Proof Reconstruction for Z3 in Isabelle/HOL

Sascha Böhme

Technische Universität München

3. August 2009

User perspective:

- SMT as "black-box" technology

User perspective:

- SMT as "black-box" technology

Additional information:

- satisfiability: model

User perspective:

- SMT as "black-box" technology

Additional information:

- satisfiability: model
- unsatisfiability: proof

User perspective:

- SMT as "black-box" technology

Additional information:

- satisfiability: model
- unsatisfiability: proof

Increased confidence:

- checkable certificates

User perspective:

- SMT as "black-box" technology

Additional information:

- satisfiability: model
- unsatisfiability: proof

Increased confidence:

- checkable certificates

Our aim:

- certify proofs of Z3
- with Isabelle/HOL

A Quick Glance at Isabelle/HOL

LCF kernel:

- abstract type: theorems
- operations: basic inference rules

Theorems

- small

A Quick Glance at Isabelle/HOL

A Quick Glance at Isabelle/HOL

Proof tools:

- term rewriting (simplifier)
- tableaux prover (blast)
- decision procedures: linear arithmetic, quantifier elimination

Higher-order logic (HOL)

LCF kernel:

- abstract type: theorems
- operations: basic inference rules
- small

Z3 Terms

Language: many-sorted first-order logic
Terms: t, s

- variables: x, y
- applications: $f t_{1} \ldots t_{n}$
- logical connectives: true, false, $\neg, \wedge, \vee, \rightarrow, \leftrightarrow, \sim$
- quantifiers: \forall, \exists
- terms of sort bool (formulas): P

Z3 Terms

Language: many-sorted first-order logic
Terms: t, s

- variables: x, y
- applications: $f t_{1} \ldots t_{n}$
- logical connectives: true, false, $\neg, \wedge, \vee, \rightarrow, \leftrightarrow, \sim$
- quantifiers: \forall, \exists
- terms of sort bool (formulas): P

Equisatisfiability:

$$
(\neg x \vee \text { false }) \sim(\neg y) \equiv(\exists x . \neg x \vee \text { false }) \leftrightarrow(\exists y . \neg y)
$$

Z3 Terms

Language: many-sorted first-order logic
Terms: t, s

- variables: x, y
- applications: $f t_{1} \ldots t_{n}$
- logical connectives: true, false, $\neg, \wedge, \vee, \rightarrow, \leftrightarrow, \sim$
- quantifiers: \forall, \exists
- terms of sort bool (formulas): P

Equisatisfiability:

$$
(\neg x \vee \text { false }) \sim(\neg y) \equiv(\exists x . \neg x \vee \text { false }) \leftrightarrow(\exists y . \neg y)
$$

Natural mapping into higher-order logics (Isabelle/HOL)

- equisatisfiability: representable as equivalence with one exception: Skolemization

Z3 Proofs

Natural deduction style:

$$
\frac{\Gamma_{1} \vdash P_{1} \quad \Gamma_{2} \vdash P_{1} \leftrightarrow P_{2}}{\Gamma_{1} \cup \Gamma_{2} \vdash P_{2}} \mathbf{m p}_{\leftrightarrow}
$$

Z3 Proofs

Natural deduction style:

$$
\frac{\Gamma_{1} \vdash P_{1} \quad \Gamma_{2} \vdash P_{1} \leftrightarrow P_{2}}{\Gamma_{1} \cup \Gamma_{2} \vdash P_{2}} \mathbf{m p}_{\leftrightarrow}
$$

Proof trees:

Z3 Proofs

Natural deduction style:

$$
\frac{\Gamma_{1} \vdash P_{1} \quad \Gamma_{2} \vdash P_{1} \leftrightarrow P_{2}}{\Gamma_{1} \cup \Gamma_{2} \vdash P_{2}} \mathbf{m p}_{\leftrightarrow}
$$

Proof trees:

28 proof rules:

- core logic: asserted, unit, . . .
- equality: refl, trans, ...
- quantifiers: quant-inst, elim-unused, ...
- theories: rewrite, th-lemma

Proof Reconstruction

Proof Reconstruction

- bottom-up
- one method for every rule

Proof Reconstruction

- bottom-up
- one method for every rule

Proof Reconstruction

\neg true $\vdash \neg$ true	asserted	$\vdash \neg$ true \leftrightarrow false	rewrite
	\neg true	false	

- bottom-up
- one method for every rule

Proof Reconstruction

- bottom-up
- one method for every rule
- all inferences certified by LCF kernel

Proof Reconstruction

- bottom-up
- one method for every rule
- all inferences certified by LCF kernel
- additional checks

Proof Reconstruction

- bottom-up
- one method for every rule
- all inferences certified by LCF kernel
- additional checks (for debugging)

Reconstruction Methods

Reconstruction Methods

- basic inference rules of Isabelle
(2 rules)

Reconstruction Methods

- basic inference rules of Isabelle
(2 rules)
- Isabelle theorem and resolution
(8 rules)

$$
\begin{gathered}
\frac{\Gamma_{1} \vdash P_{1} \quad \Gamma_{2} \vdash P_{1} \leftrightarrow P_{2}}{\Gamma_{1} \cup \Gamma_{2} \vdash P_{2}} \mathbf{m p}_{\leftrightarrow} \\
P_{1} \Longrightarrow P_{1} \leftrightarrow P_{2} \Longrightarrow P_{2}
\end{gathered}
$$

Reconstruction Methods

- basic inference rules of Isabelle
(2 rules)
- Isabelle theorem and resolution
(8 rules)

$$
\begin{gathered}
\frac{\Gamma_{1} \vdash P_{1} \quad \Gamma_{2} \vdash P_{1} \leftrightarrow P_{2}}{\Gamma_{1} \cup \Gamma_{2} \vdash P_{2}} \mathbf{m p}_{\leftrightarrow} \\
P_{1} \Longrightarrow P_{1} \leftrightarrow P_{2} \Longrightarrow P_{2}
\end{gathered}
$$

- Isabelle proof tools (simplifier, blast)
(9 rules)

Reconstruction Methods

- basic inference rules of Isabelle
(2 rules)
- Isabelle theorem and resolution
(8 rules)

$$
\begin{gathered}
\frac{\Gamma_{1} \vdash P_{1} \quad \Gamma_{2} \vdash P_{1} \leftrightarrow P_{2}}{\Gamma_{1} \cup \Gamma_{2} \vdash P_{2}} \mathbf{m p}_{\leftrightarrow} \\
P_{1} \Longrightarrow P_{1} \leftrightarrow P_{2} \Longrightarrow P_{2}
\end{gathered}
$$

- Isabelle proof tools (simplifier, blast)
- specialized treatment
(9 rules)
(9 rules)
- in some cases: optimizations

Congruence

$$
\frac{\Gamma_{1} \vdash t_{1}=s_{1} \quad \ldots \quad \Gamma_{n} \vdash t_{n}=s_{n}}{\bigcup_{i \leq n} \Gamma_{i} \vdash f t_{1} \ldots t_{n}=f s_{1} \ldots s_{n}} \text { mono }
$$

In principle: provable by simplifier (term rewriting)

But: one of the central rules!

- optimization is worthwhile

Thus: combination of

- congruence: $f=g \Longrightarrow x=y \Longrightarrow f x=g y$
- reflexivity: $t=t$

Skolemization

Example:

$$
\vdash(\exists x . P \times y) \sim P(f y) y
$$

Skolemization

Example:

$$
\vdash(\exists x . P \times y) \sim P(f y) y
$$

With Hilbert choice operator ε :

$$
f=(\lambda y . \varepsilon x . P \times y) \vdash(\exists x . P \times y) \leftrightarrow P(f y) y
$$

Skolemization

Example:

$$
\vdash(\exists x . P \times y) \sim P(f y) y
$$

With Hilbert choice operator ε :

$$
f=(\lambda y . \varepsilon x . P \times y) \vdash(\exists x . P \times y) \leftrightarrow P(f y) y
$$

At the end of reconstruction:

$$
\Gamma, f=(\lambda y . \varepsilon x . P \times y) \vdash \text { false }
$$

Skolemization

Example:

$$
\vdash(\exists x . P \times y) \sim P(f y) y
$$

With Hilbert choice operator ε :

$$
f=(\lambda y . \varepsilon x . P \times y) \vdash(\exists x . P \times y) \leftrightarrow P(f y) y
$$

At the end of reconstruction:

$$
\begin{gathered}
\Gamma, f=(\lambda y . \varepsilon x . P \times y) \vdash f a l s e \\
\Gamma \vdash f=(\lambda y \cdot \varepsilon x . P \times y) \rightarrow \text { false }
\end{gathered}
$$

Skolemization

Example:

$$
\vdash(\exists x . P \times y) \sim P(f y) y
$$

With Hilbert choice operator ε :

$$
f=(\lambda y . \varepsilon x . P \times y) \vdash(\exists x . P \times y) \leftrightarrow P(f y) y
$$

At the end of reconstruction:

$$
\begin{gathered}
\Gamma, f=(\lambda y . \varepsilon x . P \times y) \vdash \text { false } \\
\Gamma \vdash f=(\lambda y \cdot \varepsilon x . P \times y) \rightarrow \text { false } \\
\Gamma \vdash(\lambda y . \varepsilon x . P \times y)=(\lambda y \cdot \varepsilon x . P \times y) \rightarrow \text { false }
\end{gathered}
$$

Skolemization

Example:

$$
\vdash(\exists x . P \times y) \sim P(f y) y
$$

With Hilbert choice operator ε :

$$
f=(\lambda y . \varepsilon x . P \times y) \vdash(\exists x . P \times y) \leftrightarrow P(f y) y
$$

At the end of reconstruction:
$\Gamma, f=(\lambda y . \varepsilon x . P \times y) \vdash$ false
$\frac{\Gamma \vdash f=(\lambda y . \varepsilon x . P \times y) \rightarrow \text { false }}{\Gamma \vdash(\lambda y . \varepsilon x . P \times y)=(\lambda y . \varepsilon x . P \times y) \rightarrow \text { false }}$
$\Gamma \vdash$ false

Theories

Rewriting (rewrite):

$$
\vdash f t_{1} \ldots t_{n}=s
$$

- in general: apply rules of f
- simplifier, linear arithmetic, specialized procedures

Theories

Rewriting (rewrite):

$$
\overline{\vdash f t_{1} \ldots t_{n}=s}
$$

- in general: apply rules of f
- simplifier, linear arithmetic, specialized procedures

Theory reasoning (th-lemma):

$$
\overline{\vdash \bigvee_{i \in I} P_{i}} \quad \frac{\Gamma_{1} \vdash P_{1} \ldots \quad \Gamma_{n} \vdash P_{n}}{\bigcup_{i \leq n} \Gamma_{i} \vdash \text { false }}
$$

- linear arithmetics: Fourier-Motzkin elimination
- arrays: simplifier

Experimental Results

- 5 SMT-LIB logics
- 100 unsatisifiably benchmarks (randomly selected)
- timeout: Z3: 2 minutes, Isabelle/HOL: 10 minutes

Logic	Solved	Reconstruction			Factor
	by Z3	Success	Failure	Timeout	
QF_UF	96	33	27	36	6.5
QF_UFLIA	99	93	0	6	29.6
QF_UFLRA	100	43	0	57	558.3
AUFLIA	100	50	31	19	81.3
AUFLIRA	100	81	6	13	24.3

Bad performance:

- only few optimizations implemented
- huge formulas of benchmarks

Proof Reconstruction Failures

- Incomplete documentation of rewrite:

The head function symbol of the left-hand side is interpreted.

Proof Reconstruction Failures

- Incomplete documentation of rewrite:

The head function symbol of the left-hand side is interpreted. But:

$$
\overline{\vdash P \wedge(\forall x: \text { int } x>0) \leftrightarrow \text { false } \wedge P} \text { rewrite }
$$

Proof Reconstruction Failures

- Incomplete documentation of rewrite:

The head function symbol of the left-hand side is interpreted. But:

$$
\overline{\vdash P \wedge(\forall x: \text { int. } x>0) \leftrightarrow \text { false } \wedge P} \text { rewrite }
$$

$$
\overline{\vdash\left(P_{1} \wedge P_{2}\right) \leftrightarrow \neg\left(\neg P_{1} \vee \neg P_{2}\right)} \text { rewrite }
$$

Proof Reconstruction Failures

- Incomplete documentation of rewrite:

The head function symbol of the left-hand side is interpreted. But:

$$
\begin{aligned}
& \overline{\vdash P \wedge(\forall x: \text { int. } x>0) \leftrightarrow \text { false } \wedge P} \text { rewrite } \\
& \quad \overline{\vdash\left(P_{1} \wedge P_{2}\right) \leftrightarrow \neg\left(\neg P_{1} \vee \neg P_{2}\right)} \text { rewrite }
\end{aligned}
$$

- Unit resolution:

$$
\frac{\Gamma_{1} \vdash P_{1} \vee P_{2} \vee P_{1} \quad \Gamma_{2} \vdash \neg P_{2}}{\Gamma_{1} \cup \Gamma_{2} \vdash P_{1}} \text { unit }
$$

Proof Reconstruction Failures

- Incomplete documentation of rewrite:

The head function symbol of the left-hand side is interpreted. But:

$$
\begin{aligned}
& \overline{\vdash P \wedge(\forall x: \text { int. } x>0) \leftrightarrow \text { false } \wedge P} \text { rewrite } \\
& \quad \overline{\vdash\left(P_{1} \wedge P_{2}\right) \leftrightarrow \neg\left(\neg P_{1} \vee \neg P_{2}\right)} \text { rewrite }
\end{aligned}
$$

- Unit resolution:

$$
\frac{\Gamma_{1} \vdash P_{1} \vee P_{2} \vee P_{1} \quad \Gamma_{2} \vdash \neg P_{2}}{\Gamma_{1} \cup \Gamma_{2} \vdash P_{1}} \text { unit }
$$

- Transitivity:

$$
\frac{\Gamma_{1} \vdash s=t \quad \Gamma_{2} \vdash u=t}{\Gamma_{1} \cup \Gamma_{2} \vdash s=u} \text { trans }
$$

Conclusion

Proof reconstruction for Z3:

- in Isabelle/HOL: certification by LCF kernel
- challenges: equisatisfiability, huge formulas
- helped to debug Z3 proof generation

Future work:

- improve performance
- integrate into Isabelle/HOL
- consider further theories

