool list ⇒ α ⇒ α bdd
bddinsert (Leaf a) [] x = Leaf x
bddinsert (Leaf a) (w · ws) x =

(if w then Branch (Leaf a) (bddinsert (Leaf a) ws x)
else Branch (bddinsert (Leaf a) ws x) (Leaf a))

bddinsert (Branch l r) (w · ws) x =
(if w then Branch l (bddinsert r ws x) else Branch (bddinsert l ws x) r)

The computation of successor states in subset-succs and the transition relation
in det-nfa closely resembles the definition of nfa-trans from §2.5. Using the fact
that subset-dfs computes a bijection between finite sets and natural numbers,
we can prove the correctness theorem for det-nfa:

If wf-nfa A n and ∀ bs∈bss. is-alph n bs then
dfa-accepts (det-nfa A) bss = nfa-accepts A bss.

Recall that the automaton produced by quantify-nfa will only accept words
with a sufficient number of trailing zero column vectors. To get a DFA that also
accepts words without trailing zeros, we mark all states as accepting from which
an accepting state can be reached by reading only zeros. This construction, which
is sometimes referred to as the right quotient, can be characterized as follows:

If wf-dfa A n and ∀ bs∈bss. is-alph n bs then
dfa-accepts (rquot A n) bss = (∃m. dfa-accepts A (bss @ zeros m n)).

where zeros m n produces a word consisting of m zero vectors of size n.

3.4 Diophantine (In)Equations

We now come to the construction of DFAs for atomic formulae, namely Dio-
phantine (in)equations. For this purpose, we use a method due to Boudet and
Comon [3]. The key observation is that xs is a solution of a Diophantine equation
iff it is a solution modulo 2 and the quotient of xs and 2 is a solution of another
equation with the same coefficients, but with a different right-hand side:

(eval-dioph ks xs = l) =
(eval-dioph ks (map (λx . x mod 2) xs) mod 2 = l mod 2 ∧
eval-dioph ks (map (λx . x div 2) xs) =
(l − eval-dioph ks (map (λx . x mod 2) xs)) div 2)

In other words, the states of the DFA accepting the solutions of the equation
correspond to the right-hand sides reachable from the initial right-hand side l,
which will again be computed using the DFS algorithm. To ensure termination
of DFS, it is crucial to prove that the reachable right-hand sides m are bounded:

12

subset-succs :: nfa ⇒ bool list ⇒ bool list list
subset-succs A qs ≡ add-leaves (subsetbdd (fst A) qs (nfa-emptybdd |qs|)) []

subset-ins :: bool list
⇒ nat option bdd × bool list list
⇒ nat option bdd × bool list list

subset-ins qs ≡ λ(bdd , qss). (bddinsert bdd qs (Some |qss|), qss @ [qs])

subset-memb :: bool list ⇒ nat option bdd × bool list list ⇒ bool
subset-memb qs ≡ λ(bdd , qss). bdd-lookup bdd qs 6= None

subset-empt :: nat option bdd × bool list list
subset-empt ≡ (Leaf None, [])

subset-dfs :: nfa ⇒ bool list ⇒ nat option bdd × bool list list
subset-dfs A x ≡
gen-dfs (subset-succs A) subset-ins subset-memb subset-empt [x]

det-nfa :: nfa ⇒ dfa
det-nfa A ≡
let (bdd , qss) = subset-dfs A (nfa-startnode A)
in (map (λqs. bdd-map (λqs. the (bdd-lookup bdd qs))

(subsetbdd (fst A) qs (nfa-emptybdd |qs|)))
qss,

map (nfa-accepting A) qss)

Fig. 2. Definition of the subset construction

If |m| ≤ max |l | (
∑

k←ks. |k |) then
|(m − eval-dioph ks (map (λx . x mod 2) xs)) div 2| ≤ max |l | (

∑
k←ks. |k |).

By instantiating the abstract gen-dfs function, we obtain a function

dioph-dfs :: nat ⇒ int list ⇒ int ⇒ nat option list × int list

that, given the number of variables, the coefficients, and the right-hand side,
computes a bijection between reachable right-hand sides and natural numbers:

((fst (dioph-dfs n ks l))[int-to-nat-bij m] = Some k ∧
|m| ≤ max |l | (

∑
k←ks. |k |)) =

(k < |snd (dioph-dfs n ks l)| ∧ (snd (dioph-dfs n ks l))[k] = m)

The first component of the pair returned by dioph-dfs can be viewed as a partial
map from integers to natural numbers, where int-to-nat-bij maps negative and
non-negative integers to odd and even list indices, respectively. As shown in
Fig. 3, the transition table of the DFA is constructed by eq-dfa as follows: if
the current state corresponds to the right-hand side j, and the DFA reads a
bit vector xs satisfying the equation modulo 2, then the DFA goes to the state
corresponding to the new right-hand side (j − eval-dioph ks xs) div 2, otherwise

13

eq-dfa :: nat ⇒ int list ⇒ int ⇒ dfa
eq-dfa n ks l ≡
let (is, js) = dioph-dfs n ks l
in (map (λj . make-bdd

(λxs. if eval-dioph ks xs mod 2 = j mod 2
then the is

[int-to-nat-bij ((j − eval-dioph ks xs) div 2)] else |js|)
n [])

js @
[Leaf |js|],
map (λj . j = 0) js @ [False])

Fig. 3. Definition of the automata for Diophantine equations

it goes to an error state, which is the last state in the table. To produce a BDD
containing the successor states for all bit vectors of length n, we use the function

make-bdd :: (nat list ⇒ α) ⇒ nat ⇒ nat list ⇒ α bdd
make-bdd f 0 xs = Leaf (f xs)
make-bdd f (Suc n) xs =

Branch (make-bdd f n (xs @ [0])) (make-bdd f n (xs @ [1]))

The key property of eq-dfa states that for every right-hand side m reachable
from l, the state reachable from m via a word bss is accepting iff the list of
natural numbers denoted by bss satisfies the equation with right-hand side m:

If (l , m) ∈ (succsr (dioph-succs n ks))∗ and ∀ bs∈bss. is-alph n bs then
dfa-accepting (eq-dfa n ks l)
(dfa-steps (eq-dfa n ks l) (the (fst (dioph-dfs n ks l))[int-to-nat-bij m]) bss) =

(eval-dioph ks (nats-of-boolss n bss) = m).

Here, dioph-succs n ks returns a list of up to 2n successor states reachable from
a given state by reading a single column vector of size n. The proof of the above
property is by induction on bss, where the equation given at the beginning of
this section is used in the induction step. The correctness property of eq-dfa can
then be obtained from this result as a simple corollary:

If ∀ bs∈bss. is-alph n bs then
dfa-accepts (eq-dfa n ks l) bss = (eval-dioph ks (nats-of-boolss n bss) = l).

Diophantine inequations can be treated in a similar way.

4 The Decision Procedure

We now have all the machinery in place to write a decision procedure for Pres-
burger arithmetic. A formula can be transformed into a DFA by the following
function:

14

dfa-of-pf :: nat ⇒ pf ⇒ dfa
dfa-of-pf n (Eq ks l) = eq-dfa n ks l
dfa-of-pf n (Le ks l) = ineq-dfa n ks l
dfa-of-pf n (Neg p) = negate-dfa (dfa-of-pf n p)
dfa-of-pf n (And p q) = binop-dfa (∧) (dfa-of-pf n p) (dfa-of-pf n q)
dfa-of-pf n (Or p q) = binop-dfa (∨) (dfa-of-pf n p) (dfa-of-pf n q)
dfa-of-pf n (Imp p q) = binop-dfa (−→) (dfa-of-pf n p) (dfa-of-pf n q)
dfa-of-pf n (Exist p) =

rquot (det-nfa (quantify-nfa 0 (nfa-of-dfa (dfa-of-pf (Suc n) p)))) n
dfa-of-pf n (Forall p) = dfa-of-pf n (Neg (Exist (Neg p)))

By structural induction on formulae, we can show the correctness theorem

If ∀ bs∈bss. is-alph n bs then
dfa-accepts (dfa-of-pf n p) bss = eval-pf p (nats-of-boolss n bss).

Note that a closed formula is valid iff the start state of the resulting DFA is
accepting, which can easily be seen by letting n = 0 and bss = []. Most cases of
the induction can be proved by a straightforward application of the correctness
results from §3. Unsurprisingly, the only complicated case is the one for the
existential quantifier, which we will now examine in more detail. In this case,
the left-hand side of the correctness theorem is

dfa-accepts
(rquot (det-nfa (quantify-nfa 0 (nfa-of-dfa (dfa-of-pf (Suc n) p)))) n) bss

which, according to the correctness statement for rquot, is equivalent to

∃m. dfa-accepts (det-nfa (quantify-nfa 0 (nfa-of-dfa (dfa-of-pf (Suc n) p))))
(bss @ zeros m n)

By correctness of det-nfa, quantify-nfa and nfa-of-dfa, this is the same as

∃m bs. dfa-accepts (dfa-of-pf (Suc n) p) (insertll 0 bs (bss @ zeros m n)) ∧
|bs| = |bss| + |zeros m n|

Using the induction hypothesis, this can be rewritten to

∃m bs. eval-pf p (nats-of-boolss (Suc n) (insertll 0 bs (bss @ zeros m n))) ∧
|bs| = |bss| + |zeros m n|

According to the properties of nats-of-boolss from §2.3, this can be recast as

∃m bs. eval-pf p (nat-of-bools bs · nats-of-boolss n bss) ∧ |bs| = |bss| + m

which is obviously equivalent to the right-hand side of the correctness theorem

∃ x . eval-pf p (x · nats-of-boolss n bss)

since we can easily produce suitable instantiations for m and bs from x.

15

5 Conclusion

First experiments with the algorithm presented in §4 show that it can compete
quite well with the standard decision procedure for Presburger arithmetic avail-
able in Isabelle. Even without minimization, the DFA for the stamp problem
from §2.1 has only 6 states, and can be constructed in less than a second. The
following table shows the size of the DFAs (i.e. the number of states) for all sub-
formulae of the stamp problem. Thanks to the DFS algorithm, they are much
smaller than the DFAs that one would have obtained using a naive construction:

Exist Exist Eq [5, 3, −1] 0
Forall Imp 13 9 9

6 15 Le [−1] −8
5

The next step is to formalize a minimization algorithm, e.g. along the lines of
Constable et al. [6]. We also intend to explore other ways of constructing DFAs
for Diophantine equations, such as the approach by Wolper and Boigelot [15],
which is more complicated than the one shown in §3.4, but can directly deal
with variables over the integers rather than just natural numbers. To improve
the performance of the decision procedure on large formulae, we would also like
to investigate possible optimizations of the simple representation of BDDs pre-
sented in §2.3. Verma [14] describes a formalization of reduced ordered BDDs
with sharing in Coq. To model sharing, Verma’s formalization is based on a
memory for storing BDDs. Due to their dependence on the memory, algorithms
using this kind of BDDs are no longer purely functional, which makes reason-
ing about them substantially more challenging. Finally, we also plan to extend
our decision procedure to cover WS1S, and use it to tackle some of the circuit
verification problems described by Basin and Friedrich [1].

Acknowledgements We would like to thank Tobias Nipkow for suggesting this
project and for numerous comments, Clemens Ballarin and Markus Wenzel for
answering questions concerning locales, and Alex Krauss for help with well-
founded recursion and induction schemes.

References

1. D. Basin and S. Friedrich. Combining WS1S and HOL. In D. Gabbay and M. de Ri-
jke, editors, Frontiers of Combining Systems 2, volume 7 of Studies in Logic and
Computation, pages 39–56. Research Studies Press/Wiley, February 2000.

2. S. Berghofer and T. Nipkow. Executing higher order logic. In P. Callaghan, Z. Luo,
J. McKinna, and R. Pollack, editors, Types for Proofs and Programs: TYPES’2000,
volume 2277 of LNCS. Springer-Verlag, 2002.

16

3. A. Boudet and H. Comon. Diophantine equations, Presburger arithmetic and finite
automata. In H. Kirchner, editor, Trees in Algebra and Programming - CAAP’96,
21st International Colloquium, Proceedings, volume 1059 of Lecture Notes in Com-
puter Science, pages 30–43. Springer-Verlag, 1996.

4. S. Boutin. Using reflection to build efficient and certified decision procedures. In
M. Abadi and T. Ito, editors, Theoretical Aspects of Computer Software, Third
International Symposium, TACS ’97, Proceedings, volume 1281 of Lecture Notes
in Computer Science, pages 515–529. Springer-Verlag, 1997.

5. A. Chaieb and T. Nipkow. Proof synthesis and reflection for linear arithmetic.
Journal of Automated Reasoning, 41:33–59, 2008.

6. R. L. Constable, P. B. Jackson, P. Naumov, and J. Uribe. Constructively formal-
izing automata theory. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof,
Language, and Interaction: Essays in Honor of Robin Milner. MIT Press, 2000.

7. J. Harrison. Metatheory and reflection in theorem proving: A survey and critique.
Technical Report CRC-053, SRI Cambridge, 1995. Available on the Web as http:
//www.cl.cam.ac.uk/users/jrh/papers/reflect.dvi.gz.

8. N. Klarlund. Mona & Fido: The logic-automaton connection in practice. In
M. Nielsen and W. Thomas, editors, Computer Science Logic, 11th International
Workshop, CSL ’97, Selected Papers, volume 1414 of Lecture Notes in Computer
Science, pages 311–326. Springer-Verlag, 1998.

9. A. Krauss. Partial recursive functions in higher-order logic. In U. Furbach and
N. Shankar, editors, Automated Reasoning, Third International Joint Conference,
IJCAR 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, volume 4130 of
Lecture Notes in Computer Science, pages 589–603. Springer-Verlag, 2006.

10. Y. Minamide. Verified decision procedures on context-free grammars. In K. Schnei-
der and J. Brandt, editors, Theorem Proving in Higher Order Logics, 20th Inter-
national Conference, TPHOLs 2007, Proceedings, volume 4732 of Lecture Notes in
Computer Science, pages 173–188. Springer-Verlag, 2007.

11. T. Nipkow. Verified lexical analysis. In J. Grundy and M. C. Newey, editors, Theo-
rem Proving in Higher Order Logics, 11th International Conference, TPHOLs’98,
Canberra, Australia, September 27 - October 1, 1998, Proceedings, volume 1479 of
Lecture Notes in Computer Science, pages 1–15. Springer-Verlag, 1998.

12. T. Nipkow. Linear quantifier elimination. In A. Armando, P. Baumgartner, and
G. Dowek, editors, 4th International Joint Conference on Automated Reasoning
(IJCAR 2008), volume 5195 of Lecture Notes in Computer Science, pages 18–33.
Springer-Verlag, 2008.

13. T. Nishihara and Y. Minamide. Depth first search. In G. Klein, T. Nipkow, and
L. Paulson, editors, The Archive of Formal Proofs. http://afp.sf.net/entries/
Depth-First-Search.shtml, June 2004. Formal proof development.

14. K. N. Verma, J. Goubault-Larrecq, S. Prasad, and S. Arun-Kumar. Reflecting
BDDs in Coq. In J. He and M. Sato, editors, 6th Asian Computing, Proceed-
ings, volume 1961 of Lecture Notes in Computer Science, pages 162–181. Springer-
Verlag, 2000.

15. P. Wolper and B. Boigelot. On the construction of automata from linear arithmetic
constraints. In S. Graf and M. I. Schwartzbach, editors, TACAS, volume 1785 of
Lecture Notes in Computer Science, pages 1–19. Springer-Verlag, 2000.

17

