Isabelle/HOL and SMT

Sascha Böhme

Technische Universität München

September 10, 2009

Outline	Introduction	From Isabelle/HOL to SMT	and back again	Conclusion

Introduction

- Isabelle/HOL
- SMT
- Isabelle/HOL and SMT

2 From Isabelle/HOL to SMT ...

- Supported SMT Solvers
- Preprocessing

3 ... and back again

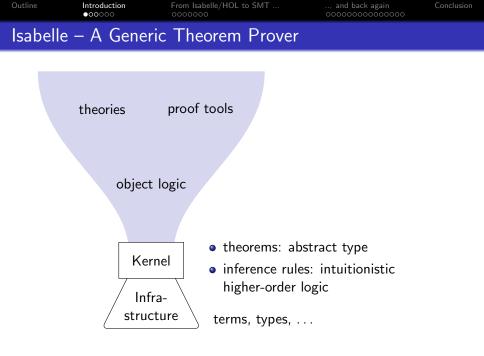
- Z3 Proofs
- Proof Reconstruction for Z3
- Evaluation

 Outline
 Introduction
 From Isabelle/HOL to SMT ...
 ... and back again
 Conclusion

 Isabelle – A Generic Theorem Prover

- theorems: abstract type
- inference rules: intuitionistic higher-order logic

terms, types, ...



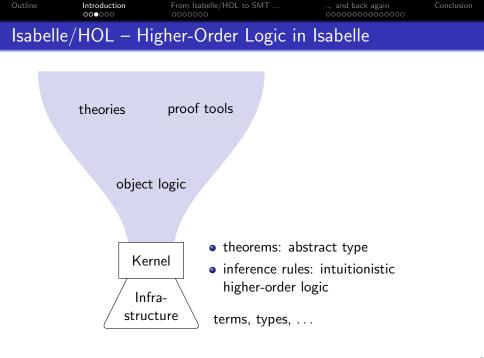
Outline	Introduction 00000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
lsabell	e's Meta-Lo	gic		

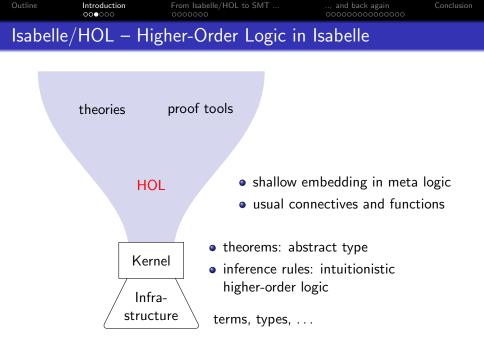
Terms:

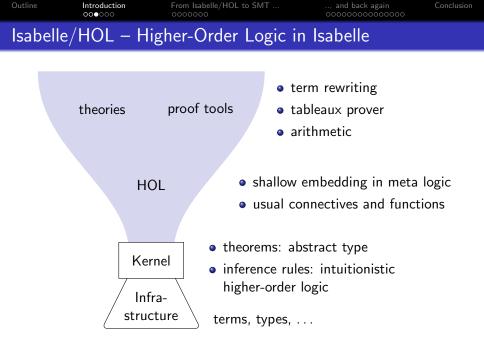
- constants (\bigwedge , \Longrightarrow , \equiv)
- variables
- λ -abstraction
- application
- Theorems: $H \vdash P$

Rules:

- assumption
- \bullet introduction and elimination of \bigwedge and \Longrightarrow and \equiv
- reflexivity, symmetry, transitivity, congruence
- generalization, instantiation
- higher-order resolution







Outline Introduction From Isabelle/HOL to SMT ...

... and back again

Conclusion

Satisfiability Modulo Theories (SMT)

Many-sorted first-order logic

Theories:

- equality and uninterpreted functions
- linear (integer/real) arithmetic
- arrays
- bitvectors
- algebraic datatypes

Combination: in general undecidable with high complexity

 necessary fragment still successful: program verification, model checking, ...

SMT solvers: CVC3, Yices, Z3, ...

• Sledgehammer: connection to first-order provers

With SMT:

- built-in support for additional theories (e.g. linear arithmetic)
- weaker on quantifiers

- polymorphism
- λ -abstractions
- induction

• Sledgehammer: connection to first-order provers

With SMT:

- built-in support for additional theories (e.g. linear arithmetic)
- weaker on quantifiers

- polymorphism: monomorphization, encoding of types in terms
- λ -abstractions
- induction

• Sledgehammer: connection to first-order provers

With SMT:

- built-in support for additional theories (e.g. linear arithmetic)
- weaker on quantifiers

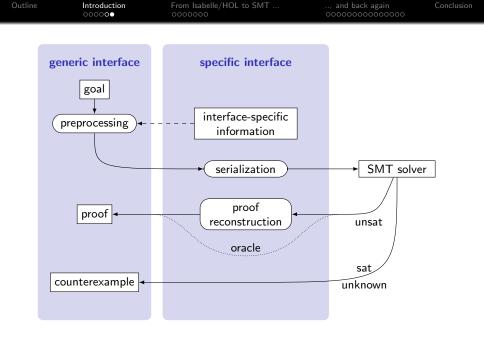
- polymorphism: monomorphization, encoding of types in terms
- λ -abstractions: combinatory logic (SKI), lifting
- induction

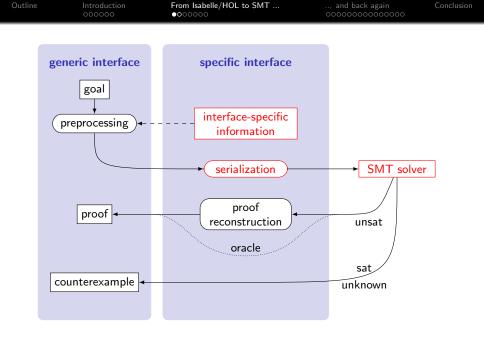
• Sledgehammer: connection to first-order provers

With SMT:

- built-in support for additional theories (e.g. linear arithmetic)
- weaker on quantifiers

- polymorphism: monomorphization, encoding of types in terms
- λ -abstractions: combinatory logic (SKI), lifting
- induction (but partial unfolding of recursive functions)





Outline	Introduction	From Isabelle/HOL to SMT
		000000

... and back again

Conclusion

Supported SMT Solvers and Formats

Generic approach:

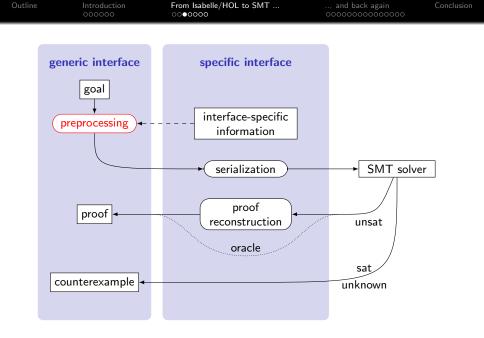
• low effort to integrate new solvers

SMT-LIB format:

- supported by practically all available solvers
- separates terms and formulas
- fixed logics (combination of theories)
- no polymorphism

Z3 low-level format:

- no separation between terms and formulas
- supports all theories and any combination
- restricted polymorphism

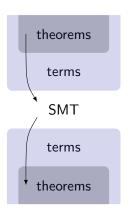


Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
Prepro	ocessing			

SMT:

• requires transformations of essentially first-order HOL terms

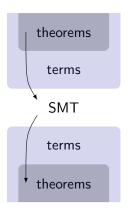
Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
Prepro	cessing			



SMT:

• requires transformations of essentially first-order HOL terms

Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion



Preprocessing

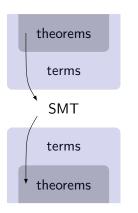
SMT:

 requires transformations of essentially first-order HOL terms

Rewriting of theorems (normalization):

 establish properties necessary for serialization and proof reconstruction

Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
_				



Preprocessing

SMT:

 requires transformations of essentially first-order HOL terms

Rewriting of theorems (normalization):

 establish properties necessary for serialization and proof reconstruction

Term transformations (decoration):

- prepare only serialization
- can use "dirty" tricks
- faster/simpler than theorem rewriting

Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
Rewrit	ing of Theo	orems (Normalization	1)	

• Negative numerals: rewrite into negated positive numerals

Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
Rewriti	ng of Theo	orems (Normalizatio	n)	

- Negative numerals: rewrite into negated positive numerals
- Natural numbers: embed into integers

 \circ

• add axiomatization of *nat* and *int*

Example $P(2+x) \rightsquigarrow P(nat (2+int x))$

Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
Rewrit	ing of The	orems (Normalizatio	n)	

- Negative numerals: rewrite into negated positive numerals
- Natural numbers: embed into integers
 - add axiomatization of *nat* and *int*

 $P(2+x) \rightsquigarrow P(nat(2+int x))$

Lambda terms: lift

Example

Example

 \circ

$$map (\lambda x. x + 1) [1, 2] = [2, 3] \rightsquigarrow \begin{cases} \forall x. f \ x = x + 1 \\ map \ f \ [1, 2] = [2, 3] \end{cases}$$

Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
Rewrit	ing of The	orems (Normalizatio	n)	

- Negative numerals: rewrite into negated positive numerals
- Natural numbers: embed into integers
 - add axiomatization of *nat* and *int*

 $P(2+x) \rightsquigarrow P(nat(2+int x))$

• Lambda terms: lift

Example

Example

 \circ

$$map (\lambda x. x + 1) [1, 2] = [2, 3] \rightsquigarrow \begin{cases} \forall x. f \ x = x + 1 \\ map \ f \ [1, 2] = [2, 3] \end{cases}$$

• Axiomatization for abs, min, max, and pairs

- compute necessary instances of polymorphic constants
- copy and instantiate polymorphic assumptions
- enforce termination: upper limit on generated copies
- simple, but can cause blow-up of formulas

- compute necessary instances of polymorphic constants
- copy and instantiate polymorphic assumptions
- enforce termination: upper limit on generated copies
- simple, but can cause blow-up of formulas

Identification of built-in symbols

Outline	Introduction 000000	From Isabelle/HOL to SMT ○○○○○●○	and back again	Conclusion
Term	Transforma	tions (Decoration)		

- compute necessary instances of polymorphic constants
- copy and instantiate polymorphic assumptions
- enforce termination: upper limit on generated copies
- simple, but can cause blow-up of formulas

Identification of built-in symbols

Separation between formulas and terms:

- insert marker symbol
- add axiomatization for term-level occurrences of $\land,\,\lor,\,\leq,\,\ldots$

Outline	Introduction 000000	From Isabelle/HOL to SMT ○○○○○●○	and back again	Conclusion	
Term Transformations (Decoration)					

- compute necessary instances of polymorphic constants
- copy and instantiate polymorphic assumptions
- enforce termination: upper limit on generated copies
- simple, but can cause blow-up of formulas

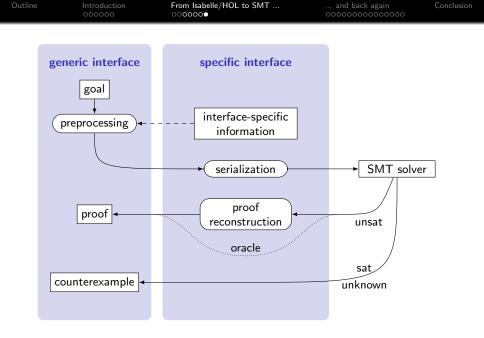
Identification of built-in symbols

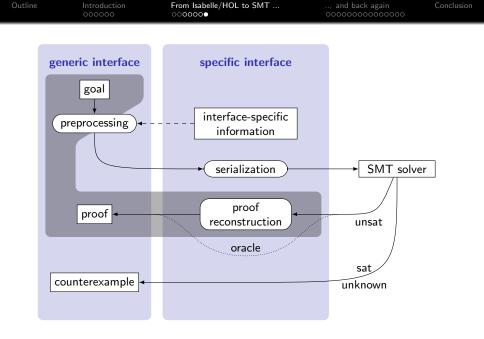
Separation between formulas and terms:

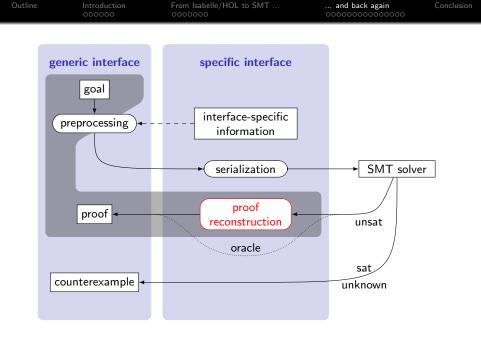
- insert marker symbol
- add axiomatization for term-level occurrences of $\land,\,\lor,\,\leq,\,\ldots$

Transformation of partially-applied functions:

• additional symbol: make application explicit







Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
Z3 Ter	ms			

Signature:

- types: basic types (*int, real*) and user-defined types (nullary type constructors)
- function symbols: fixed arity, no polymorphism

Terms:

- variables: x, y
- applications: $f t_1 \dots t_n$
- quantifiers (triggers are ignored)

Formulas (terms of sort bool): P, Q

Natural mapping into HOL term structure

Outline	Introduction	From Isabelle/HOL to SMT	and back again Conclusion	
	000000	0000000	⊙●⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙	
Equisa	tisfiability			

Example

$$(\neg x \lor false) \sim (\neg y)$$

Semantics: existential closure

Example $(\exists x. \neg x \lor false) \leftrightarrow (\exists y. \neg y)$

Representation in HOL:

- equivalence without existential closure
- exception: Skolemization

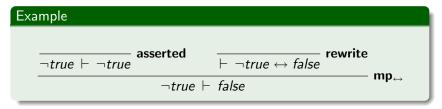
Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again 00●0000000000000000000000000000000000	Conclusion
Z3 Proofs				

Natural deduction style:

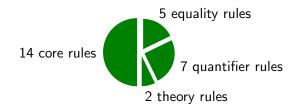
Exa	ample		
	$\frac{1}{\neg true \vdash \neg true} \text{ asserted } \frac{1}{\vdash \neg true \leftrightarrow false}$	rewrite	
	$\neg true \vdash false$		mp↔

Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
Z3 Pro	oofs			

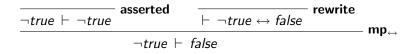
Natural deduction style:



28 proof rules:



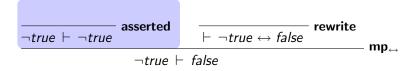
Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
Proof Re	econstructio	n		



Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
Proof Reconstruction				

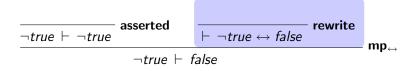
_

- o bottom-up
- one method for every rule



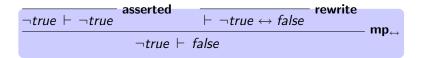
Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
Proof R	econstructio			

- o bottom-up
- one method for every rule



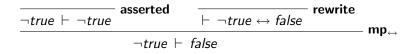
Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again ०००●००००००००००	Conclusion
Proof F	Reconstruc			

- onows the proof struct
 - o bottom-up
 - one method for every rule



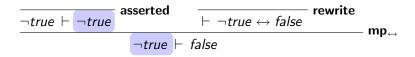
Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
Proof R	econstruct			

- o bottom-up
- one method for every rule
- all inferences certified by Isabelle kernel



Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
Proof Reconstruction				

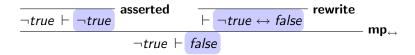
- o bottom-up
- one method for every rule
- all inferences certified by Isabelle kernel
- global check at the end



Outline	Introduction 000000	and back again	Conclusion

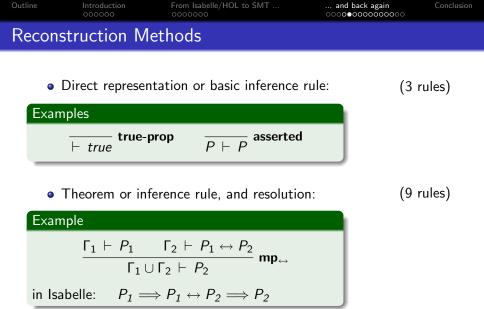
Proof Reconstruction

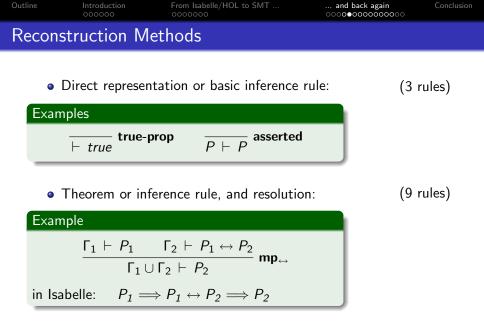
- bottom-up
- one method for every rule
- all inferences certified by Isabelle kernel
- global check at the end
- local checks for debugging



Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
Reconst	truction M	ethods		

Outline	Introduction 000000	From Isabell	e/HOL to SMT		back again	Conclusion
Recon	struction M	ethods				
	Direct represen	ntation or b	oasic inference	e rule:	(3 r	ules)
		prop <u> </u>	$\vdash P$ asserte	d		
_						





Isabelle proof tools

Reconstruction Methods: The Remaining 9 Rules

Special treatment due to:

- no available proof tools
- optimizations for central proof rules

Optimizations:

- meta-equality instead of HOL equality
- cheap inference rules of Isabelle kernel
- memoize intermediate steps
- reduce number of resolution steps, prepare suitable theorems

Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again ००००००●०००००००	Conclusion
Unit Re	esolution			

$$\frac{P_1 \lor \neg P_2 \lor \neg P_3 \qquad P_2}{P_1 \lor \neg P_3}$$

Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
Unit Resolution				

$$\frac{P_1 \lor (\neg P_2 \lor \neg P_3) \qquad P_2}{P_1 \lor \neg P_3}$$

Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
Unit Re	esolution			

Example $\frac{P_1 \lor (\neg P_2 \lor \neg P_3) \qquad P_2}{P_1 \lor \neg P_3}$

Idea: combine resolution with rewriting

Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
Unit F	Resolution			

$$P_1 \vee \neg P_2 \vee \neg P_3 \equiv P_1 \vee \neg P_3$$

Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
Unit F	Resolution			

$$\overline{P_1 \equiv P_1}$$

$$P_1 \lor \neg P_2 \lor \neg P_3 \equiv P_1 \lor \neg P_3$$

Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
Unit F	Resolution			

$$\overline{P_1 \equiv P_1} \qquad \neg P_2 \lor \neg P_3 \equiv \neg P_3$$

$$\overline{P_1 \lor \neg P_2 \lor \neg P_3 \equiv P_1 \lor \neg P_3}$$

Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
Unit R	esolution			

Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
Unit R	esolution			

$$\frac{P_2}{P_1 \equiv P_1} \qquad \frac{P_2}{\neg P_2 \lor \neg P_3 \equiv \neg P_3} E_1}{P_2 \lor \neg P_3 \equiv \neg P_3}$$

$$\frac{P_1 \lor \neg P_2 \lor \neg P_3 \equiv P_1 \lor \neg P_3}{P_1 \lor \neg P_3}$$

$$E_1: \quad \frac{P_2 \qquad Q_1 \Longrightarrow \neg Q_1 \lor Q_2 \equiv Q_2}{\neg P_2 \lor Q_2 \equiv Q_2}$$

Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
Unit F	Resolution			

$$\frac{P_2}{P_1 \equiv P_1} \qquad \frac{P_2}{\neg P_2 \lor \neg P_3 \equiv \neg P_3} E_1 \qquad \overline{\neg P_3 \equiv \neg P_3} \\ \hline P_1 \equiv P_1 \qquad \overline{\neg P_2 \lor \neg P_3 \equiv \neg P_3} \\ \hline P_1 \lor \neg P_2 \lor \neg P_3 \equiv P_1 \lor \neg P_3$$

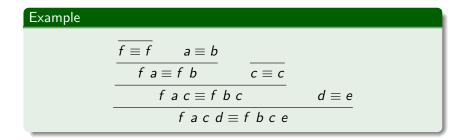
$$E_1: \quad \frac{P_2 \qquad Q_1 \Longrightarrow \neg Q_1 \lor Q_2 \equiv Q_2}{\neg P_2 \lor Q_2 \equiv Q_2}$$

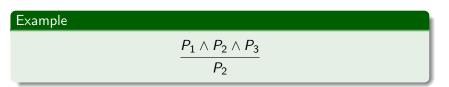
Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again ००००००००●००००००	Conclusion
Congru	ience			

Natural choice: use Isabelle's simplifier

But: custom-made procedure provides much better performance

Idea: combine reflexivity and congruence of basic inference rules





Similar: conclude P_1 or P_3

Idea:

- **(**) explode $P_1 \wedge P_2 \wedge P_3$ once into literals
- 2 memoize literals
- opick required literal on demand

Dually for negated disjunction elimination

Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
Skoler	nization			

$$\vdash (\exists x. P \times y) \sim P (f y) y$$

Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
Skoler	nization			

$$\vdash (\exists x. P x y) \sim P (f y) y$$

With Hilbert choice operator ε

$$f \equiv (\lambda y. \varepsilon x. P \times y) \vdash (\exists x. P \times y) \leftrightarrow P (f y) y$$

Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
Skoler	nization			

$$\vdash (\exists x. P \times y) \sim P (f y) y$$

With Hilbert choice operator ε

$$f \equiv (\lambda y. \varepsilon x. P \times y) \vdash (\exists x. P \times y) \leftrightarrow P (f y) y$$

$$\Gamma, f \equiv (\lambda y. \varepsilon x. P \times y) \vdash false$$

Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
Skoler	nization			

$$\vdash (\exists x. P \times y) \sim P (f y) y$$

With Hilbert choice operator ε

$$f \equiv (\lambda y. \varepsilon x. P \times y) \vdash (\exists x. P \times y) \leftrightarrow P (f y) y$$

$$\Gamma, f \equiv (\lambda y. \varepsilon x. P \times y) \vdash false$$
$$\Gamma \vdash f \equiv (\lambda y. \varepsilon x. P \times y) \Longrightarrow false$$

Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
Skoler	nization			

$$\vdash (\exists x. P \times y) \sim P (f y) y$$

With Hilbert choice operator ε

$$f \equiv (\lambda y. \varepsilon x. P \times y) \vdash (\exists x. P \times y) \leftrightarrow P (f y) y$$

$$\frac{\Gamma, f \equiv (\lambda y. \varepsilon x. P \times y) \vdash false}{\Gamma \vdash f \equiv (\lambda y. \varepsilon x. P \times y) \Longrightarrow false}$$
$$\frac{\Gamma \vdash (\lambda y. \varepsilon x. P \times y) \Longrightarrow false}{\Gamma \vdash (\lambda y. \varepsilon x. P \times y) \equiv (\lambda y. \varepsilon x. P \times y) \Longrightarrow false}$$

Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion	
Skolemization					

$$\vdash (\exists x. P \times y) \sim P (f y) y$$

With Hilbert choice operator ε

$$f \equiv (\lambda y. \varepsilon x. P \times y) \vdash (\exists x. P \times y) \leftrightarrow P (f y) y$$

$$\begin{array}{r} \Gamma, f \equiv (\lambda y. \varepsilon x. P \times y) \vdash false \\ \hline \Gamma \vdash f \equiv (\lambda y. \varepsilon x. P \times y) \Longrightarrow false \\ \hline \Gamma \vdash (\lambda y. \varepsilon x. P \times y) \equiv (\lambda y. \varepsilon x. P \times y) \Longrightarrow false \\ \hline \Gamma \vdash false \end{array}$$

Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again ○○○○○○○○○○●○○○	Conclusion
Rewrite				

"The head function symbol of the left-hand side is interpreted."

Examples $\overline{P_1 \land P_2 \land true = P_2 \land P_1} \quad \overline{(x < y) = (y + (-1 * x) > 0)}$

Several possible simplification steps:

- ACI rewriting of \wedge and \vee
- AC rewriting of non-idempotent functions (e.g. +)
- arithmetic: polynomial normal-form
- array: application of access/update-rules
- quantifier elimination: $(\exists x. 1 \le x \land x < y) = (1 < y)$

Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
Rewrite				

Approach 1: try

- identified simplication rules
- 2 custom-made ACI rewriting for \wedge and \vee
- **③** simplifier (arrays) and arithmetic decision procedures

Approach 2:

- choose the appropriate method
- based on the head symbol of the left-hand side

Overall difference negligible:

• Isabelle's arithmetic DPs take much longer

Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again ○○○○○○○○○○○●○	Conclusion
Evaluation				

Recurrence relation $x_{i+2} = |x_{i+1}| - x_i$ has period 9:

- with Isabelle's arithmetic: 4 minutes
- with Z3: 15 seconds

SMT-LIB benchmarks:

- industrial problems: huge formulas
- Z3 proofs: around 100KB, up to several MB
- reconstruction: around 20 times slower than proof finding

 Outline
 Introduction
 From Isabelle/HOL to SMT ...
 ... and back again
 Conclusion

 Some Quirks in Z3's Proof Generation
 Conclusion
 Conclusion
 Conclusion

 $\vdash P \land (\forall x : int. x > 0) \leftrightarrow false \land P$ rewrite

 Outline
 Introduction
 From Isabelle/HOL to SMT ...
 ... and back again
 Conclusion

 Some Quirks in Z3's Proof Generation
 Conclusion
 Conclusion
 Conclusion

 $\vdash P \land (\forall x : int. x > 0) \leftrightarrow false \land P$ rewrite

$$\frac{\Gamma_1 \vdash P_1 \lor P_2 \lor P_1 \qquad \Gamma_2 \vdash \neg P_2}{\Gamma_1 \cup \Gamma_2 \vdash P_1} \text{ unit }$$

 Outline
 Introduction
 From Isabelle/HOL to SMT ...
 ... and back again
 Conclusion

 Some Quirks in Z3's Proof Generation
 Conclusion
 Conclusion
 Conclusion

 $\vdash P \land (\forall x : int. x > 0) \leftrightarrow false \land P$ rewrite

$$\frac{\Gamma_1 \vdash P_1 \lor P_2 \lor P_1 \quad \Gamma_2 \vdash \neg P_2}{\Gamma_1 \cup \Gamma_2 \vdash P_1} \text{ unit }$$

$$\frac{\Gamma_1 \vdash s = t \quad \Gamma_2 \vdash u = t}{\Gamma_1 \cup \Gamma_2 \vdash s = u} \text{ trans}$$

 Outline
 Introduction
 From Isabelle/HOL to SMT ...
 ... and back again
 Conclusion

 Some Quirks in Z3's Proof Generation

 $\overline{\vdash P \land (\forall x : int. \, x > 0)} \; \leftrightarrow \; \textit{false} \land P \; \textbf{rewrite}$

$$\frac{\Gamma_1 \vdash P_1 \lor P_2 \lor P_1 \quad \Gamma_2 \vdash \neg P_2}{\Gamma_1 \cup \Gamma_2 \vdash P_1} \text{ unit }$$

$$\frac{\Gamma_1 \vdash s = t \qquad \Gamma_2 \vdash u = t}{\Gamma_1 \cup \Gamma_2 \vdash s = u} \text{ trans}$$

$$f = x = 1 + x + g x$$
 rewrite*

Outline	Introduction 000000	From Isabelle/HOL to SMT 0000000	and back again	Conclusion
Conclu	usion			

Generic connection of SMT solvers with Isabelle/HOL:

- can solve many essentially first-order formulas
- can cope (to some extent) with polymorphism, $\lambda\text{-expressions, and recursive functions}$

Proof reconstruction for Z3:

- certifying connection of Z3 with Isabelle/HOL
- several optimizations
- helped to improve Z3 proof generation