
Noname manuscript No.
(will be inserted by the editor)

Relational Analysis of (Co)inductive Predicates,
(Co)algebraic Datatypes, and (Co)recursive Functions

Jasmin Christian Blanchette

the date of receipt and acceptance should be inserted later

Abstract We present techniques for applying a finite relational model finder to logical spec-
ifications that involve high-level definitional principles such as (co)inductive predicates,
(co)algebraic datatypes, and (co)recursive functions. In contrast to previous work, which
focused on algebraic datatypes and restricted occurrences of unbounded quantifiers in for-
mulas, we can handle arbitrary formulas by means of a three-valued Kleene logic. The tech-
niques form the basis of the counterexample generator Nitpick for Isabelle/HOL. As case
studies, we consider formulas about an inductively defined context-free grammar, a func-
tional implementation of AA trees, and a coalgebraic list datatype.

Keywords Model finding · Higher-order logic · First-order relational logic

1 Introduction

SAT and SMT solvers, model checkers, model finders, and other lightweight formal meth-
ods are today available to test or verify specifications written in various languages. These
tools are often integrated in more powerful systems, such as interactive theorem provers, to
discharge proof obligations or generate (counter)models.

For testing logical specifications, a particularly attractive approach is to express these
in first-order relational logic (FORL) and use a model finder such as Kodkod [35] to find
counterexamples. FORL extends traditional first-order logic (FOL) with relational calculus
operators and the transitive closure, and offers a good compromise between automation and
expressiveness. Kodkod relies on a SAT solver and forms the basis of Alloy [19]. It features
several important optimizations, notably symmetry breaking, that make it preferable to a
direct reduction to SAT. In a case study, the Alloy Analyzer checked a mechanized version
of the paper proof of the Mondex protocol and revealed several bugs in the proof [32].

However, FORL lacks the high-level definitional principles usually provided in interac-
tive theorem provers, namely (co)inductive predicates, (co)algebraic datatypes, and (co)re-
cursive functions (Sect. 3). Solutions have been proposed by Kuncak and Jackson [25], who
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modeled lists and trees in Alloy, and Dunets et al. [13], who showed how to translate al-
gebraic datatypes and recursive functions in the context of the first-order theorem prover
KIV [3]. In both cases, the translation is restricted to formulas whose prenex normal forms
contain no unbounded universal quantifiers ranging over datatypes.

This article generalizes previous work in several directions: First, we lift the unbounded
quantifier restriction by using a three-valued logic coded in terms of the binary logic FORL
(Sect. 4.2). Second, we show how to translate (co)inductive predicates, coalgebraic data-
types, and corecursive functions (Sect. 5). Third, in our treatment of algebraic datatypes, we
show how to handle mutually recursive datatypes (Sect. 5.2).

The use of a three-valued Kleene logic makes it possible to analyze formulas such as
True ∨ ∀nnat. P(n), which are rejected by Kuncak and Jackson’s syntactic criterion. Un-
bounded universal quantification remains problematic in general, but suitable definitional
principles and their proper handling, in conjunction with various optimizations (Sect. 6),
mitigate this problem.

The ideas presented here form the basis of the higher-order counterexample generator
Nitpick [8], which is included with recent versions of Isabelle/HOL [29]. Nitpick can be
run on putative theorems or on specific subgoals in a proof to spare users the Sisyphean
task of trying to prove non-theorems. As a case study, we employ Nitpick on an inductively
defined context-free grammar, a functional implementation of AA trees, and a coalgebraic
(or “lazy”) list datatype (Sect. 7).

To simplify the presentation, we use FOL as our specification language. Issues specific
to higher-order logic (HOL) are mostly orthogonal and explained in the paper on Nitpick [8].

2 Logics

2.1 First-Order Logic (FOL)

The first-order logic that will serve as our specification language is essentially the first-order
fragment of HOL [10, 15]. The types and terms are given below.

Types: Terms:
σ ::= α (type variable) t ::= xσ (variable)

| (σ, . . . ,σ) κ (type constructor) | cτ(t, . . . , t) (function term)
τ ::= (σ, . . . ,σ)→σ (function type) | ∀xσ. t (universal quantification)

The standard semantics interprets the Boolean type o and the constants Falseo, Trueo,
−→(o,o)�o (implication),'(σ,σ)�o (equality on basic type σ), and if then else(o,σ,σ)�σ. For-
mulas are terms of type o. We assume throughout this article that terms are well-typed using
the standard typing rules and usually omit the type superscripts. In conformity with first-
order practice, application of x and y on f is written f (x,y), the function type ()→ σ is
identified with σ, and the parentheses in the function term c() are optional. We also assume
that the connectives ¬, ∧, ∨ and existential quantification are available.

In contrast to HOL, our logic requires variables to range over basic types, and it forbids
partial function application and λ-abstractions. On the other hand, it supports the limited
form of polymorphism provided by proof assistants for HOL [18,29,34], with the restriction
that type variables may only be instantiated by atomic types (or left uninstantiated in a
polymorphic formula).
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Types and terms are interpreted in the standard set-theoretic way, relative to a scope that
fixes the interpretation of basic types. A scope S is a function from basic types to nonempty
sets (domains), which need not be finite.1 We require S(o) = {ff, tt}.

The standard interpretation JτKS of a type τ is given by S(τ) for basic types and

J(σ1, . . . ,σn)→ σKS = Jσ1KS ×·· ·× JσnKS → JσKS ,

where A→ B denotes the set of (total) functions from A to B. In contexts where S is clear
or irrelevant, the cardinality of JτKS is written |τ|.

2.2 First-Order Relational Logic (FORL)

Our analysis logic, first-order relational logic, combines elements from FOL and relational
calculus extended with the transitive closure [19, 35]. Formulas involve variables and terms
ranging over relations (sets of tuples drawn from a universe of uninterpreted atoms) of ar-
bitrary arities. The logic is unsorted, but each term denotes a relation of a fixed arity. Our
translation from FOL relies on the following FORL fragment.

Formulas: Terms:
ϕ ::= false (falsity) r ::= none (empty set)
| true (truth) | iden (identity relation)
| m r (multiplicity constraint) | ai (atom)
| r ' r (equality) | x (variable)
| r ⊆ r (inclusion) | r+ (transitive closure)
| ¬ϕ (negation) | r.r (dot-join)
| ϕ ∧ ϕ (conjunction) | r× r (Cartesian product)
| ∀x∈r: ϕ (universal quantification) | r ∪ r (union)

| r− r (difference)
m ::= no | lone | one | some | if ϕ then r else r (conditional)

FORL syntactically distinguishes between terms and formulas. The universe of discourse is
A = {a1, . . . ,ak}, where each ai is an uninterpreted atom. Atoms and n-tuples are identified
with singleton sets and singleton n-ary relations, respectively. Bound variables in quantifi-
cations range over the tuples in a relation; thus, ∀x∈ (a1∪a2)×a3: ϕ[x] is equivalent to
ϕ[a1×a3] ∧ ϕ[a2×a3].

Although they are not listed above, we will sometimes make use of ∨ (disjunction),−→
(implication), ∗ (reflexive transitive closure), and ∩ (intersection) as well. The constraint
no r expresses that r is the empty relation, one r expresses that r is a singleton, lone r⇐⇒
no r ∨ one r, and some r⇐⇒¬no r.

The dot-join operator is unconventional; its semantics is given by the equation

Jr.sK = {〈r1, . . . ,rm−1, s2, . . . , sn〉 | ∃t. 〈r1, . . . ,rm−1, t〉∈ JrK ∧ 〈t, s2, . . . , sn〉∈ JsK}.

The operator admits three important special cases. Let s be unary and r, r′ be binary rela-
tions. The expression s.r gives the direct image of the set s under r; if s is a singleton and r
a function, it coincides with the function application r(s). Analogously, r.s gives the inverse
image of s under r. Finally, r.r′ expresses the relational composition r ◦ r′.

1 The use of the word “scope” for a domain specification is consistent with Jackson [19].
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The relational operators often make it possible to express first-order problems concisely.
For example, the following FORL specification attempts to fit 30 pigeons in 29 holes:

var pigeons = {a1, . . . ,a30}
var holes = {a31, . . . ,a59}
var /0⊆ nest⊆ {a1, . . . ,a30}×{a31, . . . ,a59}
solve (∀p∈pigeons: one p.nest) ∧ (∀h∈holes: lone nest.h)

The variables pigeons and holes are given fixed values, whereas nest is specified with a
lower and an upper bound. Variable declarations are an extralogical way of specifying sort
constraints and partial solutions. They also indirectly specify the variables’ arities, which in
turn dictate the arities of all the terms in the formula to solve.

The constraint one p.nest states that pigeon p is in relation with exactly one hole, and
lone nest.h that hole h is in relation with at most one pigeon. Taken as a whole, the formula
states that nest is a one-to-one function. It is, of course, not satisfiable, a fact that Kodkod
can establish in less than a second.

When reducing FORL to SAT, each n-ary relational variable y is in principle translated to
an |A |n array of propositional variables V[i1, . . . , in], with V[i1, . . . , in]⇐⇒ 〈ai1 , . . . ,ain〉 ∈ y.
Most relational operations can be coded efficiently; for example, ∪ is simply ∨. The quanti-
fied formula ∀r∈ s: ϕ[r] is treated as

∧n
j=1 tj ⊆ s −→ ϕ[tj], where the tj’s are the tuples that

may belong to s. Transitive closure is unrolled to saturation.

3 Definitional Principles

3.1 Simple Definitions

We extend our specification logic FOL with several definitional principles to introduce new
constants and types. The first principle defines a constant as equal to another term:

definition cτ where c(x̄)' t

Logically, the above definition is equivalent to the axiom ∀x̄. c(x̄)' t.
Provisos: The constant c is fresh, the variables x̄ are distinct, and the right-hand side t

does not refer to any other free variables than x̄, to any undefined constants or c, or to any
type variables not occurring in τ. These restrictions ensure consistency [37].

An example definition follows:

definition snd(α,β)�β where snd(x, y)' y

3.2 (Co)inductive Predicates

The inductive and coinductive commands define inductive and coinductive predicates speci-
fied by their introduction rules:

[co]inductive pτ where
p(t̄11) ∧ ·· · ∧ p(t̄1`1) ∧ Q1 −→ p(ū1)...
p(t̄n1) ∧ ·· · ∧ p(t̄n`n) ∧ Qn −→ p(ūn)
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Provisos: The constant p is fresh, and the arguments to p and the side conditions Qi do not
refer to p, undeclared constants, or any type variables not occurring in τ.

The introduction rules may involve any number of free variables ȳ. The syntactic re-
strictions on the rules ensure monotonicity; by the Knaster–Tarski theorem, the fixed-point
equation

p(x̄) '
(
∃ȳ.

∨n

j=1
x̄' ūj ∧ p(t̄j1) ∧ ·· · ∧ p(t̄j`j) ∧ Qj

)
admits a least and a greatest solution [17, 30]. Inductive definitions provide the least fixed
point, and coinductive definitions provide the greatest fixed point.

As an example, assuming a type nat of natural numbers generated freely by 0nat and
Sucnat�nat, the following definition introduces the predicate even of even numbers:

inductive evennat�o where
even(0)
even(n)−→ even(Suc(Suc(n)))

The associated fixed-point equation is

even(x) '
(
∃n. x' 0 ∨ (x' Suc(Suc(n)) ∧ even(n))

)
.

The syntax can be generalized to support mutual definitions, as in the next example:

inductive evennat�o and odd nat�o where
even(0)
even(n)−→ odd(Suc(n))
odd(n)−→ even(Suc(n))

Mutual definitions for p1, . . . , pm can be reduced to a single predicate q whose domain is
the disjoint sum of the domains of each pi [30]. Assuming Inl and Inr are the disjoint sum
constructors, the definition of even and odd is replaced by

inductive even_or_odd (nat,nat)sum�o where
even_or_odd(Inl(0))
even_or_odd(Inl(n))−→ even_or_odd(Inr(Suc(n)))
even_or_odd(Inr(n))−→ even_or_odd(Inl(Suc(n)))

definition evennat�o where even(n)' even_or_odd(Inl(n))
definition odd nat�owhere odd(n)' even_or_odd(Inr(n))

3.3 (Co)algebraic Datatypes

The datatype and codatatype commands define mutually recursive (co)algebraic datatypes
specified by their constructors:

[co]datatype (ᾱ)κ1 = C11
[
of σ̄11

]
| · · · | C1`1

[
of σ̄1`1

]
and . . .

and (ᾱ)κn = Cn1
[
of σ̄n1

]
| · · · | Cn`n

[
of σ̄n`n

]
The defined types (ᾱ)κi are parameterized by a list of distinct type variables ᾱ, providing
type polymorphism. Each constructor Cij has type σ̄ij→ (ᾱ)κi. If the optional syntax “of σ̄ij”
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is omitted, the constructor has type (ᾱ)κi. The arguments ᾱ are required to be the same for
all the type constructors κi.

Provisos: The type names κi and the constructor constants Cij are fresh and distinct, the
type parameters ᾱ are distinct, and the argument types σ̄ij do not refer to any other type
variables than ᾱ (but may refer to the types (ᾱ)κi being defined).

The datatype command corresponds roughly to Standard ML datatypes [5, 16], whereas
codatatype behaves like Haskell data in that it allows infinite objects [31].

The commands can be used to define natural numbers, pairs, finite lists, and possibly
infinite lazy lists as follows:

datatype nat = 0 | Suc of nat
datatype (α, β)pair = Pair of (α, β)
datatype α list = Nil | Cons of (α, α list)
codatatype α llist = LNil | LCons of (α, α llist)

Mutually recursive trees and forests can be defined just as easily:

datatype α tree = Empty | Node of (α, α forest)
and α forest = FNil | FCons of (α tree, α forest)

Defining a (co)datatype introduces the appropriate axioms for the constructors [30]. It
also introduces the syntax

case t of Ci1(x̄1)⇒ u1 | . . . |Ci`i(x̄`i)⇒ u`i ,

characterized by the axioms

∀x̄j. (case Cij(x̄j) of Ci1(x̄1)⇒ u1 | . . . |Ci`i(x̄`i)⇒ u`i)' uj

for j ∈ {1, . . . , `i}.

3.4 (Co)recursive Functions

The primrec command defines primitive recursive functions on algebraic datatypes:

primrec f τ1
1 and . . . and f τn

n where
f1(C11(x̄11), z̄11)' t11 . . . f1(C1`1(x̄1`1), z̄1`1)' t1`1...
fn(Cn1(x̄n1), z̄n1)' tn1 . . . fn(Cn`n(x̄n`n), z̄n`n)' tn`n

Provisos: The constants fi are fresh and distinct, the variables x̄ij and z̄ij are distinct for any
given i and j, the right-hand sides tij involve no other variables than x̄ij and z̄ij and no type
variables that do not occur in τi, and the first argument of any recursive call must be one of
the x̄ij’s. The last condition ensures that each recursive call peels off one constructor from
the first argument and hence that the recursion is well-founded, guaranteeing consistency.

Corecursive function definitions follow a rather different syntactic schema, with a single
equation per function fi that must return type (ᾱ)κi:

coprimrec f τ1
1 and . . . and f τn

n where
f1(ȳ1) ' if Q11 then t11 else if Q12 then . . . else t1`1...
fn(ȳn) ' if Qn1 then tn1 else if Qn2 then . . . else tn`n
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Provisos: The constants fi are fresh and distinct, the variables ȳi are distinct, the right-hand
sides involve no other variables than ȳi, no corecursive calls occur in the conditions Qij, and
either tij does not involve any corecursive calls or it has the form Cij(ūij).2

The syntax can be relaxed to allow a case expression instead of a sequence of condition-
als. What matters is that corecursive calls are protected by constructors, to ensure that the
functions fi are productive and hence well-defined.

The following examples define concatenation for the algebraic and coalgebraic list data-
types from Sect. 3.3:

primrec cat (α list,α list)�α list where
cat(Nil, zs)' zs
cat(Cons(y, ys), zs)' Cons(y, cat(ys, zs))

coprimrec lcat (α llist,α llist)�α llist where
lcat(ys, zs) ' case ys of LNil⇒ zs | LCons(y, ys′)⇒ LCons(y, lcat(ys′, zs))

4 Basic Translations

4.1 A Sound and Complete Translation

This section presents the translation of FOL to FORL, excluding the definitional principles
from Sect. 3. We consider only finite domains; for these the translation is both sound and
complete. This simple (and well-known [35]) translation serves as a stepping stone toward
the more sophisticated translations of Sects. 4.2 and 5.

We start by mapping FOL types τ to sets of FORL atom tuples 〈〈τ〉〉:

〈〈σ〉〉= {a1, . . . ,a|σ|} 〈〈(σ1, . . . ,σn)→ σ〉〉= 〈〈σ1〉〉× · · ·×〈〈σn〉〉×〈〈σ〉〉.

For simplicity, we reuse the same atoms for distinct basic types. A real implementation can
benefit from using distinct atoms because it produces more symmetric problems amenable
to symmetry breaking [12, 35].3

Since FORL’s syntax distinguishes between formulas and terms, the translation to FORL
is performed by two mutually recursive functions, F〈〈t〉〉 and T〈〈t〉〉:4

F〈〈False〉〉= false T〈〈x〉〉= x

F〈〈True〉〉= true T〈〈False〉〉= a1

F〈〈t ' u〉〉= T〈〈t〉〉 ' T〈〈u〉〉 T〈〈True〉〉= a2

F〈〈t −→ u〉〉= F〈〈t〉〉 −→ F〈〈u〉〉 T〈〈if t then u1 else u2〉〉= if F〈〈t〉〉 then T〈〈u1〉〉 else T〈〈u2〉〉
F〈〈∀xσ. t〉〉= ∀x∈〈〈σ〉〉: F〈〈t〉〉 T〈〈c(t1, . . . , tn)〉〉= T〈〈tn〉〉.(. . . .(T〈〈t1〉〉.c) . . .)

F〈〈t〉〉= T〈〈t〉〉 ' T〈〈True〉〉 T〈〈to〉〉= T〈〈if t then True else False〉〉.

2 Other authors formulate corecursion in terms of selectors instead of constructors [20].
3 Because of bound declarations, which refer to atoms by name, FORL atoms are generally not inter-

changeable. Kodkod’s symmetry breaker infers symmetries (classes of atoms that can be permuted with each
other) from the bound declarations and generates additional constraints to rule out needless permutations [35].
This usually speeds up model finding, especially for higher cardinalities.

4 Metatheoretic functions here and elsewhere are defined using sequential pattern matching.
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The metavariable c ranges over nonstandard constants, so that the T〈〈to〉〉 equation is used for
' and −→ (as well as for ∀). The Boolean values false and true are arbitrarily coded as a1
and a2 when they appear as FORL terms.

For each free variable or nonstandard constant uτ, we must also generate the declaration
var /0 ⊆ u ⊆ 〈〈τ〉〉 as well as a constraint Φ(u) to ensure that single values are singletons and
functions are functions:

Φ(uσ) = one u

Φ(u(σ1,...,σn)�σ) = ∀x1∈〈〈σ1〉〉, . . . , xn∈〈〈σn〉〉: one xn.(. . . .(x1.u) . . .).

The variables x1, . . . , xn must be fresh.

Theorem 4.1 The FOL formula P with free variables and nonstandard constants uτ1
1 , . . . ,

uτn
n is satisfiable for a given finite scope iff the FORL formula F〈〈P〉〉 ∧

∧n
j=1 Φ(uj) with

bounds /0⊆ uj ⊆ 〈〈τj〉〉 is satisfiable for the same scope.

Proof Let JtKM denote the set-theoretic semantics of the FOL term t w.r.t. a model M and
the given scope S , let JϕKV denote the truth value of the FORL formula ϕ w.r.t. a variable
valuation V and the scope S , and let JrKV denote the set-theoretic semantics of the FORL
term r w.r.t. V and S . Furthermore, for v ∈ JσKS , let bvc denote the corresponding value
in 〈〈σ〉〉, with bff c = a1 and bttc = a2. Using recursion induction, it is straightforward to
prove that JF〈〈to〉〉KV ⇐⇒ JtKM = tt and JT〈〈t〉〉KV = bJtKMc if V(uj) = bM(uj)c for all uj’s.
Moreover, from a satisfying valuation V of the uj’s, we can construct a FOL model M such
that bM(uj)c = V(uj); the Φ constraints and the bounds ensure that such a model exists.
Hence, JF〈〈P〉〉KV ⇐⇒ JPKM = tt. ut

The translation is parameterized by a scope, which specifies the exact cardinalities of the
basic types occurring in the formula. To exhaust all models up to a cardinality bound k for n
basic types, a model finder must a priori iterate through kn combinations of cardinalities and
must consider all models for each of these combinations. This can be made more efficient
if the problem is scope-monotonic [7, 25]. Another option is to avoid hard-coding the exact
cardinalities in the translation and let the SAT solver try all cardinalities up to a given bound;
this is Alloy’s normal mode of operation [19, p. 129].

Example 4.1 Given a cardinality k of α, the FOL formula P(xα) −→ P(y) is translated into
the FORL specification

var /0⊆ x⊆ {a1, . . . ,ak}
var /0⊆ y⊆ {a1, . . . ,ak}
var /0⊆ P⊆ {a1, . . . ,ak}×{a1,a2}
solve one x ∧ one y ∧ (∀x1∈{a1, . . . ,ak}: one x1.P)
∧ (x.P' a2 −→ y.P' a2)

The first three conjuncts ensure that x and y are scalars and that P is a function. The last
conjunct is the translation of the FOL formula. A solution exists already for k = 1, namely
x = y = a1 and P = {〈a1,a1〉}. �
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4.2 Approximation of Infinite Types and Partiality

Besides its lack of support for the definitional principles, the above translation suffers from a
serious limitation: It disregards infinite types such as natural numbers, lists, and trees, which
are ubiquitous in real-world specifications. Fortunately, it is not hard to adapt the translation
to take these into account in a sound (but incomplete) way.

Given an infinite atomic type κ, we consider a finite subset of JκKS and map every ele-
ment not in this subset to a special undefined value ?. For the type nat of natural numbers, an
obvious choice is to consider prefixes {0, . . . ,K} of N and map numbers > K to ?. Observe
that the successor function Suc becomes partial, with Suc(K) = ?. The technique can also
be used to speed up the analysis of finite types with a high cardinality: We can approximate
a 256-value byte type by a subset of, say, 5 values.

Leaving out some elements of atomic types means that we must cope with partiality. Not
only may functions be partial, but any term or formula can evaluate to ?. The logic becomes
a three-valued Kleene logic [21]. Universal quantifiers whose bound variable ranges over an
approximated type, such as ∀nnat. P[n], will evaluate to either False (if P[n] gives False for
some n≤ K) or ?, but never to True, since we cannot ascertain whether P[K +1], P[K +2],
. . . , are true.

Partiality can be encoded in FORL as follows. Inside terms, we let none (the empty set)
stand for ?. This choice is convenient because none is an absorbing element for the dot-
join operator, which models function application; thus, f (?) = ? irrespective of f . Inside a
formula, we keep track of the polarity of the subformulas: In positive contexts (i.e., under an
even number of negations), true codes True and false codes False or ?; in negative contexts,
false codes False and true codes True or ?.

The translation of FOL terms is performed by two functions, Fs〈〈t〉〉 and T〈〈t〉〉, where s
indicates the polarity (+ or −):

Fs〈〈False〉〉= false T〈〈x〉〉= x

Fs〈〈True〉〉= true T〈〈False〉〉= a1

F+〈〈t ' u〉〉= some (T〈〈t〉〉 ∩ T〈〈u〉〉) T〈〈True〉〉= a2

F–〈〈t ' u〉〉= lone (T〈〈t〉〉 ∪ T〈〈u〉〉) T〈〈if t then u1 else u2〉〉= if F+〈〈t〉〉 then T〈〈u1〉〉
Fs〈〈t−→u〉〉= F–s〈〈t〉〉 −→ Fs〈〈u〉〉 else if ¬F–〈〈t〉〉 then T〈〈u2〉〉
F+〈〈∀xσ. t〉〉= false if |〈〈σ〉〉|< |σ| else none

Fs〈〈∀xσ. t〉〉= ∀x∈〈〈σ〉〉: Fs〈〈t〉〉 T〈〈c(t1, . . . , tn)〉〉= T〈〈tn〉〉.(. . . .(T〈〈t1〉〉.c) . . .)
F+〈〈t〉〉= T〈〈t〉〉 ' T〈〈True〉〉 T〈〈to〉〉= T〈〈if t then True
F–〈〈t〉〉= T〈〈t〉〉 6' T〈〈False〉〉 else False〉〉.

In the equation for implication, −s denotes − if s is + and + if s is −. Taken together, the
Boolean values F+〈〈t〉〉 and F–〈〈t〉〉 encode a three-valued logic, with 〈true, true〉 denoting True,
〈false, true〉 denoting ?, and 〈false, false〉 denoting False. The remaining case, 〈true, false〉,
is impossible by construction.

When mapping FOL types to sets of FORL atom tuples, basic types σ are now allowed
to take any finite cardinality |〈〈σ〉〉| ≤ |σ|. We also need to relax the definition of Φ(u) to
allow empty sets, by substituting lone for one:

Φ(uσ) = lone u Φ(u(σ1,...,σn)�σ) = ∀x1∈〈〈σ1〉〉, . . . , xn∈〈〈σn〉〉: lone xn.(. . . .(x1.u) . . .).

In the face of partiality, the new encoding is sound but no longer complete.
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Theorem 4.2 Given a FOL formula P with free variables and nonstandard constants uτ1
1 ,

. . . , uτn
n and a scope S, the FORL formula F+〈〈P〉〉 ∧

∧n
j=1 Φ(uj) with bounds /0 ⊆ uj ⊆ 〈〈τj〉〉

is satisfiable for S only if P is satisfiable for S.

Proof The proof is similar to that of Theorem 4.1, but partiality requires us to compare the
actual value of a FORL expression with its expected value using ⊆ rather than =. Using
recursion induction, we can prove that JF+〈〈to〉〉KV =⇒ JtKM = tt, ¬JF–〈〈to〉〉KV =⇒ JtKM = ff ,
and JT〈〈t〉〉KV ⊆ bJtKMc if V(u) ⊆ bM(u)c for all free variables and nonstandard constants u
occurring in t. Some of the cases deserve more justification:

– The F+〈〈t ' u〉〉 equation is sound because if the intersection of T〈〈t〉〉 and T〈〈u〉〉 is nonempty,
then t and u must be equal (since they are singletons).

– The F–〈〈t ' u〉〉 equation is dual: If the union of T〈〈t〉〉 and T〈〈u〉〉has more than one element,
then t and u must be unequal.

– Universal quantification occurring positively can never yield true if the bound variable
ranges over an approximated type. (In negative contexts, approximation compromises
the encoding’s completeness but not its soundness.)

– The if then else equation carefully distinguishes between the cases where the condition
is True, False, and ?. In the True case, it returns the then value. In the False case, it
returns the else value. In the ? case, it returns ? (none).5

– The T〈〈c(t1, . . . , tn)〉〉 equation is as before. If any of the arguments tj evaluates to none,
the entire dot-join expression yields none.

Moreover, from a satisfying valuation V of the uj’s, we can construct a FOL model M such
that V(uj) ⊆ bM(uj)c for all uj’s, by defining M(uj) arbitrarily if V(uj) = /0 or at points
where the partial function V(uj) is undefined. Hence, JF+〈〈P〉〉KV implies JPKM = tt. ut

Although our translation is sound, a lot of precision is lost for ' and ∀. Fortunately, by
handling high-level definitional principles specially (as opposed to directly translating their
FOL axiomatization), we can bypass the imprecise translation and increase the precision.
This is covered in the next section.

5 Translation of Definitional Principles

5.1 Axiomatization of Simple Definitions

Once we extend the specification logic with simple definitions, we must also encode these in
the FORL formula. More precisely, if cτ is defined and an instance cτ

′
occurs in a formula,

we must conjoin c’s definition with the formula, instantiating τwith τ′. This process must be
repeated for any defined constants occurring in c’s definition. It will eventually terminate,
since cyclic definitions are disallowed. If several type instances of the same constant are
needed, they must be given distinct names in the translation.

Given the command
definition cτ where c(x̄)' t

the naive approach would be to conjoin F+〈〈∀x̄. c(x̄)' t〉〉 with the FORL formula to satisfy
and recursively do the same for any defined constants in t. However, there are two problems
with this approach:

5 We could gain some precision by returning if T〈〈u1〉〉 ' T〈〈u2〉〉 then T〈〈u1〉〉 else none instead.
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– If any of the variables x̄ is of an approximated type, the equation F+〈〈∀x̄. t〉〉 = false
applies, and the axiom becomes unsatisfiable. This is sound but extremely imprecise, as
it prevents the discovery of any model.

– Otherwise, the body of ∀x̄. c(x̄)' t is translated to some (T〈〈c(x̄)〉〉 ∩ T〈〈t〉〉), which eval-
uates to false whenever T〈〈t〉〉 is none for some values of x̄.

Fortunately, we can take a shortcut and translate the definition directly to the following
FORL axiom, bypassing F+ altogether (cf. Weber [36, p. 66]):

∀x1∈〈〈σ1〉〉, . . . , xn∈〈〈σn〉〉: T〈〈c(x1, . . . , xn)〉〉 ' T〈〈t〉〉.

We must also define the variable using appropriate bounds for the constant’s type.

Example 5.1 The formula snd(a, a)' aα, where snd is defined as

definition snd(β,γ)�γ where snd(x, y)' y

is translated to

var /0⊆ a⊆ 〈〈α〉〉
var /0⊆ snd⊆ 〈〈α〉〉×〈〈α〉〉×〈〈α〉〉
solve lone a
∧
(
∀x1, x2∈〈〈α〉〉: lone x2.(x1.snd)

)
∧
(
∀x,y∈〈〈α〉〉: y.(x.snd)' y

)
∧ some (a.(a.snd) ∩ a)

Notice that snd’s type variables β and γ are instantiated with α in the translation, which
happens to be a type variable itself. �

Theorem 5.1 The encoding of Sect. 4.2 extended with simple definitions is sound.

Proof Any FORL valuation V that satisfies the FORL axiom for a constant c can be extended
into a FOL model M that satisfies the corresponding FOL axiom, by setting M(c)(v̄) =
JtKM(v̄) for any values v̄ at which V(c) is not defined (either because v̄ is not representable
in FORL or because the partial function V(c) is not defined at that point). The apparent
circularity in M(c)(v̄) = JtKM(v̄) is harmless, because simple definitions are required to be
acyclic and so we can construct M one constant at a time. ut

Incidentally, we obtain a simpler (and still sound) SAT encoding by replacing the' operator
with ⊆ in the encoding of simple definition. Any entry of a defined constant’s relation table
that is not needed to construct the model can then be ?, even if the right-hand side of the
definition is representable.

5.2 Axiomatization of Algebraic Datatypes and Recursive Functions

The FORL axiomatization of algebraic datatypes follows the lines of Kuncak and Jackson
[25]. Let

κ = C1 of (σ11, . . . ,σ1n1) | · · · | C` of (σ`1, . . . ,σ`n`)

be a datatype instance. With each constructor Ci, we associate a discriminator Dκ�o
i and

ni selectors S κ�σik
ik obeying the laws

Dj(Ci(x̄))' (i' j) Sik(Ci(x1, . . . , xn))' xk.
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For example, the type α list is assigned the discriminators nilp and consp and the selectors
head and tail:6

nilp(Nil)' True nilp(Cons(x, xs))' False head(Cons(x, xs))' x

consp(Nil)' False consp(Cons(x, xs))' True tail(Cons(x, xs))' xs.

The discriminator and selector view almost always results in a more efficient SAT encoding
than the constructor view because it breaks high-arity constructors into several low-arity
discriminators and selectors, declared as follows (for all possible i, k):

var /0⊆ Di ⊆ 〈〈κ〉〉 var /0⊆ Sik ⊆ 〈〈κ→ σik〉〉

The predicate Di is directly coded as a set of atoms, rather than as a function to {a1,a2}.
Let Ci〈r1, . . . ,rn〉 stand for Si1.r1 ∩ ·· · ∩ Sin.rn if n≥ 1, and Ci〈〉= Di for parameterless

constructors. Intuitively, Ci〈r1, . . . ,rn〉 represents the constructor Ci with arguments r1, . . . ,rn
at the FORL level [13]. A faithful axiomatization of datatypes in terms of Di and Sik involves
the following axioms (for all possible i, j, k):

DISJOINTij: no Di ∩ Dj for i < j

EXHAUSTIVE: D1 ∪ ·· · ∪ D` ' 〈〈κ〉〉
SELECTORik: ∀y∈〈〈κ〉〉: if y⊆ Di then one y.Sik else no y.Sik

UNIQUEi: ∀x1∈〈〈σ1〉〉, . . . , xni ∈〈〈σni〉〉: lone Ci〈x1, . . . , xni〉
GENERATORi: ∀x1∈〈〈σ1〉〉, . . . , xni ∈〈〈σni〉〉: some Ci〈x1, . . . , xni〉

ACYCLIC: no supκ ∩ iden.

In the last axiom, supκ denotes the proper superterm relation for κ. For example, we have
supκ(Cons(x,xs), xs) for any x and xs because the second argument’s value is a proper sub-
term of the first argument’s value. We will see shortly how to derive supκ.

DISJOINT and EXHAUSTIVE ensure that the discriminators partition 〈〈κ〉〉. The four re-
maining axioms, sometimes called the SUGA axioms (after the first letter of each axiom
name), ensure that selectors are functions whose domain is given by the corresponding dis-
criminator (SELECTOR), that constructors are total functions (UNIQUE and GENERATOR),
and that datatype values cannot be proper subterms or superterms of themselves (ACYCLIC).
The injectivity of constructors follows from the functionality of selectors.

With this axiomatization, occurrences of Ci(u1, . . . ,un) in FOL are simply mapped to
Ci〈T〈〈u1〉〉, . . . ,T〈〈un〉〉〉, whereas case t of C1(x̄1)⇒ u1 | . . . |C`(x̄`)⇒ u` is coded as

if T〈〈t〉〉⊆D1 then T〈〈u•1〉〉 else if . . . else if T〈〈t〉〉⊆D` then T〈〈u•`〉〉 else none,

where u•i denotes the term ui in which all occurrences of the variables x̄i = xi1, . . . , xini are
replaced with the corresponding selector expressions Si1(t), . . . ,Sini(t).

Unfortunately, the SUGA axioms admit no finite models if the type κ is recursive (and
hence infinite), because they force the existence of infinitely many values. The solution is to
leave GENERATOR out, yielding SUA. The SUA axioms characterize precisely the subterm-
closed finite substructures of an algebraic datatype. In a two-valued logic, this is generally
unsound, but Kuncak and Jackson [25] showed that omitting GENERATOR is sound for
existential–bounded-universal (EBU) sentences—namely, the formulas whose prenex nor-
mal forms contain no unbounded universal quantifiers ranging over datatypes.

6 These names were chosen for readability; any fresh names would do.
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In our three-valued setting, omitting the GENERATOR axiom is always sound. The con-
struct Ci〈r1, . . . ,rni〉 sometimes returns none for non-none arguments, but this is not a prob-
lem since our translation of Sect. 4.2 is designed to cope with partiality. Non-EBU formulas
such as True ∨ ∀nnat. P(n) become analyzable when moving to a three-valued logic. This is
especially important for complex specifications, because they are likely to contain non-EBU
parts that are not needed for finding a model.

Example 5.2 The nat list instance of α list would be axiomatized as follows:

DISJOINT: no nilp ∩ consp

EXHAUSTIVE: nilp ∪ consp' 〈〈nat list〉〉
SELECTORhead: ∀ys∈〈〈nat list〉〉: if ys⊆ consp then one ys.head else no ys.head

SELECTORtail: ∀ys∈〈〈nat list〉〉: if ys⊆ consp then one ys.tail else no ys.tail

UNIQUENil: lone Nil〈〉
UNIQUECons: ∀x∈〈〈nat〉〉, xs∈〈〈nat list〉〉: lone Cons〈x, xs〉

ACYCLIC: no supnat list ∩ iden with supnat list = tail+.

Examples of subterm-closed list substructures using traditional notation are {[], [0], [1]}
and {[], [1], [2,1], [0,2,1]}. In contrast, the set L = {[], [1,1]} is not subterm-closed, be-
cause tail([1,1]) = [1] /∈ L. Given a cardinality, Kodkod systematically enumerates all cor-
responding subterm-closed list substructures. �

To generate the proper superterm relation needed for ACYCLIC, we must consider the gen-
eral case of mutually recursive datatypes. We start by computing the datatype dependency
graph, in which vertices are labeled with datatypes and arcs with selectors. For each selector
S κ�κ ′, we add an arc from κ to κ ′ labeled S. Next, we compute for each datatype a regular
expression capturing the nontrivial paths in the graph from the datatype to itself. This can be
done using Kleene’s construction [22; 23, pp. 51–53]. The proper superterm relation is ob-
tained from the regular expression by replacing concatenation with relational composition,
alternative with set union, and repetition with transitive closure.

Example 5.3 Let sym be an atomic type, and consider the definitions

datatype α list = Nil | Cons of (α, α list)
datatype tree = Leaf of sym | Node of tree list

Their dependency graph is

where children is the selector associated with Node. The superterm relations are

suptree = (children.tail∗.head)+ suptree list = (tail ∪ head.children)+.

Notice that in the presence of polymorphism, instances of sequentially declared datatypes
can be mutually recursive. �
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With a suitable axiomatization of datatypes as subterm-closed substructures, it is easy to en-
code primrec definitions. A recursive equation f (Ci(xσ1

1 , . . . , xσm
m ), zσ

′
11 , . . . , zσ

′
nn )' t is trans-

lated to
∀y∈Di, z1∈〈〈σ′1〉〉, . . . ,zn∈〈〈σ′n〉〉: T〈〈 f (y, z1, . . . ,zn)〉〉 ' T〈〈t•〉〉,

where t• is obtained from t by replacing the variables xi with the selector expressions Si(y).
By quantifying over the constructed values y rather than over the arguments to the con-
structors, we reduce the number of copies of the quantified body by a factor of |〈〈σ1〉〉| · . . . ·
|〈〈σn〉〉|/ |〈〈κ〉〉| in the SAT problem. Although we focus here on primitive recursion, general
well-founded recursion with non-overlapping pattern matching (as defined using Isabelle’s
function package [24]) can be handled in essentially the same way.

Example 5.4 The recursive function cat from Sect. 3.4 is translated to

∀ys∈nilp, zs∈〈〈α list〉〉: zs.(ys.cat)' zs

∀ys∈ consp, zs∈〈〈α list〉〉: zs.(ys.cat)' Cons〈ys.head, zs.((ys.tail).cat)〉. �

Theorem 5.2 The encoding of Sect. 5.1 extended with algebraic datatypes and primitive
recursion is sound.

Proof Kuncak and Jackson [25] proved that SUA axioms precisely describe subterm-closed
finite substructures of an algebraic datatype, and showed how to generalize this result to
mutually recursive datatypes. This means that we can always extend the valuation of the
SUA-specified descriptors and selectors to obtain a model of the entire datatype. For recur-
sion, we can prove JT〈〈 f (C(x1, . . . , xm),z1, . . . ,zn)〉〉KV ⊆ bJ f (C(x1, . . . , xm),z1, . . . ,zn)KMc by
structural induction on the value of the first argument to f and extend f ’s model as in the
proof of Theorem 5.1, exploiting the injectivity of constructors. ut

5.3 Axiomatization of (Co)inductive Predicates

With datatypes and recursion in place, we are ready to consider (co)inductive predicates.
Recall from Sect. 3.2 that an inductive predicate is the least fixed point p of the equation
p(x̄) ' t[p] (where t[p] is some formula involving p) and a coinductive predicate is the
greatest fixed point. A first intuition would be to take p(x̄)' t[p] as p’s definition. In general,
this is unsound since it underspecifies p, but there are two important cases for which this
method is sound.

First, if the recursion in p(x̄) ' t[p] is well-founded, the equation admits exactly one
solution [17]; we can safely use it as p’s specification, and encode it the same way as a
recursive function (Sect. 5.2). To ascertain wellfoundedness, we can perform a simple syn-
tactic check to ensure that each recursive call peels off at least one constructor. Alternatively,
we can invoke an off-the-shelf termination prover such as AProVE [14] or Isabelle’s lexico-
graphic_order tactic [9]. Given introduction rules of the form

p(t̄i1) ∧ ·· · ∧ p(t̄i`i) ∧ Qi −→ p(ūi)

for i ∈ {1, . . . ,n}, the prover attempts to exhibit a well-founded relation R such that∧n
i=1
∧`i

j=1

(
Qi −→

〈
t̄ij, ūi

〉
∈ R
)
.

This is the approach implemented in Nitpick.
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Second, if p is inductive and occurs negatively in the formula, we can replace these
occurrences by a fresh constant q satisfying q(x̄)' t[q]. The resulting formula is equisatis-
fiable to the original formula: Since p is a least fixed point, q overapproximates p and thus
¬q(x̄) =⇒¬ p(x̄). Dually, this method can also handle positive occurrences of coinductive
predicates.

To deal with positive occurrences of inductive predicates, we adapt a technique from
bounded model checking [6]: We replace these occurrences of p by a fresh predicate rk
defined by the FOL equations

r0(x̄) ' False rSuc(m)(x̄) ' t[rm],

which corresponds to p unrolled k times. In essence, we have made the predicate well-
founded by introducing a counter that decreases by one with each recursive call. The above
equations are primitive recursive over the datatype nat and can be translated using the ap-
proach shown in Sect. 5.2. The unrolling comes at a price: The function table for rk is k times
larger than that of p directly encoded as p(x̄)' t[p].

The situation is mirrored for coinductive predicates: Negative occurrences are replaced
by the overapproximation rk defined by

r0(x̄) ' True rSuc(m)(x̄) ' t[rm].

Example 5.5 The even predicate defined by

inductive evennat�o where
even(0)
even(n)−→ even(n)
even(n)−→ even(Suc(Suc(n)))

is not well-founded because of the (needless) cyclic rule even(n) −→ even(n). We can use
the fixed-point equation

even(x) '
(
∃n. x' 0 ∨ (x' n ∧ even(n)) ∨ (x' Suc(Suc(n)) ∧ even(n))

)
as an overapproximation of even in negative contexts. In positive contexts, we must unroll
the predicate:

even0(x) ' False
evenSuc(m)(x) '

(
∃n. x' 0 ∨ (x' n∧ evenm(n)) ∨ (x' Suc(Suc(n))∧ evenm(n))

)
. �

Theorem 5.3 The encoding of Sect. 5.2 extended with (co)inductive predicates is sound.

Proof We consider only inductive predicates; coinduction is dual. If p is well-founded, the
fixed-point equation fully characterizes p [17], and the proof is identical to that of primitive
recursion in Theorem 5.2 but with recursion induction instead of structural induction. If
p is not well-founded, q ' t[q] is satisfied by several q’s, and by Knaster–Tarski p v q.
Substituting q for p’s negative occurrences in the FORL formula strengthens it, which is
sound. For the positive occurrences, we have r0 v ·· · v rk v p by monotonicity of the
definition; substituting rk for p’s positive occurrences strengthens the formula. ut
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As an alternative to the explicit unrolling, we can mobilize FORL’s transitive closure for
an important class of inductive predicates, linear inductive predicates, whose introduction
rules are of the form Q −→ p(ū) (the base rules) or p(t̄ ) ∧ Q −→ p(ū) (the step rules).
Informally, the idea is to replace positive occurrences of p(x̄) with

∃x̄0. pbase(x̄0) ∧ p∗step(x̄0, x̄),

where pbase(x̄0) iff p(x̄0) can be deduced from a base rule, pstep(x̄0, x̄) iff p(x̄) can be de-
duced by applying one step rule assuming p(x̄0), and p∗step is the reflexive transitive closure
of pstep. For example, a reachability predicate reach(s) defined inductively would be coded
as a set of initial states reachbase and the small-step transition relation reachstep. The ap-
proach is not so different from explicit unrolling, since Kodkod internally unrolls the tran-
sitive closure to saturation. Nonetheless, on some problems the transitive closure approach
is several times faster, presumably because Kodkod unfolds the relation inline instead of
introducing an explicit counter.

5.4 Axiomatization of Coalgebraic Datatypes and Corecursive Functions

Coalgebraic datatypes are similar to algebraic datatypes, but they allow infinite values. For
example, the infinite lists [0,0, . . . ] and [0,1,2,3, . . . ] are possible values of the type nat llist
of coalgebraic (lazy) lists over natural numbers.

In principle, we could use the same SUA axiomatization for codatatypes as for datatypes
(Sect. 5.2). This would exclude all infinite values but nonetheless be sound. However, in
practice, infinite values often behave in surprising ways; excluding them would also exclude
many interesting models.

It turns out we can modify the SUA axiomatization to support an important class of in-
finite values, namely those that are ω-regular. For lazy lists, this means lasso-shaped objects
such as [0,0, . . . ] and [8,1,2,1,2, . . . ] (where the cycle 1,2 is repeated infinitely).

The first step is to leave out the ACYCLIC axiom. However, doing only this is un-
sound, because we might obtain several atoms encoding the same value; for example, a1 =
LCons(0, a1), a2 = LCons(0, a3), and a3 = LCons(0, a2) all encode the infinite list [0,0, . . . ].
This violates the bisimilarity principle, according to which two values are equal unless they
lead to different observations (the observations being 0,0, . . .).

For lazy lists, we add the definition

coinductive ∼(α llist,α llist)�o where
LNil∼ LNil
x' x′ ∧ xs∼ xs′ −→ LCons(x, xs)∼ LCons(x′, xs′)

and we require that' coincides with∼ on α llist values. More generally, we generate mutual
coinductive definitions of ∼ for all the codatatypes. For each constructor C (σ1,...,σn)�σ, we
add an introduction rule

x1 ≈1 x′1 ∧ ·· · ∧ xn ≈n x′n −→C(x1, . . . , xn)∼C(x′1, . . . , x
′
n),

where ≈i is ∼(σi,σi)�o if σi is a codatatype and ' otherwise. Finally, for each codatatype κ,
we add the axiom

BISIMILAR: ∀y,y′∈〈〈κ〉〉: y∼ y′ −→ y' y′.
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With the SUB (SU plus BISIMILAR) axiomatization in place, it is easy to encode coprimrec
definitions. A corecursive equation f (yσ1

1 , . . . ,yσ1
n ) ' t is translated to

∀y1 ∈ 〈〈σ1〉〉, . . . ,yn ∈ 〈〈σn〉〉: T〈〈 f (y1, . . . ,yn)〉〉 ' T〈〈t〉〉.

Theorem 5.4 The encoding of Sect. 5.3 extended with coalgebraic datatypes and primitive
corecursion is sound.

Proof Codatatypes are characterized by selectors, which are axiomatized by the SU axioms,
and by finality, which is equivalent to the bisimilarity principle [20, 30]. Our finite axiom-
atization gives a subterm-closed substructure of the coalgebraic datatype, which can be ex-
tended to yield a FOL model of the complete codatatype, as we did for algebraic datatypes
in the proof of Theorem 5.2.

The soundness of the encoding of primitive corecursion is proved by coinduction. Given
the equation f (ȳ) ' t, assuming that for each corecursive call f (x̄) we have JT〈〈 f (x̄)〉〉KV ⊆
bJ f (x̄)KMc, we must show that JT〈〈 f (ȳ)〉〉KV ⊆ bJ f (ȳ)KMc. This follows from the soundness
of the encoding of the constructs occurring in t and from the hypotheses. ut

6 Techniques for Improving Precision and Efficiency

6.1 Constructor Elimination

Since datatype constructors may return ? in our encoding, we can increase precision by
eliminating them. A formula such as Cons(x,Cons(y,Nil))' Cons(a,Cons(b,Nil)) can eas-
ily be rewritten into x ' a ∧ y ' b, which evaluates to either True or False if x, y, a, and
b are representable, even if Cons(x,Cons(y,Nil)) or Cons(a,Cons(b,Nil)) would yield ?.
By introducing discriminators and selectors, we can also rewrite equalities where only
one side is expressed using constructors; for example, xs ' Cons(a,Nil) would become
consp(xs) ∧ head(xs)' a ∧ nilp(tail(xs)).

6.2 Quantifier Massaging

The equations that encode (co)inductive predicates are marred by existential quantifiers,
which blow up the size of the resulting propositional formula. The following steps, described
in the Nitpick paper [8] but repeated here for completeness, can be applied to eliminate
quantifiers or reduce their binding range:

1. Replace quantifications of the forms ∀x. x' t −→ P[x] and ∃x. x' t ∧ P[x] by P[t] if x
does not occur free in t.

2. Skolemize.
3. Distribute quantifiers over congenial connectives (∀ over ∧, ∃ over ∨ and −→).
4. For any remaining subformula Qx1 . . . xn. p1 ⊗ ·· · ⊗ pm, where Q is a quantifier and ⊗

is a connective, move the pi’s out of as many quantifiers as possible by rebuilding the
formula using qfy({x1, . . . , xn}, {p1, . . . , pm}), defined as

qfy( /0, P) =
⊗

P qfy(x ] X, P) = qfy(X, P−Px ∪ {Qx.
⊗

Px}),

where Px = {p ∈ P | x occurs free in p}.
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The order in which individual variables x are removed from the first argument in step 4 is
crucial because it affects which pi’s can be moved out. For clusters of up to 7 quantifiers, Nit-
pick considers all permutations of the bound variables and chooses the one that minimizes
the sum ∑

m
i=1 |〈〈σi1〉〉| · . . . · |〈〈σiki〉〉| · size(pi), where σi1, . . . ,σiki are the types of the variables

that have pi in their binding range, and size(pi) is a rough syntactic measure of pi’s size;
for larger clusters, it falls back on a greedy heuristic inspired by Paradox’s clause splitting
procedure [12]. Thus, the formula ∃xα yα. p(x) ∧ q(x,y) ∧ r(y, f (y,y)) is transformed into
∃yα. r(y, f (y,y)) ∧ (∃xα. p(x) ∧ q(x,y)). Processing y before x in qfy would instead give
∃xα. p(x) ∧ (∃yα. q(x,y) ∧ r(y, f (y,y))), which is more expensive because r(y, f (y,y)), the
most complex conjunct, is doubly quantified and hence |〈〈α〉〉|2 copies of it are needed in the
resulting propositional formula. It could be argued that this optimization really belongs in
Kodkod, but until it is implemented there we must do it ourselves.

6.3 Tabulation

FORL relations can be assigned fixed values, in which case no propositional variables are
generated for them. We can use this facility to store tables that precompute the value of
basic operations on natural numbers, such as Suc, +,−, ∗, div, mod, <, gcd, and lcm. This is
possible for natural numbers because for any cardinality k there exists exactly one subterm-
closed substructure {0,1, . . . ,k−1}.

Example 6.1 If 〈〈nat〉〉= {0,1,2,3,4}, we encode each representable number n as an+1, ef-
fectively performing our own symmetry breaking. We can then declare the successor func-
tion as follows:

var Suc = {〈a1,a2〉 , 〈a2,a3〉 , 〈a3,a4〉 , 〈a4,a5〉} �

7 Case Studies

7.1 A Context-Free Grammar

Our first case study is taken from the Isabelle/HOL tutorial [29]. The following context-free
grammar, originally due to Hopcroft and Ullman, produces all strings with an equal number
of a’s and b’s:

S ::= ε | bA | aB A ::= aS | bAA B ::= bS | aBB

The intuition behind the grammar is that A generates all string with one more a than b’s and
B generates all strings with one more b than a’s.

Context-free grammars can easily be expressed as inductive predicates. The following
FOL specification attempts to capture the above grammar, but a few errors were introduced
to make it interesting.

datatype Σ = a | b

inductive S Σ list�bool and AΣ list�bool and B Σ list�bool where
S(Nil) S(w) −→ A(Cons(a,w))
A(w) −→ S(Cons(b,w)) S(w) −→ S(Cons(b,w))
B(w) −→ S(Cons(a,w)) B(v) ∧ B(v) −→ B(cat(Cons(a,v),w))
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Debugging faulty specifications is at the heart of Nitpick’s raison d’être. A good ap-
proach is to state desirable properties of the specification—here, that the predicate S corre-
sponds to the set (or predicate) of strings over {a,b} with as many a’s as b’s—and check
them with Nitpick. If the properties are correctly stated, counterexamples will point to bugs
in the specification. For our grammar example, we will proceed in two steps, separating the
soundness and the completeness of the set S:

SOUND: S(w) −→ count(a,w)' count(b,w)

COMPLETE: count(a,w)' count(b,w) −→ S(w).

The auxiliary function count is defined as follows:

primrec count (α,α list)�nat where
count(x,Nil)' 0
count(x, Cons(y,ys))' (if x' y then 1 else 0)+ count(x, ys)

We first focus on soundness. The predicate S occurs negatively in SOUND, but positively
in the negated conjecture ¬ SOUND. Wellfoundedness is easy to establish because the words
in the conclusions are always at least one symbol longer than the corresponding words in
the assumptions. As a result, Nitpick can use the fixed-point equations

S(x) '
(

x' Nil ∨ (∃w. x' Cons(b,w) ∧ A(w)) ∨ (∃w. x' Cons(a,w) ∧ B(w))
∨ (∃w. x' Cons(b,w) ∧ S(w))

)
A(x) '

(
∃w. x' Cons(a,w) ∧ S(w)

)
B(x) '

(
∃v w. x' cat(Cons(a,v),w) ∧ B(v) ∧ B(v)

)
,

which can be syntactically derived from the introduction rules.
When invoked on SOUND with the default settings, Nitpick produces 10 FORL prob-

lems corresponding to the scopes |〈〈nat〉〉| = |〈〈Σ list〉〉| = k and |〈〈Σ〉〉| = min {k,2} for k ∈
{1, . . . ,10} and passes them on to Kodkod. Datatypes approximated by subterm-closed sub-
structures are always scope-monotonic, so it would be sufficient to try only the largest scope
(k = 10), but in practice it is usually more efficient to start with smaller scopes. The models
obtained this way also tend to be simpler.

Nitpick almost instantly finds the counterexample w = [b] built using the substructures

〈〈nat〉〉= {0, 1} 〈〈Σ list〉〉= {[], [b]} 〈〈Σ〉〉= {a, b}

and the constant interpretations

cat([], []) = [] count(a, []) = 0 S([]) = True A([]) = False B([]) = ?

cat([b], []) = ? count(b, []) = 0 S([b]) = True A([b]) = False B([b]) = ?.

cat([], [b]) = [b] count(a, [b]) = 0
cat([b], [b]) = ? count(b, [b]) = 1

It would seem that S([b]). How could this be? An inspection of the introduction rules
reveals that the only rule with a right-hand side of the form S(Cons(b, . . .)) that could have
introduced [b] into S is

S(w) −→ S(Cons(b,w)).
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This rule is clearly wrong: To match the production B ::= bS , the second S should be a B.
If we fix the typo and run Nitpick again, we now obtain the counterexample w = [a,a,b],
which requires k = 4. This takes about 1.5 seconds on the author’s laptop.

Some detective work is necessary to find out what went wrong here. To get S([a,a,b]),
we need B([a,b]), which in turn can only originate from

B(v) ∧ B(v) −→ B(cat(Cons(a,v),w)).

This introduction rule is highly suspicious: The same assumption occurs twice, and the
variable w is unconstrained. Indeed, one of the two occurrences of v in the assumptions
should have been a w.

With the correction made, we do not get any counterexample from Nitpick, which ex-
hausts all scopes up to cardinality 10 well within the 30 second time limit. Let us move
on and check completeness. Since the predicate S occurs negatively in the negated conjec-
ture ¬ COMPLETE, Nitpick can safely use the fixed-point equations for S, A, and B as their
specifications. This time we get the counterexample w = [b,b,a,a], with k = 5.

Apparently, [b,b,a,a] is not in S even though it has the same numbers of a’s and b’s. But
since our inductive definition passed the soundness check, our introduction rules are likely
to be correct. Perhaps we simply lack a rule. Comparing the grammar with the inductive
definition, our suspicion is confirmed: There is no introduction rule corresponding to the
production A ::= bAA, without which the grammar cannot generate two or more b’s in a
row. So we add the rule

A(v) ∧ A(w) −→ A(cat(Cons(b,v),w)).

With this last change, we do not get any counterexamples from Nitpick for either sound-
ness or completeness. We can even generalize our result to cover A and B as well:

S(w) ' (count(a,w)' count(b,w))

A(w) ' (count(a,w)' count(b,w)+1)

B(w) ' (count(a,w)+1' count(b,w)).

Nitpick can test these formulas up to cardinality 10 within 30 seconds on the author’s laptop.
With some manual setup, the latest version of Quickcheck [4], a counterexample gener-

ator based on random testing, can find the same counterexamples as Nitpick. On the other
hand, the SAT-based Refute [36] fails here, mostly because of its very rudimentary support
for inductive predicates.

7.2 AA Trees

AA trees are a variety of balanced trees discovered by Arne Andersson that provide similar
performance to red-black trees but are easier to implement [2]. They can be used to store
sets of elements of type α equipped with a total order <. We start by defining the datatype
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and some basic extractor functions:

datatype α aa_tree = Λ | N of (α, nat, α aa_tree, α aa_tree)

primrec levelα aa_tree�nat where primrec dataα aa_tree�α where
level(Λ)' 0 | data(N(x,_,_,_))' x
level(N(_,k,_,_))' k

primrec is_in(α, α aa_tree)�o where
is_in(_, Λ)' False |
is_in(a, N(x,_, t,u))'

(
a' x ∨ is_in(a, t) ∨ is_in(a,u)

)
primrec lf α aa_tree�α aa_tree where primrec rtα aa_tree�α aa_tree where
lf(Λ)' Λ | rt(Λ)' Λ |
lf(N(_,_, t,_))' t rt(N(_,_,_,u))' u

The wellformedness criterion for AA trees is fairly complex. Each node is equipped with a
“level” field, which must satisfy the following constraints:

– Nil trees (Λ) have level 0.
– Leaf nodes (i.e., nodes of the form N(_,_,Λ,Λ)) have level 1.
– A node’s level must be at least as large as its right child’s, and greater than its left child’s

and its grandchildren’s.
– Every node of level greater than 1 must have two children.

The wf predicate formalizes this description:

primrec wfα aa_tree�o where
wf(Λ)' True |
wf(N(_,k, t,u))'

(if t ' Λ then
k ' 1 ∧ (u' Λ ∨ (level(u)' 1 ∧ lf(u)' Λ ∧ rt(u)' Λ))

else
wf(t) ∧ wf(u) ∧ u 6' Λ ∧ level(t) < k ∧ level(u)≤ k ∧ level(rt(u)) < k)

Rebalancing the tree upon insertion and removal of elements is performed by two auxiliary
functions called skew and split, defined below:

primrec skewα aa_tree�α aa_tree where primrec splitα aa_tree�α aa_tree where
skew(Λ) = Λ split(Λ) = Λ

skew(N(x,k, t,u)) = split(N(x,k, t,u)) =
(if t 6= Λ ∧ k = level(t) then (if u 6= Λ ∧ k = level(rt(u)) then

N(data(t),k, lf(t),N(x,k,rt(t),u)) N(data(u),Suc(k),N(x,k, t, lf(u)),rt(u))
else else

N(x,k, t,u)) N(x,k, t,u))

Performing a skew or a split should have no impact on the set of elements stored in the tree:

is_in(a,skew(t))' is_in(a, t) is_in(a,split(t))' is_in(a, t).
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Furthermore, applying skew or split on a well-formed tree should not alter the tree:

wf(t) −→ skew(t)' t wf(t) −→ split(t)' t.

All these properties can be checked up to cardinality 7 or 8 by Nitpick, within the default
time limit of 30 seconds.

Insertion is implemented recursively. It preserves the sort order:

primrec insort (α aa_tree,α)�α aa_tree where
insort(Λ, x)' N(x,1,Λ,Λ)
insort(N(y,k, t,u), x)'

split(skew(N(y, k, if x < y then insort(t, x) else t, if x > y then insort(u, x) else u)))

If we test the property
wf(t) −→ wf(insort(t, x)),

with the applications of skew and split commented out (as suggested by the notations split
and skew), we get the counterexample t = N(a1,1,Λ,Λ) and x = a2. It’s hard to see why
this is a counterexample without looking up the definition of < on type α. To improve
readability, we will restrict the theorem to nat and tell Nitpick to display the value of
insort(t, x). The counterexample is now t = N(1,1,Λ,Λ) and x = 0, with insort(t, x) =
N(1,1,N(0,1,Λ,Λ),Λ). The output reveals that the element 0 was added as a left child of
1, where both nodes have a level of 1. This violates the AA tree invariant, which requires
that a left child’s level must be less than its parent’s. This should not come as a surprise,
considering that we commented out the tree rebalancing code. If we reintroduce the code,
Nitpick finds no counterexample up to cardinality 7.

As in the context-free grammar case study, Quickcheck can find the same counter-
examples as Nitpick, whereas Refute fails.

7.3 Lazy Lists

The codatatype α llist of lazy lists [30] is generated by the constructors LNilα llist and
LCons(α, α llist)�α llist. It is of particular interest to countermodel finding because many basic
properties of finite lists do not carry over to infinite lists, often in baffling ways. To illustrate
this, we conjecture that appending ys to xs yields xs iff ys is LNil:

(lcat(xs, ys)' xs) ' (ys' LNil).

The function lcat is defined corecursively in Sect. 3.4. Nitpick immediately finds the counter-
model xs = ys = [0,0, . . . ], in which a cardinality of 1 is sufficient for α and α llist, and the
bisimilarity predicate ∼ is unrolled only once. Indeed, appending [0,0, . . . ] 6= [] to [0,0, . . . ]
leaves [0,0, . . . ] unchanged. Many other counterexamples are possible—for example, xs =
[0,0, . . . ] and ys = [1]—but Nitpick tends to reuse the objects that are part of its subterm-
closed substructures and keep cardinalities low. Although very simple, the counterexample
is outside Quickcheck’s and Refute’s reach, since they do not support codatatypes.

The next example requires the following lexicographic order predicate:

coinductive �(nat llist,nat llist)�o where
LNil� xs
x≤ y−→ LCons(x, xs)� LCons(y, ys)
xs� ys−→ LCons(x, xs)� LCons(x, ys)
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The intention of this definition is to define a linear order on lazy lists of natural numbers,
and hence the following properties should hold:

REFL: xs� xs ANTISYM: xs� ys ∧ ys� xs−→ xs' ys

LINEAR: xs� ys ∨ ys� xs TRANS: xs� ys ∧ ys� zs−→ xs� zs.

However, Nitpick finds a counterexample for ANTISYM: xs = [1,1] and ys = [1]. On closer
inspection, the assumption x ≤ y of the second introduction rule for � should have been
x < y; otherwise, any two lists xs, ys with the same head satisfy xs� ys. Once we repair the
specification, no more counterexamples are found for the four properties up to cardinality 6
for nat and nat llist, within the time limit of 30 seconds. This is a strong indication that the
properties hold. Andreas Lochbihler used Isabelle to prove all four properties [27].

We could continue like this and sketch a complete theory of lazy lists. Once the defi-
nitions and main theorems are in place and have been thoroughly tested using Nitpick, we
could start working on the proofs. Developing theories this way usually saves time, because
faulty theorems and definitions are discovered much earlier in the process.

8 Related Work

The encoding of algebraic datatypes in FORL has been studied by Kuncak and Jackson [25]
and Dunets et al. [13]. Kuncak and Jackson focused on lists and trees. Dunets et al. showed
how to handle primitive recursion; their approach to recursion is similar to ours, but the
use of a two-valued logic compelled them to generate additional definedness guards. The
unrolling of inductive predicates was inspired by bounded model checking [6] and by the
Alloy idiom for state transition systems [19, pp. 172–175].

Another inspiration has been Weber’s higher-order model finder Refute [36]. It uses a
three-valued logic, but sacrifices soundness for precision. Datatypes are approximated by
subterm-closed substructures [36, pp. 58–64] that contain all datatype values built using up
to k nested constructors. This scheme proved disadvantageous in practice, because it gener-
ally requires higher cardinalities to obtain the same models as with Kuncak and Jackson’s
approach. Weber handled (co)inductive predicates by expanding their HOL definition, which
in practice does not scale beyond a cardinality of 3 for the predicate’s domain because of
the higher-order quantifier.

The Nitpick tool, which implements the techniques presented here, is described in a
separate paper [8] that covers the handling of higher-order quantification and functions. The
paper also presents an evaluation of the tool on various Isabelle/HOL theories, where it
competes against Refute and Quickcheck [4], as well as two case studies.

9 Conclusion

Despite recent advances in lightweight formal methods, there remains a wide gap between
specification languages that lend themselves to automatic analysis and those that are used in
actual formalizations. As an example, infinite types are ubiquitous, yet most model finders
either spin forever [12, 28], give up immediately [11], or are unsound [1; 33, p. 164; 36] on
finitely unsatisfiable formulas.

We identified several commonly used definitional principles and showed how to encode
them in first-order relational logic (FORL), the logic supported by the Kodkod model finder
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and the Alloy Analyzer. Our main contribution has been to develop three ways to translate
(co)inductive predicates to FORL, based on wellfoundedness, polarity, and linearity. Other
contributions have been to formulate an axiomatization of coalgebraic datatypes that caters
for infinite (ω-regular) values and to devise a procedure that computes the acyclicity axiom
for mutually recursive datatypes.

Counterexample generators encourages a style of theory development where users start
by stating their definitions and main theorems and testing these thoroughly before working
on the proofs. Developing theories this way usually saves time, because faulty conjectures
and definitions are discovered much earlier in the process. Our experience with the counter-
example generator Nitpick has shown that the techniques scale to handle real-world speci-
fications, including a security type system and a hotel key card system [8]. A user reported
saving several hours of failed proof attempts thanks to Nitpick’s support for codatatypes and
coinductive predicates while developing a formal theory of infinite process traces [26].
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