
Clubbing Cods
A User’s Guide to Kodkodi 1.2.0

Jasmin Christian Blanchette
Fakultät für Informatik, Technische Universität München

June 16, 2009

Contents

1 Introduction 2

2 Installing the Tool 2

3 First Steps 3

4 Input Format 3
4.1 Lexical Issues . 4
4.2 Overall Structure . 5

4.2.1 Problems . 5
4.2.2 Problem . 5
4.2.3 Kodkod Options . 6
4.2.4 Universe Specification . 6
4.2.5 Relation Bound Specifications 7
4.2.6 Integer Bound Specification 7
4.2.7 Solve Directive . 7

4.3 Register Directives . 7
4.3.1 Tuple Register Directives . 8
4.3.2 Expression Register Directives 8

4.4 Tuple Language . 8
4.4.1 Tuples . 8
4.4.2 Tuple Sets . 9
4.4.3 Tuple Set Operator Precedences and Associativities 10

4.5 Expression Language . 10
4.5.1 Formulas . 10
4.5.2 Relational Expressions . 11
4.5.3 Integer Expressions . 12
4.5.4 Declarations . 12
4.5.5 Assignments . 12
4.5.6 Operator Precedences and Associativities 13

1

4.6 Comments . 13

5 Case Study: Sorting Using Alloy and Kodkodi 14

6 Known Bugs and Limitations 16

1 Introduction

Kodkodi is a front-end for the Java library Kodkod [3], a highly-optimized re-
lational model finder developed by the Software Design Group at MIT. Kodkod
is based on SAT solving and supports first-order logic with relations, transitive
closure, and partial instances. Kodkod forms the basis of version 4 of the Alloy
Analyzer [2]. The Kodkodi front-end is designed to make the Kodkod library
available to other programming languages than Java.

This manual explains the concrete syntax supported by Kodkodi. It also explains
how to install the tool on your workstation. If you use Kodkodi in conjunction
with Nitpick for Isabelle/HOL [6], read the installation instructions in the Nitpick
manual [1].

Comments and bug reports concerning Kodkodi or this manual should be di-
rected to blannospamchette@in.tum.de.

2 Installing the Tool

To install Kodkodi, download and extract the archive http://isabelle.in.tum.
de/~blanchet/kodkodi-1.2.0.tgz. The .jar files for Kodkodi, the Kodkod li-
brary, the portable SAT4J solver, and the ANTLR 3.1.1 runtimes are located in
the kodkodi-1.2.0/jar directory. Kodkodi requires a Java 1.5 virtual machine,
normally called java. To run Kodkodi, you must add this directory to the Java
classpath and execute

java de.tum.in.isabelle.Kodkodi.Kodkodi

To recompile Kodkodi, you need a Java compiler and the ANTLR 3.1.1 parser
generator tools.

For better performance, it is recommended to install a C or C++ SAT solver. Fol-
low the instructions on Kodkod’s home page [4] to install SAT solvers integrated
using the JNI, or install a command-line solver of your choice and specify it using
the External or ExternalV2 described in §4.2.3.

2

3 First Steps

Kodkodi takes its input from standard input and writes its output to standard
output (on success) or standard error (on failure). Examples are provided in the
examples directory. When invoked with wrong command-line arguments, Kod-
kodi displays the usage text:

Usage: java de.tum.in.isabelle.Kodkodi.Kodkodi [options]

options:

-help Show usage and exit

-verbose Produce more output

-exit-on-success Exit on the first successful "solve" directive

-clean-up-inst Remove trivial parts of instance from output

-max-msecs <num> Maximum running time in milliseconds

-max-threads <num> Maximum number of simultaneous threads

(default: 〈machine-dependent-value〉)
-server Run as TCP server

-port <number> Listen to specified port (default: 9128)

Example input files are provided in the examples directory:

$ de.tum.in.isabelle.Kodkodi.Kodkodi < examples/pigeonhole.kki

*** PROBLEM 1 ***

--OUTCOME--

UNSATISFIABLE

--STATS--

p cnf 54 68

primary variables: 6

parsing time: 65 ms

translation time: 92 ms

solving time: 0 ms

4 Input Format

Kodkodi’s input format is modeled after the output format of the toString()
implementations found in the Kodkod library. The operator that are available in
Alloy 4 are given the same precedences as they have there.

The grammar is expressed using a variant of Extended Backus-Naur Form. The
actual grammar used by Kodkodi is written using ANTLR and can be found in
the file kodkodi-1.2.0/src/Kodkodi.g.

3

4.1 Lexical Issues

The grammar is based on the following lexical units, or tokens:

WHITESPACE ::= (| \n | \r | \t | \v)+

COMMENT ::= //∼(\n)∗ (\n | eof)
NUM ::= [+ | -] (0 | 1 | . . . | 9)+

STR_LITERAL ::= "∼(" | \n)∗ "
ATOM_NAME ::= A NAT
UNIV_NAME ::= u NAT

OFF_UNIV_NAME ::= u NAT @ NAT
TUPLE_NAME ::= (P | T NAT _) NAT

RELATION_NAME ::= (s | r | m NAT _) NAT

VARIABLE_NAME ::= (S | R | M NAT _) NAT ’?

TUPLE_REG ::= $ (A | P | T NAT _) NAT
TUPLE_SET_REG ::= $ (a | p | t NAT _) NAT
FORMULA_REG ::= $f NAT
REL_EXPR_REG ::= $e NAT
INT_EXPR_REG ::= $i NAT

NAT abbreviates 0 | (1 | . . . | 9) (0 | . . . | 9)∗.

Whitespace and comments are ignored, except as token separators. In addition
to the tokens listed above, various keywords and operators are recognized as
tokens. These are shown in bold in the grammar.

The table below describes the lexical conventions adopted for naming atoms, tu-
ples, relations, variables, and registers.

Token Name Syntax Description

ATOM_NAME Aj Atom at index j in the universe

UNIV_NAME un Set of atoms {A0, . . . , A(n− 1)}
OFF_UNIV_NAME un@j Set of atoms {Aj, . . . , A(j + n− 1)}
TUPLE_NAME Pj Pair at index j in the pair space associated

with the universe
Tn_j n-tuple at index j in the n-tuple space associ-

ated with the universe (n ≥ 3)

RELATION_NAME sj Set number j
rj Binary relation number j

mn_j n-ary multirelation number j (n ≥ 3)

VARIABLE_NAME Sj Unprimed set variable number j

4

Sj’ Primed set variable number j
Rj Unprimed binary relation variable number j
Rj’ Primed binary relation variable number j
Mn_j Unprimed n-ary multirelation variable num-

ber j (n ≥ 3)
Mn_j’ Primed n-ary multirelation variable number j

(n ≥ 3)

TUPLE_REG $Aj One-tuple register number j
$Pj Pair register number j

$Tn_j n-tuple register number j (n ≥ 3)

TUPLE_SET_REG $aj One-tuple set register number j
$pj Pair set register number j

$tn_j n-tuple set register number j (n ≥ 3)

FORMULA_REG $fj Formula register number j
REL_EXPR_REG $ej Relational expression register number j
INT_EXPR_REG $ij Integer expression register number j

4.2 Overall Structure

This section presents the overall structure of Kodkodi input files.

4.2.1 Problems

problems ::= problem∗

Kodkodi takes a list of “problems” as input.

4.2.2 Problem

problem ::= option∗ univ_spec tuple_reg_directive∗ bound_spec∗ int_bound_spec?

expr_reg_directive∗ solve_directive

A problem consists of three main parts: a universe specification, a set of bound
specifications, and a Kodkod formula to satisfy supplied in a “solve” directive.

Example:

univ: u1

bounds s0: {A0}

solve all [S0 : one s0, S1 : one s0] | S0 = S1;

5

4.2.3 Kodkod Options

option ::= solver : STR_LITERAL (, STR_LITERAL)∗ |
symmetry_breaking : NUM |
sharing : NUM |
bit_width : NUM |
skolem_depth : NUM |
flatten : (true | false) |
delay : NUM

Kodkod supports various options, documented in the kodkod.engine.config.
Options class [5]. The following solvers are supported:

solver: "DefaultSAT4J"

solver: "LightSAT4J"

solver: "ZChaff"

solver: "zChaff"

solver: "ZChaffMincost"

solver: "zChaffMincost"

solver: "MiniSatProver"

solver: "MiniSat"

solver: "SAT4J" "instance"

solver: "External" "executable" "temp_input" "temp_output"

"arg_1" . . . "arg_n"

solver: "ExternalV2" "executable" "temp_input" "temp_output"

"sat_marker" "var_marker" "unsat_marker" "arg_1" . . . "arg_n"

For "External", the optional arguments "arg_1", . . . , "arg_n" are passed before
the input file name. For "ExternalV2", they are passed after.

The delay option specifies a delay (expressed in milliseconds) between solving a
problem and exiting, if the -exit-on-success command-line option is specified.
This can be used to grant additional time to other threads so that they have a
chance to finish.

4.2.4 Universe Specification

univ_spec ::= univ : UNIV_NAME

The universe specification fixes the universe’s uninterpreted atoms. Kodkodi re-
quires that the atoms are numbered consecutively from A0 to A(n− 1).

Examples:

univ: u2

univ: u100

6

4.2.5 Relation Bound Specifications

bound_spec ::= bounds RELATION_NAME (, RELATION_NAME) :
(tuple_set | [tuple_set , tuple_set])

A relational bound specification gives a lower and an upper bound for the given
relations. If only one bound is specified, it is taken as both lower and upper
bound. The lower bound must be a subset of the upper bound.

Examples:

bounds s0: {A0}

bounds r2: [{}, {A0 .. A9} -> {A10 .. A19}]

4.2.6 Integer Bound Specification

int_bound_spec ::= int_bounds : int_bound_seq (, int_bound_seq)∗

int_bound_seq ::= [NUM :] [tuple_set (, tuple_set)∗]

An integer bound specification establishes a correspondence between integers
and sets of atoms that represent that integer in relational expressions. The syntax
makes it possible to specify the bounds of consecutive integers in sequence.

Example:

int_bounds: [{A0}, {A1}], 10: [{A2}, {A3}, {A4}]

In the above example, 0 is bounded by {A0}, 1 is bounded by {A1}, 10 is bounded
by {A2}, 11 is bounded by {A11}, and 12 is bounded by {A4}.

4.2.7 Solve Directive

solve_directive ::= solve formula ;

The “solve” directive tells Kodkod to try to satisfy the given formula.

Example:

solve all [S0 : one s0, S1 : one s0] | ! S0 = S1 => no S0.r0 & S1.r0

4.3 Register Directives

Registers make it possible to use a complex syntactic construct several times with-
out duplicating it. They also help reduce Kodkod’s memory usage and running
time.

7

4.3.1 Tuple Register Directives

tuple_reg_directive ::= TUPLE_REG := tuple |
TUPLE_SET_REG := tuple_set

A tuple register directive assigns a value to a tuple or tuple set register.

Examples:

$P0 := [A0, A0]

$P1 := [A1, A1]

$t4_0 := {$P0, $P1} -> {$P0, $P1}

4.3.2 Expression Register Directives

expr_reg_directive ::= FORMULA_REG := formula |
REL_EXPR_REG := rel_expr |
INT_EXPR_REG := int_expr

Formulas, relational expressions, and integer expressions can also be assigned to
registers using an expression register directive. An alternative is to use the let
binder inside an expression.

Examples:

$f0 := all [S0 : one s0] | s0 in univ

$e5 := (s0 & s1).r1 + (s0 & s2).r2

$i14 := 2 * #($e5) + 1

4.4 Tuple Language

Kodkod supports partial solutions in the form of bounds on relations. The bound
specifications involve tuples and tuple sets.

4.4.1 Tuples

tuple ::= [ATOM_NAME (, ATOM_NAME)∗] |
ATOM_NAME |
TUPLE_NAME |
TUPLE_REG

An n-tuple is normally specified using the syntax [Aj1, . . ., Ajn]. The brackets
are optional when n = 1. Alternatively, tuples can be specified using an index in

8

the n-tuple space. For example, given the universe u10, the name P27 refers to the
pair [A2, A7].

Examples:

[A0, A1, A5, A20]

A0

P5

$P14

4.4.2 Tuple Sets

tuple_set ::= tuple_set (+ | -) tuple_set |
tuple_set & tuple_set |
tuple_set -> tuple_set |
tuple_set [NUM] |
{ tuple (, tuple)∗ } |
{ tuple .. tuple } |
{ tuple # tuple } |
none |
all |
UNIV_NAME |
OFF_UNIV_NAME |
TUPLE_SET_REG |
(tuple_set)

Tuple sets can be constructed in several ways. The +, -, and & operators denote the
union, difference, and intersection of two tuple sets, respectively. The -> operator
denotes the Cartesian product of two tuple sets. The [] operator projects the tuple
set onto the given dimension. Tuple sets can be specified exhaustively by listing
all their tuples. If all the tuples have consecutive indices, the range operator ..
can be used. Alternatively, if all the tuples occupy a rectangular, cubic, etc., area
in the tuple space, they can be specified by passing the lowest and highest corner
of the area to the # operator. Finally, none is a synonym for {}, and all denotes
the complete tuple set (whose arity is deduced from the context).

Examples:

{A1}

{A1, A2} -> {A3, A4}

{[A1, A2] .. [A3, A4]}

{[A1, A2] # [A3, A4]}

$p14

9

4.4.3 Tuple Set Operator Precedences and Associativities

The operator precedences and associativities are given in the table below. Fully
bracketed operators are not listed.

Level Operator Class Arity Associativity

1 + - Binary Left-associative

2 & Binary Associative

3 -> Binary Associative

4 [] Binary Left-associative

4.5 Expression Language

Kodkod supports three types of expression: Boolean expressions (formulas), re-
lational expressions, and integer expressions.

4.5.1 Formulas

formula ::= (all | some) decls | formula |
let assigns | formula |
if formula then formula else formula |
formula || formula |
formula <=> formula |
formula => formula |
formula && formula |
! formula |
ACYCLIC (RELATION_NAME) |
FUNCTION (RELATION_NAME , rel_expr -> (one | lone) rel_expr) |
TOTAL_ORDERING (RELATION_NAME ,

(UNIV_NAME | OFF_UNIV_NAME | RELATION_NAME) ,
(ATOM_NAME | RELATION_NAME) ,
(ATOM_NAME | RELATION_NAME)) |

rel_expr (in | =) rel_expr |
int_expr (= | < | <= | > | >=) int_expr |
(no | lone | one | some) rel_expr |
false |
true |
FORMULA_REG |
(formula)

10

A formula, or Boolean expression, specifies a constraint involving relations and
integers.

Example:

some [S0 : some s0] | if S0 in s1 then !$f1 else $i0 <= $i1

4.5.2 Relational Expressions

rel_expr ::= let assigns | rel_expr |
if formula then rel_expr else rel_expr |
rel_expr (+ | -) rel_expr |
rel_expr ++ rel_expr |
rel_expr & rel_expr |
rel_expr -> rel_expr |
rel_expr \ rel_expr |
rel_expr (rel_expr (,rel_expr)∗) |
rel_expr [int_expr (, int_expr)∗] |
rel_expr . rel_expr |
(^ | * | ~) rel_expr |
{ decls | formula } |
(Bits | Int) [int_expr] |
iden |
ints |
none |
univ |
ATOM_NAME |
UNIV_NAME |
OFF_UNIV_NAME |
RELATION_NAME |
VARIABLE_NAME |
REL_EXPR_REG |
(rel_expr)

A relational expression denotes a relation (set, binary relation, or multirelation).
Nearly all operators are identical to those offered by Kodkod, which in turn are
modeled after those provided by Alloy. Notable exceptions are the conditional ex-
pression if . . .then . . .else . . . ; the r \ s operator, which is a shorthand for if no r
then s else r; and finally r(s1, . . ., sn), which is equivalent to sn.(. . .(s1.r). . .).

Example:

11

if #(s0) > 5 then s0.r0 + s1.r1 else none

4.5.3 Integer Expressions

int_expr ::= sum decls | int_expr |
let assigns | int_expr |
if formula then int_expr else int_expr |
int_expr (<< | >> | >>>) int_expr |
int_expr (+ | -) int_expr |
int_expr (* | / | %) int_expr |
(# | sum) (rel_expr) |
int_expr | int_expr |
int_expr ^ int_expr |
int_expr & int_expr |
(~ | - | abs | sgn) int_expr |
NUM |
INT_EXPR_REG |
(int_expr)

An integer expression denotes an integer.

Example:

(sum [S0 : one s0] | #(S0) * (#(S0) + 1) / 2) % 10

4.5.4 Declarations

decls ::= [decl (, decl)∗]
decl ::= VARIABLE_NAME : (no | lone | one | some | set) rel_expr

The all, some, and sum quantifiers take a list of variable declarations.

Example:

[S0 : set s0, S1 : one s1]

4.5.5 Assignments

assigns ::= [assign (, assign)∗]
assign ::= FORMULA_REG := formula |

REL_EXPR_REG := rel_expr |
INT_EXPR_REG := int_expr

12

The let binder takes a list of register assignments.

Example:

[$f0 := all [S0 : one s0] | s0 in univ, $i14 := 2 * #($e5) + 1]

4.5.6 Operator Precedences and Associativities

The operator precedences and associativities are given in the table below. Fully
bracketed operators are not listed.

Level Operator Class Arity Associativity

1 all | some | sum | Binary/Ternary Right-associative

let | if then else

2 || Binary Associative

3 <=> Binary Associative

4 => Binary Right-associative

5 && Binary Associative

6 ! Unary N/A

7 in = < <= > >= Binary N/A

8 no lone one some Unary N/A

9 << >> >>> Binary Left-associative

10 + - Binary Left-associative

11 * / % Binary Left-associative

12 ++ Binary Associative

13 | ^ & Binary Associative

14 -> Binary Associative

15 \ Binary Associative

16 (,) Binary Left-associative

17 [,] Binary Left-associative

18 . Binary Left-associative

19 ^ * ~ - abs sgn Unary N/A

4.6 Comments

Comments may be specified as in C++, that is, either as a one line comment start-
ing with // or as a block starting with /* and ending with */.

Examples:

13

/*
Copyright 2009 Gnomovision, Inc.

*/

univ: u99999 // Don’t panic!

5 Case Study: Sorting Using Alloy and Kodkodi

Although Kodkodi’s syntax is similar to Alloy’s, there are a few important con-
ceptual differences. Consider the following Alloy specification of integer sorting:

abstract sig IntSeq {

ints : seq Int

}

pred isSorted [s : IntSeq] {

all i : s.ints.inds - s.ints.lastIdx | s.ints[i] <= s.ints[i + 1]

}

pred isPermutation [pre, post : IntSeq] {

all p : Int | #{pre.ints.p} = #{post.ints.p}

}

one sig Pre extends IntSeq {}

one sig Post extends IntSeq {}

fact {

Pre.ints[0] = 7 && Pre.ints[1] = 2 &&

Pre.ints[2] = 4 && Pre.ints[3] = 3 &&

Pre.ints[4] = 3 && Pre.ints[5] = 8 &&

Pre.ints[6] = 5 && Pre.ints[7] = 20 &&

Pre.ints[8] = 18 && Pre.ints[9] = 1 &&

Pre.ints[10] = 10 && Pre.ints[11] = 5 &&

Pre.ints[12] = 7 && Pre.ints[13] = 12 &&

Pre.ints[14] = 2 && Pre.ints[15] = 19 &&

Pre.ints[16] = 15 && Pre.ints[17] = 13 &&

Pre.ints[18] = 11 && Pre.ints[19] = 4

}

run { Pre.isPerm[Post] && Post.isSorted } for 20 seq, 6 int

There are two main approaches to representing this in Kodkod:

1. We could tell the Alloy Analyzer to generate Kodkod-based Java code, call
toString() on the abstract syntax tree, and fiddle a little bit with the output
to make it comply with Kodkodi’s input syntax.

From an Alloy specification, we can generate Java code by chosing “Output
Kodkod to file” as the SAT Solver in the Alloy Analyzer’s “Options” menu.

Unfortunately, for the example above, the generated code is too large for
the Java compiler, which simply bails out. In general, we would need to

14

rename the atoms and relations so that they follow Kodkodi’s strict naming
conventions and change a few syntactic items.

2. We ignore the Alloy model and start from scratch in Kodkodi.

This gives a specification like the following:

solver: "MiniSat"

bit_width: 6

univ: u21

bounds r0 /* Pre.ints */:

{[A0, A7], [A1, A2], [A2, A4], [A3, A3], [A4, A3], [A5, A8], [A6,

A5], [A7, A20], [A8, A18], [A9, A1], [A10, A10], [A11, A5], [A12,

A7], [A13, A12], [A14, A2], [A15, A19], [A16, A15], [A17, A13],

[A18, A11], [A19, A4]}

bounds r1 /* Post.ints */: [{}, u20->u21]

int_bounds: [{A0}, {A1}, {A2}, {A3}, {A4}, {A5}, {A6}, {A7}, {A8},

{A9}, {A10}, {A11}, {A12}, {A13}, {A14}, {A15}, {A16}, {A17},

{A18}, {A19}, {A20}]

solve FUNCTION(r1, u20->one u21)

&& (all [S0 : one univ] | #(r1.S0) = #(r0.S0))

&& (all [S0 : one u19] | sum(S0.r1) <= sum(Int[sum(S0) + 1].r1));

The first two lines,

solver: "zChaff"

bit_width: 6

are configuration options. Then we specify that the universe should consist
of exactly 21 atoms:

univ: u21

The atoms are called A0 to A20. Next, we specify the values for the Pre.ints
relation as a Kodkod bound:

bounds r0 /* Pre.ints */:

{[A0, A7], [A1, A2], [A2, A4], [A3, A3], [A4, A3], [A5, A8], [A6,

A5], [A7, A20], [A8, A18], [A9, A1], [A10, A10], [A11, A5], [A12,

A7], [A13, A12], [A14, A2], [A15, A19], [A16, A15], [A17, A13],

[A18, A11], [A19, A4]}

In Kodkodi, all binary relations must be called rj, where j is a natural num-
ber. The comment is there to remind us that r0 corresponds to Pre.ints in
the Alloy specification.

bounds r1 /* Post.ints */: [{}, u20->u21]

For Post.ints, we specify the empty set {} as the lower bound and the
Cartesian product {A0 .. A19}->{A0 .. A20} as the upper bound.

int_bounds: [{A0}, {A1}, {A2}, {A3}, {A4}, {A5}, {A6}, {A7}, {A8},

{A9}, {A10}, {A11}, {A12}, {A13}, {A14}, {A15}, {A16}, {A17},

{A18}, {A19}, {A20}]

15

Since we need the integers for addition, we must associate atoms with the
integers we need. Here we simply let A0 represent 0, A1 represent 1, and so
on.

solve FUNCTION(r1, u20->one u21)

&& (all [S0 : one univ] | #(r1.S0) = #(r0.S0))

&& (all [S0 : one u19] | sum(S0.r1) <= sum(Int[sum(S0) + 1].r1));

Finally, we specify the formula to solve. The first line ensures that r1 (i.e.,
Post.ints) is a function rather than an arbitrary relation. The second and
third lines are adapted directly from the Alloy specification.

Sorting [7, 2, 4, 3, 3, 8, 5, 20, 18, 1, 10, 5, 7, 12, 2, 19, 15, 13, 11, 4] should give
[1, 2, 2, 3, 3, 4, 4, 5, 5, 7, 7, 8, 10, 11, 12, 13, 15, 18, 19, 20]. Let us verify that
this is the case by running Kodkodi:

*** PROBLEM 1 ***

--OUTCOME--

SATISFIABLE

--INSTANCE--

relations: {r0=[[A0, A7], [A1, A2], [A2, A4], [A3, A3], [A4, A3],

[A5, A8], [A6, A5], [A7, A20], [A8, A18], [A9, A1], [A10, A10],

[A11, A5], [A12, A7], [A13, A12], [A14, A2], [A15, A19], [A16,

A15], [A17, A13], [A18, A11], [A19, A4]], r1=[[A0, A1], [A1, A2],

[A2, A2], [A3, A3], [A4, A3], [A5, A4], [A6, A4], [A7, A5], [A8,

A5], [A9, A7], [A10, A7], [A11, A8], [A12, A10], [A13, A11], [A14,

A12], [A15, A13], [A16, A15], [A17, A18], [A18, A19], [A19, A20]]}

--STATS--

p cnf 8166 29484

primary variables: 420

parsing time: 72 ms

translation time: 359 ms

solving time: 434 ms

The result is correct.

6 Known Bugs and Limitations

Here are the known bugs and limitations in Kodkodi at the time of writing:

• The -server command-line option, which makes Kodkodi run as a TCP
server, is limited to a single connection. Furthermore, any error occurring
when processing one problem breaks the connection.

16

References

[1] Blanchette, J. C.: Picking Nits: A User’s Guide to Nitpick 1.1.0 for Isa-
belle/HOL 2009. http://isabelle.in.tum.de/~blanchet/nitpick-1.1.0/
Nitpick/manual/nitpick.pdf (2009)

[2] Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT
Press, Cambridge, Mass. (2006)

[3] Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg,
O., Huth, M. (eds.) TACAS 2007, LNCS vol. 4424, pp. 632–647. Springer,
Heidelberg (2007)

[4] Kodkod: Constraint Solver for Relational Logic, http://alloy.mit.edu/
kodkod/

[5] Kodkod API: Class Options, http://alloy.mit.edu/kodkod/docs/kodkod/
engine/config/Options.html

[6] Software: Nitpick, http://isabelle.in.tum.de/~blanchet/index.shtml#
nitpick

17

