Proof Reconstruction for Z3 in Isabelle/HOL

Sascha Böhme

Technische Universität München

3. August 2009

SMT as "black-box" technology

SMT as "black-box" technology

Additional information:

- satisfiability: model
- unsatisfiability: proof

► SMT as "black-box" technology

Additional information:

- satisfiability: model
- unsatisfiability: proof

Increased confidence:

checkable certificates

SMT as "black-box" technology

Additional information:

- satisfiability: model
- unsatisfiability: proof

Increased confidence:

checkable certificates

Our aim:

- certify proofs of Z3
- with Isabelle/HOL

A Quick Glance at Isabelle/HOL

LCF kernel:

- abstract type: theorems
- operations: basic inference rules
- ► small

A Quick Glance at Isabelle/HOL

A Quick Glance at Isabelle/HOL

Proof tools:

- term rewriting (simplifier)
- tableaux prover (blast)
- decision procedures: linear arithmetic, quantifier elimination

Higher-order logic (HOL)

LCF kernel:

- abstract type: theorems
- operations: basic inference rules
- ► small

Z3 Terms

Language: many-sorted first-order logic

Terms: t, s

- variables: x, y
- applications: f t₁...t_n
 - \blacktriangleright logical connectives: true, false, ¬, ^, V, \rightarrow , \leftrightarrow , \sim
- ▶ quantifiers: ∀, ∃
- terms of sort bool (formulas): P

Z3 Terms

Language: many-sorted first-order logic

Terms: t, s

- variables: x, y
- applications: f t₁...t_n
 - ▶ logical connectives: *true*, *false*, \neg , \land , \lor , \rightarrow , \leftrightarrow , \sim
- ▶ quantifiers: ∀, ∃
- terms of sort bool (formulas): P

Equisatisfiability:

 $(\neg x \lor false) \sim (\neg y) \equiv (\exists x. \neg x \lor false) \leftrightarrow (\exists y. \neg y)$

Z3 Terms

Language: many-sorted first-order logic

Terms: t, s

- variables: x, y
- applications: f t₁...t_n
 - ▶ logical connectives: *true*, *false*, ¬, ∧, ∨, →, ↔, ~
- ▶ quantifiers: ∀, ∃
- terms of sort bool (formulas): P

Equisatisfiability:

 $(\neg x \lor false) \sim (\neg y) \equiv (\exists x. \neg x \lor false) \leftrightarrow (\exists y. \neg y)$

Natural mapping into higher-order logics (Isabelle/HOL)

 equisatisfiability: representable as equivalence with one exception: Skolemization

Z3 Proofs

Natural deduction style:

$$\frac{\Gamma_1 \vdash P_1 \quad \Gamma_2 \vdash P_1 \leftrightarrow P_2}{\Gamma_1 \cup \Gamma_2 \vdash P_2} \mathbf{mp}_{\leftrightarrow}$$

Z3 Proofs

Natural deduction style:

$$\frac{\Gamma_1 \vdash P_1 \quad \Gamma_2 \vdash P_1 \leftrightarrow P_2}{\Gamma_1 \cup \Gamma_2 \vdash P_2} \mathbf{mp}_{\leftrightarrow}$$

Proof trees:

Z3 Proofs

Natural deduction style:

$$\frac{\Gamma_1 \vdash P_1 \quad \Gamma_2 \vdash P_1 \leftrightarrow P_2}{\Gamma_1 \cup \Gamma_2 \vdash P_2} \mathbf{mp}_{\leftrightarrow}$$

Proof trees:

28 proof rules:

- core logic: asserted, unit, ...
- equality: refl, trans, ...
- quantifiers: quant-inst, elim-unused, ...
- theories: rewrite, th-lemma

- bottom-up
- one method for every rule

- bottom-up
- one method for every rule

- bottom-up
- one method for every rule

- bottom-up
- one method for every rule
- all inferences certified by LCF kernel

- bottom-up
- one method for every rule
- all inferences certified by LCF kernel
- additional checks

- bottom-up
- one method for every rule
- all inferences certified by LCF kernel
- additional checks (for debugging)

basic inference rules of Isabelle

(2 rules)

Isabelle theorem and resolution

$$\frac{\Gamma_1 \vdash P_1 \qquad \Gamma_2 \vdash P_1 \leftrightarrow P_2}{\Gamma_1 \cup \Gamma_2 \vdash P_2} \mathbf{mp}_{\leftrightarrow}$$

$$P_1 \Longrightarrow P_1 \leftrightarrow P_2 \Longrightarrow P_2$$

(2 rules) (8 rules)

- basic inference rules of Isabelle (2 rules)
 Isabelle theorem and resolution (8 rules) $\frac{\Gamma_1 \vdash P_1 \quad \Gamma_2 \vdash P_1 \leftrightarrow P_2}{\Gamma_1 \cup \Gamma_2 \vdash P_2} \mathbf{mp}_{\leftrightarrow}$ $P_1 \Longrightarrow P_1 \leftrightarrow P_2 \Longrightarrow P_2$ Isabelle proof tools (simplifier, blast) (9 rules)
 specialized treatment (9 rules)
 - in some cases: optimizations

Congruence

$$\frac{\Gamma_1 \vdash t_1 = s_1 \quad \dots \quad \Gamma_n \vdash t_n = s_n}{\bigcup_{i \le n} \Gamma_i \vdash f \ t_1 \dots t_n = f \ s_1 \dots s_n}$$
mono

In principle: provable by simplifier (term rewriting)

But: one of the central rules!

optimization is worthwhile

Thus: combination of

• congruence:
$$f = g \Longrightarrow x = y \Longrightarrow f x = g y$$

Example:

 \vdash ($\exists x. P \times y$) ~ P (f y) y

Example:

$$\vdash (\exists x. P x y) \sim P (f y) y$$

With Hilbert choice operator ε :

$$f = (\lambda y. \varepsilon x. P \times y) \vdash (\exists x. P \times y) \leftrightarrow P (f y) y$$

Example:

$$\vdash (\exists x. P x y) \sim P (f y) y$$

With Hilbert choice operator ε :

$$f = (\lambda y. \varepsilon x. P \times y) \vdash (\exists x. P \times y) \leftrightarrow P (f y) y$$

$$\Gamma, f = (\lambda y. \varepsilon x. P \times y) \vdash false$$

Example:

$$\vdash (\exists x. P x y) \sim P (f y) y$$

With Hilbert choice operator ε :

$$f = (\lambda y. \varepsilon x. P \times y) \vdash (\exists x. P \times y) \leftrightarrow P (f y) y$$

$$\Gamma, f = (\lambda y. \varepsilon x. P \times y) \vdash false$$
$$\Gamma \vdash f = (\lambda y. \varepsilon x. P \times y) \rightarrow false$$

Example:

$$\vdash (\exists x. P x y) \sim P (f y) y$$

With Hilbert choice operator ε :

$$f = (\lambda y. \varepsilon x. P \times y) \vdash (\exists x. P \times y) \leftrightarrow P (f y) y$$

$$\frac{\Gamma, f = (\lambda y. \varepsilon x. P \times y) \vdash \text{ false}}{\Gamma \vdash f = (\lambda y. \varepsilon x. P \times y) \rightarrow \text{ false}}$$
$$\frac{\Gamma \vdash (\lambda y. \varepsilon x. P \times y) = (\lambda y. \varepsilon x. P \times y) \rightarrow \text{ false}}{\Gamma \vdash (\lambda y. \varepsilon x. P \times y) = (\lambda y. \varepsilon x. P \times y) \rightarrow \text{ false}}$$

Example:

$$\vdash (\exists x. P \times y) \sim P (f y) y$$

With Hilbert choice operator ε :

$$f = (\lambda y. \varepsilon x. P \times y) \vdash (\exists x. P \times y) \leftrightarrow P (f y) y$$

$$\frac{\Gamma, f = (\lambda y. \varepsilon x. P \times y) \vdash \text{ false}}{\Gamma \vdash f = (\lambda y. \varepsilon x. P \times y) \rightarrow \text{ false}}$$

$$\frac{\Gamma \vdash (\lambda y. \varepsilon x. P \times y) = (\lambda y. \varepsilon x. P \times y) \rightarrow \text{ false}}{\Gamma \vdash \text{ false}}$$

Theories

Rewriting (rewrite):

$$\vdash f t_1 \ldots t_n = s$$

- ▶ in general: apply rules of *f*
- simplifier, linear arithmetic, specialized procedures

Theories

Rewriting (rewrite):

$$\vdash f t_1 \ldots t_n = s$$

- in general: apply rules of f
- simplifier, linear arithmetic, specialized procedures

Theory reasoning (th-lemma):

$$\frac{\Gamma_1 \vdash P_1 \quad \dots \quad \Gamma_n \vdash P_n}{\bigcup_{i \leq n} \Gamma_i \vdash \text{ false}}$$

- Inear arithmetics: Fourier-Motzkin elimination
- arrays: simplifier

Experimental Results

- ▶ 5 SMT-LIB logics
- 100 unsatisifiably benchmarks (randomly selected)
- ▶ timeout: Z3: 2 minutes, Isabelle/HOL: 10 minutes

Logic	Solved	Reconstruction			Factor
	by Z3	Success	Failure	Timeout	
QF_UF	96	33	27	36	6.5
QF_UFLIA	99	93	0	6	29.6
QF_UFLRA	100	43	0	57	558.3
AUFLIA	100	50	31	19	81.3
AUFLIRA	100	81	6	13	24.3

Bad performance:

- only few optimizations implemented
- huge formulas of benchmarks

Incomplete documentation of rewrite:

The head function symbol of the left-hand side is interpreted.

 Incomplete documentation of rewrite: The head function symbol of the left-hand side is interpreted. But:

 $\overline{\vdash P \land (\forall x : int. \ x > 0)} \ \leftrightarrow \ false \land P \ rewrite$

 Incomplete documentation of rewrite: The head function symbol of the left-hand side is interpreted. But:

$$\vdash P \land (\forall x : int. x > 0) \leftrightarrow false \land P$$
 rewrite

$$\overline{\vdash (P_1 \land P_2) \leftrightarrow \neg (\neg P_1 \lor \neg P_2)}$$
 rewrite

 Incomplete documentation of rewrite: The head function symbol of the left-hand side is interpreted. But:

$$\overline{\vdash P \land (\forall x : int. \ x > 0)} \leftrightarrow false \land P$$
 rewrite

$$+ (P_1 \land P_2) \leftrightarrow \neg (\neg P_1 \lor \neg P_2)$$
 rewrite

Unit resolution:

$$\frac{\Gamma_1 \vdash P_1 \lor P_2 \lor P_1 \qquad \Gamma_2 \vdash \neg P_2}{\Gamma_1 \cup \Gamma_2 \vdash P_1} \text{ unit }$$

 Incomplete documentation of rewrite: The head function symbol of the left-hand side is interpreted. But:

$$- \vdash P \land (\forall x : int. \ x > 0) \leftrightarrow false \land P$$
 rewrite

$$\overline{\vdash (P_1 \land P_2) \leftrightarrow \neg (\neg P_1 \lor \neg P_2)} \text{ rewrite}$$

Unit resolution:

$$\frac{\Gamma_1 \vdash P_1 \lor P_2 \lor P_1 \quad \Gamma_2 \vdash \neg P_2}{\Gamma_1 \cup \Gamma_2 \vdash P_1} \text{ unit }$$

Transitivity:

$$\frac{\Gamma_1 \vdash s = t \qquad \Gamma_2 \vdash u = t}{\Gamma_1 \cup \Gamma_2 \vdash s = u} \text{ trans}$$

Conclusion

Proof reconstruction for Z3:

- ▶ in Isabelle/HOL: certification by LCF kernel
- challenges: equisatisfiability, huge formulas
- helped to debug Z3 proof generation

Future work:

- improve performance
- integrate into Isabelle/HOL
- consider further theories