
Monotonicity
or

How to Encode Polymorphic Types
Safely and Efficiently

Jasmin Christian Blanchette1,?, Sascha Böhme1, and Nicholas Smallbone2

1 Fakultät für Informatik, Technische Universität München, Germany
2 Dept. of CSE, Chalmers University of Technology, Gothenburg, Sweden

Abstract. Most automatic theorem provers are restricted to untyped or mono-
morphic logics, and existing translations from polymorphic logics are either bulky
or unsound. Recent research shows how to exploit monotonicity to encode ground
types efficiently: monotonic types can be safely erased, while nonmonotonic
types must generally be encoded. We extend this work to rank-1 polymorphism
and show how to eliminate even more clutter by also erasing most occurrences of
nonmonotonic types, without sacrificing soundness or completeness. The new en-
codings are implemented in the Sledgehammer tool for Isabelle/HOL. Our eval-
uation finds them considerably superior to previous schemes.

1 Introduction

Specification languages and other theorem proving applications often rely on powerful
type systems, with polymorphism and overloading, but most state-of-the-art automatic
provers support only untyped or monomorphic formalisms. The various sound and com-
plete translation schemes for polymorphic types proposed in the literature, whether they
revolve around type guards (predicates) or tags (functions), produce their share of clut-
ter, and lighter approaches are usually unsound (i.e. they do not preserve satisfiability).
As a result, application authors face a painful choice between soundness and efficiency.

The third author, together with Claessen and Lillieström [10], designed sound, com-
plete, and efficient translations from monomorphic to untyped first-order logic with
equality. The key insight is that monotonic types (types whose domain can be extended
with new elements while preserving satisfiability) can be simply erased, while the re-
maining types can be made monotonic by introducing guards or tags. Monotonicity is
undecidable, but it can often be inferred in practice using suitable calculi [3, 10].

In this paper, we first generalise this approach to a rank-1 (ML-style) polymorphic
logic, as embodied by the polymorphic TPTP typed first-order form (TFF1) [4]. Unfor-
tunately, the presence of a single polymorphic literal1 Xα = t will lead us to classify
every type as potentially nonmonotonic and force the use of guards or tags everywhere,
as in the traditional encodings. We solve this issue by our second main contribution,

? Research supported by the Deutsche Forschungsgemeinschaft grant Ni 491/11-2.
1 The notation tτ stands for a term t with type τ, whereas α is a type variable.

2

a novel scheme that considerably reduces the clutter associated with nonmonotonic
types, based on the observation that guards or tags are only required when translating
the particular axioms that make a type nonmonotonic. Consider a two-valued state type
axiomatised by ∀S : state. S=on ∨ S=off and ∀S : state. toggle(S) 6=S. Claessen et al.
would classify state as nonmonotonic and require systematic annotations with guards
or tags, whereas our refined scheme detects that the second axiom is harmless and trans-
lates it to the untyped formula ∀S . toggle(S) 6=S, simply erasing the types.

After a brief review of the traditional polymorphic type encodings (Section 2), we
present the polymorphic monotonicity inference calculus and the related type encod-
ings (Section 3). Although the focus is on sound encodings, we also consider unsound
ones, both as evaluation yardsticks and because applications that certify external proofs
can safely employ them for proof search. Furthermore, we explore incomplete versions
of the type encodings based on monomorphisation (Section 4). The polymorphic en-
codings are proved sound and complete (Section 5).

The type encodings described here have been implemented in the popular Sledge-
hammer tool [2, 14], which provides a bridge between the interactive theorem prover
Isabelle/HOL and a wide range of automatic provers. We evaluate the encodings’ suit-
ability for the resolution provers E [17], SPASS [21], and Vampire [16] and the SMT
solver Z3 [15] (Section 6). Our comparison includes the traditional type encodings as
well as the provers’ native support for simple types (sorts) where available.

The exposition builds on the following running examples.

Example 1.1 (Monkey Village). Imagine a village of monkeys [10] where each monkey
owns at least two bananas:

∀M : monkey. owns(M, b1(M)) ∧ owns(M, b2(M))
∀M : monkey. b1(M) 6= b2(M)
∀M1, M2 : monkey, B : banana. owns(M1, B) ∧ owns(M2, B)−→ M1 = M2

The predicate owns : monkey×banana→ o associates monkeys with bananas, and the
functions b1, b2 : monkey→ banana witness the existence of each monkey’s minimum
supply of bananas. The type banana is monotonic, because any model with κ bananas
can be extended to a model with κ ′ > κ bananas, where κ and κ ′ can be infinite cardinals.
In contrast, monkey is nonmonotonic, because there can live at most n monkeys in a
village with a finite supply of 2n bananas.

Example 1.2 (Algebraic Lists). The following axioms induce a minimalistic first-order
theory of algebraic lists:

∀X : α, Xs : list(α). nil 6= cons(X, Xs)
∀Xs : list(α). Xs = nil ∨ (∃Y : α, Ys : list(α). Xs = cons(Y, Ys))
∀X : α, Xs : list(α). head(cons(X, Xs)) = X
∀X : α, Xs : list(α). tail(cons(X, Xs)) = Xs

We conjecture that cons is injective. Expressed negatively for an unknown but fixed
type b, the conjecture becomes

∃X, Y : b, Xs, Ys : list(b). cons(X, Xs) = cons(Y, Ys) ∧ (X 6= Y ∨ Xs 6= Ys)

Since the problem is unsatisfiable, all types are trivially monotonic.

3

2 Traditional Type Encodings

Encoding types in an untyped logic is an old problem, and many solutions have nearly
folkloric status. They lay the foundation for our more efficient encodings.

Full Type Erasure (e). The easiest way to translate a typed formula into an untyped
logic is to omit, or erase, all type information. We call this encoding e. Type erasure is
conspicuously unsound in a logic that interprets equality, because different cardinality
constraints can be attached to different types; for example, the e encoding translates
the exhaustion rule ∀U : unit. U = unity to ∀U. U = unity, which forces a singleton
universe. An expedient is to filter out all axioms of the form ∀X : τ. X=c1 ∨ ·· · ∨ X=cn
[14, §2.8], but this generally does not suffice to prevent unsound cardinality reasoning.

Full type erasure is also unsound because it confuses distinct monomorphic in-
stances of polymorphic symbols. Clearly, the axioms p(ca) and ¬p(cb) are satisfiable
in a typed logic but become unsatisfiable if the types a and b are erased.

Type Arguments (a). To distinguish instances of polymorphic symbols, we can sup-
ply explicit type arguments, encoded as terms: type variables α become term variables
A, and n-ary type constructors k become n-ary function symbols k. For the example
above, we obtain p(a, c(a)) and¬p(b, c(b)), and a fully polymorphic instance cα would
be mapped to c(A). More generally, we pass one type argument for each type variable
occurring in the most general type for a symbol, e.g. nil(A); this suffices to reconstruct
its type. We call this encoding a; it is unsound, although much less so than e.

Type Guards (g). Arguably the most intuitive approach to encode type information
soundly and completely is to employ type guards—predicates that restrict the range of
variables. For polymorphic type systems, they take the form of a binary predicate g(τ, t)
that checks whether t has type τ, where τ is encoded as a term. We call this encoding g.

Each variable in the generated clause normal form (CNF) problem is guarded by g,
and type information is provided for the function symbols occurring in the problem.
For full first-order form (FOF), we must guard bound variables as well, with −→ as the
connective for ∀ and ∧ for ∃. The first axiom of Example 1.1 becomes

∀M. g(monkey, M)−→ owns(M, b1(M)) ∧ owns(M, b2(M))

To witness the inhabitation of all types, we include ∀A.∃X. g(A, X) as an axiom. We
must also include type information for the function symbols occurring in the problem,
as auxiliary typing axioms ∀M. g(banana, bi(M)). There is no need to guard M because
the bi’s are always bananas irrespective of their argument.

This encoding gives a type to some ill-typed terms, such as b1(b2(monkey)). Intu-
itively, this is safe because such terms cannot bring the proof forward (except to witness
inhabitation, but even in that role they are redundant). On the other hand, well-typed
terms must always be associated with their correct type, as they are in this encoding.

We must include type arguments that occur only in the result type of a function sym-
bol, in order to distinguish instances of polymorphic function symbols, but all other type
arguments can be omitted, since they can be deduced from the function’s arguments.
Thus, the type argument would be kept for nil but omitted for cons.

4

Type Tags (t). Type guards complicate the logical structure of formulas. An alternative
is to encode all type information in the terms, by wrapping each term and subterm in
suitable functions, which we call type tags. To support polymorphism and n-ary type
constructors, the encoding relies on a single binary function t(τ, t) that tags the term t
with its type τ, where τ is encoded as a term. The tags make the type arguments entirely
superfluous. We call this encoding t. The first axiom of Example 1.1 becomes

∀M. owns(t(monkey, M), t(banana, b1(t(monkey, M)))) ∧
owns(t(monkey, M), t(banana, b2(t(monkey, M))))

3 Sound Type Erasure via Monotonicity Inference

Type guards and tags significantly increase the size of the problems passed to the au-
tomatic provers, with a dramatic impact on their performance. Fortunately, most of the
clutter can be removed by inferring monotonicity and (soundly) erasing type informa-
tion based on the monotonicity analysis.

Polymorphic Monotonicity Inference. A type τ is monotonic in a formula ϕ if any
model of ϕwhere τ has cardinality κ can be extended into a model where it has cardinal-
ity κ ′, for any κ ′ > κ. Claessen et al. devised a simple calculus to infer monotonicity for
monomorphic first-order logic [10, §2.3], based on the observation that a type τ must
be monotonic if the problem contains no positive literal X τ = t or t = X τ (i.e. X does
not occur positively naked).2

The calculus is easy to extend to polymorphism. Semantically, a polymorphic type
is monotonic iff all of its ground instances are monotonic. The extended calculus com-
putes the set of possibly nonmonotonic polymorphic types, which consists of all types τ
such that there is a positively naked variable of type τ. Each nonmonotonic ground type
is an instance of a type in this set. To infer that a polymorphic type τ is monotonic,
we check that there is no possibly nonmonotonic type unifiable with τ. Annoyingly,
a single occurrence of a positively naked variable of type α, such as X in the equa-
tion head(cons(X, Xs)) = X from Example 1.2, is enough to completely flummox the
analysis: since all types are instances of α, they are all possibly nonmonotonic.

Infinity Inference. We regain some precision by complementing the calculus with an
infinity analysis: by the Löwenheim–Skolem theorem, all types with no finite models
are monotonic. We call such types infinite. We could employ an approach similar to
that implemented in Infinox [9] to automatically infer finite unsatisfiability of types; for
Example 1.2, we would infer that list(α) is infinite because cons is injective but not
surjective. However, in an interactive theorem prover, it is simpler to exploit metain-
formation available through introspection. Isabelle datatypes are registered with their
constructors; if some of them are recursive, or take an argument of an infinite type, the
datatype must be infinite. Combining infinity inference with the monotonicity inference
calculus described above, we get the following rule for inferring monotonicity:

2 Claessen et al. designed a second, more powerful calculus to detect predicates that act as fig
leaves for naked variables. Whilst the calculus proved fairly successful on a subset of the TPTP
benchmark suite [19], we assessed its suitability on about 1000 fairly large problems generated
by Sledgehammer and found no improvement on the first calculus.

5

A polymorphic type is monotonic if, whenever it is unifiable with a possibly
nonmonotonic type, the most general unifier is an instance of an infinite type.

Our rule is correct because if we infer a type to be monotonic, then all its ground in-
stances either are infinite or can be inferred monotonic by the monotonicity calculus.

Type Erasure with Guards (g?, g??). Claessen et al. observed that monotonic types
can be soundly erased when translating from a monomorphic logic to an untyped logic,
whereas nonmonotonic types must be encoded, typically using guards or tags [10, §3.2].
In particular, type erasure as performed by the type argument encoding a is sound if
all types are monotonic. We extend the approach to polymorphism and show how to
eliminate even more type information than Claessen et al. in the monomorphic case.

We first focus on type guards. The following procedure soundly translates problems
from polymorphic to untyped first-order logic:

1. Introduce type arguments to all polymorphic function and predicate symbols.
2. Add guards for the types that cannot be inferred monotonic, and add typing axioms.
3. Erase all the types.

We call the resulting encoding g?. In contrast to the traditional g encoding, g? generally
requires type arguments to compensate for the incomplete type information.

Typing axioms are needed to discharge the guards. We could in principle simply
generate typing axioms g(τ, f(X̄)) for every function symbol f and similarly for bound
variables, as in the g encoding, but some of these axioms are needless. We reduce clutter
in two ways. First, if τ is not unifiable with any of the possibly nonmonotonic types, the
typing axiom will never be resolvable against a guard and can be omitted. Second, for
infinite types τ, it suffices to generate an axiom g(τ, X) that allows any term to be typed
as τ; such an axiom is sound for any monotonic type τ, as we will prove in Section 5.

Example 3.1. For the algebraic list problem of Example 1.2, our monotonicity infer-
ence reports that α is possibly nonmonotonic, but list(α) is infinite. The g? encoding of
the problem follows, including the negated conjecture and the typing axioms:

∀A. ∃X. g(A, X)
∀A, Xs. g(list(A), Xs)
∀A, Xs. g(A, head(A, Xs))

∀A, X, Xs. g(A, X)−→ nil(A) 6= cons(A, X, Xs)
∀A, Xs. Xs = nil(A) ∨ (∃Y, Ys. g(A, Y) ∧ Xs = cons(A, Y, Ys))
∀A, X, Xs. g(A, X)−→ head(A, cons(A, X, Xs)) = X
∀A, X, Xs. g(A, X)−→ tail(A, cons(A, X, Xs)) = Xs

∃X,Y,Xs,Ys. g(b, X)∧ g(b, Y)∧ cons(b, X, Xs)=cons(b, Y, Ys)∧ (X 6=Y∨Xs 6=Ys)

The second typing axiom allows any term to be typed as list(α), which is sound because
list(α) is infinite. We could also have provided separate axioms for nil, cons, and tail.
Either way, the axioms are needed to discharge the g(A, X) guards in case the proof
requires reasoning about list(list(α)).

The g? encoding treats all variables of the same type uniformly. Hundreds of axioms
can suffer because of one unhappy formula that uses a type nonmonotonically. A lighter
encoding, called g??, is possible: if an essentially universal (i.e. nonskolemisable) var-

6

iable does not occur positively naked in a formula, we safely omit its guard. This is
related to the observation that only paramodulation from or into a (positively naked)
variable can cause ill-typed instantiations in a resolution prover [22, §4].

Example 3.2. The g?? encoding of Example 1.2 is identical to g? except that the nil 6=
cons and tail axioms do not need any guard.

Example 3.3. Let us return to the monkey village of Example 1.1. Encoded with g??,
it requires only two guards, a clear improvement over g? and Claessen et al. [10, §2.3]:

∀A. ∃X. g(A, X)

∀M. owns(M, b1(M)) ∧ owns(M, b2(M))
∀M. b1(M) 6= b2(M)
∀M1, M2, B. g(monkey, M1)−→ g(monkey, M2)−→

owns(M1, B) ∧ owns(M2, B)−→ M1 = M2

Type Erasure with Tags (t?, t??). The t? encoding, analogous to g?, tags all terms
of a possibly nonmonotonic type that is not infinite. This can result in mismatches, e.g.
if α is tagged but its instance list(α) is not. The solution is to generate an equation
t(τ, X) = X for each infinite type τ, which allows the prover to add or remove a tag.
The lighter encoding t?? only annotates naked variables, whether positive or negative,
and introduces equations t(τ, f(X)) = f(X) to add or remove tags around each function
symbol (or skolemisable variable) f of a possibly nonmonotonic type τ. It is not strictly
necessary to tag negatively naked variables, but a uniform treatment of naked variables
ensures that resolution can be directly applied on equality atoms.

Example 3.4. The t? encoding of Example 1.2 is as follows:

∀A. ∃X. t(A, X) = X
∀A, Xs. t(list(A), Xs) = Xs

∀A, X, Xs. nil(A) 6= cons(A, t(A, X), Xs)
∀A, Xs. Xs = nil(A) ∨ (∃Y, Ys. Xs = cons(A, t(A, Y), Ys))
∀A, X, Xs. t(A, head(A, cons(A, t(A, X), Xs))) = t(A, X)
∀A, X, Xs. tail(A, cons(A, t(A, X), Xs)) = Xs

∃X,Y,Xs,Ys. cons(b, t(b,X), Xs)=cons(b, t(b,Y),Ys)∧(t(b,X) 6=t(b,Y)∨Xs 6=Ys)

Example 3.5. The t?? encoding of Example 1.2 requires fewer tags, at the cost of more
type information (for head and some of the existential variables):

∀A. ∃X. t(A, X) = X
∀A, Xs. t(list(A), Xs) = Xs
∀A, Xs. t(A, head(A, Xs)) = head(A, Xs)

∀A, X, Xs. nil(A) 6= cons(A, X, Xs)
∀A, Xs. Xs = nil(A) ∨ (∃Y, Ys. t(A, Y) = Y ∧ Xs = cons(A, Y, Ys))
∀A, X, Xs. head(A, cons(A, X, Xs)) = t(A, X)
∀A, X, Xs. tail(A, cons(A, X, Xs)) = Xs

∃X, Y, Xs, Ys. t(b, X) = X ∧ t(b, Y) = Y ∧
cons(b, X, Xs) = cons(b, Y, Ys) ∧ (X 6= Y ∨ Xs 6= Ys)

7

Finiteness Inference (g!, g!!, t!, t!!). A radical approach is to assume every type
is infinite unless we have metainformation to the contrary. Only types that are clearly
finite, such as unit and pair(bool, bool), are considered by the monotonicity inference
calculus. This is of course unsound, but it eliminates even more clutter and can make
sense if proof search is followed by certification. The encodings g!, g!!, t!, and t!! are
defined analogously to g?, g??, t?, and t??.

4 Monomorphisation

Type variables give rise to term variables in encoded formulas. These variables dramat-
ically increase the search space. In the context of Sledgehammer, a further complication
is that axiomatic type class predicates must be included in the problem to restrict the
variables’ ranges [14, §2.1]. An alternative is to monomorphise the problem, i.e. to
heuristically instantiate all type variables with ground types. Monomorphisation is nec-
essarily incomplete [7, §2] and often overlooked or derided in the literature, but it was
applied with much success in the Isabelle–SMT integration [2].

The Algorithm. Our monomorphisation algorithm involves three stages:

1. Separate the monomorphic and the polymorphic formulas, and collect all symbols
occurring in the monomorphic formulas (the “mono-symbols”).

2. For each polymorphic axiom, stepwise refine a set of substitutions, starting from the
singleton set containing only the empty substitution, by matching known mono-
symbols against their polymorphic counterparts. As long as new mono-symbols
emerge, collect them and repeat this stage.

3. Apply the computed substitutions to the corresponding polymorphic formulas. Only
keep fully monomorphic formulas.

To ensure termination, we limit the iterations performed in stage 2 to a configurable
number K. To curb the exponential growth, we also enforce an upper bound ∆ on the
number of new formulas. Sledgehammer operates with K = 3 and ∆ = 200 by default,
so that a problem with 500 axioms comprises at most 700 axioms after monomorph-
isation. Experiments found these values suitable. Increasing ∆ sometimes helps solve
more problems, but its potential for clutter is real.

Type Mangling and Native Types (ñ̃n, ñ̃nn). Monomorphisation is applicable in combi-
nation with all the encodings presented so far except e (which erases all types). Since all
types are ground, we mangle them in the enclosing symbol names to lighten the trans-
lation; for example, g(τ, t) becomes gτ(t). We decorate the letter denoting an encoding
with ˜ to indicate monomorphisation.

The mangled type guard encoding g̃ also constitutes a suitable basis for generating
typed problems in the monomorphic TPTP typed first-order form (TFF0) [20], a format
supported natively by a growing number of provers, including Vampire and Z3. In g̃,
each bound variable is guarded by a gτ predicate; in the corresponding TFF0-based
typed translation, which we call ñ (“native”), the variable is declared with the type τ
instead. Type declarations replace typing axioms. Since TFF0 forbids overloading, all
type arguments must be kept and mangled in the symbols.

8

5 Soundness and Completeness

To cope with the variety of type encodings, we need a modular proof of correctness that
isolates their various features. Obviously, we cannot prove the unsound encodings cor-
rect, but this still leaves g?, g??, t?, and t??, with and without monomorphisation (˜).

We start by proving the monomorphic encodings sound and complete when applied
to already monomorphic problems—i.e. they preserve satisfiability and unsatisfiability.
(Monomorphisation in itself is obviously sound, although incomplete.) Then we pro-
ceed to lift the proof to polymorphic encodings.

5.1 The Monomorphic Case

To prove g̃?, g̃??, t̃?, and t̃?? correct, we follow a two-stage proof strategy: the first
stage adds guards or tags without erasing any types, so that the formulas remain typed,
and the second stage erases the types. We call the original problem Aτ, the intermediate
problem Zτ, and the final problem Z. (The τ superscripts stand for “typed”.)

The following result, due to Claessen et al. [10, §2.2], plays a key role in the proof:

Lemma 5.1 (Monotonic Type Erasure). Let Φτ be a monomorphic problem. If Φτ

is monotonic (i.e. all of its types are monotonic), then Φτ is equisatisfiable to its type-
erased variant Φ.

Proof. Let M be a model of Φτ. By monotonicity, there exists a model N where all the
domains have the cardinality of the largest domain in M . From N , we construct a model
of Φ by identifying all the domains. Conversely, from a model N of Φ we construct a
model of Φτ with the same interpretations of functions and predicates as in N and with
N ’s unique domain as the domain for every type. ut

Corollary 5.2 (Equisatisfiability Conditions). The problems Aτ and Z are equisatis-
fiable if the following conditions hold:

MONO: Zτ is monotonic.
SOUND: If Aτ is satisfiable, then so is Zτ.

COMPLETE: If Zτ is satisfiable, then so is Aτ.

We show the conditions of Corollary 5.2 separately for guards and tags. The proofs
rely on the following lemma:

Lemma 5.3 (Domain Restriction). Let M be a model of Φ, and let M ′ be an inter-
pretation constructed from M by deleting some domain elements while leaving the in-
terpretations of functions and predicates intact. This M ′ is a model of Φ provided that

(a) we do not make any domain empty;
(b) we do not delete any domain element that is in the image of a function;
(c) we do not delete any witness for an existential variable.

Proof. For simplicity, suppose the problem is expressed in CNF, in which case (b) sub-
sumes (c). Conditions (a) and (b) ensure that M ′ is well-defined and that ground clauses
are interpreted as in M . Since every domain element of M ′ is also in M , all clauses that
are satisfied in M are also satisfied in M ′. ut

9

Theorem 5.4 (Correctness of Monomorphic Guards). The encodings g̃? and g̃??
are sound and complete for monomorphic problems.

Proof. It suffices to show that the three conditions of Corollary 5.2 are fulfilled.

MONO: Infinite types are necessarily monotonic. The other types are monotonic if all
positively naked variables of their types are guarded [10, §2.4]. Both g̃? and g̃?? guard
all such variables—g̃?? guards exactly those variables, while g̃? guards more.

SOUND: Given a model of Aτ, we extend it to a model of Zτ by giving an interpretation
to the type guards. To do this, we simply interpret all type guards by the true predicate
(the predicate that is true everywhere).

COMPLETE: A model of Zτ is canonical if all guards are interpreted by the true predi-
cate. From a canonical model, we obtain a model of Aτ by the converse construction to
SOUND. It then suffices to prove that whenever there exists a model of Zτ, there exists a
canonical model. We appeal to Lemma 5.3 to remove the domain elements that do not
satisfy their guard predicate. For this to work, (a) each predicate must be satisfied by at
least one element, (b) each function must satisfy its predicate, and (c) each existential
variable must satisfy its predicate; this is exactly what our typing axioms ensure. ut

Theorem 5.5 (Correctness of Monomorphic Tags). The encodings t̃? and t̃?? are
sound and complete for monomorphic problems.

Proof. The proof for tags is analogous to that for guards, so we leave out the details.
A model of Zτ is canonical if the type tags are interpreted by the identity function. We
construct a canonical model by deleting all the domain elements for which the type tag
is not the identity. The typing axioms ensure that this gives us a model. ut

The above proof goes through even if we tag more terms than are necessary to
ensure monotonicity. Hence, it is sound to tag negatively naked variables. We may also
add further typing axioms to Zτ—for example, equations f(U, tτ(X), V) = f(U, X, V) to
add or remove tags around well-typed arguments of a function symbol f, or instances of
the idempotence law tτ(tτ(X)) = tτ(X)—provided that they hold for canonical models
(where the type tag is the identity function) and preserve monotonicity.

5.2 Extension to Polymorphism

The next step is to lift the argument to polymorphic encodings and polymorphic prob-
lems. Regrettably, it is not possible to adjust the two-stage proof of Section 5.1 to poly-
morphism: without dependent types, neither the binary g predicate nor the binary t
function can be typed, preventing us from constructing the polymorphic intermediate
problem corresponding to Zτ. Instead, we reduce the general, polymorphic case to the
already proved monomorphic case. Our Herbrandian motto is,

A polymorphic formula is equivalent to the set of its monomorphic instances,
which in general will be an infinite set.

This complete form of monomorphisation is not to be confused with the finitary, heuris-
tic monomorphisation algorithm presented in Section 4. Our proof exploits a form of
commutativity between our encodings and complete monomorphisation.

10

Aα
encode

//

mono-
morphise

��

Xτ
erase types

//

“mono-
morphise”

��

X

Yτ
mangle

// Y

Aτ
encode

// Zτ
erase types

// Z

(a) Transformations

Aα
OO

Herbrand

��

Xτ
Lem. 5.1

/o/o/o/o/o/o
OO

Herbrand

��

X

Yτ
Lem. 5.6

/o/o/o/o/o/o Y

Lem. 5.7

�O
�O
�O
�O
�O

Aτ
Thms. 5.4, 5.5

/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o Z

(b) Equisatisfiability

Figure 1. Relationships between problems

More specifically, given a polymorphic problem Aα, the following two routes (among
others) are possible.

1. Encode, then “monomorphise”: Generate an untyped problem X from Aα using a
polymorphic encoding; then generate all possible “monomorphic” instances of the
problem’s formulas by instantiating the encoded type variables with all possible
“types” and mangle the resulting (generally infinite) set to obtain the problem Y.
According to our motto, X and Y are equisatisfiable.

2. Monomorphise, then encode: Compute the set of monomorphic formulas Aτ by in-
stantiating all type variables in Aα with all possible ground types; then translate Aτ

to Z using the monomorphic variant of the chosen encoding. Aα and Z are equisat-
isfiable by Section 5.1 and our motto.

As in the monomorphic case, where we distinguished between the intermediate,
typed problem Zτ and the final, untyped Z, we find it useful to oppose Xτ to X and Yτ

to Y. Although the protectors g and t cannot be typed polymorphically, a crude typing is
possible, with encoded types assigned the type ϑ and all other terms assigned ι, avoiding
mixing types and terms in the encoded problems. Figure 1(a) summarises the situation.

Intuitively, the problems Y and Z obtained by taking routes 1 and 2 should be very
similar. If we can show that they are in fact equisatisfiable, the desired equisatisfiability
of Aα and X follows by transitivity. Figure 1(b) sketches the equisatisfiability proof.
The missing equisatisfiabilities Yτ∼ Y∼ Z are proved below.

Lemma 5.6 (Correctness of Mangling). The problems Yτ and Y are equisatisfiable.

Proof. The difference between Yτ and Y is that the former has ground arguments of
type ϑ, while the latter mangles them into the symbol names, e.g. p(bϑ, X ι) vs. pb(X).
Mangling is generally incomplete in an untyped logic; for example, the formula X = Y∧
q(a, U)∧¬ q(b, V) is unsatisfiable (since it implies a = b), but its mangled variant
X = Y ∧ qa(U)∧¬ qb(V) is satisfiable. In our two-typed setting, since there are no
equations relating ϑ terms, mangling is easy to prove correct by considering (equality)
Herbrand interpretations of the non-mangled and mangled formulas. ut

11

Lemma 5.7 (Commutativity of Encoding and Monomorphisation). The problems
Y and Z are equisatisfiable.

Proof. We start with an example that illustrates the reasoning behind the proof. As
polymorphic problem Aα, we simply take the polymorphic list axiom

∀X : α, Xs : list(α). head(cons(X, Xs)) = X

from Example 1.2. We suppose that list(α) is infinite (and hence monotonic) but the
base type b is possibly nonmonotonic.

Following route 1, we apply the two-typed variant of t?? directly to the polymorphic
formula Aα. This yields the set Xτ, where the second axiom below repairs mismatches
between tagged and untagged terms with the infinite type list(α):

∀A : ϑ, X : ι, Xs : ι. head(A, cons(A, X, Xs)) = t(A, X)
∀A : ϑ, Xs : ι. t(list(A), Xs) = Xs

This set would also contain a typing axiom for head, which we omit here. The constant
b and the unary function list are the only function symbols with a result of type ϑ. Next,
we instantiate the variables A with all ground terms of type ϑ, yielding Yτ. Finally, we
mangle Yτ, transforming head(b, t) into headb(t) and so on. This gives Y:

∀X, Xs. headb(consb(X, Xs)) = tb(X) ∀Xs. tlist(b)(Xs) = Xs
∀X, Xs. headlist(b)(conslist(b)(X, Xs)) = tlist(b)(X) ∀Xs. tlist(list(b))(Xs) = Xs

...
...

In contrast, with route 2 we fully monomorphise Aα to Aτ. Then we use a mono-
morphic encoding, say, t̃??, to translate it into a set Z of untyped formulas

∀X, Xs. headb(consb(X, Xs)) = tb(X)
∀X, Xs. headlist(b)(conslist(b)(X, Xs)) = X

...

Notice that the treatment of X in the right-hand sides above differs, since b is possibly
nonmonotonic but list(b) is infinite.

Are Y and Z equisatisfiable? The first formula of Z is also the first member of Y.
The second formula of Z, however, does not appear in Y: the second formula of Y is the
closest but its right-hand side is t list(b)(X) instead of X. Fortunately, Y also contains the
axiom ∀Xs. tlist(b)(Xs) = Xs, so Y must imply the second formula of Z. Conversely, Z
does not mention the symbol tlist(τ) for any τ, so we can add, for all ground types τ, the
axiom ∀Xs. tlist(τ)(Xs) = Xs to Z while preserving satisfiability. This new set implies all
members of Y, including the second formula, so Y and Z are equisatisfiable.

We now generalise the above argument. Y contains axioms of the form gτ(X) or
tτ(X) = X for each infinite type τ, whereas Z does not mention gτ or tτ for these types
because they are monotonic; we can add the corresponding axioms to Z while pre-
serving satisfiability. Otherwise, Y and Z contain the same formulas, except when Aα

quantifies over a variable X of a possibly nonmonotonic type with an infinite instance τ.
Z will not protect the instances of X that have type τ, but Y might; however, since τ is
infinite, Y must contain gτ(X) or tτ(X) = X, allowing us to remove the guard or tag.
Hence, the two sets of formulas are equisatisfiable. ut

12

Theorem 5.8 (Correctness of Polymorphic Encodings). The encodings g?, g??, t?,
and t?? are sound and complete.

Proof. This follows from Lemmas 5.1, 5.6, and 5.7, Theorems 5.4 and 5.5, and Her-
brand’s theorem (for terms and for types), as depicted in Figure 1(b). The application of
Lemma 5.1 to erase ϑ and ι in Xτ requires Xτ to be monotonic; this can be proved either
in the style of MONO in the proof of Theorem 5.4 or by observing that monotonicity is
preserved along the equisatisfiability chain Zτ∼ Z∼ Y∼ Yτ∼ Xτ. ut

6 Evaluation

To evaluate the type encodings described in this paper, we put together two sets of
exactly 1000 polymorphic first-order problems originating from 10 Isabelle theories,
translated with Sledgehammer’s help (100 problems per theory).3 Nine of the theories
are the same as in a previous evaluation [2]; the tenth one is an optimality proof for
Huffman’s algorithm.4 The problems in the first benchmark set include about 150 heu-
ristically selected axioms (before monomorphisation); that number is increased to 500
for the second set, to reveal how well the encodings scale with the problem size.

We evaluated each type encoding with four modern automatic theorem provers: the
resolution provers E 1.4, SPASS 3.7, and Vampire 1.8, and the SMT solver Z3 3.0. Each
prover was invoked with the set of options we had previously determined worked best
for Sledgehammer.5 The provers were granted 20 seconds of CPU time per problem on
one core of a 3.06 GHz Dual-Core Intel Xeon processor. Most proofs were found within
a few seconds; a higher time limit would have had little impact on the success rate [8].

Figures 2 and 3 give, for each combination of prover and encoding, the number
of solved problems from each problem set. Rows marked with ˜ concern the mono-
morphic encodings. To avoid giving the unsound encodings an unfair advantage, proof
search is followed by a certification phase that tries to re-find the proof using a combina-
tion of sound encodings. For the second benchmark set, Figure 4 presents the average
number of clauses, literals per clause, symbols per atom, and symbols for clausified
problems (using E’s clausifier), to give an idea of each encoding’s overhead.

The monomorphic versions of our more advanced scheme, especially g̃!! and g̃??,
performed best overall. This confirms the intuition that clutter (whether type arguments,
guards, or tags) slows down automatic provers. Surprisingly, some of our monomorphic
encodings outperformed Vampire’s and Z3’s native support for simple types (ñ), partly
because the type support in Vampire 1.8 is unsound (leading to many rejected proofs)
and interferes with the prover’s internal strategy scheduling. Polymorphic encodings
lag behind, but our approach nonetheless constitutes a substantial improvement over the
traditional polymorphic schemes. The best unsound encodings performed very slightly
better than the best sound ones.

3 The TPTP benchmark suite [19], which is customarily used for evaluating theorem provers,
has just begun collecting polymorphic (TFF1) problems [4, §6].

4 Our test data are available at http://www21.in.tum.de/~blanchet/ijcar2012-data.tgz .
5 The setup for E was suggested by Stephan Schulz and includes the little known “symbol offset”

weight function. We passed -Auto, -SOS=1, -Splits=0, -VarWeight=3, and -FullRed=0 to
SPASS. We ran Vampire in CASC mode and Z3 with model-based quantifier instantiation.

13

UNSOUND SOUND

e a g!! t!! g! t! g?? t?? g? t? g t n
E 1.4 316 362 350 353 343 338 344 351 345 302 255 295 –˜ – 344 390 389 382 372 388 390 386 373 355 334 –
SPASS 3.7 275 324 305 308 309 293 291 309 290 242 247 267 –˜ – 267 337 334 334 322 344 341 340 333 321 311 –
VAMPIRE 1.8 291 376 328 326 333 333 331 313 325 294 240 211 –˜ – 357 385 368 376 379 381 374 365 364 303 238 376
Z3 3.0 295 365 345 347 328 313 329 333 307 260 253 319 –˜ – 339 366 360 362 362 353 352 356 348 349 314 361

Figure 2. Number of solved problems with 150 axioms

UNSOUND SOUND

e a g!! t!! g! t! g?? t?? g? t? g t n
E 1.4 193 339 309 308 312 300 313 310 304 245 199 216 –˜ – 309 368 365 363 354 364 366 364 350 314 308 –
SPASS 3.7 186 306 287 285 284 274 274 294 264 204 198 243 –˜ – 247 310 304 312 284 308 306 300 276 239 231 –
VAMPIRE 1.8 180 350 282 292 298 286 282 288 283 279 185 148 –˜ – 315 344 344 354 334 339 342 339 331 251 171 346
Z3 3.0 175 339 319 323 311 296 306 303 262 222 200 219 –˜ – 302 343 343 350 337 343 340 344 327 329 254 337

Figure 3. Number of solved problems with 500 axioms

UNSOUND SOUND

AVG. NUM. e a g!! t!! g! t! g?? t?? g? t? g t
CLAUSES 749 808 896 835 896 835 974 867 974 867 1107 827˜ – 1080 1139 1105 1139 1105 1176 1105 1176 1105 1649 1105
LITERALS 2.32 2.55 2.70 2.60 3.00 2.55 2.84 2.59 3.88 2.49 5.41 2.56
PER CLAUSE ˜ – 2.28 2.35 2.22 2.35 2.29 2.57 2.15 2.57 2.29 4.74 2.29
SYMBOLS 6.7 9.3 15.8 16.6 14.5 18.3 14.8 16.4 11.9 25.6 6.3 28.1
PER ATOM ˜ – 7.2 6.9 7.4 7.0 8.0 6.3 7.6 6.5 8.3 4.4 14.0
SYMBOLS 11.7 19.2 38.2 38.6 39.0 38.9 40.9 41.5 45.1 55.2 38.0 59.5
(’000) ˜ – 17.8 18.5 18.6 18.7 20.1 19.0 19.2 19.6 21.0 34.4 35.3

Figure 4. Average size of clausified problems with 500 axioms

From both a conceptual and an implementation point of view, the encodings are all
instances of a general framework, in which mostly orthogonal features can be combined
in various ways. Defining such a large number of encodings makes it possible to select
the most appropriate scheme for each automatic prover, based on empirical evidence.
In fact, using time slicing or parallelism, it pays off to have each prover employ a
combination of encodings with complementary strengths.

14

7 Related Work

The earliest descriptions of type guards and type tags we are aware of are due to Ender-
ton [12, §4.3] and Stickel [18, p. 99]. Wick and McCune [22, §4] compare full type era-
sure, guards, and tags. Type arguments are reminiscent of System F; they are described
by Meng and Paulson [14], who also present a translation of axiomatic type classes.

The intermediate verification language and tool Boogie 2 [13] supports a restricted
form of higher-rank polymorphism (with polymorphic maps), and its cousin Why3 [6]
provides rank-1 polymorphism. Both define translations to a monomorphic logic and
rely on proxies to handle interpreted types [7,11,13]. One of the Boogie translations [13,
§3.1] uses SMT triggers to prevent ill-typed instantiations in conjunction with type
arguments; however, this approach is risky in the absence of a semantics for triggers.

An alternative to encoding polymorphic types or monomorphising them away is to
support them natively in the prover. This is ubiquitous in interactive theorem provers,
but perhaps the only automatic prover that supports polymorphism is Alt-Ergo [5].

Blanchette and Krauss [3] studied monotonicity inferences for higher-order logic
without polymorphism. Claessen et al. [10] were first to apply them to type erasure.

8 Conclusion

This paper introduced a family of efficient translations from polymorphic into untyped
first-order logic. Our approach soundly erases all types that are inferred monotonic, as
well as most occurrences of the remaining types. The new translations outperform the
traditional sound encoding schemes as well as common unsound schemes.

We implemented the new translations in the Sledgehammer tool for Isabelle/HOL
[2, 14], thereby addressing a recurring user complaint. Although Isabelle certifies ex-
ternal proofs, unsound proofs are annoying and often conceal sound proofs. The same
translation module forms the core of Isabelle’s TPTP exporter tool, which makes entire
theorem libraries available to first-order reasoners. Our refinements to the monomor-
phic case have made their way into the Monotonox translator [10]. Applications such
as Boogie [13], Why3 [6], and LEO-II [1] also stand to gain from a lighter translation.

The TPTP family recently welcomed the addition of TFF1 [4], an extension of
TFF0 [20] with rank-1 polymorphism. Equipped with a concrete syntax and translation
tools, we could turn any popular automatic theorem prover into an efficient polymorphic
prover. Translating the untyped proof back into a typed proof is usually straightforward,
but there are important corner cases that call for more research. It should also be possi-
ble to extend our approach to integrate interpreted arithmetic types and symbols.

A promising direction for future research would be to look into strengthening the
monotonicity analysis. Type arguments severely clutter our polymorphic translations;
they can often be omitted soundly, but we lack an inference to find out precisely when.

Acknowledgement. Koen Claessen and Tobias Nipkow made this collaboration pos-
sible. Andrei Popescu helped us tackle the correctness proof. Peter Lammich, Rustan
Leino, Tobias Nipkow, Mark Summerfield, Tjark Weber, and an anonymous reviewer
suggested several textual improvements. We thank them all.

15

References
[1] Benzmüller, C., Paulson, L.C., Theiss, F., Fietzke, A.: LEO-II—A cooperative automatic

theorem prover for higher-order logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.)
IJCAR 2008. LNAI, vol. 5195, pp. 162–170. Springer (2008)

[2] Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT solvers.
In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE-23. LNAI, vol. 6803, pp. 207–221.
Springer (2011)

[3] Blanchette, J.C., Krauss, A.: Monotonicity inference for higher-order formulas. J. Autom.
Reasoning 47(4), 369–398 (2011)

[4] Blanchette, J.C., Paskevich, A.: TFF1: The TPTP typed first-order form with rank-1 poly-
morphism—Version 1.0. Submitted to IJCAR 2012

[5] Bobot, F., Conchon, S., Contejean, E., Lescuyer, S.: Implementing polymorphism in SMT
solvers. In: Barrett, C., de Moura, L. (eds.) SMT 2008 (2008)

[6] Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of provers.
In: Leino, K.R.M., Moskal, M. (eds.) Boogie 2011. pp. 53–64 (2011)

[7] Bobot, F., Paskevich, A.: Expressing polymorphic types in a many-sorted language. In:
Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNAI, vol. 6989, pp. 87–102.
Springer (2011)

[8] Böhme, S., Nipkow, T.: Sledgehammer: Judgement Day. In: Giesl, J., Hähnle, R. (eds.)
IJCAR 2010. LNAI, vol. 6173, pp. 107–121. Springer (2010)

[9] Claessen, K., Lillieström, A.: Automated inference of finite unsatisfiability. J. Autom. Rea-
soning 47(2), 111–132 (2011)

[10] Claessen, K., Lillieström, A., Smallbone, N.: Sort it out with monotonicity—Translating
between many-sorted and unsorted first-order logic. In: Bjørner, N., Sofronie-Stokkermans,
V. (eds.) CADE-23. LNAI, vol. 6803, pp. 207–221. Springer (2011)

[11] Couchot, J.F., Lescuyer, S.: Handling polymorphism in automated deduction. In: Pfenning,
F. (ed.) CADE-21. LNAI, vol. 4603, pp. 263–278. Springer (2007)

[12] Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press (1972)
[13] Leino, K.R.M., Rümmer, P.: A polymorphic intermediate verification language: Design and

logical encoding. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp.
312–327. Springer (2010)

[14] Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J. Autom.
Reasoning 40(1), 35–60 (2008)

[15] de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer (2008)

[16] Riazanov, A., Voronkov, A.: The design and implementation of Vampire. AI Comm.
15(2-3), 91–110 (2002)

[17] Schulz, S.: System description: E 0.81. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004.
LNAI, vol. 3097, pp. 223–228. Springer (2004)

[18] Stickel, M.E.: Schubert’s steamroller problem: Formulations and solutions. J. Autom. Rea-
soning 2(1), 89–101 (1986)

[19] Sutcliffe, G.: The TPTP problem library and associated infrastructure—The FOF and CNF
parts, v3.5.0. J. Autom. Reasoning 43(4), 337–362 (2009)

[20] Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed first-order form
with arithmetic. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18. LNCS, vol. 7180, pp. 406–
419. Springer (2012)

[21] Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A., Voronkov,
A. (eds.) Handbook of Automated Reasoning. pp. 1965–2013. Elsevier (2001)

[22] Wick, C.A., McCune, W.W.: Automated reasoning about elementary point-set topology. J.
Autom. Reasoning 5(2), 239–255 (1989)

