
HOL-Boogie — An Interactive Prover for the
Boogie Program-Verifier?

Sascha Böhme1, K. Rustan M. Leino2 and Burkhart Wolff3

1 Technische Universität München, boehmes@in.tum.de
2 Microsoft Research, Redmond, leino@microsoft.com

3 Universität Saarbrücken, bwolff@wjpserver.cs.uni-sb.de

Abstract Boogie is a program verification condition generator for an
imperative core language. It has front-ends for the programming lan-
guages C# and C enriched by annotations in first-order logic.
Its verification conditions — constructed via a wp calculus from these
annotations — are usually transferred to automated theorem provers
such as Simplify or Z3. In this paper, however, we present a proof-
environment, HOL-Boogie, that combines Boogie with the interactive
theorem prover Isabelle/HOL. In particular, we present specific tech-
niques combining automated and interactive proof methods for code-
verification.
We will exploit our proof-environment in two ways: First, we present sce-
narios to "debug" annotations (in particular: invariants) by interactive
proofs. Second, we use our environment also to verify "background theo-
ries", i.e. theories for data-types used in annotations as well as memory
and machine models underlying the verification method for C.

1 Introduction

Verifying properties of programs at their source code level has attracted sub-
stantial interest recently. While not too long ago, “real programming languages”
like Java or C have been considered as too complex to be tackled formally,
there are meanwhile verification systems like ESC/Java [11], Why/Krakatoa/-
Caduceus [10], and Boogie used both for Spec# [3,1] and C [21]. The latter
system is also used in a substantial verification effort for the Microsoft Hypervi-
sor as part of the Verisoft XT project ([5], see also http://www.verisoft.de/).

Combining Boogie with an interactive prover has a number of incentives:
– verification attempts can be debugged by interactive proofs,
– background theories can be proven consistent,
– existing front-end compilers for Spec# and C to the Boogie-Core-Language

represent an alternative to a logical embedding of these languages.
? Supported by BMBF under grant 01IS07008.

http://www.verisoft.de/

2

Debugging Verification Attempts. Starting to annotate a given program
can lead to situations where the automated prover fails and can neither find a
proof nor a counterexample. All existing systems report of a degree of automation
approaching 100%, causing wide-spread and understandable enthusiasm. How-
ever, there is also a slight tendency to overlook that the remaining few percent
are usually the critical ones, related to the underlying theory of the algorithm
rather than implementation issues like memory and sharing. Moreover, these fig-
ures tend to hide the substantial effort that may have been spent to end up with
a formulation that can be finally proven automatically; there is even some em-
pirical evidence that in the difficult cases, the labor to massage the specification
can be comparable to the effort of an interactive proof [4].

The reason for a prover failure might be:
– specification-related (i.e., annotations and “background theories” (see below)

are inconsistent, incomplete, or specify unintended behavior),
– program-related, e. g. a program simply does not behave as intended, or
– it can be a problem of the prover, by just using a wrong heuristics for the

concrete task, or even by bad luck (e.g., Z3 [6] uses random-based heuristics).
An interactive proof, suitably adapted to the problems arising from automated
formula generation, decomposes the verification conditions along the program
structure and finally the logical structure of the annotations and can thus lead
to insufficient preconditions or invariants systematically.

Consistency of Background Theories. Conceptually, the Boogie-Core-Lan-
guage (called BoogiePL) allows for specifying transition systems; these transi-
tions are described in terms of first-order logic over a model comprising user-
defined types, constants, axioms as well as program variables. The signature and
axiom set is called the “background theory” of a program. A background theory
can be just program specific or programming-language specific. In the case of the
Verified C Compiler (VCC, e.g., Boogie with C front-end, the configuration of
Boogie mostly studied in this paper), the operations to be axiomatized consist of
elementary operations of a machine model (called C Virtual Machine (CVM)),
allowing reading and storing byte-wise, word-wise, and double-word-wise, do-
ing signed and unsigned operations in bitvector arithmetic, etc. This machine
model presents a (slight) abstraction over an x86 processor architecture, tak-
ing into account the processor intricacies of little-endianness, bit-padding, etc.,
but abstracting from registers and jumps (which are represented by goto’s in
BoogiePL). A crucial part of the model is concerned with the representation
of memory, memory regions etc. in order to formulate frame conditions. VCC
compiles an ANSI-C program into a BoogiePL program based on the CVM.

Getting an axiomatization of this size consistent is a non-trivial task, and
for several automated and interactive provers to work together, one has to make
sure that all provers agree on this axiomatization.

An Alternative to Embeddings. Compiling ANSI-C to a transition system
described in the fairly small and logically clean BoogiePL represents an alterna-

3

tive to a logical embedding into HOL (such as, for example, [12,20] describing a
small-step transition semantics for the C fragment C0 comprising only side-effect
free expressions). While we still consider the logical embedding method as “near
perfection” with respect to logical foundations, it is obvious that an embedding
of a more substantial C fragment is an enormous effort with questionable value.
Given that ANSI-C language semantics is heavily under-specified, given that
optimizing compilers tend to make their own story over the variety of “semantic
deviation points”, and given that a realistic concurrency model depends on the
granularity of the atomic operations defined by the target assembler language, it
is debatable if we should care about the sterile myth of some general C seman-
tics or rather concentrate our efforts on a specific compiler and target assembler
language. For a given compiler, one can exchange the code-generator against
a BoogiePL translator, and validate compiled assembler sequences against the
abstract model traces in the CVM by tests (what has been done intensively) or
by simulation proofs if needed. There is meanwhile sufficient empirical evidence
that a carefully constructed and tested C front-end to a verification condition
generator such as Boogie can achieve a reasonable degree of trustworthiness.

Outline of the Paper. We will address the first two issues. After presenting the
background of this work, namely Isabelle/HOL, Boogie, and the HOL-Boogie ar-
chitecture, we present three scenarios of using HOL-Boogie and will explain the
underlying machinery at need: In the first scenario, we use HOL-Boogie to verify
Dĳkstra’s Shortest Path Algorithm given as BoogiePL program (only a high-level
memory model involved). In the second scenario, we verify a C program, con-
verted into BoogiePL, i.e. a program over the CVM. In the third scenario, we
show how CVM axiomatizations can be proven consistent with HOL-Boogie,
enabling a “safe mode” of C program verification.

2 Background

2.1 Isabelle/HOL and the Isar Framework

Isabelle is a generic theorem prover [17], i.e. new object logics can be introduced
by specifying their syntax and inference rules. Isabelle/HOL is an instance of
Isabelle with Church’s higher-order logic (HOL), a classical logic with equality.
Substantial libraries for sets, lists, maps, have been developed for Isabelle/HOL,
based on definitional techniques, allowing the use of Isabelle/HOL as a “func-
tional language with quantifiers”.

Isabelle is based on the so-called “LCF-style architecture” which allows one
to extend a small trusted logical kernel by user-programmed procedures in a
logically safe way. Moreover, on top of the kernel, there is a generic system
framework Isabelle/Isar [22] that can be compared in a rough analogy to the
Eclipse programming system framework. It provides (1) a hierarchical organiza-
tion of theory documents, (2) incremental document processing for interactive
theory and proof development (with unlimited undo) and an Emacs-based GUI,

4

(BoogiePL)

C− Front−End

Proof

Obligations

Boogie (VCG)

Program

Z3

VCC HOL−Boogie
CVM

Proof

Obligations

(*.b2i)

(BoogiePL)

Figure 1. VCC and the HOL-Boogie back-end

and (3) extensible syntax for top-level commands, embedded methods and at-
tributes, and the inner term language. HOL-Boogie is yet another instance of
the Isabelle/Isar framework. It comes with a loader of the verification conditions
generated by Boogie, a proof-obligation management and specific tactic sup-
port for the formulas arising in this scenario as well as interactions with external
provers such as Z3 which have been integrated via the Isabelle oracle mechanism.

2.2 The VCC System Architecture

The Verified C Compiler(VCC) evolved from the Spec# project (see http:
//research.microsoft.com/specsharp/, [3]). It comprises a C front-end sup-
porting ANSI-C and — geared towards verification of programs close to the
hardware-level — bitwise representation of e. g. integers, structs, and unions in
memory. The core component of VCC is Boogie, a verification condition genera-
tor. Its input language BoogiePL provides constants and functions and first-order
axioms, as well as a small imperative language with assignments, first-order as-
sertions, unstructured goto and structured control constructs (if, while, break).
From these annotated imperative programs, Boogie computes (optimized) ver-
ification conditions over the program and the axiomatization of a background
theory. In the case of VCC, an abstract machine model is given in the back-
ground theory, describing linear memory (a map from references to bitvectors),
allocation operations, little-endian word-wise load- and store operations, and a
family of word-wise operations abstracting the x64 processor architecture.

Boogie also provides a framework into which converters to external prover
formats may be “plugged in”. Our HOL-Boogie integration is based on such a
plug-in that we implemented for interactive back-ends. We also coupled HOL-
Boogie to the default target prover Z3 in such a way that formulas constructed
in the former can be discharged by the latter.

http://research.microsoft.com/specsharp/
http://research.microsoft.com/specsharp/

5

3 Foundations of Boogie and HOL-Boogie

3.1 Introduction to BoogiePL

BoogiePL is a many-sorted logical specification language extended by an imper-
ative language with variables, contracts, and procedures.

The type system of BoogiePL has several built-in as well as user-defined
types. The former cover basic types like bool and int, as well as one- and two-
dimensional arrays which can be indexed by any valid type.

BoogiePL includes the following kinds of top-level declarations:
– user-defined types:

type Ver tex ;

– symbolic constants having a fixed but possibly unknown value:
const I n f i n i t y : i n t ;

– uninterpreted functions:
f u n c t i o n Di s t ance (from : Vertex , to : Ve r t ex) r e t u r n s (r e s u l t : i n t) ;

– axioms constraining symbolic constants and functions:
axiom 0 < I n f i n i t y ;

– global variables:
var Sho r t e s tPa th : [Ve r t ex] i n t ;

– procedure contracts, i.e. signatures with pre- and postconditions, and
– implementations of procedures.

An implementation begins with local-variable declarations which are followed by
a sequence of basic blocks. We will only consider the latter in more detail here,
and we omit the structured control structures, which can be desugared into the
statements and goto’s shown here. Each basic block has a name, a body, and a

BlockSeq ::= Block+

Block ::= BlockId : [Statement ;] Goto ;
Statement ::= Var := Expression

| havoc VarId
| assert Expression
| assume Expression
| call [Var+ :=] ProcId (Expression∗)
| Statement ; Statement

Goto ::= goto BlockId∗ | return

Figure 2. Schematic syntax of blocks in BoogiePL

6

possibly empty set of successors. Expressions are first-order logic formulas with
equality and integer operations.

Semantically, each block corresponds to a transition relation over the vari-
ables of a program; goto statements correspond to a composition with the inter-
section of the successor transition relations, loops to fixpoints: Boogie represents
a partial correctness framework. The basic assertion assert constrains the subse-
quent transition, while assume weakens it. Pragmatically, assert produces obli-
gations for the programmer, while assume leaves him “off-the-hook”, see, e. g.,
[15,16].

An assignment statement x := E updates the program state by setting the
variable x to the value of the expression E. The statement havoc x sets the
the variable x to an arbitrary value. The statement S ; T corresponds to the
relation composition. The procedure call statement, i.e. call, is just a short-hand
for suitable assert, havoc and assume statements, encoding the callee’s pre- and
postconditions [14]. The return command is a short-hand for the procedure’s
postconditions and a goto with no successors.

BoogiePL also comes with a structured syntax with which one can express
loops (while) and branches (if) directly. These can be defined as a notation for
certain basic blocks; for example, the following schematic while loop:

w h i l e (G) i n v a r i a n t P ; { B }

is encoded by the following basic blocks [1]:

LoopHead : assert P ; goto LoopBody,LoopDone;
LoopBody : assume G ; B ; goto LoopHead;
LoopDone : assume ¬G ; . . .

More details of BoogiePL can be found in [1,7].

3.2 Generating Verification Conditions
Verification condition generation proceeds in the following steps: First, the ex-
pansion of syntactic sugar and (safe) cutting of loops result in an acyclic control-
flow graph. Second, a single-assignment transformation is applied. Third, the
result is turned into a passive program by changing assignment statements into
assume statements. Finally, a verification condition of the unstructured, acyclic,
passive procedure is generated by means of weakest preconditions.

We will present only the final step here, the reader interested in the first
three is referred to [2]. Each basic block in a preprocessed program consists only
of a sequence of assert and assume statements, followed by a final goto command.

For any statement S and predicate Q on the post-state of S, the weak-
est precondition of S with respect to Q, written wp(S,Q), is a predicate that
characterizes all pre-states of S whose reachable successor states satisfy Q. The
computation of weakest preconditions follows the following well-known rules:

wp(assert P, Q) = P ∧Q
wp(assume P, Q) = P =⇒ Q

wp(S ; T, Q) = wp(S,wp(T,Q))

7

For every block

A : S ; goto B1, . . . , Bn;

an auxiliary variable Acorrect is introduced, the intuition being that Acorrect is
true if the program is in a state from which all executions beginning from block
A are correct. Formally, there is the following block equation:

Acorrect ≡ wp(S,
∧

B∈{B1,...,Bn}

Bcorrect)

Each block contributes one block equation, and from their conjunction, call it
R, the procedure’s verification condition is

R =⇒ Startcorrect

where Start is the name of the first block of the procedure. Note that the veri-
fication condition generated this way is linear in the size of the procedure.

3.3 Labeling in Boogie

Boogie is able to output source code locations of errors and also execution traces
leading to these errors. The underlying basic idea is to enrich formulas by labels,
i.e. uninterpreted predicate symbols intended to occur in counterexamples of
verification conditions. In verification conditions generated by Boogie, labels
are either positive (lblpos L : P) or negative (lblneg L : P). Logically, these
formulas are equivalent to P ; the labels occur in counterexamples if P has the
indicated sense (i.e. P or ¬P). Their formal definition is as follows:

(lblneg L : P) = P ∨ L
(lblpos L : P) = P ∧ ¬L

Negative labels tag formulas of assertions (including invariants and postcon-
ditions) with their location in the source program. If an assertion cannot be
proven, the accompanying label allows Boogie to emit an error location identi-
fying which program check failed. Positive labels tag the beginning of a block
by an additional assertion which is always true. This way, execution traces con-
tain information reflecting the order in which basic blocks were processed. If
execution terminates in an error, the positive labels represent an error trace.

A more detailed description of this use of labels is found in [13].

3.4 Attribution in BoogiePL

We implemented a new feature in Boogie: The top-level declarations for types,
constants, functions, axioms, and global variables, can be tagged by attributes;
previously, Boogie allowed such attributes only on quantifier expressions. For
example, an attributed axiom looks as follows: axiom {attr1} ... {attrN} P. These

8

attributes are opaque for Boogie; they may carry information for external provers
and may influence Boogie’s back-ends. In the case of Z3, for example, attributes
are used to tag some axioms as built-in to Z3.

The attribution mechanism provided by Boogie is flexible enough to add new
attributes for any prover back-end.

4 Scenario I: Interactive Verification of Algorithms

4.1 Dĳkstra’s Shortest Path Algorithm

Widely known and yet fairly complex, this algorithm already poses a reasonable
challenge for verification efforts. The following code, written by Itay Neeman,
presents a high-level implementation of Dĳkstra’s algorithm, abstracting from
any memory model and even shortening several initializations and assignments
by logical expressions.

type Ver tex ;
const Graph : [Vertex , Ve r t ex] i n t ;
axiom (∀ x : Vertex , y : Ve r t ex : : x 6= y =⇒ 0 < Graph [x , y]) ;
axiom (∀ x : Vertex , y : Ve r t ex : : x == y =⇒ Graph [x , y] == 0) ;

const I n f i n i t y : i n t ;
axiom 0 < I n f i n i t y ;

const Source : Ve r t ex ;
var SP : [Ve r t ex] i n t ; // s h o r t e s t paths from Source

procedure D i j k s t r a () ;
m o d i f i e s SP ;
ensu re s SP [Source] == 0 ;
ensu re s (∀ z : Vertex , y : Ve r t ex : :

SP [y] < I n f i n i t y ∧ Graph [y , z] < I n f i n i t y =⇒ SP [z] ≤ SP [y] + Graph [y , z]) ;
ensu re s (∀ z : Ve r t ex : : z 6= Source ∧ SP [z] < I n f i n i t y =⇒

(∃ y : Ve r t ex : : y 6= z ∧ SP [z] == SP [y] + Graph [y , z])) ;

implementat ion D i j k s t r a ()
{

var v : Ve r t ex ;
var V i s i t e d : [Ve r t ex] boo l ;
var oldSP : [Ve r t ex] i n t ;

havoc SP ;
assume (∀ x : Ve r t ex : : x == Source =⇒ SP [x] == 0) ;
assume (∀ x : Ve r t ex : : x 6= Source =⇒ SP [x] == I n f i n i t y) ;

havoc V i s i t e d ;
assume (∀ x : Ve r t ex : : ¬V i s i t e d [x]) ;

w h i l e ((∃ x : Ve r t ex : : ¬V i s i t e d [x] ∧ SP [x] < I n f i n i t y))
i n v a r i a n t SP [Source] == 0 ;
i n v a r i a n t (∀ y : Vertex , z : Ve r t ex : :
¬V i s i t e d [z] ∧ V i s i t e d [y] =⇒ SP [y] ≤ SP [z]) ;

i n v a r i a n t (∀ z : Vertex , y : Ve r t ex : :
V i s i t e d [y] ∧ Graph [y , z] < I n f i n i t y =⇒ SP [z] ≤ SP [y] + Graph [y , z]) ;

i n v a r i a n t (∀ z : Ve r t ex : : z 6= Source ∧ SP [z] < I n f i n i t y =⇒
(∃ y : Ve r t ex : : y 6= z ∧ V i s i t e d [y] ∧ SP [z] == SP [y] + Graph [y , z])) ;

{
havoc v ;
assume ¬V i s i t e d [v] ;
assume SP [v] < I n f i n i t y ;
assume (∀ x : Ve r t ex : : ¬V i s i t e d [x] =⇒ SP [v] ≤ SP [x]) ;

9

V i s i t e d [v] := t r ue ;
oldSP := SP ;
havoc SP ;
assume (∀ u : Ve r t ex : :

Graph [v , u] < I n f i n i t y ∧ oldSP [v] + Graph [v , u] < oldSP [u] =⇒
SP [u] == oldSP [v] + Graph [v , u]) ;

assume (∀ u : Ve r t ex : :
¬(Graph [v , u] < I n f i n i t y ∧ oldSP [v] + Graph [v , u] < oldSP [u]) =⇒

SP [u] == oldSP [u]) ;
}

}

While developing algorithms and their specifications like the one given here, it
commonly happens that, even if a program behaves as intended, its specifica-
tion is incomplete or inconsistent. Indeed, when letting Boogie check the given
program, it reports the following error message:

Spec# Program Verifier Version 0.88, Copyright (c) 2003-2007, Microsoft.
dijkstra.bpl(34,5): Error BP5005: This loop invariant might not be

maintained by the loop.
Execution trace:

dijkstra.bpl(26,3): anon0
dijkstra.bpl(33,3): anon2_LoopHead
dijkstra.bpl(42,5): anon2_LoopBody

Spec# Program Verifier finished with 0 verified, 1 error

Using HOL-Boogie we can navigate to the cause for this error and inspect it.
The underlying techniques, described later in more detail, split the verification
condition into altogether 11 subgoals and pass each of them to Z3, which can
discharge all of them except one. The remaining subgoal, without its premises,
reads as follows in HOL-Boogie :

assert-at Line-34-Column-5 (SP-2 [Source] = 0)

This formula corresponds to a negatively labeled formula in the verification
condition generated by Boogie. Note that SP-2 is an inflection of the program
variable SP holding the computed shortest paths after arbitrary runs of the while
loop.

The subgoal found by HOL-Boogie is exactly the cause of the error reported
by Boogie, as the position label indicates. The associated premises represent the
complete execution trace until the point where the above invariant is checked.
Among those premises, only two express properties of SP-2, while a third one
states something similar to the subgoal above:∧

u. G[v-1, u] < Infinity ∧ SP-1[v-1] + G[v-1, u] < SP-1[u]
=⇒ SP-2[u] = SP-1[v-1] + G[v-1, u]∧

u. ¬(G[v-1, u] < Infinity ∧ SP-1[v-1] + G[v-1, u] < SP-1[u])
=⇒ SP-2[u] = SP-1[u]

SP-1[Source] = 0

Based on those three properties, we attempt to prove the subgoal. Consider the
following Isar extract:

10

proof (ib-split try-z3)
case goal1
note H1 = 〈

∧
u. G[v-1, u] < Infinity ∧ SP-1[v-1] + G[v-1, u] < SP-1[u]

=⇒ SP-2[u] = SP-1[v-1] + G[v-1, u]〉
note H2 = 〈

∧
u. ¬(G[v-1, u] < Infinity ∧ SP-1[v-1] + G[v-1, u] < SP-1[u])

=⇒ SP-2[u] = SP-1[u]〉
note H3 = 〈SP-1[Source] = 0〉
show ?case
proof ib-assert

show SP-2[Source] = 0
proof (cases

G[v-1, Source] < Infinity ∧
SP-1[v-1] + G[v-1, Source] < SP-1[Source])

case True
moreover with H3 have SP-1[v-1] + G[v-1, Source] < 0 by simp
ultimately have SP-2[Source] < 0 using H1 by simp

oops

Here, it becomes obvious what exactly caused the error in Boogie/Z3 before.
Besides the contradiction in the proof attempt, computed shortest paths are
always non-negative in Dĳkstra’s algorithm. From this observation, we can infer
an additional invariant for the while loop of the implementation:

i n v a r i a n t (∀ x : Ve r t ex : : SP [x] >= 0) ;

This addition suffices to correct the specification; the program can now be veri-
fied automatically by Boogie and Z3.

4.2 Tracking Program Positions

Relating formulas to locations in the original program is one of the key aspects
of HOL-Boogie; this feature results from exploiting the labeling mechanism of
Boogie. Since assertions, subsuming also invariants and postconditions, form
the crucial parts of verification conditions, they are tagged by labels holding
their program position. After producing a verification condition and loading it
in HOL-Boogie, the labels then occur at the formulas to be proven, in the way
shown along the example of Dĳkstra’s algorithm before.

4.3 Specific Tactic Support

HOL-Boogie comes with a set of specific tactics to manipulate verification con-
ditions. They allow the user to navigate to assertions, to prune some of them by
applying Z3, and to restrict the list of premises associated with assertions. Some
of these tactics are already shown in the verification of Dĳkstra’s algorithm.

Based on the structure of verification conditions generated by Boogie, the
central tactic of HOL-Boogie, ib-split, extracts all assertions and associates them
with their execution trace, expressed as a list of premises. Each assertion then
forms a subgoal for the proof of the original verification condition.

11

After splitting a verification condition, each subgoal is passed to Z3 if the
argument try-z3 is given to the tactic ib-split. This essentially gives the “de-
bugging flavor” to HOL-Boogie, since Z3 usually discharges all subgoals except
those that are incorrect or inconsistent. The method is based on an oracle calling
Z3; the communication uses the SMT-LIB format [19]. Due to this standardized
format, it is possible to replace Z3 with other SMT solvers, or combine them for
better results.

The list of premises of a subgoal can be pruned by the tactic ib-filter-prems.
It selects all premises potentially necessary to solve the current subgoal, while
cutting off all other premises. Note, however, that this tactic, due to its heuristics,
may remove too many premises. Therefore, its purpose is only to assist in finding
a draft of a proof for a subgoal, especially in the case of a long list of premises.

Finally, the tactic ib-assert serves to unwrap a formula of an assertion by
cutting off the label.

4.4 Structured Proofs and Isabelle Proof Support

Without using Z3 from inside HOL-Boogie, many subgoals of a verification con-
dition can already by proven by tools included in Isabelle. In simple academic
experiments, the built-in simplifier is already able to solve some subgoals. A
more substantial help, however, comes from sledgehammer. When applied to a
subgoal, it uses external first-order provers to identify necessary facts which are
then combined into a proof, usually by passing the facts to a resolution-based
built-in prover. Since the amount of facts given as axioms in BoogiePL as well
as the number of premises for an assertion can easily grow to an unmanageable
size, sledgehammer is of an invaluable help. Usually, around 50% of all subgoals
generated from a verification condition can be shown by this method.

5 Scenario II: Interactive Verification of C-Programs

Verifying C programs in HOL-Boogie seems to be a straightforward extension
to the previous section. The C front-end of VCC compiles a C program like the
following example (computing a maximal unsigned byte for an array whose size
is bounded by 240):

#i n c l u d e " vcc . h"
. . .

s t a t i c UINT8 maximum(__inout_ecount (l e n) UINT8 a r r [] , UINT64 l e n)
r e q u i r e s (0 < l e n ∧ l e n < (1 UI64 << 40))
ensu re s (∀(UINT64 i ; i<l e n =⇒ a r r [i]≤r e s u l t))

{
UINT8 max ;
UINT64 p ;

max = 0 ;
f o r (p = 0 ; p < l e n ; p++)

i n v a r i a n t (p ≤ l e n)
i n v a r i a n t (∀(UINT64 i ; i < p =⇒ a r r [i] ≤ max))

{
i f (a r r [p] > max) { max = a r r [p] ; }

}

12

a s s e r t (p == l e n) ;
r e t u r n max ;

}

into a BoogiePL-program. This BoogiePL program is significantly larger (about
2400 lines), since it contains the axiomatization of the CVM. In order to give
an impression of its abstraction level, we show some code resulting from the
invariant’s:

i n v a r i a n t $ c l e . u8 (p , l e n) ;
i n v a r i a n t (∀ i : bv64 : : $_ in range . u8 (i) =⇒ $ c l t . u8 (i , p) =⇒

$ c l e . u4 ($ l d . u1 ($mem, $add . p t r (a r r , i , 1bv64)) , max)) ;
f r e e i n v a r i a n t $only_region_changed_or_new (

o l d ($ r e g i o n (a r r , $mul . u8 (l en , 1bv64))) ,
o l d ($gmem) , $gmem , o l d ($mem) , $mem) ;

i n v a r i a n t $a l l o c_g rows(#temp10 , $gmem) ;

The primitives of the CVM provide operations for:

1. dereference, load and store in memory: $ld.u1, $ld.u2, $ld.u4, $ld.u8,
$st.u1, $st.u2, $st.u4, $st.u8,... The index indicates the length of the bitvector
in bytes. These operations take the padding conventions of the little-endian
x86 architecture into account.

2. bitvector computations: e.g. cle.u8, clt.u8, mul.u8, etc, ...
3. pointer arithmetic: e.g. $add.ptr, $sub.ptr, $base, $offset, ...
4. memory regions (= pointer sets): e.g. $region, $contains, $overlap, ...
5. memory operations: e.g. malloc, free, memcopy, ...
6. framing conditions: $only_region_changed_or_new(X, mem, mem’) expresses

that memory mem in the state and memory mem’ in its successor state remain
unchanged for all pointers not in X, ...

7. typed ghost memory: $gmem and its infrastructure.

Ghost memory is a separate memory, which is updated in a way that does
not affect the program control flow, where syntactic restrictions guarantee that
information never flows from ghost states to concrete program states. Thus, ghost
state and any code using it can be eliminated when the program is compiled. It
is used in particular to specify the concept of a $valid reference or the $size of an
array into which all references are $valid memory. Conceptually, it is a map from
references to records with arbitrarily many fields with possibly different types.

When compiling the axioms referring to ghost state, a problem arises: while
the typing discipline of BoogiePL is simply many-sorted first-order in most cases,
there is a non-standard built-in type construct <x>T (used here for a type name
that stands for field names) that requires special treatment. There are several
axioms that quantify over ghost memory which has the BoogiePL array type
[$gid,<x>name]x. We interpret this type by functions of type gid⇒ α name⇒ α
(where gid is the type of ghost references for which an injection from standard
memory references exist). For each ghost field, such as $size, the axiomatization
also defines a field tag constant:

const un ique $_s i z e : <bv64>name ;

13

which we convert into a constant declaration $_size :: bv64 name. Thus, so far,
this concept can be safely embedded into Hindley-Milner style polymorphism.
However, there are axioms with quantifications over name (intended to mean:
“over all fields”) such as in:

axiom (∀ r : $ r eg i on , n : name , oldgmem : [$g id ,<x>name] x , newgmem : [$g id ,<x>name] x ,
oldmem : $memory , newmem : $memory : :
. . . n . . .

We interpret a BoogiePL axiom of this form as an axiom scheme and create for
each field tag constant an instance for it.

The compiled BoogiePL code of the above C program can still be loaded
within 36 seconds (on standard hardware) into HOL-Boogie. Its proof is fairly
straightforward but profits substantially from the tactic firing Z3.

6 Scenario III: Verification of Background Theories

At present, the axiomatization of the CVM —called Prelude Version 7.0— con-
sists of about 750 axioms (where a certain number of axioms were not made
explicit since they are “built-in” into the target prover; for example, reflexivity
of equality or the laws of arithmetic). There had been a number of errors in
the current and similar formalizations of background theories; and consistency
is even a greater issue if Boogie is used with different memory/machine models.
Since the abstraction level of a machine model is tantamount for deduction effi-
ciency, more refined models should be used only when inherently needed. This is
the case if, for example, the allocation function itself must be verified, which is
atomic in a more abstract model, or when inherently untyped memory is required
such as in unions, where everything is translated into bitvectors [5].

From the perspective of a HOL system, proving the consistency of a complex
first-order system is not exactly an easy task, but at least routine: Just build
up a theory by conservative extensions, i.e. constant or type definitions, and
derive all the “axioms” from it. In the sequel, we report on a verification of a
previous version of the CVM model (Prelude Version 3.0). Since the CVM model
is rapidly changing at present, we plan to repeat this effort at a later stage.

The conservative theory for Prelude 3.0 is constructed as follows: First, a sim-
ple bitvector library is built; bitvectors were represented as lists of boolean, and
operations like length, extract, and concat were defined as usual. Since the CVM
operations work only in byte and word formats, the necessary side-conditions
referring to length can be omitted if these formats were already expressed at the
type level, for example:

typedef bv32 = {x :: bool list. length x = 32 }

Arithmetic operations for signed and unsigned integers were defined over bv32, as
well as bitwise conjunction or disjunction. For example, consider the definition:

constdefs shr-i4 :: [bv32, bv32] ⇒ bv32
shr-i4 v w ≡ Abs-bv32 (bv-shr (Rep-bv32 v) (Rep-bv32 w))

14

where bv-shr (omitted here) is defined on bitvectors directly representing the
usual intuition “division by two”. Moreover, following the conventions on signs
of the x86 architecture, it is enforced that the most significant bit is replicated
and the size of the bitvector remains identical.

Similarly, the type of pointers ptr is introduced as a pair of unsigned 64 bit
integers (references called ref) and an integer; the former is called the base and
the latter the offset. On ptr ’s, pointer arithmetic operations are defined allowing
byte-wise addressing of memory. The core of the memory model is:

typedef memory = {x :: ref ⇒ Bitvector . True}
types state = (ref ⇒ bool) × memory

The pivotal concept of a valid reference, for example, is defined as:

constdefs valid :: [state, ptr , int] ⇒ bool
valid σ p l ≡ (fst σ) (base p) ∧ 0 ≤ (offset p) + 1 ∧

offset p ∗ 8 < length (lkup (snd σ) (base p))

Definitions for malloc and free are straightforward.
We implemented a little compiler that takes a Boogie-Configuration — i.e.

a list of theorems, their names, and attributes — and compiles this information
into a BoogiePL background-theory file. In particular, attributes are generated
that correspond to Isabelle’s internal naming in the theory, for example:

axiom { : i s a b e l l e " i d p r e l u d e . bas ics_axms_1 " }(∀ x : i n t : : exp (x , 0) == (1)) ;

Since Boogie re-feeds attributes to its target provers, HOL-Boogie can check
that every axiom in the background theory of a verification condition indeed
exists (and by construction is derived) in its own logical environment; thus, a
strict checking mode can be implemented that makes sure that a verification in
an external prover is based only on a consistent axiomatization.

7 Conclusion

We have presented a novel HOL-based proof environment, called HOL-Boogie,
that is integrated into a verification tool chain for imperative programs, in par-
ticular C (and C#; not supported yet). Key issues of the integration are:

1. the support of labels and positions at the proof level, which enables tracking
back missing properties to assertions in the source,

2. specific tactic support for decomposition of verification conditions in a way
stable under certain changes of the source,

3. a mechanism to generate background theories from consistent, conservative
models in HOL,

4. the integration of the target prover in order to discharge as many subgoals
as possible, and

5. mechanisms to track attributes in order to exchange meta-information be-
tween tools.

15

7.1 Related Work

As such, combining an interactive prover with a Boogie-like VCG is not a new
idea. In Figure 1, just replace C-Front-End by Caduceus [9], Boogie by Why [8],
and Z3 by the default prover ERGO, and one gets (nearly) the architecture of
the Why/Caduceus system [10]. However, its interactive prover-back-end cannot
be used to decompose verification conditions and send the “splinters” to the
target prover (ERGO is not integrated into Coq), it offers no mechanism for
tracking back unsatisfiable subgoals to the source, and it offers little specific
tactic support for this application scenario. With respect to the C front-end
and the underlying CVM, VCC is more detailed since it leverages features such
as byte-wise access into unions. Moreover, support for fine-grain concurrency is
actively under development [5].

There is a quite substantial body on programming language embeddings into
HOL, be it shallow [20,18] or deep [12]. In particular, Leinenbach [12] provides
a small-step semantics for a language C0, which has been used for system level
verification, and Schirmer [20] derives a (shallow-ish) Hoare-Logic from this se-
mantics and formally developed a verification condition generator. C0 assumes
a typed memory model (although bitvectors and conversions to standard data-
types could easily be integrated). However, the size of the supported language
fragment, many complications in the semantic representation, and the degree
of automatic proof support have limited its use in case studies substantially. In
contrast to VCC and the Hypervisor Verification Project [5], the idea is to adapt
the code to be verified instead of trying to live with the existing code and adapt
the tool chain.

7.2 Future Work

We see the following directions for future work:

1. More Stable Proof Formats: In our scenario, where the specification of
a program is essentially re-constructed post-hoc, it is the annotations that
change constantly under development. This means that positions of asser-
tions change easily, which can (but must not) have influence on proofs re-
sulting from previous proof attempts. A proof style using control-flow labels
(as generated by Boogie) would be more stable under changes of the source
in this scenario.

2. Verified Current CVM Model: The verified C background theory con-
taining the memory and machine axiomatization is currently rapidly evolv-
ing; at a later stage, we would like to verify the consistency on a more recent
model. From our experience, this is a substantial task (several man-months),
but routine.

3. More Automated Proof Support in Isabelle: Currently, there is not
enough automated proof support for bitvectors and for the logical reasoning
required to discharge formulas related to memory-framing and updates in
the C model.

16

References
1. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie:

A modular reusable verifier for object-oriented programs. In FMCO 2005, lncs,
vol. 4111, pp. 364–387. Springer, 2006.

2. M. Barnett and K. R. M. Leino. Weakest-precondition of unstructured programs.
In PASTE ’05, pp. 82–87. ACM, 2005.

3. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system:
An overview. In CASSIS 2004, lncs, vol. 3362, pp. 49–69. Springer, 2005.

4. D. Basin, H. Kuruma, K. Miyazaki, K. Takaragi, and B. Wolff. Verifying a signature
architecture: A comparative case study. Formal Aspects of Computing, 19(1):63–91,
2007.

5. E. Cohen, M. Hillebrand, D. Leinenbach, T. I. der Rieden, M. Moskal, W. Paul,
T. Santen, N. Schirmer, W. Schulte, S. Tobies, and B. Wolff. The Microsoft Hy-
pervisor Verification Project. Manuscript in preparation, 2008.

6. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS 2008, lncs,
vol. 4963, pp. 337–340. Springer, 2008.

7. R. DeLine and K. R. M. Leino. BoogiePL: A typed procedural language for check-
ing object-oriented programs. Tech. Rep. 2005-70, Microsoft Research, 2005.

8. J.-C. Filliâtre. Why: A multi-language multi-prover verification condition genera-
tor. Tech. Rep. 1366, LRI, Université Paris Sud, 2003.

9. J.-C. Filliâtre and C. Marché. Multi-prover verification of C programs. In ICFEM
2004, lncs, vol. 3308, pp. 15–29. Springer, 2004.

10. J.-C. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus platform for deduc-
tive program verification. In CAV 2007, lncs, vol. 4590, pp. 173–177. Springer,
2007.

11. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. In PLDI 2002, pp. 234–245. ACM, 2002.

12. D. Leinenbach, W. Paul, and E. Petrova. Towards the formal verification of a C0
compiler: Code generation and implementation correctness. In SEFM 2005, pp.
2–12. IEEE, 2005.

13. K. R. M. Leino, T. Millstein, and J. B. Saxe. Generating error traces from
verification-condition counterexamples. Science of Computer Programming, 55(1-
3):209–226, 2005.

14. K. R. M. Leino, J. B. Saxe, and R. Stata. Checking Java programs via guarded
commands. In FTfJP 1999, Tech. Rep. 251. Fernuniversität Hagen, 1999.

15. C. Morgan. The specification statement. ACM toplas, 10(3):403–419, 1988.
16. G. Nelson. A generalization of Dĳkstra’s calculus. ACM toplas, 11(4):517–561,

1989.
17. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/hol—A Proof Assistant for

Higher-Order Logic, lncs, vol. 2283. Springer, 2002.
18. M. Norrish. C formalised in HOL. Ph.D. thesis, Computer Laboratory, University

of Cambridge, 1998.
19. S. Ranise and C. Tinelli. The smt-lib standard: Version 1.2. Tech. rep., Dept. of

Comp. Sci., The University of Iowa, 2006. http://www.smt-lib.org.
20. N. Schirmer. Verification of Sequential Imperative Programs in Isabelle/hol. Ph.D.

thesis, Technische Universität München, 2006.
21. W. Schulte, S. Xia, J. Smans, and F. Piessens. A glimpse of a verifying C compiler

(extended abstract). In C/C++ Verification Workshop. 2007.
22. M. Wenzel and B. Wolff. Building Formal Method Tools in the Isabelle/Isar Frame-

work. In TPHOLs 2007, lncs, vol. 4732, pp. 351–366. Springer, 2007.

http://www.smt-lib.org

	HOL-Boogie --- An Interactive Prover for the Boogie Program-Verifier
	Sascha Böhme, K. Rustan M. Leino and Burkhart Wolff
	1 Introduction
	2 Background
	2.1 Isabelle/HOL and the Isar Framework
	2.2 The VCC System Architecture

	3 Foundations of Boogie and HOL-Boogie
	3.1 Introduction to BoogiePL
	3.2 Generating Verification Conditions
	3.3 Labeling in Boogie
	3.4 Attribution in BoogiePL

	4 Scenario I: Interactive Verification of Algorithms
	4.1 Dijkstra's Shortest Path Algorithm
	4.2 Tracking Program Positions
	4.3 Specific Tactic Support
	4.4 Structured Proofs and Isabelle Proof Support

	5 Scenario II: Interactive Verification of C-Programs
	6 Scenario III: Verification of Background Theories
	7 Conclusion
	7.1 Related Work
	7.2 Future Work

