
Isabelle/HOL and SMT

Sascha Böhme

Technische Universität München

September 10, 2009

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

1 Introduction
Isabelle/HOL
SMT
Isabelle/HOL and SMT

2 From Isabelle/HOL to SMT ...
Supported SMT Solvers
Preprocessing

3 ... and back again
Z3 Proofs
Proof Reconstruction for Z3
Evaluation

4 Conclusion

2

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Isabelle – A Generic Theorem Prover

theories proof tools

object logic

Kernel

Infra-
structure

theorems: abstract type

inference rules: intuitionistic
higher-order logic

terms, types, . . .

3

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Isabelle – A Generic Theorem Prover

theories proof tools

object logic

Kernel

Infra-
structure

theorems: abstract type

inference rules: intuitionistic
higher-order logic

terms, types, . . .

3

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Isabelle’s Meta-Logic

Terms:

constants (
∧

, =⇒, ≡)

variables

λ-abstraction

application

Theorems: H ` P

Rules:

assumption

introduction and elimination of
∧

and =⇒ and ≡
reflexivity, symmetry, transitivity, congruence

generalization, instantiation

higher-order resolution

4

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Isabelle/HOL – Higher-Order Logic in Isabelle

theories proof tools

object logic

Kernel

Infra-
structure

theorems: abstract type

inference rules: intuitionistic
higher-order logic

terms, types, . . .

shallow embedding in meta logic

usual connectives and functions

term rewriting

tableaux prover

arithmetic

5

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Isabelle/HOL – Higher-Order Logic in Isabelle

theories proof tools

HOL

Kernel

Infra-
structure

theorems: abstract type

inference rules: intuitionistic
higher-order logic

terms, types, . . .

shallow embedding in meta logic

usual connectives and functions

term rewriting

tableaux prover

arithmetic

5

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Isabelle/HOL – Higher-Order Logic in Isabelle

theories proof tools

HOL

Kernel

Infra-
structure

theorems: abstract type

inference rules: intuitionistic
higher-order logic

terms, types, . . .

shallow embedding in meta logic

usual connectives and functions

term rewriting

tableaux prover

arithmetic

5

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Satisfiability Modulo Theories (SMT)

Many-sorted first-order logic

Theories:

equality and uninterpreted functions

linear (integer/real) arithmetic

arrays

bitvectors

algebraic datatypes

Combination: in general undecidable with high complexity

necessary fragment still successful: program verification,
model checking, . . .

SMT solvers: CVC3, Yices, Z3, . . .

6

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Isabelle/HOL and SMT

Observation: many essentially first-order propositions:

Sledgehammer: connection to first-order provers

With SMT:

built-in support for additional theories (e.g. linear arithmetic)

weaker on quantifiers

SMT cannot (directly) deal with:

polymorphism

: monomorphization, encoding of types in terms

λ-abstractions

: combinatory logic (SKI), lifting

induction

(but partial unfolding of recursive functions)

7

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Isabelle/HOL and SMT

Observation: many essentially first-order propositions:

Sledgehammer: connection to first-order provers

With SMT:

built-in support for additional theories (e.g. linear arithmetic)

weaker on quantifiers

SMT cannot (directly) deal with:

polymorphism: monomorphization, encoding of types in terms

λ-abstractions

: combinatory logic (SKI), lifting

induction

(but partial unfolding of recursive functions)

7

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Isabelle/HOL and SMT

Observation: many essentially first-order propositions:

Sledgehammer: connection to first-order provers

With SMT:

built-in support for additional theories (e.g. linear arithmetic)

weaker on quantifiers

SMT cannot (directly) deal with:

polymorphism: monomorphization, encoding of types in terms

λ-abstractions: combinatory logic (SKI), lifting

induction

(but partial unfolding of recursive functions)

7

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Isabelle/HOL and SMT

Observation: many essentially first-order propositions:

Sledgehammer: connection to first-order provers

With SMT:

built-in support for additional theories (e.g. linear arithmetic)

weaker on quantifiers

SMT cannot (directly) deal with:

polymorphism: monomorphization, encoding of types in terms

λ-abstractions: combinatory logic (SKI), lifting

induction (but partial unfolding of recursive functions)

7

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

generic interface specific interface

goal

preprocessing
interface-specific

information

serialization SMT solver

proof
reconstruction

proof

counterexample

unsat

oracle

sat

unknown

8

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

generic interface specific interface

goal

preprocessing
interface-specific

information

serialization SMT solver

proof
reconstruction

proof

counterexample

unsat

oracle

sat

unknown

9

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Supported SMT Solvers and Formats

Generic approach:

low effort to integrate new solvers

SMT-LIB format:

supported by practically all available solvers

separates terms and formulas

fixed logics (combination of theories)

no polymorphism

Z3 low-level format:

no separation between terms and formulas

supports all theories and any combination

restricted polymorphism

10

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

generic interface specific interface

goal

preprocessing
interface-specific

information

serialization SMT solver

proof
reconstruction

proof

counterexample

unsat

oracle

sat

unknown

11

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Preprocessing

SMT

theorems

terms

terms

theorems

SMT:

requires transformations of
essentially first-order HOL terms

Rewriting of theorems (normalization):

establish properties necessary for
serialization and proof reconstruction

Term transformations (decoration):

prepare only serialization

can use “dirty” tricks

faster/simpler than theorem rewriting

12

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Preprocessing

SMT

theorems

terms

terms

theorems

SMT:

requires transformations of
essentially first-order HOL terms

Rewriting of theorems (normalization):

establish properties necessary for
serialization and proof reconstruction

Term transformations (decoration):

prepare only serialization

can use “dirty” tricks

faster/simpler than theorem rewriting

12

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Preprocessing

SMT

theorems

terms

terms

theorems

SMT:

requires transformations of
essentially first-order HOL terms

Rewriting of theorems (normalization):

establish properties necessary for
serialization and proof reconstruction

Term transformations (decoration):

prepare only serialization

can use “dirty” tricks

faster/simpler than theorem rewriting

12

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Preprocessing

SMT

theorems

terms

terms

theorems

SMT:

requires transformations of
essentially first-order HOL terms

Rewriting of theorems (normalization):

establish properties necessary for
serialization and proof reconstruction

Term transformations (decoration):

prepare only serialization

can use “dirty” tricks

faster/simpler than theorem rewriting

12

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Rewriting of Theorems (Normalization)

Negative numerals: rewrite into negated positive numerals

Natural numbers: embed into integers

add axiomatization of nat and int

Example

P (2 + x) P (nat (2 + int x))

Lambda terms: lift

Example

map (λx . x + 1) [1, 2] = [2, 3]

{
∀x . f x = x + 1

map f [1, 2] = [2, 3]

Axiomatization for abs, min, max , and pairs

13

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Rewriting of Theorems (Normalization)

Negative numerals: rewrite into negated positive numerals

Natural numbers: embed into integers

add axiomatization of nat and int

Example

P (2 + x) P (nat (2 + int x))

Lambda terms: lift

Example

map (λx . x + 1) [1, 2] = [2, 3]

{
∀x . f x = x + 1

map f [1, 2] = [2, 3]

Axiomatization for abs, min, max , and pairs

13

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Rewriting of Theorems (Normalization)

Negative numerals: rewrite into negated positive numerals

Natural numbers: embed into integers

add axiomatization of nat and int

Example

P (2 + x) P (nat (2 + int x))

Lambda terms: lift

Example

map (λx . x + 1) [1, 2] = [2, 3]

{
∀x . f x = x + 1

map f [1, 2] = [2, 3]

Axiomatization for abs, min, max , and pairs

13

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Rewriting of Theorems (Normalization)

Negative numerals: rewrite into negated positive numerals

Natural numbers: embed into integers

add axiomatization of nat and int

Example

P (2 + x) P (nat (2 + int x))

Lambda terms: lift

Example

map (λx . x + 1) [1, 2] = [2, 3]

{
∀x . f x = x + 1

map f [1, 2] = [2, 3]

Axiomatization for abs, min, max , and pairs

13

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Term Transformations (Decoration)

Monomorphization:

compute necessary instances of polymorphic constants

copy and instantiate polymorphic assumptions

enforce termination: upper limit on generated copies

simple, but can cause blow-up of formulas

Identification of built-in symbols

Separation between formulas and terms:

insert marker symbol

add axiomatization for term-level occurrences of ∧, ∨, ≤, . . .

Transformation of partially-applied functions:

additional symbol: make application explicit

14

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Term Transformations (Decoration)

Monomorphization:

compute necessary instances of polymorphic constants

copy and instantiate polymorphic assumptions

enforce termination: upper limit on generated copies

simple, but can cause blow-up of formulas

Identification of built-in symbols

Separation between formulas and terms:

insert marker symbol

add axiomatization for term-level occurrences of ∧, ∨, ≤, . . .

Transformation of partially-applied functions:

additional symbol: make application explicit

14

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Term Transformations (Decoration)

Monomorphization:

compute necessary instances of polymorphic constants

copy and instantiate polymorphic assumptions

enforce termination: upper limit on generated copies

simple, but can cause blow-up of formulas

Identification of built-in symbols

Separation between formulas and terms:

insert marker symbol

add axiomatization for term-level occurrences of ∧, ∨, ≤, . . .

Transformation of partially-applied functions:

additional symbol: make application explicit

14

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Term Transformations (Decoration)

Monomorphization:

compute necessary instances of polymorphic constants

copy and instantiate polymorphic assumptions

enforce termination: upper limit on generated copies

simple, but can cause blow-up of formulas

Identification of built-in symbols

Separation between formulas and terms:

insert marker symbol

add axiomatization for term-level occurrences of ∧, ∨, ≤, . . .

Transformation of partially-applied functions:

additional symbol: make application explicit

14

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

generic interface specific interface

goal

preprocessing
interface-specific

information

serialization SMT solver

proof
reconstruction

proof

counterexample

unsat

oracle

sat

unknown

15

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

generic interface specific interface

goal

preprocessing
interface-specific

information

serialization SMT solver

proof
reconstruction

proof

counterexample

unsat

oracle

sat

unknown

15

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

generic interface specific interface

goal

preprocessing
interface-specific

information

serialization SMT solver

proof
reconstruction

proof

counterexample

unsat

oracle

sat

unknown

16

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Z3 Terms

Signature:

types: basic types (int, real) and user-defined types (nullary
type constructors)

function symbols: fixed arity, no polymorphism

Terms:

variables: x , y

applications: f t1 . . . tn

quantifiers (triggers are ignored)

Formulas (terms of sort bool): P, Q

Natural mapping into HOL term structure

17

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Equisatisfiability

Example

(¬x ∨ false) ∼ (¬y)

Semantics: existential closure

Example

(∃x . ¬x ∨ false)↔ (∃y . ¬y)

Representation in HOL:

equivalence without existential closure

exception: Skolemization

18

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Z3 Proofs

Natural deduction style:

Example

¬true ` ¬true
asserted

` ¬true ↔ false
rewrite

¬true ` false
mp↔

28 proof rules:

14 core rules
7 quantifier rules

5 equality rules

2 theory rules

19

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Z3 Proofs

Natural deduction style:

Example

¬true ` ¬true
asserted

` ¬true ↔ false
rewrite

¬true ` false
mp↔

28 proof rules:

14 core rules
7 quantifier rules

5 equality rules

2 theory rules

19

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Proof Reconstruction

Follows the proof structure:

bottom-up

one method for every rule

all inferences certified by Isabelle kernel

global check at the end

local checks for debugging

asserted rewrite

mp↔
¬true ` ¬true ` ¬true ↔ false

¬true ` false

20

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Proof Reconstruction

Follows the proof structure:

bottom-up

one method for every rule

all inferences certified by Isabelle kernel

global check at the end

local checks for debugging

asserted rewrite

mp↔
¬true ` ¬true ` ¬true ↔ false

¬true ` false

20

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Proof Reconstruction

Follows the proof structure:

bottom-up

one method for every rule

all inferences certified by Isabelle kernel

global check at the end

local checks for debugging

asserted rewrite

mp↔
¬true ` ¬true ` ¬true ↔ false

¬true ` false

20

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Proof Reconstruction

Follows the proof structure:

bottom-up

one method for every rule

all inferences certified by Isabelle kernel

global check at the end

local checks for debugging

asserted rewrite

mp↔
¬true ` ¬true ` ¬true ↔ false

¬true ` false

20

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Proof Reconstruction

Follows the proof structure:

bottom-up

one method for every rule

all inferences certified by Isabelle kernel

global check at the end

local checks for debugging

asserted rewrite

mp↔
¬true ` ¬true ` ¬true ↔ false

¬true ` false

20

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Proof Reconstruction

Follows the proof structure:

bottom-up

one method for every rule

all inferences certified by Isabelle kernel

global check at the end

local checks for debugging

asserted rewrite

mp↔
¬true ` ¬true ` ¬true ↔ false

¬true ` false

20

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Proof Reconstruction

Follows the proof structure:

bottom-up

one method for every rule

all inferences certified by Isabelle kernel

global check at the end

local checks for debugging

asserted rewrite

mp↔
¬true ` ¬true ` ¬true ↔ false

¬true ` false

20

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Reconstruction Methods

Direct representation or basic inference rule:

Examples

` true
true-prop

P ` P
asserted

Theorem or inference rule, and resolution:

Example

Γ1 ` P1 Γ2 ` P1 ↔ P2

Γ1 ∪ Γ2 ` P2
mp↔

in Isabelle: P1 =⇒ P1 ↔ P2 =⇒ P2

Isabelle proof tools

(3 rules)

(9 rules)

(7 rules)

21

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Reconstruction Methods

Direct representation or basic inference rule:

Examples

` true
true-prop

P ` P
asserted

Theorem or inference rule, and resolution:

Example

Γ1 ` P1 Γ2 ` P1 ↔ P2

Γ1 ∪ Γ2 ` P2
mp↔

in Isabelle: P1 =⇒ P1 ↔ P2 =⇒ P2

Isabelle proof tools

(3 rules)

(9 rules)

(7 rules)

21

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Reconstruction Methods

Direct representation or basic inference rule:

Examples

` true
true-prop

P ` P
asserted

Theorem or inference rule, and resolution:

Example

Γ1 ` P1 Γ2 ` P1 ↔ P2

Γ1 ∪ Γ2 ` P2
mp↔

in Isabelle: P1 =⇒ P1 ↔ P2 =⇒ P2

Isabelle proof tools

(3 rules)

(9 rules)

(7 rules)

21

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Reconstruction Methods

Direct representation or basic inference rule:

Examples

` true
true-prop

P ` P
asserted

Theorem or inference rule, and resolution:

Example

Γ1 ` P1 Γ2 ` P1 ↔ P2

Γ1 ∪ Γ2 ` P2
mp↔

in Isabelle: P1 =⇒ P1 ↔ P2 =⇒ P2

Isabelle proof tools

(3 rules)

(9 rules)

(7 rules)

21

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Reconstruction Methods: The Remaining 9 Rules

Special treatment due to:

no available proof tools

optimizations for central proof rules

Optimizations:

meta-equality instead of HOL equality

cheap inference rules of Isabelle kernel

memoize intermediate steps

reduce number of resolution steps, prepare suitable theorems

22

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Unit Resolution

Example

P1 ∨ ¬P2 ∨ ¬P3 P2

P1 ∨ ¬P3

Idea: combine resolution with rewriting

Example with rewriting

P1 ∨ (¬P2 ∨ ¬P3)

P2

P1 ∨ (¬P2 ∨ ¬P3) ≡ P1 ∨ ¬P3

P1 ∨ ¬P3

23

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Unit Resolution

Example

P1 ∨ (¬P2 ∨ ¬P3) P2

P1 ∨ ¬P3

Idea: combine resolution with rewriting

Example with rewriting

P1 ∨ (¬P2 ∨ ¬P3)

P2

P1 ∨ (¬P2 ∨ ¬P3) ≡ P1 ∨ ¬P3

P1 ∨ ¬P3

23

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Unit Resolution

Example

P1 ∨ (¬P2 ∨ ¬P3) P2

P1 ∨ ¬P3

Idea: combine resolution with rewriting

Example with rewriting

P1 ∨ (¬P2 ∨ ¬P3)

P2

P1 ∨ (¬P2 ∨ ¬P3) ≡ P1 ∨ ¬P3

P1 ∨ ¬P3

23

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Unit Resolution

P1 ≡ P1

P2

¬P2 ∨ ¬P3 ≡ ¬P3

E1

¬P3 ≡ ¬P3

¬P2 ∨ ¬P3 ≡ ¬P3

P1 ∨ ¬P2 ∨ ¬P3 ≡ P1 ∨ ¬P3

E1 :
P2 Q1 =⇒ ¬Q1 ∨ Q2 ≡ Q2

¬P2 ∨ Q2 ≡ Q2

24

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Unit Resolution

P1 ≡ P1

P2

¬P2 ∨ ¬P3 ≡ ¬P3

E1

¬P3 ≡ ¬P3

¬P2 ∨ ¬P3 ≡ ¬P3

P1 ∨ ¬P2 ∨ ¬P3 ≡ P1 ∨ ¬P3

E1 :
P2 Q1 =⇒ ¬Q1 ∨ Q2 ≡ Q2

¬P2 ∨ Q2 ≡ Q2

24

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Unit Resolution

P1 ≡ P1

P2

¬P2 ∨ ¬P3 ≡ ¬P3

E1

¬P3 ≡ ¬P3

¬P2 ∨ ¬P3 ≡ ¬P3

P1 ∨ ¬P2 ∨ ¬P3 ≡ P1 ∨ ¬P3

E1 :
P2 Q1 =⇒ ¬Q1 ∨ Q2 ≡ Q2

¬P2 ∨ Q2 ≡ Q2

24

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Unit Resolution

P1 ≡ P1

P2

¬P2 ∨ ¬P3 ≡ ¬P3

E1 ¬P3 ≡ ¬P3

¬P2 ∨ ¬P3 ≡ ¬P3

P1 ∨ ¬P2 ∨ ¬P3 ≡ P1 ∨ ¬P3

E1 :
P2 Q1 =⇒ ¬Q1 ∨ Q2 ≡ Q2

¬P2 ∨ Q2 ≡ Q2

24

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Unit Resolution

P1 ≡ P1

P2

¬P2 ∨ ¬P3 ≡ ¬P3
E1

¬P3 ≡ ¬P3

¬P2 ∨ ¬P3 ≡ ¬P3

P1 ∨ ¬P2 ∨ ¬P3 ≡ P1 ∨ ¬P3

E1 :
P2 Q1 =⇒ ¬Q1 ∨ Q2 ≡ Q2

¬P2 ∨ Q2 ≡ Q2

24

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Unit Resolution

P1 ≡ P1

P2

¬P2 ∨ ¬P3 ≡ ¬P3
E1 ¬P3 ≡ ¬P3

¬P2 ∨ ¬P3 ≡ ¬P3

P1 ∨ ¬P2 ∨ ¬P3 ≡ P1 ∨ ¬P3

E1 :
P2 Q1 =⇒ ¬Q1 ∨ Q2 ≡ Q2

¬P2 ∨ Q2 ≡ Q2

24

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Congruence

Natural choice: use Isabelle’s simplifier

But: custom-made procedure provides much better performance

Idea: combine reflexivity and congruence of basic inference rules

Example

f ≡ f a ≡ b

f a ≡ f b c ≡ c

f a c ≡ f b c d ≡ e

f a c d ≡ f b c e

25

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Memoization for Conjunction Elimination

Example

P1 ∧ P2 ∧ P3

P2

Similar: conclude P1 or P3

Idea:

1 explode P1 ∧ P2 ∧ P3 once into literals

2 memoize literals

3 pick required literal on demand

Dually for negated disjunction elimination

26

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Skolemization

Example

` (∃x .P x y) ∼ P (f y) y

With Hilbert choice operator ε

f ≡ (λy . εx .P x y) ` (∃x .P x y)↔ P (f y) y

At the end of reconstruction:

Γ, f ≡ (λy . εx .P x y) ` false

Γ ` f ≡ (λy . εx .P x y) =⇒ false

Γ ` (λy . εx .P x y) ≡ (λy . εx .P x y) =⇒ false

Γ ` false

27

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Skolemization

Example

` (∃x .P x y) ∼ P (f y) y

With Hilbert choice operator ε

f ≡ (λy . εx .P x y) ` (∃x .P x y)↔ P (f y) y

At the end of reconstruction:

Γ, f ≡ (λy . εx .P x y) ` false

Γ ` f ≡ (λy . εx .P x y) =⇒ false

Γ ` (λy . εx .P x y) ≡ (λy . εx .P x y) =⇒ false

Γ ` false

27

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Skolemization

Example

` (∃x .P x y) ∼ P (f y) y

With Hilbert choice operator ε

f ≡ (λy . εx .P x y) ` (∃x .P x y)↔ P (f y) y

At the end of reconstruction:

Γ, f ≡ (λy . εx .P x y) ` false

Γ ` f ≡ (λy . εx .P x y) =⇒ false

Γ ` (λy . εx .P x y) ≡ (λy . εx .P x y) =⇒ false

Γ ` false

27

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Skolemization

Example

` (∃x .P x y) ∼ P (f y) y

With Hilbert choice operator ε

f ≡ (λy . εx .P x y) ` (∃x .P x y)↔ P (f y) y

At the end of reconstruction:

Γ, f ≡ (λy . εx .P x y) ` false

Γ ` f ≡ (λy . εx .P x y) =⇒ false

Γ ` (λy . εx .P x y) ≡ (λy . εx .P x y) =⇒ false

Γ ` false

27

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Skolemization

Example

` (∃x .P x y) ∼ P (f y) y

With Hilbert choice operator ε

f ≡ (λy . εx .P x y) ` (∃x .P x y)↔ P (f y) y

At the end of reconstruction:

Γ, f ≡ (λy . εx .P x y) ` false

Γ ` f ≡ (λy . εx .P x y) =⇒ false

Γ ` (λy . εx .P x y) ≡ (λy . εx .P x y) =⇒ false

Γ ` false

27

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Skolemization

Example

` (∃x .P x y) ∼ P (f y) y

With Hilbert choice operator ε

f ≡ (λy . εx .P x y) ` (∃x .P x y)↔ P (f y) y

At the end of reconstruction:

Γ, f ≡ (λy . εx .P x y) ` false

Γ ` f ≡ (λy . εx .P x y) =⇒ false

Γ ` (λy . εx .P x y) ≡ (λy . εx .P x y) =⇒ false

Γ ` false

27

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Rewrite

“The head function symbol of the left-hand side is interpreted.”

Examples

P1 ∧ P2 ∧ true = P2 ∧ P1 (x < y) = (y + (−1 ∗ x) > 0)

Several possible simplification steps:

ACI rewriting of ∧ and ∨
AC rewriting of non-idempotent functions (e.g. +)

arithmetic: polynomial normal-form

array: application of access/update-rules

quantifier elimination: (∃x . 1 ≤ x ∧ x < y) = (1 < y)

28

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Rewrite

Approach 1: try

1 identified simplication rules

2 custom-made ACI rewriting for ∧ and ∨
3 simplifier (arrays) and arithmetic decision procedures

Approach 2:

choose the appropriate method

based on the head symbol of the left-hand side

Overall difference negligible:

Isabelle’s arithmetic DPs take much longer

29

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Evaluation

Recurrence relation xi+2 = |xi+1| − xi has period 9:

with Isabelle’s arithmetic: 4 minutes

with Z3: 15 seconds

SMT-LIB benchmarks:

industrial problems: huge formulas

Z3 proofs: around 100KB, up to several MB

reconstruction: around 20 times slower than proof finding

30

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Some Quirks in Z3’s Proof Generation

` P ∧ (∀x : int. x > 0) ↔ false ∧ P
rewrite

Γ1 ` P1 ∨ P2 ∨ P1 Γ2 ` ¬P2

Γ1 ∪ Γ2 ` P1
unit

Γ1 ` s = t Γ2 ` u = t

Γ1 ∪ Γ2 ` s = u
trans

f x = 1 + x + g x
rewrite∗

31

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Some Quirks in Z3’s Proof Generation

` P ∧ (∀x : int. x > 0) ↔ false ∧ P
rewrite

Γ1 ` P1 ∨ P2 ∨ P1 Γ2 ` ¬P2

Γ1 ∪ Γ2 ` P1
unit

Γ1 ` s = t Γ2 ` u = t

Γ1 ∪ Γ2 ` s = u
trans

f x = 1 + x + g x
rewrite∗

31

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Some Quirks in Z3’s Proof Generation

` P ∧ (∀x : int. x > 0) ↔ false ∧ P
rewrite

Γ1 ` P1 ∨ P2 ∨ P1 Γ2 ` ¬P2

Γ1 ∪ Γ2 ` P1
unit

Γ1 ` s = t Γ2 ` u = t

Γ1 ∪ Γ2 ` s = u
trans

f x = 1 + x + g x
rewrite∗

31

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Some Quirks in Z3’s Proof Generation

` P ∧ (∀x : int. x > 0) ↔ false ∧ P
rewrite

Γ1 ` P1 ∨ P2 ∨ P1 Γ2 ` ¬P2

Γ1 ∪ Γ2 ` P1
unit

Γ1 ` s = t Γ2 ` u = t

Γ1 ∪ Γ2 ` s = u
trans

f x = 1 + x + g x
rewrite∗

31

Outline Introduction From Isabelle/HOL to SMT and back again Conclusion

Conclusion

Generic connection of SMT solvers with Isabelle/HOL:

can solve many essentially first-order formulas

can cope (to some extent) with polymorphism,
λ-expressions, and recursive functions

Proof reconstruction for Z3:

certifying connection of Z3 with Isabelle/HOL

several optimizations

helped to improve Z3 proof generation

32

	Outline
	Introduction
	Isabelle/HOL
	SMT
	Isabelle/HOL and SMT

	From Isabelle/HOL to SMT ...
	Supported SMT Solvers
	Preprocessing

	... and back again
	Z3 Proofs
	Proof Reconstruction for Z3
	Evaluation

	Conclusion

