Isabelle/HOL and SMT

Sascha Bohme

Technische Universitat Miinchen

September 10, 2009

© Introduction
@ Isabelle/HOL
o SMT
@ Isabelle/HOL and SMT

© From Isabelle/HOL to SMT ...
@ Supported SMT Solvers
@ Preprocessing

© ... and back again
@ Z3 Proofs
@ Proof Reconstruction for Z3
@ Evaluation

@ Conclusion

Introduction
®00

Isabelle — A Generic Theorem Prover

@ theorems: abstract type

Kernel

@ inference rules: intuitionistic
higher-order logic

Infra-

structure terms, types, ...

Introduction
®00

Isabelle — A Generic Theorem Prover

theories proof tools

object logic

@ theorems: abstract type

Kernel

@ inference rules: intuitionistic
higher-order logic

Infra-

structure terms, types, ...

Introduction
oeo

Isabelle’'s Meta-Logic

Terms:
e constants (A, =, =)
@ variables
@ \-abstraction

@ application

Theorems: H - P

Rules:
@ assumption
e introduction and elimination of /\ and = and =
o reflexivity, symmetry, transitivity, congruence
@ generalization, instantiation

@ higher-order resolution

Introduction
ooe

Isabelle/HOL — Higher-Order Logic in Isabelle

theories proof tools

object logic

@ theorems: abstract type

Kernel

@ inference rules: intuitionistic
higher-order logic

Infra-

structure terms, types, ...

Introduction
ooe

Isabelle/HOL — Higher-Order Logic in Isabelle

theories proof tools

HOL @ shallow embedding in meta logic

@ usual connectives and functions

@ theorems: abstract type

Kernel

@ inference rules: intuitionistic
higher-order logic

Infra-

structure terms, types, ...

Introduction
ooe

Isabelle/HOL — Higher-Order Logic in Isabelle

@ term rewriting
theories proof tools @ tableaux prover

@ arithmetic

HOL @ shallow embedding in meta logic

@ usual connectives and functions

@ theorems: abstract type

Kernel

@ inference rules: intuitionistic
higher-order logic

Infra-

structure terms, types, ...

Introduction
.

Satisfiability Modulo Theories (SMT)

Many-sorted first-order logic

Theories:
@ equality and uninterpreted functions
e linear (integer/real) arithmetic
@ arrays
@ bitvectors
°

algebraic datatypes

Combination: in general undecidable with high complexity

@ necessary fragment still successful: program verification,
model checking, ...

SMT solvers: CVC3, Yices, 73, ...

Introduction
[1}

Isabelle/HOL and SMT

Observation: many essentially first-order propositions:

@ Sledgehammer: connection to first-order provers

With SMT:
@ built-in support for additional theories (e.g. linear arithmetic)

@ weaker on quantifiers

SMT cannot (directly) deal with:
@ polymorphism
@ \-abstractions

@ induction

Introduction
[1}

Isabelle/HOL and SMT

Observation: many essentially first-order propositions:

@ Sledgehammer: connection to first-order provers

With SMT:
@ built-in support for additional theories (e.g. linear arithmetic)

@ weaker on quantifiers

SMT cannot (directly) deal with:
@ polymorphism: monomorphization, encoding of types in terms
@ M\-abstractions

@ induction

Introduction
[1}

Isabelle/HOL and SMT

Observation: many essentially first-order propositions:

@ Sledgehammer: connection to first-order provers

With SMT:
@ built-in support for additional theories (e.g. linear arithmetic)

@ weaker on quantifiers

SMT cannot (directly) deal with:
@ polymorphism: monomorphization, encoding of types in terms
@ \-abstractions: combinatory logic (SKI), lifting

@ induction

Introduction
[1}

Isabelle/HOL and SMT

Observation: many essentially first-order propositions:

@ Sledgehammer: connection to first-order provers

With SMT:
@ built-in support for additional theories (e.g. linear arithmetic)

@ weaker on quantifiers

SMT cannot (directly) deal with:
@ polymorphism: monomorphization, encoding of types in terms
@ \-abstractions: combinatory logic (SKI), lifting

@ induction (but partial unfolding of recursive functions)

Outline Introduction HOL to SMT

generic interface specific interface

- interface-specific
preprocessing)< - - - - - o . .
information
serialization

SMT solver

proof
reconstruction

unknown

counterexample |«

Outline ntre /'HOL to SMT ...

generic interface specific interface

interface-specific

preprocessing

information

proof
reconstruction

proo

unknown

counterexample |«

From Isabelle/HOL to SMT ...
oce

Supported SMT Solvers and Formats

Generic approach:

@ low effort to integrate new solvers

SMT-LIB format:
@ supported by practically all available solvers
@ separates terms and formulas
o fixed logics (combination of theories)

@ no polymorphism

Z3 low-level format:
@ no separation between terms and formulas
@ supports all theories and any combination

@ restricted polymorphism

10

Outline From Isabelle/HOL to SMT ...

00000

generic interface specific interface

4 7777777 interface-specific
information

serialization

SMT solver

proof
reconstruction

proo

unknown

counterexample |«

From Isabelle/HOL to SMT ...
0®000

Preprocessing

SMT:

@ requires transformations of
essentially first-order HOL terms

12

From Isabelle/HOL to SMT ...
0®000

Preprocessing

SMT:
@ requires transformations of
theorems . .
essentially first-order HOL terms
terms
SMT
terms

theorems

12

From Isabelle/HOL to SMT ...
0®000

Preprocessing

SMT:
@ requires transformations of
theorems . .
essentially first-order HOL terms

terms Rewriting of theorems (normalization):

@ establish properties necessary for
SMT serialization and proof reconstruction
terms

theorems

12

From Isabelle/HOL to SMT ...
0®000

Preprocessing

SMT:
@ requires transformations of
theorems . .
essentially first-order HOL terms
terms Rewriting of theorems (normalization):
@ establish properties necessary for
SMT serialization and proof reconstruction
terms Term transformations (decoration):
@ prepare only serialization
theorems

@ can use “dirty” tricks

o faster/simpler than theorem rewriting

12

From Isabelle/HOL to SMT ...
00®00

Rewriting of Theorems (Normalization)

@ Negative numerals: rewrite into negated positive numerals

13

From Isabelle/HOL to SMT ...
00®00

Rewriting of Theorems (Normalization)

@ Negative numerals: rewrite into negated positive numerals

@ Natural numbers: embed into integers
e add axiomatization of nat and int

P (2+x) ~ P (nat (2 + int x))

13

From Isabelle/HOL to SMT ...
00®00

Rewriting of Theorems (Normalization)

@ Negative numerals: rewrite into negated positive numerals

@ Natural numbers: embed into integers
e add axiomatization of nat and int

P (2+x) ~ P (nat (2 + int x))

@ Lambda terms: lift

Vx. f x=x+1
map f [1,2] = [2,3]

map (Ax. x+1) [1,2] =[2,3] ~ {

13

From Isabelle/HOL to SMT ...
00®00

Rewriting of Theorems (Normalization)

@ Negative numerals: rewrite into negated positive numerals

@ Natural numbers: embed into integers
e add axiomatization of nat and int

P (2+x) ~ P (nat (2 + int x))

@ Lambda terms: lift

Vx. f x=x+1
map f [1,2] = [2,3]

map (Ax. x+1) [1,2] =[2,3] ~ {

@ Axiomatization for abs, min, max, and pairs

13

From Isabelle/HOL to SMT ...
000®0

Term Transformations (Decoration)

Monomorphization:
@ compute necessary instances of polymorphic constants
@ copy and instantiate polymorphic assumptions
@ enforce termination: upper limit on generated copies
o

simple, but can cause blow-up of formulas

14

From Isabelle/HOL to SMT ...
000®0

Term Transformations (Decoration)

Monomorphization:
@ compute necessary instances of polymorphic constants
@ copy and instantiate polymorphic assumptions
@ enforce termination: upper limit on generated copies
o

simple, but can cause blow-up of formulas

Identification of built-in symbols

14

From Isabelle/HOL to SMT ...
000®0

Term Transformations (Decoration)

Monomorphization:
@ compute necessary instances of polymorphic constants
@ copy and instantiate polymorphic assumptions
@ enforce termination: upper limit on generated copies
o

simple, but can cause blow-up of formulas

Identification of built-in symbols

Separation between formulas and terms:
@ insert marker symbol

@ add axiomatization for term-level occurrences of A, V, <, ...

14

From Isabelle/HOL to SMT ...
000®0

Term Transformations (Decoration)

Monomorphization:
@ compute necessary instances of polymorphic constants
@ copy and instantiate polymorphic assumptions
@ enforce termination: upper limit on generated copies
o

simple, but can cause blow-up of formulas

Identification of built-in symbols

Separation between formulas and terms:
@ insert marker symbol

@ add axiomatization for term-level occurrences of A, V, <, ...

Transformation of partially-applied functions:

@ additional symbol: make application explicit

14

Outline From Isabelle/HOL to SMT ...

(elefele])

generic interface specific interface

- interface-specific
preprocessing)< - - - - - o . .
information
serialization

SMT solver

proof
reconstruction

proo

unknown

counterexample |«

Outline From Isabelle/HOL to SMT ...

(elefele])

generic interface specific interface

interface-specific
information

serialization

preprocessing

SMT solver

proof
reconstruction

counterexample [«

unknown

Outline and back again

generic interface specific interface

. interface-specific
preprocessing)< - - - - - o . .
information
serialization

SMT solver

proof
reconstruction

unknown

counterexample |«

... and back again
®00

/3 Terms

Signature:

@ types: basic types (int, real) and user-defined types (nullary
type constructors)

@ function symbols: fixed arity, no polymorphism

Terms:
@ variables: x, y
o applications: f t1...t,

e quantifiers (triggers are ignored)

Formulas (terms of sort bool): P, Q

Natural mapping into HOL term structure

17

... and back again
o] 1o}

Equisatisfiability

(—x V false) ~ (—y)

Semantics: existential closure

(3x. =x V false) < (Jy. —y)

Representation in HOL:
@ equivalence without existential closure

@ exception: Skolemization

18

... and back again
ocoe

/3 Proofs

Natural deduction style:

asserted rewrite

—true = —true F —true < false

mp..
—true false

10

... and back again
ocoe

/3 Proofs

Natural deduction style:

asserted rewrite

—true = —true F —true < false

mp..
—true false

28 proof rules:

5 equality rules

14 core rules
‘ 7 quantifier rules

2 theory rules

10

... and back again
©000000000

Proof Reconstruction

Follows the proof structure:

asserted rewrite

—true &+ —true F —true < false
mp..

—true + false

20

... and back again
©000000000

Proof Reconstruction

Follows the proof structure:
@ bottom-up

@ one method for every rule

—— asserted rewrite
—true & —true F —true < false

mp..
—true + false

20

... and back again
©000000000

Proof Reconstruction

Follows the proof structure:
@ bottom-up

@ one method for every rule

—— asserted rewrite
—true &+ —true F —true < false

mp..
—true + false

20

... and back again
©000000000

Proof Reconstruction

Follows the proof structure:
@ bottom-up

@ one method for every rule

asserted rewrite

—true & —true F —true < false
mp..

—true false

20

... and back again
©000000000

Proof Reconstruction

Follows the proof structure:
@ bottom-up
@ one method for every rule

@ all inferences certified by Isabelle kernel

asserted rewrite

—true &+ —true F —true < false
mp._,

—true + false

20

... and back again
©000000000

Proof Reconstruction

Follows the proof structure:
@ bottom-up
@ one method for every rule
@ all inferences certified by Isabelle kernel

@ global check at the end

—— asserted rewrite
—true + —true F —true < false

mp..
—true + false

20

... and back again
©000000000

Proof Reconstruction

Follows the proof structure:

bottom-up

one method for every rule

all inferences certified by Isabelle kernel
global check at the end

local checks for debugging

asserted rewrite

—true + —true F —true < false
mp..

—true + false

20

... and back again
O®00000000

Reconstruction Methods

21

... and back again
O®00000000

Reconstruction Methods

@ Direct representation or basic inference rule: (3 rules)

asserted

true-prop

F true PP

21

... and back again
O®00000000

Reconstruction Methods

@ Direct representation or basic inference rule: (3 rules)

asserted

true-prop

F true PP

@ Theorem or inference rule, and resolution: (9 rules)

M EP o - P P>

mp.,

Ul F Py

in Isabelle: P — Py < P, — P>

21

... and back again
O®00000000

Reconstruction Methods

@ Direct representation or basic inference rule: (3 rules)

asserted

true-prop

F true PP

@ Theorem or inference rule, and resolution: (9 rules)

M EP o - P P>

mp.,

Ul F Py

in Isabelle: P = P; < P, — P>

o Isabelle proof tools (7 rules)

21

... and back again
0080000000

Reconstruction Methods: The Remaining 9 Rules

Special treatment due to:
@ no available proof tools

@ optimizations for central proof rules

Optimizations:
@ meta-equality instead of HOL equality
@ cheap inference rules of Isabelle kernel
@ memoize intermediate steps
°

reduce number of resolution steps, prepare suitable theorems

29

... and back again
000®000000

Unit Resolution

P11V =PV —P3 P>
P11V —P3

bl

... and back again
000®000000

Unit Resolution

PV (—|P2 V —\P3) P>
P11V —P3

bl

... and back again
000®000000

Unit Resolution

Py Vv (_‘P2 V —\P3) P,
P11V —P3

Idea: combine resolution with rewriting

Example with rewriting

P>

P1V (=Py Vv =P3) P1V (=P V =P3) = PV —P;
P11V -P3

bl

... and back again
0000@00000

Unit Resolution

P1V =PV —-P3 =P V-Ps

24

... and back again
0000@00000

Unit Resolution

P]_EP]_

P1V =PV —aP3 =P V-Ps

24

... and back again
0000@00000

Unit Resolution

Pi=P; =PV =P3=-P3
PV =PV —=P3=P;V-Ps

24

... and back again
0000@00000

Unit Resolution

P>
—\P2 V _|P3 = —\P3
Pi=P; =PV =P3=-P3

P1V =PV -P3=P;V-Ps

24

... and back again
0000@00000

Unit Resolution

P>
E
—\P2 V _|P3 = —\P3
Pi=P; =PV =P3=-P3

P1V =PV -P3=P;V-Ps

P> QL= "QVRQ=Q
PV @Q=Q

Eli

24

... and back again
0000@00000

Unit Resolution

P>
E S e——
—\P2 V _|P3 = —\P3 —\P3 = ﬂP3
Pi=P; =PV =P3=-P3

P1V =PV -P3=P;V-Ps

P> QL= "QVRQ=Q
PV @Q=Q

Eli

24

... and back again
00000@0000

Congruence

Natural choice: use Isabelle’s simplifier
But: custom-made procedure provides much better performance

Idea: combine reflexivity and congruence of basic inference rules

‘H
W
o
Il
‘H
o
o
Q.
Il
o

75

... and back again
0000008000

Memoization for Conjunction Elimination

P1 APy A P3
P>

Similar: conclude P; or P3

Idea:
Q@ explode P; A P> A P3 once into literals

@ memoize literals
© pick required literal on demand

Dually for negated disjunction elimination

... and back again
0000000®00

Skolemization

F@x.Pxy)~P(fy)y

27

... and back again
0000000®00

Skolemization

F@x.Pxy)~P(fy)y

With Hilbert choice operator &

f=(My.ex.Pxy)E (3x.Pxy)—=P(fy)y

27

... and back again
0000000®00

Skolemization

F@x.Pxy)~P(fy)y

With Hilbert choice operator &

f=(My.ex.Pxy)E (3x.Pxy)—=P(fy)y

At the end of reconstruction:

Mf=(M\y.ex.Pxy)F false

27

... and back again
0000000®00

Skolemization

F@x.Pxy)~P(fy)y

With Hilbert choice operator &

f=(My.ex.Pxy)E (3x.Pxy)—=P(fy)y

At the end of reconstruction:

Mf=(M\y.ex.Pxy)F false
M+ f=(\y.ex. P xy) = false

27

... and back again
0000000®00

Skolemization

F@x.Pxy)~P(fy)y

With Hilbert choice operator &

f=(My.ex.Pxy)E (3x.Pxy)—=P(fy)y

At the end of reconstruction:

Mf=(M\y.ex.Pxy)F false
M+ f=(\y.ex. P xy) = false

N (Ay.ex.P xy)=(\y.ex. P x y) = false

27

... and back again
0000000®00

Skolemization

F@x.Pxy)~P(fy)y

With Hilbert choice operator &

f=(My.ex.Pxy)E (3x.Pxy)—=P(fy)y

At the end of reconstruction:

Mf=(M\y.ex.Pxy)F false
M+ f=(\y.ex. P xy) = false

N (Ay.ex.P xy)=(\y.ex. P x y) = false
I false

27

... and back again

00000000 e0

Rewrite

“The head function symbol of the left-hand side is interpreted.”

PiAPyANtrue=P AP (x<y)=(y+(—1xx)>0)

Several possible simplification steps:
ACI rewriting of A and V

AC rewriting of non-idempotent functions (e.g. +)

arithmetic: polynomial normal-form
array: application of access/update-rules
quantifier elimination: (Ix. 1 < xAx<y)=(1<y)

28

... and back again
000000000e

Rewrite

Approach 1: try
@ identified simplication rules
@ custom-made ACI rewriting for A and V

@ simplifier (arrays) and arithmetic decision procedures
Approach 2:
@ choose the appropriate method

@ based on the head symbol of the left-hand side

Overall difference negligible:

o Isabelle’s arithmetic DPs take much longer

20

... and back again
[I}

Evaluation

Recurrence relation x;12 = |xj+1] — x; has period 9:
@ with Isabelle’s arithmetic: 4 minutes
@ with Z3: 15 seconds

SMT-LIB benchmarks:
@ industrial problems: huge formulas
@ 73 proofs: around 100KB, up to several MB

@ reconstruction: around 20 times slower than proof finding

20

... and back again
oce

Some Quirks in Z3's Proof Generation

- rewrite
F PA(Vx:int.x >0) < false AN P J

21

... and back again
oce

Some Quirks in Z3's Proof Generation

- rewrite
F PA(Vx:int.x >0) < false AN P

M EPLVPV P > F =P
Mul, F Py

unit

21

... and back again

Some Quirks in Z3's Proof Generation

- rewrite
F PA(Vx:int.x >0) < false AN P

M EPLVPV P > F =P
Mul, F Py

unit

MM Es=t b Fu=t
MUl Fs=u

trans

21

... and back again
oce

Some Quirks in Z3's Proof Generation

- rewrite
F PA(Vx:int.x >0) < false AN P

M EPLVPV P > F =P
Mul, F Py

unit

MM Es=t b Fu=t
MUl Fs=u

trans

rewritex

fx=14+x+gx

21

Conclusion

Conclusion

Generic connection of SMT solvers with Isabelle/HOL:
@ can solve many essentially first-order formulas

@ can cope (to some extent) with polymorphism,
A-expressions, and recursive functions

Proof reconstruction for Z3:
e certifying connection of Z3 with Isabelle/HOL
@ several optimizations

@ helped to improve Z3 proof generation

29

	Outline
	Introduction
	Isabelle/HOL
	SMT
	Isabelle/HOL and SMT

	From Isabelle/HOL to SMT ...
	Supported SMT Solvers
	Preprocessing

	... and back again
	Z3 Proofs
	Proof Reconstruction for Z3
	Evaluation

	Conclusion

