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Nominal Datatypes

Datatypes with binders

nominal-datatype lam = Var name | App lam lam | Lam �name�lam

Equality modulo α

(Lam a t = Lam a ′ t ′) = (a = a ′ ∧ t = t ′ ∨ a 6= a ′ ∧ t = [(a, a ′)] · t ′ ∧ a # t ′)

Variable renaming via permutations: π · t, where π = [(a1, b1), . . ., (an, bn)]

Freshness: a # x ≡ a /∈ supp x

Strong induction principles with built-in variable convention

names of bound variables are chosen in such a way that they are distinct and do not
clash with other names used elsewhere in the proof
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Permutations

π · Var x = Var (π · x )
π · App t u = App (π · t) (π · u)
π · Lam x t = Lam (π · x ) (π · t)

Swapping

((a, b) :: π) · x = swap (a, b) (π · x )
[] · x = x

swap (a, b) c = (if a = c then b else if b = c then a else c)

Equivariance

A function f is called equivariant, if

π · f x 1 . . . xn = f (π · x 1) . . . (π · xn)

For example, π · t [x :=u] = (π · t)[(π · x ):=(π · u)]
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Simply-typed lambda calculus

valid Γ (x , T ) ∈ set Γ
Γ ` Var x : T

Γ ` t1 : T 1 → T 2 Γ ` t2 : T 1

Γ ` App t1 t2 : T 2

(x , T 1) :: Γ ` t : T 2

Γ ` Lam x t : T 1 → T 2

Beta reduction

App (Lam x s1) s2 −→β s1[x :=s2]

s1 −→β s2

App s1 t −→β App s2 t
s1 −→β s2

App t s1 −→β App t s2

s1 −→β s2

Lam x s1 −→β Lam x s2
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Inversion

Studied by

• Cristina Cornes and Delphine Terrasse (for Coq)

• Conor McBride (for LEGO)

• Larry Paulson (for Isabelle)

Idea

• Any inhabitant of an inductively defined predicate must have been derived by at least
one of its introduction rules

• Inverting a hypothesis yields the premises (plus extra equational constraints) that have
been used to derive the hypothesis via a particular rule

• Many proofs require an induction followed by an inversion

Problem

Solving equational constraints is problematic in the presence of non-injective constructors
such as Lam.
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Type Preservation

If Γ ` u : U and u −→β u ′ then Γ ` u ′ : U .

Proof: By induction on Γ ` u : U. We get three subgoals:

(i) Var x −→β u ′ =⇒ . . . =⇒ Γ ` u ′ : T
(ii) App t1 t2 −→β u ′ =⇒ . . . =⇒ Γ ` u ′ : T 2

(iii) Lam x t −→β u ′ =⇒ . . . =⇒ Γ ` u ′ : T 1 → T 2

Proof of (ii) by Inversion

s1 −→β s2

App s1 t −→β App s2 t
=?

App t1 t2 −→β u ′

7−→
s1 = t1

t = t2

u ′ = App s2 t2

t1 −→β s2

By induction hypothesis: Γ ` s2 : T 1 → T 2 and Γ ` t2 : T 1

Therefore, Γ ` u ′ : T 2.
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Type Preservation

App (Lam x s1) s2 −→β s1[x :=s2]
=?

App t1 t2 −→β u ′

7−→ t1 = Lam x s1

s2 = t2

u ′ = s1[x :=t2]

By induction hypothesis: Γ ` Lam x s1 : T 1 → T 2 and Γ ` t2 : T 1

(x , T 1) :: Γ ` t : T 2

Γ ` Lam x t : T 1 → T 2

=?

Γ ` Lam x s1 : T 1 → T 2

7−→ t = s1

(x , T 1) :: Γ ` s1 : T 2

By the substitution lemma

If (x , T 1) :: Γ ` s1 : T 2 and Γ ` t2 : T 1 then Γ ` s1[x :=t2] : T 2.

we get Γ ` u ′ : T 2.
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Standard Inversion Rules

∧
x s2 s1. u1 = App (Lam x s1) s2 =⇒ u2 = s1[x :=s2] =⇒ P∧
s1 s2 t . u1 = App s1 t =⇒ u2 = App s2 t =⇒ s1 −→β s2 =⇒ P∧
s1 s2 t . u1 = App t s1 =⇒ u2 = App t s2 =⇒ s1 −→β s2 =⇒ P∧
s1 s2 x . u1 = Lam x s1 =⇒ u2 = Lam x s2 =⇒ s1 −→β s2 =⇒ P

u1 −→β u2 =⇒ P

∧
Γ x T . ∆ = Γ =⇒ u = Var x =⇒ U = T =⇒

valid Γ =⇒ (x , T ) ∈ set Γ =⇒ P∧
t1 T 1 T 2 t2. ∆ = Γ =⇒ u = App t1 t2 =⇒ U = T 2 =⇒

Γ ` t1 : T 1 → T 2 =⇒ Γ ` t2 : T 1 =⇒ P∧
x T 1 Γ t T 2. ∆ = Γ =⇒ u = Lam x t =⇒ U = T 1 → T 2 =⇒

(x , T 1) :: Γ ` t : T 2 =⇒ P
∆ ` u : U =⇒ P
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Type Preservation – more formally

Case (i) Var x −→β u ′ =⇒ . . . =⇒ Γ ` u ′ : T∧
x ′ s2 s1. Var x = App (Lam x ′ s1) s2 =⇒ u ′ = s1[x ′:=s2] =⇒ . . .∧
s1 s2 t . Var x = App s1 t =⇒ u ′ = App s2 t =⇒ s1 −→β s2 =⇒ . . .∧
s1 s2 t . Var x = App t s1 =⇒ u ′ = App t s2 =⇒ s1 −→β s2 =⇒ . . .∧
s1 s2 x ′. Var x = Lam x ′ s1 =⇒ u ′ = Lam x ′ s2 =⇒ s1 −→β s2 =⇒ . . .
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Type Preservation – more formally

Case (ii) App t1 t2 −→β u ′ =⇒ . . . =⇒ Γ ` u ′ : T 2∧
x s2 s1. App t1 t2 = App (Lam x s1) s2 =⇒ u ′ = s1[x :=s2] =⇒ . . .∧
s1 s2 t . App t1 t2 = App s1 t =⇒ u ′ = App s2 t =⇒ s1 −→β s2 =⇒ . . .∧
s1 s2 t . App t1 t2 = App t s1 =⇒ u ′ = App t s2 =⇒ s1 −→β s2 =⇒ . . .∧
s1 s2 x . App t1 t2 = Lam x s1 =⇒ u ′ = Lam x s2 =⇒ s1 −→β s2 =⇒ . . .

Case (iii) Lam x t −→β u ′ =⇒ . . . =⇒ Γ ` u ′ : T 1 → T 2∧
x ′ s2 s1. Lam x t = App (Lam x ′ s1) s2 =⇒ u ′ = s1[x ′:=s2] =⇒ . . .∧
s1 s2 t . Lam x t = App s1 t =⇒ u ′ = App s2 t =⇒ s1 −→β s2 =⇒ . . .∧
s1 s2 t . Lam x t = App t s1 =⇒ u ′ = App t s2 =⇒ s1 −→β s2 =⇒ . . .∧
s1 s2 x ′. Lam x t = Lam x ′ s1 =⇒ u ′ = Lam x ′ s2 =⇒ s1 −→β s2 =⇒ . . .

If Lam x t = Lam x ′ s1 then
(i) x = x ′ and t = s1 or
(ii) x 6= x ′ and t = [(x , x ′)] · s1 and x # s1

Nominal Inversion Principles 11



Naive inversion is dangerous

Var x ↪→ Var x App t1 t2 ↪→ App t1 t2

t ↪→ t ′

Lam x t ↪→ t ′

Proof (faulty)

Choose x and y with x 6= y. By the above rules, we have Lam x (Var x ) ↪→ Var x.
Due to α-conversion, Lam x (Var x ) = Lam y (Var y) and therefore
Lam y (Var y) ↪→ Var x. By inversion, Var y ↪→ Var x .
By another application of inversion, we get x = y , which contradicts x 6= y.

Variable convention compatibility condition needed to avoid faulty reasoning
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Strong Inversion Rules

Introduction Rules
B [as1; xs1]

R ts1[as1; xs1] · · ·
B [asn; xsn]

R tsn[asn; xsn]

Weak Inversion Rule∧
as1 xs1. zs = ts1[as1; xs1] =⇒ B [as1; xs1] =⇒ P

...∧
asn xsn. zs = tsn[asn; xsn] =⇒ B [asn; xsn] =⇒ P

R zs =⇒ P

Strong Inversion Rule∧
xs1. (bs1 # zs =⇒ distinct(bs1) =⇒ zs = ts1[bs1; xs1] ∧ B [bs1; xs1]) =⇒ P

...∧
xsn. (bsn # zs =⇒ distinct(bsn) =⇒ zs = tsn[bsn; xsn] ∧ B [bsn; xsn]) =⇒ P

R zs =⇒ P

provided that B [bsi; xsi] =⇒ bsi # tsi[bsi; xsi] ∧ distinct(bsi) for all i
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Proof of the Strong Inversion Rule

We can use the premises of the strong inversion rule∧
xsi. (bsi # zs =⇒ distinct(bsi) =⇒ zs = tsi[bsi; xsi] ∧ B [bsi; xsi]) =⇒ P (1)

Using the weak inversion rule, we have to show P using

zs = tsi[asi; xsi] and B [asi; xsi] (2)

By vc-compatibility, we have

(a) asi # zs and (b) distinct(asi) (3)

Choose names csi such that

(a) csi # zs (b) csi 6= asi (c) csi 6= bsi (d) distinct(csi) (4)

Let

π = [(cn, bn), . . ., (c1, b1), (an, cn), . . ., (a1, c1)]
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Proof of the Strong Inversion Rule – continued

Using the instance of (1)

(bsi # zs =⇒ distinct(bsi) =⇒ zs = tsi[bsi; π · xsi] ∧ B [bsi; π · xsi]) =⇒ P

to show P, it suffices to prove

zs = tsi[bsi; π · xsi] ∧ B i[bsi; π · xsi] (5)

under the assumptions

(a) bsi # zs and (b) distinct(bsi) (6)

Note that (2) implies

π · zs = π · tsi[asi; xsi] and π · B [asi; xsi] (7)

from which (5) follows from (3), (4), (6), and equivariance.
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Strong Inversion Rules – Beta Reduction

∧
s2 s1. (y # u1 =⇒ y # u2 =⇒

u1 = App (Lam y s1) s2 ∧ u2 = s1[y :=s2] ∧ y # s2) =⇒ P∧
s1 s2 t . u1 = App s1 t =⇒ u2 = App s2 t =⇒ s1 −→β s2 =⇒ P∧
s1 s2 t . u1 = App t s1 =⇒ u2 = App t s2 =⇒ s1 −→β s2 =⇒ P∧
s1 s2. (x # u1 =⇒ x # u2 =⇒

u1 = Lam x s1 ∧ u2 = Lam x s2 ∧ s1 −→β s2) =⇒ P
u1 −→β u2 =⇒ P

Variable convention compatibility condition

x # s2

App (Lam x s1) s2 −→β s1[x :=s2]
x # s2 =⇒ x # App (Lam x s1) s2

x # s1[x :=s2]

s1 −→β s2

Lam x s1 −→β Lam x s2

s1 −→β s2 =⇒ x # Lam x s1

x # Lam x s2
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Strong Inversion Rules – Typing Relation

∧
Γ x T . ∆ = Γ =⇒ u = Var x =⇒ U = T =⇒

valid Γ =⇒ (x , T ) ∈ set Γ =⇒ P∧
t1 T 1 T 2 t2. ∆ = Γ =⇒ u = App t1 t2 =⇒ U = T 2 =⇒

Γ ` t1 : T 1 → T 2 =⇒ Γ ` t2 : T 1 =⇒ P∧
T 1 Γ t T 2. (x # ∆ =⇒ x # u =⇒ x # U =⇒

∆ = Γ ∧ u = Lam x t ∧ U = T 1 → T 2 ∧ (x , T 1) :: Γ ` t : T 2) =⇒ P
∆ ` u : U =⇒ P

Variable convention compatibility condition

(x , T 1) :: Γ ` t : T 2

Γ ` Lam x t : T 1 → T 2

(x , T 1) :: Γ ` t : T 2 =⇒
x # Γ
x # Lam x t
x # T 1 → T 2
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Proof of Type Preservation in Isabelle

theorem type-preservation:
assumes ty : Γ ` u : U and red : u −→β u ′

shows Γ ` u ′ : U using ty red
proof (nominal-induct avoiding : u ′ rule: typing .strong-induct)
case (ty-Var Γ x T ) from 〈Var x −→β u ′〉 show Γ ` u ′ : T by cases simp-all

next
case (ty-App Γ t1 T 1 T 2 t2) . . .

next
case (ty-Lam x T 1 Γ t T 2)
from 〈Lam x t −→β u ′〉 〈x # u ′〉 obtain s2

where t-red : t −→β s2 and u ′-eq : u ′ = Lam x s2

by (cases rule: Beta.strong-cases) (force simp add : alpha)+
from t-red have (x , T 1) :: Γ ` s2 : T 2 by (rule ty-Lam)
then have Γ ` Lam x s2 : T 1 → T 2 by (rule typing .ty-Lam)
with u ′-eq show Γ ` u ′ : T 1 → T 2 by simp

qed
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Conclusion

• Standard inversion rules do not work well with non-injective constructors

• Strong inversion rules allow reasoning “like on paper”

• Variable convention compatibility condition for justifying the admissibility of strong
inversion is the same as the one for justifying strong induction rules

• Strong inversion rules are derived automatically by the current version of the Nominal
Package
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Come to the Nominal Isabelle tutorial at IJCAR’08 in
Sydney (11th August)

See the web site: isabelle.in.tum.de/nominal

Thanks for your attention!
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