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Our aim:
» certify proofs of Z3
> with Isabelle/HOL
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A Quick Glance at Isabelle/HOL

Proof tools:

LCF

!

Theorems

> term rewriting
(simplifier)
» tableaux prover (blast)

» decision procedures:
linear arithmetic,
quantifier elimination

Higher-order logic (HOL)

LCF kernel:
» abstract type: theorems
» operations: basic inference rules

» small
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Language: many-sorted first-order logic

Terms: t, s

» variables: x, y
» applications: f t;...t,
> logical connectives: true, false, =, A\, V, —, <, ~

» quantifiers: V, 3

» terms of sort bool (formulas): P
Equisatisfiability:
(mx V false) ~ (ny) = (Ix.—xV false) — (Jy.-y)

Natural mapping into higher-order logics (Isabelle/HOL)

» equisatisfiability: representable as equivalence with one
exception: Skolemization
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Natural deduction style:

M+ P [ P~ Py
MMul, P

mp.,

Proof trees:

— asserted rewrite
—true = —true F —true < false

—true = false P
28 proof rules:
» core logic: asserted, unit, ...
> equality: refl, trans, ...
» quantifiers: quant-inst, elim-unused, ...

» theories: rewrite, th-lemma
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Proof Reconstruction

—  asserted
—true &+ —true F —true < false

rewrite

—true + false

» bottom-up
» one method for every rule
» all inferences certified by LCF kernel

» additional checks (for debugging)

mp.,
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Reconstruction Methods

» basic inference rules of Isabelle
» Isabelle theorem and resolution
M rFP [ - P+ P>
mp._,
MMul, + P
P1 — P1 — P2 —— P2

> lIsabelle proof tools (simplifier, blast)
» specialized treatment

> in some cases: optimizations

(2 rules)
(8 rules)

(9 rules)
(9 rules)



Congruence

MMFt=s5 I, Ft,=s,
U,’gnr,' Ffth...th="Fs1...s,

mono

In principle: provable by simplifier (term rewriting)

But: one of the central rules!

» optimization is worthwhile

Thus: combination of
» congruence: f=g=—=x=y=—=1Ffx=gy

> reflexivity: t =t
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Skolemization

Example:
F(@x.Pxy)~P(fy)y

With Hilbert choice operator ¢:

f=My.ex.Pxy)F 3x.Pxy)—=P(fy)y

At the end of reconstruction:

Mf=(M\y.ex.Pxy)F false

e f=(\y.ex.P x y) — false

FE (A\y.ex.Pxy)=(\y.ex. P x y) — false

I+ false
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Theories

Rewriting (rewrite):

Fft...th=s

» in general: apply rules of f
» simplifier, linear arithmetic, specialized procedures
Theory reasoning (th-lemma):
MhEP M F P,
H \/,‘e/ P,' U,‘Sn F,- F false

» linear arithmetics: Fourier-Motzkin elimination

» arrays: simplifier
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Experimental Results

» 5 SMT-LIB logics

» 100 unsatisifiably benchmarks (randomly selected)
> timeout: Z3: 2 minutes, Isabelle/HOL: 10 minutes

Logic Solved Reconstruction Factor
by Z3 | Success | Failure | Timeout

QF_UF 96 33 27 36 6.5

QF_UFLIA 99 93 0 6 29.6

QF_UFLRA 100 43 0 57 | 558.3

AUFLIA 100 50 31 19 81.3

AUFLIRA 100 81 6 13 243

Bad performance:
» only few optimizations implemented

» huge formulas of benchmarks
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Proof Reconstruction Failures

» Incomplete documentation of rewrite:
The head function symbol of the left-hand side is interpreted.
But:

rewrite

F PA(Vx:int.x >0) < false A P

rewrite

F(PLAPp) < —=(=P1V—Ps)

» Unit resolution:
M FPLVPVP I =P
MUl - P

unit

» Transitivity:
M Fs=t b u=t
MUl Fs=u

trans
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Conclusion

Proof reconstruction for Z3:
» in Isabelle/HOL: certification by LCF kernel
» challenges: equisatisfiability, huge formulas

» helped to debug Z3 proof generation

Future work:
» improve performance
> integrate into Isabelle/HOL

» consider further theories
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