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SMT
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proof

User perspective:

I SMT as “black-box” technology

Additional information:

I satisfiability: model

I unsatisfiability: proof

Increased confidence:

I checkable certificates

Our aim:

I certify proofs of Z3

I with Isabelle/HOL
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A Quick Glance at Isabelle/HOL

Higher-order logic (HOL)

Proof tools:

I term rewriting
(simplifier)

I tableaux prover (blast)

I decision procedures:
linear arithmetic,
quantifier elimination

LCF

Theorems

LCF kernel:

I abstract type: theorems

I operations: basic inference rules

I small
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Z3 Terms

Language: many-sorted first-order logic

Terms: t, s

I variables: x , y
I applications: f t1 . . . tn

I logical connectives: true, false, ¬, ∧, ∨, →, ↔, ∼
I quantifiers: ∀, ∃
I terms of sort bool (formulas): P

Equisatisfiability:

(¬x ∨ false) ∼ (¬y) ≡ (∃x .¬x ∨ false)↔ (∃y .¬y)

Natural mapping into higher-order logics (Isabelle/HOL)

I equisatisfiability: representable as equivalence with one
exception: Skolemization
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Z3 Proofs

Natural deduction style:

Γ1 ` P1 Γ2 ` P1 ↔ P2

Γ1 ∪ Γ2 ` P2
mp↔

Proof trees:

¬true ` ¬true
asserted

` ¬true ↔ false
rewrite

¬true ` false
mp↔

28 proof rules:

I core logic: asserted, unit, . . .

I equality: refl, trans, . . .

I quantifiers: quant-inst, elim-unused, . . .

I theories: rewrite, th-lemma
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Proof Reconstruction

asserted rewrite

mp↔
¬true ` ¬true ` ¬true ↔ false

¬true ` false

I bottom-up

I one method for every rule

I all inferences certified by LCF kernel

I additional checks

(for debugging)
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Reconstruction Methods

I basic inference rules of Isabelle

I Isabelle theorem and resolution

Γ1 ` P1 Γ2 ` P1 ↔ P2

Γ1 ∪ Γ2 ` P2
mp↔

P1 =⇒ P1 ↔ P2 =⇒ P2

I Isabelle proof tools (simplifier, blast)

I specialized treatment
I in some cases: optimizations

(2 rules)

(8 rules)

(9 rules)

(9 rules)
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Congruence

Γ1 ` t1 = s1 . . . Γn ` tn = sn⋃
i≤n Γi ` f t1 . . . tn = f s1 . . . sn

mono

In principle: provable by simplifier (term rewriting)

But: one of the central rules!

I optimization is worthwhile

Thus: combination of

I congruence: f = g =⇒ x = y =⇒ f x = g y

I reflexivity: t = t

8



Skolemization

Example:
` (∃x .P x y) ∼ P (f y) y

With Hilbert choice operator ε:

f = (λy . εx .P x y) ` (∃x .P x y)↔ P (f y) y

At the end of reconstruction:

Γ, f = (λy . εx .P x y) ` false

Γ ` f = (λy . εx .P x y)→ false

Γ ` (λy . εx .P x y) = (λy . εx .P x y)→ false

Γ ` false
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Theories

Rewriting (rewrite):

` f t1 . . . tn = s

I in general: apply rules of f

I simplifier, linear arithmetic, specialized procedures

Theory reasoning (th-lemma):

`
∨

i∈I Pi

Γ1 ` P1 . . . Γn ` Pn⋃
i≤n Γi ` false

I linear arithmetics: Fourier-Motzkin elimination

I arrays: simplifier
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Experimental Results

I 5 SMT-LIB logics

I 100 unsatisifiably benchmarks (randomly selected)

I timeout: Z3: 2 minutes, Isabelle/HOL: 10 minutes

Logic Solved Reconstruction Factor
by Z3 Success Failure Timeout

QF UF 96 33 27 36 6.5
QF UFLIA 99 93 0 6 29.6
QF UFLRA 100 43 0 57 558.3
AUFLIA 100 50 31 19 81.3
AUFLIRA 100 81 6 13 24.3

Bad performance:

I only few optimizations implemented

I huge formulas of benchmarks
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Proof Reconstruction Failures
I Incomplete documentation of rewrite:

The head function symbol of the left-hand side is interpreted.

But:

` P ∧ (∀x : int. x > 0) ↔ false ∧ P
rewrite

` (P1 ∧ P2) ↔ ¬(¬P1 ∨ ¬P2)
rewrite

I Unit resolution:

Γ1 ` P1 ∨ P2 ∨ P1 Γ2 ` ¬P2

Γ1 ∪ Γ2 ` P1
unit

I Transitivity:

Γ1 ` s = t Γ2 ` u = t

Γ1 ∪ Γ2 ` s = u
trans
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Conclusion

Proof reconstruction for Z3:

I in Isabelle/HOL: certification by LCF kernel

I challenges: equisatisfiability, huge formulas

I helped to debug Z3 proof generation

Future work:

I improve performance

I integrate into Isabelle/HOL

I consider further theories
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