
Verification of Certifying Computations

Eyad Alkassar1, Sascha Böhme2, Kurt Mehlhorn3, and Christine Rizkallah3

1 Universität des Saarlandes, Germany
2 Institut für Informatik, Technische Universität München, Germany

3 Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract. Formal verification of complex algorithms is challenging. Verifying
their implementations goes beyond the state of the art of current verification tools
and proving their correctness usually involves non-trivial mathematical theorems.
Certifying algorithms compute in addition to each output a witness certifying that
the output is correct. A checker for such a witness is usually much simpler than
the original algorithm – yet it is all the user has to trust. Verification of checkers
is feasible with current tools and leads to computations that can be completely
trusted. In this paper we develop a framework to seamlessly verify certifying
computations. The automatic verifier VCC is used for checking code correctness,
and the interactive theorem prover Isabelle/HOL targets high-level mathematical
properties of algorithms. We demonstrate the effectiveness of our approach by
presenting the verification of a typical example of the algorithmic library LEDA.

1 Introduction

One of the most prominent and costly problems in software engineering is correctness
of software. In this paper, we are concerned with software for difficult algorithmic prob-
lems, e.g., matchings in graphs. The algorithms for such problems are complex; formal
verification of the resulting programs is beyond the state of the art. We show how to
obtain formal instance correctness, i.e., formal proofs that outputs for particular inputs
are correct. We do so by combining the concept of certifying algorithms with methods
for code verification and theorem proving.

A certifying algorithm [3, 18, 13] produces with each output a certificate or witness
that the particular output is correct. By inspecting the witness, the user can convince
himself that the output is correct, or reject the output as buggy. Figure 1 contrasts a
standard algorithm with a certifying algorithm for computing a function f .

A user of a certifying algorithm inputs x and receives the output y and the witness
w. He then checks that w proves that y is a correct output for input x. The process of
checking w can be automated with a checker, which is an algorithm for verifying that
w proves that y is a correct output for x. Having checked the witness, the user may
proceed with complete confidence that output y has not been compromised. Certifying
algorithms are the design principle of the algorithmic library LEDA [14]: Checkers are
an integral part of the library and may (optionally) be invoked after every execution
of a LEDA algorithm. Adoption of the principle greatly improved the reliability of the
library.

We take the principle a step further and develop a methodology for formal proofs
of instance correctness. We demonstrate it on one of the more complex algorithms in

Program for f
x y

Certifying
program for f Checker C

x

x y

w

accept y

reject

Fig. 1: The top figure shows the I/O behavior of a conventional program for computing
a function f . The user feeds an input x to the program and the program returns an output
y. A certifying algorithm for f computes y and a witness w. The checker C accepts the
triple (x, y, w) if and only if w is a valid witness for the equality y = f(x).

LEDA, maximum cardinality matching in graphs. The description of the algorithm and
its implementation in [14] comprises 15 pages. In contrast, the checker is less than a
page. Our formalization revealed that the checker program in LEDA is incomplete.

We outline our approach in Section 2 and give a detailed case study in Section 4.
See also http://www4.in.tum.de/∼boehmes/certifying algorithms.html

for related files. In Section 3 we survey the verfication tools VCC and Isabelle/HOL.
Section 5 discusses related work and Section 6 offers conclusions.

2 Outline of Approach

We consider algorithms taking an input from a set X and producing an output in a set
Y and a witness in a set W . The input x ∈ X is supposed to satisfy a precondition
ϕ(x) and the input together with the output y ∈ Y is supposed to satisfy a postcon-
dition ψ(x, y). For simplicity, we only consider algorithms with trivial preconditions
in this paper, i.e., ϕ(x) for all x ∈ X . A witness predicate for a specification with
postcondition ψ is a predicateW ⊆ X × Y ×W with the following witness property

W(x, y, w) =⇒ ψ(x, y) (1)

In contrast to algorithms which work on abstract sets X , Y , and W , programs as their
implementations operate on concrete representations of abstract objects. We use X , Y ,
andW for the set of representations of objects inX , Y , andW , respectively and assume
mappings iX : X → X , iY : Y → Y , and iW : W → W . We also have a concrete
versionW ⊆ X ×Y ×W of the witness predicate and a program C that checks it. The
concrete version ψ of the postcondition is defined as

ψ(x, y) ≡ ψ(iX(x), iY (y)). (2)

We have the following proof obligations:

Is
ab

el
le

/H
O

L
V

C
C

Verification stack

Mathematical theorem

Isabelle/HOL representation

Abstract representation

Specification

Code

ψ

W

W

W

checker correctness

abstraction correctness

VCC-Isabelle translation

witness property

Example

theorem witness property:
“W(x, y, w)−→ ψ(x, y)”

definitionW where “W(x, y, w) = . . . ”

spec(void lemma abs(x, y, w)
requires(W bar(x, y, w))
ensures(W(ix(x), iy(y), iw(w)))
{ ... })

bool Checker(x, y, w)
ensures(W bar(x, y, w))
{ ...; assert(...); ... }

bool Checker(x, y, w)
{ ... }

Fig. 2: Verification Framework

Checker Correctness: A formal proof that C checks W(x, y, w), i.e., the checker C
accepts (x, y, w) if and only ifW(x, y, w) holds.

Abstraction Correctness: A formal proof of

W(x, y, w) =⇒ W (iX(x), iY (y), iW (w)). (3)

Witness Property: A formal proof for the implication (1).

Theorem 1. Assume that the proof obligations are fulfilled and C accepts a triple
(x, y, w). Then ψ(x, y) by a formal proof.

Proof. Since C accepts (x, y, w) and we have a formal proof for the correctness of C,
we have a formal proof for W(x, y, w). By implication (3), we have a formal proof
forW(iX(x), iY (y), iW (w)) and then by (1) a formal proof for ψ(iX(x), iY (y)). The
latter is equivalent to ψ(x, y) by definition (2). ut

We next discuss how we fulfill the various proof obligations in a comprehensive
and efficient framework, see Fig. 2. Comprehensive means that the final proof formally
combines (as much as possible at syntactic level) the correctness arguments for all lev-
els (implementation, abstraction and mathematical theory). Efficient means to use the
right tool for the right target. For example, applying a general theorem prover to ver-
ify imperative code would involve a lot of language-specific overhead and lead to less
automatization; similarly, a specialized code verifier is often not powerful enough to
cover non-trivial mathematical properties. The aims comprehensiveness and efficiency
seem to be conflicting, as different tools usually come with different languages, ax-
iomatization sets, etc. Our solution is to use second-order logic as a common interface
language.

LEDA is written in C++ [14]. Our aim is to verify code which is as near as possi-
ble to the original implementation; by this we demonstrate the feasibility of verifying
already established libraries written in imperative languages such as C. Thus we verify
code with VCC [6], an automatic code verifier for full C. Our choice is motivated by
the maturity of the tool and the provision of a assertion language which is rich enough
for our requirements. In the Verisoft XT project [20] VCC was successfully used to
verify tens of thousands of non-trivial C code. VCC offers a second-order logic asser-
tion language with ghost code and types such as maps and unbounded integers. This
gives us enough expressiveness to quantify over graphs, labellings, etc. and simplifies
the translation to other proof systems. For verifying the mathematical part, we resort
to Isabelle/HOL, a higher-order-logic interactive theorem prover [17], due to the large
set of already formalized mathematics, its descriptive proof format and its various auto-
matic proof methods and tools. In Section 3 we overview both systems. Figure 2 shows
the work-flow for verifying checkers.

Checker Verfication: Starting point is the checker code written in C. Using VCC we
annotate the functions and data structures, such that the witness predicate W can
be established as postcondition of the checker function.

Abstraction Correctness: The witness predicateW is defined over C data-structures,
e.g. pointers, arrays, unions and bounded numbers. A one-to-one translation to Is-
abelle/HOL would have to unveil the complete type and memory axiomatization of
C and VCC and would thus generate an extremely large proof context. We avoid
this overhead by first abstracting all involved data structures and properties to pure
mathematical objects and definitions (using VCC ghost types) by defining map-
pings iX , iY and iW . As a result we obtain a second-order logic formula in VCC
for the witness propertyW . We justify this abstraction by proving correspondence
lemmas between abstract and concrete properties in VCC.

Export to Isabelle/HOL: Next—based on the abstract postcondition of the checker—
we formulate the overall correctness theorem in VCC, i.e., implication (1).4 Estab-
lishing such a theorem may involve non-trivial mathematical reasoning. Therefore
we translate it to Isabelle/HOL. Due to the level of abstraction this translation is
purely syntactical and does not involve any VCC specifics.

Witness Property: We prove the final theorem using Isabelle/HOL.

We stress that the overall correctness theorem is formulated in VCC; this is impor-
tant for usability. A user of a verified checker only has to look at its VCC specification;
the fact that we outsource the proof of the witness property to Isabelle/HOL is of no
concern to him.

3 Tool Overview: VCC and Isabelle/HOL

VCC [6, 7, 15] is an assertional, first-order deductive code verifier for full C code. To
overcome the restrictions of first-order reasoning, ghost state and code are used, e.g.,

4 Mathematical theorems can be formulated in VCC using pure ghost functions, i.e., functions
that do not alter the state.

to maintain inductively defined information. Specifications in the form of function con-
tracts or data invariants are added directly into the C source code. During regular build,
these annotations are ignored. From the annotated program, VCC generates verification
conditions for (partial) correctness, which it then tries to discharge using the Boogie
verifier [2] and the automatic theorem prover Z3 [16].

Verification in VCC makes heavy use of ghost data and code (indicated by key-
word spec()) used for reasoning about the program but omitted from the concrete im-
plementation. VCC provides ghost objects, ghost fields of structured data types, local
ghost variables, ghost function parameters, and ghost code. Ghosts can not only use
C data types but also additional mathematical data types, e.g., mathematical integers
(mathint), records and maps. VCC ensures that information does not flow from ghost
state to non-ghost state, and that all ghost code terminates; these checks guarantee that
program execution when projected to non-ghost code is not affected by ghost code.

Isabelle/HOL [17, 12] is an interactive theorem prover for classical higher-order
logic based on Church’s simply-typed lambda calculus. Internally, the system is built
on top of an inference kernel which provides only a small number of rules to construct
theorems; complex deductions (especially by automatic proof methods) ultimately rely
on these rules only. This approach, called LCF due to its pioneering system [11], guar-
antees correctness as long as the inference kernel is trusted. Isabelle/HOL comes with a
rich set of already formalized theories, among which are natural numbers and integers
as well as sets and finite sets. New types can also be introduced. Proofs in Isabelle/HOL
are written in a style close to that of mathematical textbooks. The user structures the
proof and the system fills in the gaps by its automatic proof methods.

4 Case Study: Maximum Cardinality Matching in Graphs

We present a case study: maximum cardinality matchings in graphs. We obtain formal
instance correctness. Our starting point is the certifying algorithm and the correspond-
ing checker in LEDA. We give a formal proof for the correctness of the checker, for the
witness property, and the connection between them.5

A matching in a graph G is a subset M of the edges of G such that no two share an
endpoint. A matching has maximum cardinality if its cardinality is at least as large as
that of any other matching. Figure 3 shows a graph, a maximum cardinality matching,
and a witness of this fact. An odd-set cover OSC of a graphG is a labeling of the nodes
of G with integers such that every edge of G is either incident to a node labeled 1 or
connects two nodes labeled with the same number i ≥ 2.

Theorem 2 (Edmonds [9]). Let M be a matching in a graph G and let OSC be an
odd-set cover of G. For any i ≥ 0, let ni be the number of nodes labeled i. If

|M | = n1 +
∑
i≥2

bni/2c (4)

then M is a maximum cardinality matching.
5 All files related to our formalization can be obtained from the following URL:
http://www4.in.tum.de/∼boehmes/certifying algorithms.html

1

0 1 0 1

0

2 2 1 0

2 0

Fig. 3: The node labels certify that the indicated matching is of maximum cardinality:
All edges of the graph have either both endpoints labelled as 2 or at least one endpoint
labelled as 1. Therefore, any matching can use at most one edge with both endpoints la-
belled 2 and at most four edges that have an endpoint labelled 1. Therefore, no matching
has more than five edges. The matching shown consists of five edges.

Proof. Let N be any matching in G. For i ≥ 2, let Ni be the edges in N that connect
two nodes labeled i and let N1 be the remaining edges in N . Then, by the definition
of odd-set cover, every edge in N1 is incident to a vertex labeled 1. Since edges in a
matching do not share endpoints, we have

|N1| ≤ n1 and |Ni| ≤ bni/2c for i ≥ 2.

Thus |N | ≤ n1 +
∑
i≥2bni/2c = |M |. ut

It can be shown (but this is non-trivial) that for any maximum cardinality matching
M there is an odd-set cover OSC satisfying equality (4). The cover uses non-negative
node labels in the range 0 to |V | − 1 and all ni’s with i ≥ 2 are odd. The certifying
algorithm for maximum cardinality matching in LEDA returns a matching M and an
odd-set cover OSC such that (4) holds. The relationship to Section 2 is as follows:

X,Y = the set of all finite undirected graphs without self-loops
ψ(G,M) =M is a maximum cardinality matching in G

W = odd-set covers
W(G,M, osc) =M is a matching in G, osc is an odd-set cover for G, and (4) holds.

Theorem 2 is the witness property. We give a formal proof for it in Section 4.2.
Writing a correct program which checks whether a set of edges is a matching and a
node labeling is an odd-set cover which together satisfy Eq. (4) is easy. In Section 4.1
we describe the verification of such a checker. In Section 4.3, we link both results.

4.1 Checker

First, we define the specificationW of the checker and consider its verification against
the code. Next, we abstract the postcondition to W and define the witness property
W(x, y, w) =⇒ ψ(x, y) which is then translated to Isabelle/HOL. Except for the wit-
ness property, which is proven in Isabelle/HOL, all presented abstractions and functions
have been formally verified using VCC.

struct edge {unsigned s; unsigned t;};

typedef struct graph {
unsigned m; unsigned n; // m edges and n nodes
struct edge∗ es; // array of edges

// data−type invariants
invariant(∀(unsigned e; e< m =⇒ es[e].s< n ∧ es[e].t< n ∧ es[e].s 6= es[e].t))
// further technical invariants are omitted here

} graph;

Listing 1: Data structures and invariants

Specification. First, we specify well-defined graphs as a property over the implementa-
tion data-type (see Listing 1). In the implementation, nodes are identified by unsigned
integers, edges are represented as C structs with two components, the source and the tar-
get node, and graphs are encoded by structs with three components, numbers of nodes
and edges and an edges array. In VCC we can specify data-type invariants, which are
guaranteed to hold whenever an object of that data-type is wrapped.6 The graph in-
variant (see Listing 1) excludes self-loops and requires that endpoints of edges are in
range. To establish memory safety, a set of additional invariants specifying ownership
relations between different graph components are required. For convenience we have
omitted them here.

Next, we specify the postcondition W of the checker function. Its arguments are
the original graph G, the alleged maximum matching M and two witnesses; an odd
set cover osc and a graph embedding id, which are both mappings from unsigned to
unsigned. We specify the matching as a graph M plus an embedding id that maps edges
of M to edges of G. Alternatively, we could have specified it as a list of edges of G.
The postcondition states that the checker outputs true if and only if the following four
properties hold, three of which can be expressed straightforwardly as first-oder logic
formulae.

Matching: Let the ghost predicate eadj denote adjacent edges. Then M is a matching
precisely if the following condition holds:

spec(ispure bool is matching(graph∗M)
ensures(result ⇐⇒ ∀(unsigned e1, e2; e1 < M→m ∧ e2 < M→m ∧ e1 6= e2 =⇒
¬eadj(M→es[e1], M→es[e2])));)

where ensures(...) defines a postcondition of a function and spec() and ispure()
mark a function as ghost and free of side-effects.

Subgraph: Checking that M is a subgraph of G is made efficient by an embedding
function id, which maps edge identifiers in M to those in G. This check is missing
in the LEDA checker. Let the ghost predicate eeq denote equality of edges. Then
subgraph is specified by:

spec(ispure bool is subgraph(graph∗ G, graph∗M, unsigned∗ id)

6 As long as an object is wrapped, its data may not be modified. Whenever the state of an object
is changed to wrapped its corresponding data-type invariants are checked.

returns(∀(unsigned e; e < M→m =⇒ id[e] < G→m ∧ eeq(M→es[e],
G→es[id[e]])));)

where returns(x) abbreviates ensures(result ≡ x).
Odd-set cover: The mapping osc is an odd-set cover for a graph G if and only if:

spec(ispure bool is odd set cover(graph∗M, unsigned∗ osc)
returns(∀(unsigned k; k < G→n =⇒ osc[k] < G→n) ∧

∀(unsigned e; e < G→m =⇒
osc[G→es[e].s] ≡ 1 ∨ osc[G→es[e].t] ≡ 1 ∨
(osc[G→es[e].t] ≡ osc[G→es[e].s] ∧ osc[G→es[e].t] > 1)));)

Equation (4): It states the equality of M→m and a sum. Specifying sums without
using recursive functions is, however, a bit intricate.7 Given a sum

∑
i<N expr(i),

the usual trick is to define a (finite) sequence S[i] of partial sums where S[i+1] =
S[i] + expr(i) for i > 0 and 0 otherwise. The last element S[n] of the sequence
then defines the desired sum.
In VCC we specify the sequences of partial sums by ghost maps. Our checker has
to compute (i) the sums ni, denoting the number of nodes with label i and (ii) the
overall sum. The VCC map defining ni is specified by the equation N[k + 1][i]
≡ N[k][i] + (i ≡ osc[k] ? 1 : 0) with the base case N[0][i] ≡ 0. The map for the
overall sum is defined by the equation SU[i + 1] ≡ SU[i] + N[G→n][i]/2 with the
base case SU[2] ≡ N[G→n][1] and SU[0] ≡ 0 ∧ SU[1] ≡ 0 for trivial graphs. The
following predicate encapsulates these conditions:

spec(ispure bool consistent sums(graph∗ G, unsigned∗ osc,
mathint N[mathint][mathint], mathint SU[mathint])

returns(
∀(mathint i; 0 ≤ i ∧ i < G→n =⇒ N[0][i] ≡ 0) ∧
∀(mathint i, k; 0 ≤ i ∧ i < G→n ∧ 0 ≤ k ∧ k < G→n =⇒

N[k + 1][i] ≡ N[k][i] + (i ≡ osc[k] ? 1 : 0)) ∧
SU[0] ≡ 0 ∧ SU[1] ≡ 0 ∧ SU[2] ≡ N[G→n][1] ∧
∀(mathint i; 1 < i ∧ i < G→n =⇒ SU[i + 1] ≡ SU[i] + N[G→n][i]/2));)

Map types are declared analogously to array types, e.g., mathint map[mathint]
denotes a map from unbounded integers to unbounded integers.
Based upon these definitions, Eq. (4) is formulated as M→m ≡ SU[G→n].

The complete postcondition of the checker is defined by the specification function
W bar holds given in Listing 2. Note that the partial sums N and SU are passed as ghost
parameters to the predicate.8

Implementation and Verification. The checker function is written in plain C. Its data
structures have already been introduced in Listing 1. The implementation is straightfor-
ward and consists of seven loops.

7 We do not use recursive specifications because VCC does not yet support termination proofs.
8 Note, that the maps SU and N could be hidden by existential quantification. We have not

choosen this solution due to technical problems with existential quantifiers in VCC (presum-
ably solved soon).

spec(ispure bool W bar holds(bool checker out, graph∗ G, graph∗M, unsigned∗ osc, unsigned∗ id,
mathint N[mathint][mathint], mathint SU[mathint])

ensures(
consistent sums(G, osc, N, SU) ∧ // sum correctly computed
checker out ⇐⇒

is matching(M) ∧ is subgraph(G, M, id) ∧ is odd set cover(G, osc) ∧
SU[G→n]≡ M→m // sum equals cardinality of M

));)

bool max card match checker(graph∗ G, graph∗M, unsigned∗ osc, unsigned∗ id
spec(out mathint N[mathint][mathint]) spec(out mathint SU[mathint])) // ghost output

requires(wrapped(G)) // wrapped implies that the datatype invariants hold
requires(wrapped(M))
requires(∀(unsigned k; k< G→n =⇒ osc[k]< G→n))
ensures(W bar holds(result, G, M, osc, id, N, SU))

Listing 2: Implementation correctness. The VCC keywords requires() and ensures() denote pre-
and postconditions of functions. The code enclosed in spec() is ghost code and only taken into
account during verification. With spec(out ..) we specify ghost output variables to functions.

We verify the checker code by proving that its postcondition is equivalent to the
witness predicate W .9 As precondition we require that the graph and the matching
are well-defined (by requiring that they are wrapped, i.e., that their data-type invariant
holds), and that the odd-set cover is in range. The contract of the checker program is
given in Listing 2. Note, that the partial sums N and SU are computed in ghost code and
returned as ghost output values.

Most of the work in proving the postcondition lies in finding the right loop invari-
ants. In Listing 3 we give an excerpt from the verification of the matching property.
The presented code allocates memory for a local array deg in M (note, that we assume
that allocation will never fail, i.e., that enough memory is available), which is used to
count the number of edges adjacent to any node. We have a matching if the degree of
every node is smaller than two. The proof of this fact is non-trivial and requires the use
of ghost maps w and b. As we iterate over the edges of M, we build for each node k
its adjacency list in w[k] and record for each edge f incident to k its position b[k][f]
in the adjaceny list. The loop invariants guarantee that all edges adjacent to node k are
stored in the sequence w[0],...,w[deg in M[k]] and that no two edges in this sequence
are equal. Thus, in case deg in M[k] > 1 we have found two adjacent edges: w[k][0]
and w[k][1]. In case deg in M[k] ≤ 1 we conclude that all edges adjacent to k are equal
to w[k][0], thus establishing that no two edges share the same node k. If deg in M[k]
≤ 1 holds for all nodes k, we easily can conclude that no two edges are adjacent, i.e.,
that M is a matching.

Abstraction. As preparation for the translation to Isabelle/HOL we define the checker
predicate without referring to concrete C data structures. We do so by defining pure
ghost data types (e.g., graphs) and corresponding abstraction functions iX , iY and iW .
Moreover we prove that our abstraction is sound and complete.

9 For soundness, implication would suffice. However, then a trivial checker returning always
false would also satisfy the postcondition.

spec(unsigned w[unsigned][unsigned];) // w[k] ghost list of edges adjacent to k
spec(unsigned b[unsigned][unsigned];) // b[k][f] position in w of edge f adjacent to node k

unsigned∗ deg in M = malloc(M→n ∗ sizeof (unsigned));
assume(deg in M 6= NULL); // enough memory available
// zeroing
for (k = 0; k<M→n; k++)

invariant(∀(mathint l; 0≤ l ∧ l< k =⇒ deg in M[l]≡ 0))
deg in M[k] = 0;

for(e=0; e<M→m; e++)
invariant(M→m 6= 0 =⇒ ∀(unsigned k, i; w[k][i]<M→m))
invariant(∀(unsigned k, i; k<M→n ∧ i< deg in M[k] =⇒ w[k][i]< e))
invariant(∀(unsigned k, i, j; k<M→n ∧ j< deg in M[k] ∧ i< j =⇒ w[k][i]< w[k][j]))
invariant(∀(unsigned k; k<M→n =⇒ deg in M[k]≤ e))
invariant(∀(unsigned k, n; k<M→n ∧ i< deg in M[k] =⇒ adj(M→es[w[k][i]], k)))
invariant(∀(unsigned k, f; k<M→n ∧ f< e =⇒

(adj(M→es[f], k) ⇐⇒ w[k][b[k][f]]≡ f ∧ b[k][f]< deg in M[k])))
// further technical invariants are omitted here

{
spec(w[M→es[e].s][deg in M[M→es[e].s]] = e;)
spec(w[M→es[e].t][deg in M[M→es[e].t]] = e;)

spec(b[M→es[e].t][e] = deg in M[M→es[e].t];)
spec(b[M→es[e].s][e] = deg in M[M→es[e].s];)

deg in M[M→es[e].s]++;
deg in M[M→es[e].t]++;

};

// if deg in M[k]>1 then we found two adjacent edges
assert(∀(unsigned k; k<M→n ∧ deg in M[k]> 1 =⇒ w[k][0] 6= w[k][1] ∧ eadj(M→es[w[k][0]],

M→es[w[k][1]])));

// if deg in M[k]<2 then all edges adjacent to k are equal to w[k][0]
assert(∀(unsigned k; k<M→n ∧ deg in M[k]< 2 =⇒ ∀(unsigned f; f<M→m ∧ adj(M→es[f],k) =⇒ f≡

w[k][0])));

Listing 3: Extract from code verification. The keyword assert() denotes an assertion which guides
the prover. Assumptions are denoted by assume().

In a naive approach one would put the coupling relation between abstraction and im-
plementation into the data structure invariant. This, however, would make it necessary
to discharge the correctness of abstraction during code verification.

Instead we chose to separate the verification of the code and the correctness of
abstraction. Listing 4 presents the abstract ghost types, the abstraction functions and
the lemmas establishing soundness and completeness of our abstraction. The predicate
W holds is derived from W bar holds by substituting arrays by maps and unsigned
numbers by unbounded integers. This gives us the witness predicateW . Using the ab-
stract types we can finally state the overall correctness theorem (where the predicate
spec invariants specifies well-defined graphs):

spec(ispure bool final theorem(spec graph G, spec graph M, funType osc, funType id)
ensures(∀(mathint N[mathint][mathint]; ∀(mathint SU[mathint];

W holds(true, G, M, osc, id, N, SU) =⇒
∀(struct spec graph M2; ∀(funType id2; spec invariants(M2) ∧

is subgraph(G,M2,id2) ∧ is matching(M2) =⇒ M2.m ≤ M.m)))));)

spec(
// ghost record types instead of C structs
struct vcc(record) spec edge { mathint s; mathint t; };
struct vcc(record) spec graph { mathint m; mathint n; spec edge es[mathint]; };

typedef mathint funType[mathint];

// abstraction functions (only declarations)
ispure spec graph abs g(graph∗ G)
ispure funType abs fun(unsigned∗ id, unsigned s)

// abstract postcondition (only declaration)
ispure bool W holds(bool checker output, spec graph G, spec graph M, funType osc, funType id,

mathint N[mathint][mathint], mathint SU[mathint])

// soundness of abstraction
ispure void lemma sound checker(graph∗ G, graph∗M, unsigned∗ osc, unsigned∗ id,

mathint N[mathint][mathint], mathint SU[mathint])
requires(wrapped(G) ∧ wrapped(M))
requires(W bar holds(true, G, M, osc, id, N, SU))
ensures(W holds(true, abs g(G), abs g(M), abs fun(osc, G→n), abs fun(id, M→m), N, SU)) {};

// completeness of abstraction
ispure void lemma complete checker(graph∗ G, graph∗M, unsigned∗ osc, unsigned∗ id,

mathint N[mathint][mathint], funType SU)
requires(wrapped(G) ∧ wrapped(M))
requires(W holds(true, abs g(G), abs g(M), abs fun(osc, G→n), abs fun(id, M→m), N, SU))
ensures(W bar holds(true, G, M, osc, id, N, SU)) {};

)

Listing 4: Abstraction of postcondition. A ghost VCC record is declared with the keyword
vcc(record).

It states that whenever the checker returns true, the given matching is maximal. Since
this theorem is not referencing any C types, it can easily be translated to Isabelle/HOL.

4.2 Formal Proof of Witness Property

We explain the Isabelle proof for the witness property, i.e., Theorem 2. See Figures 4, 5,
and 6 for excerpts from it. The formal proof follows the scheme of the informal proof
and is split into two main parts.

For i ≥ 2, let Mi be the edges in M that connect two nodes labeled i and let
M1 be the remaining edges in M . We use the definition of odd-set cover to prove that
M ⊆

⋃
i≥1Mi and thus |M | ≤

∑
i |Mi|. Let Vi be the nodes labeled i and let ni = |Vi|.

We formally prove: |M1| ≤ n1 and |Mi| ≤ bni/2c.
In order to prove |M1| ≤ n1, we exhibit an injective function from M1 to V1. We

first prove, using the definition of odd-set cover, that every edge e ∈M1 has at least one
endpoint in V1. This gives rise to a function endpointV1

: M1 7→ V1. We then use the
fact that edges in a matching do not share endpoints, i.e., are disjoint when interpreted
as sets, to conclude that endpointV1

is injective. This establishes |M1| ≤ |Vi|.
For i ≥ 2 the proof of the inequality |Mi| ≤ bni/2c is similar, but more involved.

Mi is a set of edges. If we represent edges as sets (each has cardinality equals two),
then Mi is a collection of sets. We define the set of vertices V ′i to be

⋃
Mi and use

the definition of odd-set cover to prove V ′i ⊆ Vi. Then, we use the fact that the edges

types vertex = nat types label = nat types edge = (vertex× vertex)
definition finite-graph :: vertex set => edge set⇒ bool where
finite-graph V E≡ finite V ∧ finite E ∧ (∀ e ∈ E. fst e ∈ V ∧ snd e ∈ V ∧ fst e 6= snd e)

definition edge-as-set :: edge⇒ vertex set where edge-as-set e≡ { fst e , snd e }
definition N :: vertex set⇒ (vertex⇒ label)⇒ nat⇒ nat where ni

N V L i≡ card {v ∈ V. L v = i}
definition weight:: label set⇒ (vertex⇒ nat)⇒ nat where weight LV f≡ f 1 + (

∑
i∈LV. (f i) div 2)

definition OSC :: (vertex⇒ label)⇒ edge set⇒ bool where
OSC L E≡ ∀ e ∈ E. L (fst e) = 1 ∨ L (snd e) = 1 ∨ L (fst e) = L (snd e) ∧ L (fst e)> 1

definition disjoint-edges :: edge⇒ edge⇒ bool where
disjoint-edges e1 e2≡ fst e1 6= fst e2 ∧ fst e1 6= snd e2 ∧ snd e1 6= fst e2 ∧ snd e1 6= snd e2

definition matching :: vertex set⇒ edge set⇒ edge set⇒ bool where M
matching V E M ≡M⊆ E ∧ finite-graph V E ∧ (∀ e1 ∈M. ∀ e2 ∈M. e1 6= e2−→ disjoint-edges e1 e2)

definition matching-i :: nat⇒ vertex set⇒ edge set⇒ edge set⇒ (vertex⇒ label)⇒ edge set where Mi

matching-i i V E M L≡ {e ∈M. i=1 ∧ (L (fst e) = i ∨ L (snd e) = i) ∨ i>1 ∧ L (fst e) = i ∧ L (snd e) = i}
definition V-i:: nat⇒ vertex set⇒ edge set⇒ edge set⇒ (vertex⇒ label)⇒ vertex set where V ′i

V-i i V E M L≡
⋃

edge-as-set ‘ matching-i i V E M L
definition endpoint-inV :: vertex set⇒ edge⇒ vertex where

endpoint-inV V e≡ if fst e ∈ V then fst e else snd e

Fig. 4: Excerpt from the Isabelle proof: Definitions

in a matching are pairwise disjoint to prove |V ′i | = 2 ∗ |Mi|. Note also that |V ′i | must
be even since |Mi| is a natural number. Thus we can prove that |Mi| ≤ b|V ′i | /2c and
hence |Mi| ≤ b|V ′i | /2c ≤ b|Vi| /2c = bni/2c.

4.3 Linking VCC and Isabelle

We have extended VCC to export purely mathematical specifications as Isabelle theo-
ries, essentially a syntactic rewriting. More precisely, VCC ghost records are translated
into Isabelle records, and pure VCC ghost functions are translated into Isabelle function
definitions. The former is sound and complete because the semantics of records is the
same in both systems; the latter is sound and complete as we embed VCC’s second-
order logic into the stronger higher-order logic of Isabelle/HOL. Thereby, VCC’s spec-
ification types (bool, mathint, and map types) are mapped to equivalent Isabelle types
(bool, int, and function types). Expressions of VCC comprising logical connectives,
quantifiers, integer arithmetic operations, and specification functions are mapped to
equivalent Isabelle terms.

Bridging the gap between the rather low-level definitions stemming from VCC and
the high-level definitions from the formalization is straightforward and in large parts au-
tomatic, except for a number of cumbersome issues: (1) The VCC specification enforces
a fixed numbering scheme of vertices and edges, whereas the Isabelle formalization has
no such restriction – vertices are arbitrary natural numbers and edges are modelled as
sets of vertices. (2) Edges of a graph and a matching in VCC do not necessarily need
to be indexed by the same number, whereas in Isabelle/HOL we model a matching as a
subset of a graph (which is simply a set of edges). (3) In the VCC specification, edges
of a matching are not required to have the same representation as edges in the corre-
sponding graph, i.e., sink and target vertices may be swapped. This cannot be the case in
the Isabelle formalization due to the subset relationship between matchings and graphs.

lemma card-M1-le-NVL1:
assumes matching V E M
assumes OSC L E
shows card (matching-i 1 V E M L)≤ (N V L 1) |M1| ≤ n1

lemma card-Mi-twice-card-Vi:
assumes OSC L E ∧ matching V E M ∧ i> 1
shows 2 ∗ card (matching-i i V E M L) = card (V-i i V E M L) 2 ∗ |Mi| =

∣∣V ′i ∣∣
lemma card-Mi-le-floor-div-2-Vi:
assumes OSC L E ∧ matching V E M ∧ i> 1
shows card (matching-i i V E M L)≤ (card (V-i i V E M L)) div 2 |Mi| ≤ b

∣∣V ′i ∣∣ /2c
lemma card-Vi-le-NVLi:
assumes i>1 ∧ matching V E M
shows card (V-i i V E M L)≤ N V L i

∣∣V ′i ∣∣ ≤ ni

lemma card-Mi-le-floor-div-2-NVLi:
assumes OSC L E ∧ matching V E M ∧ i> 1
shows card (matching-i i V E M L)≤ (N V L i) div 2 |Mi| ≤ bni/2c

lemma card-M-le-sum-card-Mi:
assumes matching V E M and OSC L E
shows card M≤ (

∑
i ∈ L‘V. card (matching-i i V E M L)) |M | ≤

∑
i∈LV |Mi|

theorem card-M-le-weight-NVLi:
assumes matching V E M and OSC L E
shows card M≤ weight {i ∈ L ‘ V. i> 1} (N V L) |M | ≤ n1 +

∑
i≥2bni/2c

theorem maximum-cardinality-matching:
assumes matching V E M and OSC L E
and card M = weight {i ∈ L ‘ V. i> 1} (N V L)
shows matching V E M ′−→ card M ′≤ card M Witness Property (Theorem 2)

Fig. 5: Excerpt from the Isabelle proof: Lemmas and Theorems

(4) Moreover, we require two inductive arguments for relating the VCC ghost functions
N and SU with the definition of weight in Isabelle.

4.4 Evaluation

The checker in LEDA does not verify that M is a subgraph of G. This was revealed by
the formalization.

The matching algorithm for general graphs and its efficient implementation is an
advanced topic in graph algorithms. It is a highly non-trivial algorithm which is not
covered in the standard textbooks on algorithms. The following page numbers illustrate
the complexity gap between the original algorithm and the checker: In the LEDA book,
the description of the algorithm for computing the maximum cardinality matching and
the proof of its correctness takes ca. 15 pages, compared to a one page description of
the checker implementation and a few corresponding proof lines.

All described theorems and lemmas have been formally verified, using either VCC
or Isabelle/HOL. The C code of the checker, without annotations, spans 102 lines, in-
cluding empty lines and sparse comments. The specification and verification adds an-
other 318 lines for code and 245 lines for abstraction correctness. This results in a ratio
of ca. 2.4 for the annotation overhead due to code verification. Overall proof time is less
than 1 minute on one core of a 2.66 GHz Intel Core Duo machine.

The Isabelle theories bring in additional 632 lines of declarations and proofs for 28
lemmas and theorems. More than half of the Isabelle theories are concerned with the
witness theorem (Theorem 2) and the rest links this theorem with the abstract specifi-
cation exported from VCC.

lemma injectivity:
assumes is-osc: OSC L E
assumes is-m: matching V E M
assumes e1-in-M1: e1 ∈ matching-i 1 V E M L

and e2-in-M1: e2 ∈ matching-i 1 V E M L
assumes diff: (e1 6= e2)
shows endpoint-inV {v ∈ V. L v = 1} e1 6= endpoint-inV {v ∈ V. L v = 1} e2

proof−
from e1-in-M1 have e1 ∈M by (auto simp add: matching-i-def)
moreover
from e2-in-M1 have e2 ∈M by (auto simp add: matching-i-def)
ultimately
have disjoint-edge-sets: edge-as-set e1 ∩ edge-as-set e2 = {}

using diff is-m matching-disjointness by fast
then show ?thesis by (auto simp add: edge-as-set-def endpoint-inV-def)

qed

Fig. 6: Excerpt from the Isabelle proof: Proof of an injectivity lemma

It took several months to develop the framework and to do the first example. Follow-
up verifications will benefit from this framework.

5 Related Work

The notion of a certifying algorithm is ancient. Already al-Khawarizmi in his book
on algebra described how to (partially) check the correctness of a multiplication. The
extended Euclidean algorithm for greatest common divisors is also certifying; it goes
back to the 17th century. Yet, formal verification of a checker for certificates has not
seen many instances so far.

Bulwahn et al [5] describe a verified SAT checker, i.e., a checker for certificates of
unsatisfiability produced by a SAT solver. They develop and prove correct the checker
within Isabelle/HOL. Similar proof checkers have been formalized in the Coq proof
assistant [8, 1]. CeTA [19], a tool for certified termination analysis, is also based on for-
mally verified checkers, done in Isabelle/HOL. As opposed to our approach, all men-
tioned checkers are entirely developed and verified within the language of a theorem
prover. This is acceptable when extending the capabilities of a theorem prover, but it
is unsuitable for verifying checkers of algorithm implementations in C or similar lan-
guages.

Integrating powerful interactive theorem provers as backends to code verification
systems has been exercised for VCC and Boogie with Isabelle/HOL as backend [4] as
well as for Why with a Coq backend [10]. Both systems have a C verifier frontend. Usu-
ally, such approaches for connecting code verifiers and proof assistants give the latter
the same information that is made available to the first-order engine, overwhelming the
users of the proof assistants with a mass of detail. Instead we allow only clean chunks
of mathematics to move between the verifier and the proof assistant. This hides from
the proof assistant details of the underlying programming language, thus, requiring the
user only to discharge interesting proof obligations.

6 Conclusion and Future Work

We described a framework for verification of certifying computations and applied it to
a non-trivial combinatorial problem: maximum cardinality matchings in graphs. Our
work lifts the reliability of LEDA’s maximum matching algorithm to a new level. For
each instance of the maximum matching problem, we can now give a formal proof of
the correctness of the result. Thus, the user has neither to trust the implementation of
the original algorithm or the checker, nor does he have to understand why the witness
property holds. We stress that we did not prove the correctness of the program, but only
verify the result of the computation.

Our approach applies to any problem for which a certifying algorithm is known;
see [13] for a survey. Most algorithms in LEDA [14] are certifying and, in future work,
we plan to verify all of them. The checkers and the proof of the witness properties for
all other graph algorithms in LEDA are simpler than the presented one and hence will
proceed analogously.

Our framework is not only applicable to verifying certifying computations. The inte-
gration of VCC and Isabelle/HOL should be useful whenever verification of a program
requires non-trivial mathematical reasoning.

Acknowledgment. We thank Ernie Cohen for his advice on VCC idioms and Norbert
Schirmer for his initial Isabelle support.

References

1. Armand, M., Grégoire, B., Spiwack, A., Théry, L.: Extending Coq with imperative features
and its application to SAT verification. In: Interactive Theorem Proving, LNCS, vol. 6172,
pp. 83–98. Springer (2010)

2. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A modular
reusable verifier for object-oriented programs. In: FMCO 2005. Lecture Notes in Computer
Science, vol. 4111, pp. 364–387. Springer (2006)

3. Blum, M., Kannan, S.: Designing programs that check their work. In: Proceedings of the
21th Annual ACM Symposium on Theory of Computing (STOC’89). pp. 86–97 (1989)

4. Böhme, S., Moskal, M., Schulte, W., Wolff, B.: HOL-Boogie — An interactive prover-
backend for the Verifying C Compiler. J. Automated Reasoning 44(1–2), 111–144 (2010)

5. Bulwahn, L., Krauss, A., Haftmann, F., Erkök, L., Matthews, J.: Imperative functional pro-
gramming with Isabelle/HOL. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) Theorem
Proving in Higher Order Logics, LNCS, vol. 5170, pp. 134–149. Springer (2008)

6. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T., Schulte,
W., Tobies, S.: VCC: A practical system for verifying concurrent C. In: Theorem Proving in
Higher Order Logics (TPHOLs 2009). LNCS, vol. 5674, pp. 23–42. Springer (2009)

7. Cohen, E., Moskal, M., Schulte, W., Tobies, S.: Local verification of global invariants in
concurrent programs. In: Computer Aided Verification (CAV 2010). LNCS, vol. 6174, pp.
480–494. Springer (Jul 2010)

8. Darbari, A., Fischer, B., Marques-Silva, J.: Industrial-strength certified SAT solving through
verified SAT proof checking. In: Theoretical Aspects of Computing – ICTAC 2010, LNCS,
vol. 6255, pp. 260–274. Springer (2010)

9. Edmonds, J.: Maximum matching and a polyhedron with 0,1 - vertices. Journal of Research
of the National Bureau of Standards 69B, 125–130 (1965)

10. Filliâtre, J.C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive program ver-
ification. In: Damm, W., Hermanns, H. (eds.) Conference on Computer Aided Verification.
LNCS, vol. 4590, pp. 173–177. Springer (2007)

11. Gordon, M., Milner, R., Wadsworth, C.P.: Edinburgh LCF: A Mechanised Logic of Compu-
tation, Lecture Notes in Computer Science, vol. 78. Springer (1979)

12. Gordon, M.J.C., Pitts, A.M.: The HOL logic and system. In: Towards Verified Systems,
Real-Time Safety Critical Systems Series, vol. 2, chap. 3, pp. 49–70. Elsevier (1994)

13. McConnell, R., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms. Computer
Science Review In Press, Corrected Proof (2010)

14. Mehlhorn, K., Näher, S.: The LEDA Platform for Combinatorial and Geometric Computing.
Cambridge University Press (1999)

15. Microsoft Corp.: VCC: A C Verifier. http://vcc.codeplex.com/ (2009)
16. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS 2008. Lecture Notes in

Computer Science, vol. 4963, pp. 337–340. Springer (2008)
17. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—A Proof Assistant for Higher-Order

Logic, Lecture Notes in Computer Science, vol. 2283. Springer (2002)
18. Sullivan, G., Masson, G.: Using certification trails to achieve software fault tolerance. In:

Randell, B. (ed.) Proceedings of the 20th Annual International Symposium on Fault-Tolerant
Computing (FTCS ’90). pp. 423–433. IEEE (1990)

19. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In: Theorem
Proving in Higher Order Logics, LNCS, vol. 5674, pp. 452–468. Springer (2009)

20. Verisoft XT, http://www.verisoft.de/index en.html

