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Abstract. Isabelle/HOL is a popular interactive theorem prover based on higher-
order logic. It owes its success to its ease of use and powerful automation. Much
of the automation is performed by external tools: The metaprover Sledgehammer
relies on resolution provers and SMT solvers for its proof search, the counter-
example generator Quickcheck uses the ML compiler as a fast evaluator for
ground formulas, and its rival Nitpick is based on the model finder Kodkod, which
performs a reduction to SAT. Together with the Isar structured proof format and a
new asynchronous user interface, these tools have radically transformed the Isa-
belle user experience. This paper provides an overview of the main automatic
proof and disproof tools.

1 Introduction

In the tradition of LCF-style interactive theorem provers [21], Isabelle [35] has long
emphasized tactics: functions written in ML that operate on the proof state via a trusted
inference kernel. Tactics discharge a proof goal directly or, more often, break it down
into one or more subgoals that must then be tackled by other tactics. In the last decade,
the structured Isar language [34,57] has displaced ML as the language of choice for Isa-
belle proofs, but the most important ML tactics are still available as Isar proof methods.

Much effort has been devoted to developing general-purpose proof methods (or tac-
tics) that work equally well on all object logics supported by Isabelle, notably higher-
order logic (HOL) [20] and Zermelo–Fraenkel set theory (ZF) [37, 38]. The most im-
portant methods are the simplifier, which rewrites the goal using equations as oriented
rewrite rules, and the tableau prover (Section 2). These are complemented by special-
ized decision procedures, especially for arithmetic. For the users of an interactive the-
orem prover, one of the main challenges is to find out which proof methods to use and
which arguments to specify.

Although proof methods are still the mainstay of Isabelle proofs, the last few years
have seen the focus move toward advisory tools that work outside the LCF-style in-
ference kernel. Some of these tools are very simple and yet surprisingly effective; for
example, one searches Isabelle’s libraries for a lemma that can prove the current goal
directly, and another tries the most common proof methods.

The most important proof tool besides the simplifier and the tableau prover is prob-
ably Sledgehammer, which connects Isabelle with external resolution provers and SMT
solvers (Section 3). It boasts a fairly high success rate on goals that cannot be dis-
charged directly by standard proof methods: In a recent study involving older Isabelle
proof scripts, Sledgehammer could prove 43% of the more difficult goals contained



in those proofs [6]. The addition of SMT solvers is recent and helps solve both arith-
metic and nonarithmetic problems [6]. Sledgehammer works well in combination with
structured Isar proofs: The new way of teaching Isabelle is to let students think up in-
termediate properties and rely on automatic tools to fill in the gaps, rather than teach
them low-level tactics and have them memorize lemma libraries [41, §4].

As useful as they might be, most automatic proof tools are helpless in the face of an
invalid conjecture. Novices and experts alike can enter invalid formulas and find them-
selves wasting hours (or days) on an impossible proof; once they identify and correct
the error, the proof is often easy. To make proving more enjoyable and productive, Isa-
belle includes counterexample generators that complement the proof tools. The main
ones are Quickcheck (Section 4) and Nitpick (Section 5).

Quickcheck [3] combines Isabelle’s code generation infrastructure with random
testing, in the style of the QuickCheck tool for Haskell [14]. It analyses the definitions of
inductively defined predicates to generate values that satisfies them by construction [11]
and has recently been extended with exhaustive testing and narrowing.

A radically different approach is based on systematic model enumeration using a
SAT solver. This approach was pioneered by the tool Refute [54] and is now embodied
by Nitpick [8]. Nitpick looks for finite fragments (substructures) of infinite counter-
models, soundly approximating problematic constructs. Common Isabelle idioms, such
as inductive and coinductive predicates and datatypes as well as recursive and corecur-
sive functions, are treated specially to ensure efficient SAT solving. The actual reduction
to SAT is performed by the Kodkod library [53] (the Alloy Analyzer’s [25] backend).

With so many tools at their disposal, users run the risk of forgetting to invoke them
at the right point; this is especially true for the counterexample generators, given that
humans have a natural tendency to trust their own conjectures. For this reason, the proof
and disproof tools can be set up to run automatically in parallel for a few seconds on all
newly entered conjectures. They can of course also be launched at any point in a proof
with a more liberal time limit. Either mode of operation exploits multiple processor
cores if they are available, and Sledgehammer also sends its problems to remote servers
to further distribute the load.

2 Standard Proof Methods

Isabelle provides the user with an array of general-purpose proof methods that perform
proof search. We discuss the most important ones.

2.1 Simplification

Just as in ACL2 [26], simplification is the main workhorse in Isabelle. It performs con-
ditional, contextual rewriting with a number of hooks for customizations:

– Pattern-driven simplification procedures that derive and apply rewrite rules dy-
namically. Many such procedures are preinstalled, notably arithmetic simplification
procedures for numerals and symbolic terms.

– Special solvers for conditional rewrite rules. Typical examples are fragments of
linear arithmetic and a transitive closure prover for arbitrary transitive relations.
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– Special “loopers” that massage the goal after each round of simplification. Case
splitting methods are provided this way.

The power of the simplifier is due to these extensions to rewriting together with the vast
and growing library of registered rewrite rules.

2.2 Auto & Co.

On the user level, the simplifier is eclipsed by auto, a proof method that interleaves
simplification with a small amount of proof search. It is impossible to describe suc-
cinctly what auto does due to its heuristic, ad hoc nature. Its great strength is its ability
to discharge the easy parts of a goal and leave the user with the more difficult ones. This
helps the user to quickly focus on the core of a problem.

Strengthened versions of auto perform more sophisticated proof search, while still
interleaving it with simplification. The search is based on tableau methods [39]. These
methods are often useful, but since search is involved, not only are they slower than the
simplifier and auto, they are endgame provers that do not provide any hints when they
fail to prove the goal.

2.3 Blast and Metis

The tableau implementation mentioned above can be very slow because every infer-
ence step is performed directly on the proof state, via the Isabelle kernel. For more
performance, users can choose blast [40], a tableau prover written directly in ML that
bypasses the kernel; once a proof has been found, it is replayed in the kernel to check
it. The blast method outperforms the kernel-based tableau implementation by a wide
margin but is no match for the best automatic provers. Nor does it know about simplifi-
cation, which is a great loss.

Taking this one step further, Metis is a resolution theorem prover written in ML by
Hurd [24]. Metis is sufficiently capable that it is a respectable competitor at CASC [51].
It has been ported to Isabelle and follows the same philosophy as blast: The proof search
is performed directly in ML, and any proof found is checked by the Isabelle kernel.

The blast method relies on an extensible lemma database that drives the search and
that is preconfigured to reason about sets, functions and relations, which makes it quite
user-friendly. In contrast, Isabelle’s version of Metis knows only about pure logic and
derives its knowledge about other operators from explicitly supplied lemmas. Although
Metis can be invoked directly, in practice Metis calls are almost always generated by
Sledgehammer for reconstructing external resolution proofs (Section 3.4).

3 Sledgehammer: Proof Discovery Using External Provers

Sledgehammer [31, 42] is Isabelle’s subsystem for harnessing the power of first-order
automatic theorem provers. Given a conjecture, it heuristically selects a few hundred
relevant facts (lemmas, definitions, or axioms) from Isabelle’s libraries, translates them
to first-order logic along with the conjecture, and delegates the proof search to external
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resolution provers (E [48], SPASS [56], and Vampire [44]) and SMT solvers (CVC3 [2],
Yices [16], and Z3 [33]). Sledgehammer is very effective [9] and has achieved great
popularity with users, novices and experts alike.

3.1 Relevance Filtering

Most automatic provers perform poorly in the presence of thousands of axioms. Sledge-
hammer employs a simple relevance filter [32] to extract a few hundred facts from Isa-
belle’s libraries that seem relevant to the problem at hand. Despite its simplicity, this
filter greatly improves Sledgehammer’s success rate.

The filter works iteratively. The first iteration selects facts that share all or nearly
all of their constants (symbols) with the conjecture. Further iterations also include facts
that share constants with previously selected facts, until the desired number of facts is
reached. Observing that some provers cope better with large axiom bases than others,
that number was optimized independently for each prover.

3.2 Translation to First-Order Logic

Isabelle’s formalism, polymorphic higher-order logic with type classes [59], is much
richer than the first-order logics supported by the automatic provers. Sledgehammer
relies on different translations depending on the class of prover [6, 31].

For resolution provers, standard techniques are employed to translate HOL formu-
las to classical first-order logic: λ-abstractions are rewritten to combinators, and curried
functions are passed varying numbers of arguments by means of an explicit apply op-
erator. Until recently, the translation of types was unsound: It provided enough type
information to enforce correct type class reasoning but not to specify the type of every
term. (Because the proofs are rechecked by Isabelle’s inference kernel, soundness is not
crucial.) The current implementation safely erases most type information by inferring
type monotonicity [7, 15], resulting in a sound and efficient encoding.

For SMT solvers, the translation maps equality and arithmetic operators to the cor-
responding SMT-LIB [43] concepts. The SMT-LIB logic is many-sorted, which would
seem to make it more appropriate to encode HOL typing information than classical first-
order logic, but it does not support polymorphism. The solution is to monomorphize the
formulas: Polymorphic formulas are iteratively instantiated with relevant ground in-
stances of their polymorphic constants. This process is iterated to obtain the monomor-
phized problem. Partial applications are translated using an apply operator, but in con-
trast with the combinator approach used when communicating with resolution provers,
λ-abstractions are lifted into new rules, thereby introducing fresh constants.

3.3 Invocation of External Provers

Sledgehammer lets the external provers run in parallel, either locally or remotely. On a
typical Isabelle installation, E, SPASS, and Z3 are run on the user’s machine, whereas
Vampire and the SInE metaprover [23] are provided via the remote SystemOnTPTP
service [50]. Users can also enable CVC3 and Yices.
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Fig. 1. Sledgehammer’s architecture

Figure 1 depicts the architecture, omitting proof reconstruction and minimization.
Two instances of the relevance filter are run, to account for different sets of built-in
constants. The relevant facts and the conjecture are translated to the TPTP [52] or SMT
version of first-order logic, and the resulting problems are passed to the provers. The
translation for Z3 is done slightly differently than for CVC3 and Yices to profit from
Z3’s support for nonlinear arithmetic.

Third-party provers should ideally be bundled with Isabelle and ready to be used
without requiring configuration. Isabelle includes CVC3, E, SPASS, and Z3 executa-
bles for the major hardware platforms; users can download Yices and Vampire, whose
licenses forbid redistribution, but most simply run Vampire remotely on SystemOn-
TPTP. In addition, we set up a server in Munich in the style of SystemOnTPTP for
running CVC3 and Z3 remotely.

Remote servers are satisfactory for proof search, at least when they are up and run-
ning and the user has Internet access. They also help distribute the load: Unless the
user’s machine has eight processor cores, it would be reckless to launch four resolution
provers and three SMT solvers and expect the Isabelle user interface to remain respon-
sive. The parallel invocation of provers is invaluable: Running E, SPASS, and Vampire
together for five seconds solves as many problems as running a single prover for two
minutes [9, §8].

3.4 Proof Reconstruction

In keeping with the LCF philosophy [21], Isabelle theorems can only be generated
within a small inference kernel. It is possible to bypass this safety mechanism, if some
external tool is to be trusted as an oracle, but all oracle inferences are tracked.

For resolution provers, Sledgehammer performs true proof reconstruction by run-
ning Isabelle’s built-in resolution prover, Metis, supplying it with the short list of facts
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used in the proof found by the prover. Given only a handful of facts, Metis usually suc-
ceeds within milliseconds. Since Metis has to re-find the proof, the external provers are
essentially used as very precise relevance filters.

As an example, consider the conjecture “length (tl xs) ≤ length xs”, which states
that the length of a list’s tail (its “cdr”) is less than or equal to the length of the entire
list. Thanks to Vampire, Sledgehammer finds the following proof:

by (metis append Nil2 append eq conv conj drop eq Nil drop tl tl.simps(1))

Proof reconstruction using Metis loses about 4% of resolution proofs because Metis
times out, typically because the proof found by the external prover is too long. Sledge-
hammer then falls back on a detailed Isabelle proof, expressed in the structured Isar lan-
guage. While the detailed output is primarily designed for replaying resolution proofs,
it also has a pedagogical value. Unlike Isabelle’s automatic tactics, which are black
boxes, the proofs delivered by Sledgehammer can be inspected and understood, as in
the example below:

proof –
have “tl [] = []” by (metis tl.simps(1))
hence “∃u. xs @ u = xs ∧ tl u = []” by (metis append Nil2)
hence “tl (drop (length xs) xs) = []” by (metis append eq conv conj)
hence “drop (length xs) (tl xs) = []” by (metis drop tl)
thus “length (tl xs)≤ length xs” by (metis drop eq Nil)

qed

The generated proofs often require some postediting to make them syntactically correct.
Efforts are underway to make the generated output both more robust and more concise.

On the SMT side of things, proofs that involve no arithmetic reasoning steps can
usually be replayed by Metis; otherwise, step-by-step proof replay is supported for
Z3 [10], whereas CVC3 and Yices can be invoked as oracles. Z3 proof replay relies
extensively on Isabelle’s simplifier, tableau prover, and arithmetic decision procedures.
Certificates make it possible to store Z3 proofs alongside Isabelle formalizations, al-
lowing proof replay without Z3; only if the formalizations change must the certificates
be regenerated. Using SMT solvers as oracles requires trusting both the solvers and the
translation to first-order logic, so it is generally frowned upon.

3.5 Proof Minimization

The external provers frequently use many more facts than are necessary. Sledgeham-
mer’s minimization tool takes the set of used facts returned by a prover and repeatedly
invokes the prover with subsets of the facts to find a minimal set. Depending on the
number of initial facts, it relies either on a naive linear algorithm that attempts to re-
move one fact at a time or on a binary algorithm that recursively bisects the facts [9, §7].

Minimization often improves Metis’s performance and success rate, while removing
clutter from the Isabelle formalizations. For some provers, it is difficult or impossible
to extract the list of used facts from the proof; minimization is then the only option. For
example, the detailed proofs returned by CVC3 always refer to all facts, whether they
are actually needed or not, and there is no easy criterion to isolate the needed facts.
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4 Quickcheck: Counterexample Generation by Testing

Isabelle’s proof methods and Sledgehammer are effective for proving valid conjectures,
but given an invalid conjecture they normally fail to detect the invalidity, let alone pro-
duce an informative counterexample. This is where Quickcheck comes into play.

Quickcheck was originally modeled after the QuickCheck tool for Haskell [14],
which tests user-supplied properties of a Haskell program for randomly generated val-
ues. We recently extended Quickcheck with exhaustive and narrowing-based testing as
complements to random testing. Exhaustive testing checks the formula for every possi-
ble set of values up to a given bound, as in SmallCheck [46], and hence finds counter-
examples that random testing might miss. Narrowing can be more precise and more
efficient than the other two approaches because it considers the formula symbolically,
instead of testing a finite set of ground values.

Thanks to a static data-flow analysis inspired by logic programming [11], Quick-
check derives test data generators that take premises into account to help avoid the
vacuous test cases that plague most specification testing tools.

4.1 Random and Exhaustive Testing

Quickcheck’s random testing strategy repeatedly evaluates the conjecture with pseudo-
random values for its free variables. The procedure is parameterized by a size bound
on the generated values and the number of tests to perform. The distribution is biased
toward smaller values [3, §4].

In principle, Quickcheck could use the Isabelle simplifier to evaluate the conjecture
for specific values of its free variables, but it is much more efficient to translate the
conjecture and related definitions to an ML (or Haskell) program, exploiting Isabelle’s
code generation infrastructure [22]: The ML runtime environment can check millions
of test cases within seconds, which is thousands of times faster than the simplifier.

Random testing tends to be fast and sometimes finds large counterexamples. Indeed,
the QuickCheck tool for Haskell includes a minimizer to reduce overly large counter-
examples, a refinement that our Quickcheck implementation currently lacks. But ran-
dom testing can easily miss counterexamples, even seemingly obvious ones. It also
struggles with conjectures that have hard-to-satisfy premises.

An alternative strategy is exhaustive testing, which systematically enumerates val-
ues up to a size bound (e.g., all lists of length up to 5). This ensures that all possible
variable assignments up to a given size are tested. Hence, if there is a small enough
counterexample, it will be found. The main drawback of this strategy is that the number
of test cases quickly explodes with increasing size bounds.

Through empirical testing we found the two strategies to be roughly comparable on
most types of formula, but exhaustive testing tends to be more successful on conjectures
with hard-to-satisfy premises, simply because it will encounter the few small values that
fulfill the conditions if such values exist, whereas random testing might miss them. The
following conjecture about lists illustrates this point:

nth (xs @ ys) (length xs+n) = nth xs n
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The nth function returns the element at a given index in a list, and @ is the append
operator. The conjecture attempts to relate the elements of xs @ ys with those of ys, but
a typo slipped in: The right-hand side should read nth ys n. Exhaustive testing immedi-
ately finds a counterexample with xs = [a1] and ys = [a2] (for a1 6= a2). Random testing
typically fails to find the counterexample, even with hundreds of iterations, because
randomly chosen values for n are almost always out of bounds. Since such examples
occur frequently in practice, we have now made exhaustive testing the default strategy.

4.2 Test Data Generation

Random and exhaustive testing generate values without analyzing the conjecture. This
can lead to many vacuous test cases, as in this simple example:

length xs = length ys ∧ zip xs ys = zs =⇒ map fst zs = xs ∧map snd zs = ys

The random and exhaustive strategies first generate values for xs, ys, and zs in an uncon-
strained fashion and then check the premises, namely that xs and ys are of equal length
and that zs is the list obtained by zipping xs and ys together. For the vast majority of
variable assignments, the premises are not fulfilled, and the conclusion is left untested.
Clearly, it is desirable to take the premises into account when generating values.

We recently extended Quickcheck with test data generators that construct values
in a bottom-up fashion, simultaneously testing the conjecture and generating appropri-
ate values [11]. Briefly, we synthesize the test data generator associated with a given
premise by reformulating the premise as Horn clauses and computing their data-flow
dependencies; from this data-flow analysis, we synthesize generators that directly com-
pute appropriate value.

When transforming the premises to Horn clauses, we replace n-ary functions with
(n+1)-ary predicates; this gives more freedom to the data-flow analysis, which can then
invert functions. The data-flow analysis is an extension of a classic analysis from logic
programming. To execute a predicate, its arguments are classified as input or output,
made explicit by means of modes. A mode is a data-flow assignment that annotates all
arguments of a predicate as input (i) or output (o). For example, the binary predicate of
type α list→ nat→ bool corresponding to the function length supports several modes:

– From the first argument xs, we can compute the second argument by evaluating
length xs. This corresponds to the mode i→ o→ bool.

– Inversely, we can enumerate lists of a given length: o→ i→ bool.
– Given a list and a natural number, we can check whether the list’s length equals that

number: i→ i→ bool.
– Or we can simply enumerate all pairs (xs, n) such that length xs = n. This is the

mode o→ o→ bool.

In the classic analysis, a mode is only possible if the Horn clauses allow a com-
plete data-flow from input to output values. For Quickcheck, if the mode analysis fails
to produce a complete mode assignment because the values of some variables are not
constrained by the premises, we fall back on the random or exhaustive strategy to fill in
the gaps in the data flow. For example, given the Horn clause P x =⇒ Q x y, where P
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supports the modes i→ bool and o→ bool, the classic analysis fails to find a consistent
mode assignment for Q with mode o→ o→ bool because y is unconstrained. To gen-
erate values for x and y that fulfill Q, we can generate x values using P with o→ bool
and set y to an arbitrary value, then check Q x y.

If the conjecture is polymorphic, we can instantiate the type variables with any
concrete type for refuting it. Older versions of Quickcheck instantiated type variables
with the type of integers, but it is usually preferable to use a small finite type instead,
so that existential conjectures ∃x ::α. P x can be refuted by a finite number of P tests.

4.3 Narrowing

The random and exhaustive strategies suffer from two important limitations: They can-
not refute propositions that existentially quantify over infinite types, and they often
repeatedly test formulas with values that check essentially the same execution (e.g.,
because of symmetries).

Both issues arise from the use of ground values and can be addressed by evalu-
ating the formula symbolically. The technique is called narrowing and is well known
from term rewriting. The main idea is to evaluate the conjecture with partially instan-
tiated terms and to progressively refine these terms as needed. Technically, this can be
achieved in at least three different ways:

1. Target a language that natively supports narrowing, such as the functional-logical
language Curry [1], instead of ML.

2. Simulate narrowing by generating a functional program that includes its own re-
finement algorithm [46].

3. Simulate narrowing by embedding the narrowing-based execution with a library of
combinators [18, 30] in a functional language.

We tried out the first two approaches and found that the second approach is faster. The
third approach looks promising but would require a more involved translation.

The main benefit of narrowing is its generality: Unlike the random and exhaustive
strategies, it can refute existential quantifications over infinite types. Consider the fol-
lowing conjecture:

∀n. ∃m ::nat. n = Suc m

To disprove it, we must exhibit a natural number n such that ∀m ::nat. n 6= Suc m. Taking
a symbolic view, if we choose n = 0, it is easy to see that n 6= Suc m is true for every
natural number m without having to instantiate m.

The above example is perhaps too simple to be convincing. A more realistic example
is based on the observation that the palindrome [a,b,b,a] can be split into the list [a,b]
and its reverse [b,a]. Generalizing this to arbitrary lists, we boldly conjecture that

rev xs = xs =⇒ ∃ys. xs = ys @ rev ys

The narrowing approach immediately finds the counterexample xs = [a1], inferring that
there is no witness for ys in the infinite domain of lists: If ys is empty, ys @ rev ys =
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[] 6= [a1], and if ys is not empty, ys @ rev ys consists of at least two elements and hence
cannot be equal to [a1].

Narrowing tends to scale better than the random and exhaustive strategies. Con-
sider red–black trees, a binary search data structure with two kinds of node, red and
black, that must satisfy a sophisticated invariant involving node coloring. The invariant
is captured by a predicate is rbt. If the delete operation is properly implemented, the
following property should hold:

is rbt t =⇒ is rbt (delete k t)

The premise is rbt t ensures that the tree t has a black root node, and in fact, after a few
refinements, narrowing will only test symbolic values satisfying this property, already
pruning away about half of the overall test cases. As expected, narrowing finds many
more counterexamples than random and exhaustive testing on this kind of example.
Interestingly, it even performs slightly better than a custom generator that constructs
well-formed trees using a sequence of insert operations.

5 Nitpick: Countermodel Generation Using SAT Solvers

Irrespective of which strategy is used, Quickcheck recasts the conjecture to disprove
into a functional program. An alternative is to let a SAT solver enumerate models of the
negated conjecture and relevant definitions and axioms. This approach is implemented
in a separate tool called Nitpick [8], which relies on the highly optimized Kodkod li-
brary [53] for the actual reduction to SAT.

Given a conjecture, Nitpick (via Kodkod and the SAT solver) searches for a standard
set-theoretic model that falsifies it while satisfying any relevant axioms and definitions.
Unlike Quickcheck, which performs its sophisticated code transformations using the
Isabelle inference kernel, Nitpick does not certify any of its results and must be trusted.

Nitpick’s design was inspired by its predecessor Refute [54], which performed a
direct reduction to SAT. Nitpick works by systematically enumerating the domain car-
dinalities for the atomic types (type variables and other uninterpreted types) occurring
in the conjecture and generates one Kodkod problem (and ultimately one SAT problem)
per cardinality specification [5]. To exhaust all models up to a given cardinality bound k
for a formula involving n atomic types, it must in principle iterate through kn combina-
tions of cardinalities, but a sophisticated monotonicity inference helps prune the search
space [7]. If the conjecture has a finite countermodel, the tool eventually finds it, unless
it runs out of resources.

5.1 Basic Translation to Relational Logic

Kodkod’s input is expressed in first-order relational logic (FORL), an idiosyncratic for-
malism that combines elements from first-order logic and relational calculus, extended
with a transitive closure operator. SAT solvers are particularly sensitive to the encod-
ing of problems, so special care is needed when translating HOL formulas to FORL.
Whenever practicable, HOL constants are mapped to their FORL equivalents, rather
than expanded to their definitions.
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As a rule, HOL scalars are mapped to FORL singletons and functions are mapped
to FORL relations accompanied by a constraint. An n-ary first-order function can be
coded as an (n+ 1)-ary relation accompanied by a constraint. However, if the return
type is bool, the function is more efficiently coded as an unconstrained n-ary relation.
This allows formulas such as A+ ∪ B+ = (A ∪ B)+ to be translated without taking a
detour through ternary relations.

Higher-order quantification and functions bring complications of their own. For ex-
ample, assuming the cardinality constraints |α|= 2 and |β|= 3, we would like to trans-
late ∀g :: β→α. g x 6= y into something like

∀g⊆ {a3,a4,a5}×{a1,a2}. (∀a∈{a3,a4,a5}. |g(a)|= 1)−→ g(x) 6= y

but since Kodkod is first-order, the ⊆ symbol is not allowed at the binding site; only
∈ is. Skolemization solves half the problem, but for the remaining quantifiers we are
forced to adopt an unwieldy n-tuple singleton representation of functions, where n is
the cardinality of the domain. The n-tuple simply encodes g’s function table. For the
formula above, this gives

∀G∈{a1,a2}3.
( g︷ ︸︸ ︷
{a3}×π1(G) ∪ {a4}×π2(G) ∪ {a5}×π3(G)

)
(x) 6= y

where G is the triple corresponding to g and πi(G) is its ith component (i.e., the ith
entry in the function table). In the body, we convert the singleton G to the relational
representation, then we apply x on it. The singleton encoding is also used for passing
functions to other functions; fortunately, two optimizations, function specialization and
boxing [8, §5], make this rarely necessary.

5.2 Approximation of Infinite Types and Partiality

Because of the axiom of infinity, the type nat of natural numbers does not admit any
finite models. To work around this, Nitpick considers finite subsets {0,1, . . . , K − 1}
of nat and maps numbers ≥ K to the undefined value, denoted by ? and coded as the
empty set. Formulas of the form ∀n ::nat. P n are treated as (∀n < K. P n) ∧ P ?, which
usually evaluates to either False (if P i gives False for some i < K) or ?, but not to True,
since we generally cannot determine statically whether P K, P (K+1), . . . , collectively
represented by P ?, are true. Partiality leads to a Kleene three-valued logic, which is
soundly encoded in Kodkod’s two-valued logic.

5.3 Encoding of (Co)inductive Predicates

Isabelle lets users specify (co)inductive predicates p by their introduction rules and
synthesizes a fixed point definition p = lfp F or p = gfp F behind the scenes. For per-
formance reasons, Nitpick handles (co)inductive predicates specially rather than simply
expanding lfp and gfp to their definitions.

An inductive predicate p is a fixed point, so Nitpick can use the equation p = F p
as the axiomatic specification of p. In general, this is unsound since it underspecifies p,
but there are two important cases for which this method is sound:
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– If the recursion in F is well-founded [12], the fixed point equation p = F p admits
exactly one solution that can safely be taken as p’s specification.

– If p occurs negatively in the formula, these occurrences can be soundly replaced by
a fresh constant q satisfying the axiom q = F q.

For the remaining positive occurrences of p, Nitpick unrolls the predicate a given num-
ber of times, as in bounded model checking [4]. The situation is mirrored for coin-
ductive predicates: Positive occurrences are coded using the fixed-point equation, and
negative occurrences are unrolled.

5.4 Encoding of (Co)inductive Datatypes

In contrast to Isabelle’s constructor-oriented treatment of inductive datatypes, Nitpick’s
FORL axiomatization revolves around selectors and discriminators, following a stan-
dard Alloy idiom [28]. The selector/discriminator view is usually more efficient than
the constructor view because it breaks high-arity constructors into several low-arity se-
lectors, with correspondingly smaller function tables in the SAT encoding. For example,
the type α list generated from Nil ::α list and Cons ::α→α list→α list is axiomatized in
terms of the discriminators nilp and consp and the selectors hd and tl, which give access
to a nonempty list’s head and tail.

The FORL axiomatization specifies a subterm-closed finite substructure of lists. Ex-
amples of subterm-closed list substructures using traditional notation are {[], [0], [1]}
and {[], [1], [2,1], [0,2,1]}. On the other hand, the set L = {[], [1,1]} is not subterm-
closed, because tl [1,1] = [1] /∈ L. Given cardinalities for the list type and the item type,
the SAT solver enumerates all corresponding subterm-closed list substructures.

Nitpick supports coinductive datatypes, even though Isabelle does not provide a
high-level mechanism for defining them. Users can define custom coinductive datatypes
from first principles and tell Nitpick to substitute its efficient FORL axiomatization for
their definitions.

6 Related Work

Isabelle is not the only interactive theorem prover that provides a palette of automatic
proof and disproof tools. We briefly review what the other popular provers have to offer.

– HOL4 [20, 49] includes the original version of Metis [24] and an integration of
SMT solvers [55] with proof reconstruction for Z3 [10].

– PVS includes a Quickcheck-like random testing tool [36] and integrates the SMT
solver Yices as an oracle [47].

– For Mizar, the MizAR web service [45] is a recent addition that exploits external
resolution provers in the style of Sledgehammer.

– The Sedan version of ACL2 includes a counterexample generator based on ran-
dom testing [13]. The tool analyses the goal to compute dependencies between free
variables, similar to Quickcheck’s data-flow analysis.

– Although Coq has a considerable user base, advisory tools are conspicuously miss-
ing. An SMT integration with proof certification is in the works [27].
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– Earlier versions of the Agda proof assistant included a version of QuickCheck [17],
but like the original QuickCheck for Haskell it required users to write dedicated
data generators for custom datatypes. The Agsy tool [29, 30] implements narrow-
ing for both counterexample generation and proof search. An integration of the
equational prover Waldmeister is under development [19].

7 Conclusion

Isabelle offers a wide range of automatic tools for proving and disproving conjectures.
Some of them are built into the theorem prover, but increasingly these activities are del-
egated to highly optimized external tools, such as resolution provers, SAT solvers, and
SMT solvers. While there have been several attempts at integrating external provers and
disprovers in various interactive theorem provers, Isabelle is probably the only interac-
tive prover where external tools play such a prominent role, to the extent that they are
now seen as indispensable by many if not most users.

In terms of usefulness, Sledgehammer is second only to the simplifier and tableau
prover. But the counterexample generators also provide invaluable help and encour-
age a lightweight explorative style to formal proof development, as championed by Al-
loy [25]. Because it is so fast, Quickcheck is enabled by default to run on all conjectures.
Users are so accustomed to its feedback that they rarely realize to what extent they ben-
efit from it. Every now and then, Nitpick finds a counterexample beyond Quickcheck’s
reach. As developers of both tools, we frequently receive emails from users grateful to
have been spared “several hours of hard work.”

An explanation for Sledgehammer, Quickcheck, and Nitpick’s success is that they
are included with Isabelle and require no additional installation steps. External tools
necessary to their operation are either included in the official Isabelle packages or ac-
cessible as online services. Multi-core architectures and remote servers help to bear the
burden of (dis)proof, so that users can continue working on a manual proof while the
tools run in the background.

Another important design goal for all three tools was one-click invocation. Users
should not need to preprocess the goals, specify options, or implement custom data gen-
erators. Even better than one-click invocation is zero-click invocation, whereby the tools
spontaneously run on newly entered conjectures. A more flexible user interface, such
as the experimental jEdit-based PIDE [58], could help further here, by asynchronously
dispatching the tools to tackle any unfinished proofs in the current proof document,
irrespective of the text cursor’s location.

Interactive theorem proving is still challenging, but thanks to a new generation of
automatic proof and disproof tools and the wide availability of multi-core processors
with spare CPU cycles, it is much easier and more enjoyable now than it was only a few
years ago.

Acknowledgment. We thank Alexander Krauss, Mark Summerfield, and Thomas Türk
for suggesting several textual improvements.

13



References

1. Antoy, S., Hanus, M.: Functional logic programming. Commun. ACM 53, 74–85 (2010)
2. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol.

4590, pp. 298–302. Springer (2007)
3. Berghofer, S., Nipkow, T.: Random testing in Isabelle/HOL. In: Cuellar, J., Liu, Z. (eds.)

SEFM 2004. pp. 230–239. IEEE C.S. (2004)
4. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs. In:

Cleaveland, R. (ed.) TACAS ’99. LNCS, vol. 1579, pp. 193–207. Springer (1999)
5. Blanchette, J.C.: Relational analysis of (co)inductive predicates, (co)inductive datatypes, and

(co)recursive functions. Softw. Qual. J. To appear
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