
Proof Reconstruction for Z3 in Isabelle/HOL

Sascha Böhme
Technische Universität München

boehmes@in.tum.de

Abstract

Currently, only a few Satisfiability Modulo Theories (SMT) solvers
are able to produce proof objects, although there is a strong incentive:
Proof objects can be reconstructed in a different system to the check
soundness of an SMT solver. We present proof reconstruction for the
SMT solver Z3 in Isabelle/HOL and give experimental results of its
application.

1 Introduction

Current SMT solvers are complex systems and constantly get more and
more complex due to the addition of features, new theories and new decision
procedures. Consequently, there is reason to doubt their soundness. A well-
known approach in this case is to let the solver provide, along with its
decision, a certificate (or proof term), which can be checked in a different
system. Despite this incentive, this method is not widely adopted in the
SMT community. Only recently, the SMT solver Z3 [4] has been enhanced
to generate proof terms for the case when a set of assertions is found to be
unsatisfiable [3].
So far, proofs emitted by Z3 have been used to find implementation bugs,
by checking them in a previous version of Z3. We present a more rigorous
approach of reconstructing proofs in a completely different system based on
a secure proof kernel, namely the proof assistant Isabelle/HOL [10]. That
means, we translate Z3’s proofs into a different logic — from many-sorted
first-order logic to higher-order logic (HOL) — and apply different (imple-
mentations of) decision procedures. We concentrate here on the theories of
uninterpreted functions and arrays as well as linear integer and real arith-
metic, even though Z3 also supports recursive datatypes and fixed-size bit-
vectors.
The proof format of Z3 has the advantage of being fairly small (there are
altogether 38 different proof rules), but this small set of proof rules comes at
a price: Proof reconstruction gets involved, because many proof rules require
several steps of reasoning in Isabelle/HOL. In most cases, these steps follow
a fixed scheme, but for some high-level proof rules, an elaborate proof search
is required. This makes proof reconstruction challenging.
The contribution of this work is two-fold: On the one hand, we present Z3’s
proof terms with a high level of detail, especially showing the majority of

1

its proof rules in a formal way; on the other hand, we explain details of how
we implemented proof reconstruction for Z3. We take the first point as a
prerequisite for the second one.

2 Isabelle/HOL

Isabelle is an interactive theorem prover based on the so-called LCF ap-
proach (going back to Edinburgh LCF [6]). This means that theorems are
represented by an abstract datatype, and the only means to create them are
the basic inference rules of the underlying core logic. Isabelle’s core logic is
a fragment of intuitionistic higher-order logic providing implication (written
as P1 =⇒ P2), equality, and universal quantification. On top of this generic
layer, various object logics are implemented; the one we use here is HOL [7].
Isabelle accepts a proof only if it can be expressed in terms of the basic
inference rules. As a consequence, all proof tools built for Isabelle can
essentially be reduced to using only this set of basic rules.
There is a wide range of proof tools provided with Isabelle, notably the
simplifier (for term rewriting), the classical reasoner, and Metis (a first-order
resolution-based prover). Additionally, there are linear arithmetic decision
procedures for refuting sets of inequalities and for quantifier elimination.

3 Proof Terms of Z3

3.1 Terms and Formulas

The language of Z3 is many-sorted first-order logic. A term, denoted by t
or s with optional subscripts, is either a (sorted) variable (represented by
the letter x, y, or z), an application of a (sorted) function symbol (denoted
by f) to terms, or a universal or existential quantification (where we use Q
to denote either ∀ or ∃). As usual, we consider constants and numbers as
nullary function symbols. We call f the head symbol of t, if t has the form
f t1 . . . tn. Z3 allows a quantifier to bind several variables at once; instead of
writing Qx1 . . . xn. t, we use the shorter notation Qx. t. In a similar fashion,
we abbreviate a list of terms t1 . . . tn as t.
Although we do not consider sorts and well-sorted terms in detail, we assume
that there is a set of primitive sorts including the distinguished sort bool and
that the terms under consideration have exactly one sort.
Terms of sort bool are called formulas. We use P , possibly with subscript, to
denote a formula, and >, ⊥, ¬, ∧, ∨,→, and↔ with the usual meaning. Ad-
ditionally, Z3 uses the special binary symbol ∼ to represent equisatisfiability
in proof objects: Two formulas are equisatisfiable if their existential closure
is equivalent. For example, the formula (¬x ∨ ⊥) ∼ (¬y) is equivalent to
(∃x.¬x ∨ ⊥) ↔ (∃y.¬y). We use L, possibly with subscript, to denote a
formula for which negation never creates a doubly-negated formula; such a

2

formula is called literal. Especially, if L is an already negated formula ¬P ,
then ¬L stands for the formula P .

3.2 Proof Terms

The proof terms of Z3 are designed as natural deduction style proofs. Before
describing them, we fix the following terminology. A sequent, denoted by
Γ ` P , consists of a set of formulas Γ, the hypotheses, and a single formula
P , the proposition. A list of sequents Γi1 ` Pi1 . . . Γin ` Pin for a given
index set I = {i1, . . . , in} is abbreviated as 〈i ∈ I | Γi ` Pi〉. A proof rule is
a schema

S1 . . . Sn

S

consisting of schematic sequents S1, . . . Sn, the assumptions, and a schematic
sequent S, the conclusion. A proof rule without assumptions is called an
axiom.
A derivation tree over a set of proof rules is called a proof term. The proof of
unsatisfiability of a given set of formulas (called assertions) derives ⊥ from
them. Therefore, a valid proof term is a proof term where the final sequent,
that is, the root of the derivation tree, is Γ ` ⊥ with Γ being a subset of the
assertions.
In contrast to our formal presentation, Z3 represents proof terms by giving,
for each derivation step, the name of the proof rule applied, the proofs of
the assumptions, and the proposition of the conclusion; hypotheses are only
implicit in Z3 proof terms.

3.3 Proof Rules

We consider here only a subset of 33 of the altogether 38 proof rules of Z3;
the remaining five proof rules represent coarse-grained steps compressing
one or more applications of the other (fine-grained) proof rules. Figure 1
shows a majority of Z3’s proof rules. The symbol stands for either →,
↔, or ∼; the symbol ' denotes one of the three congruence relations =, ↔,
and ∼; and by � we mean any commutative binary function (for example,
addition + or equality =). Compared to the proof rules implemented in Z3,
we slightly shortened some rule names1 and dropped the proof rule goal (as
it is syntactically and semantically equivalent to asserted).
We refrain from discussing semantics of the presented proof rules, except for
asserted and hyp. Although they are syntactically equivalent, there is a
semantic difference between them: The asserted rule may only assume one
of the assertions given to the solver for refutation. In contrast, the hyp rule
may assume any proposition, which, however, must be explicitly discharged
later on in the proof using lemma.

1See Appendix A for details.

3

∅ ` >
true

Γ ` P

Γ ` P ↔ >
iff>

Γ ` ¬P

Γ ` P ↔ ⊥
iff⊥

Γ ` P1 ↔ P2

Γ ` P1 ∼ P2

iff∼

Γ ` L1 ∧ . . . ∧ Ln

Γ ` Li

elim∧
Γ ` ¬(L1 ∨ . . . ∨ Ln)

Γ ` ¬Li

elim¬∨

{P} ` P
asserted (P is an assertion)

Γ1 ` P1 Γ2 ` P1 P2

Γ1 ∪ Γ2 ` P2

mp

{P} ` P
hyp

Γ ∪ {L1, . . . , Ln} ` ⊥
Γ \ {L1, . . . , Ln} ` ¬L1 ∨ . . . ∨ ¬Ln

lemma

Γ `
_

i∈I Li 〈i ∈ Is | Γi ` ¬Li〉

Γ ∪
[

i∈Is Γi `
_

i∈I\Is Li

unit I = {1, . . . , n}, Is ⊆ I

∅ ` t ' t
refl'

Γ1 ` t1 ' t2 Γ2 ` t2 ' t3

Γ1 ∪ Γ2 ` t1 ' t3
trans'

Γ ` t1 ' t2

Γ ` t2 ' t1
symm'

Γ ` (t1 � t2 ' s1 � s2)

Γ ` (t2 � t1 ' s2 � s1)
comm'�

〈i ∈ Is | Γi ` ti ' si〉[
i∈Is Γi ` f t1 . . . tn ' f s1 . . . sn

mono'
I = {1, . . . , n}, Is ⊆ I, and

∅ ` ti ' si for every i ∈ I \ Is

∅ ` ¬(∀x. P x) ∨ P t
inst∀

Γ ` P1 x ∼ P2 x

Γ ` (Qx. P1 x) ∼ (Qx. P2 x)
introQ

∅ ` (∀x.¬(x1 = t1) ∨ . . . ∨ ¬(xn = tn) ∨ P x) = P t
der

(xi does not

occur in ti)

∅ ` (∃x. P y x) ∼ P y [f y]
sk∃

∅ ` ¬(∀x. P y x) ∼ ¬P y [f y]
sk∀

([f y] is a list of fresh function symbols, each applied to y)

Figure 1: Z3 proof rules.

In contrast to the succinct notations of the already given proof rules, the re-
maining ones are more complex. Therefore, we just indicate their semantics
and give examples for some of them. Except where stated otherwise, these
rules are axioms.

distrib distributes conjuncts over disjunctions or disjuncts over conjunc-
tions.

def-axiom Tseitin’s axioms for (definitional) conjunctive normal form, for
example, ¬(P1 ∧ P2) ∨ P1.

nnf-pos, nnf-neg are used for the conversion of formulas into negation
normal form and may have any number of assumptions which, like the
conclusion, are equisatisfiability propositions.

def-intro, def-apply handle local definitions to avoid explosion of formula
size. def-intro locally defines a constant to be equisatisfiable with a
formula, and def-apply unfolds this definition in a given assumption.

elimQ eliminates unused quantified variables from the left-hand side of an

4

equivalence. A typical instance of this rule is (∀x.>)↔ >.
pushQ, pullQ distribute quantifiers over conjunctions and disjunctions. An

example for pushQ is (∀x. P1 x ∧ P2 x)↔ ((∀x. P1 x) ∧ (∀x. P2 x)).
rewrite expresses simplifications as an equality t1 = t2 or as an equivalence

P1 ↔ P2 where the right-hand side is obtained from the left-hand side
by application of built-in (theory-specific) laws of the head symbol of
t1 or P1, respectively. Examples are 3 + 0 = 3 and (x < y ∧ 0 ≤ z)↔
(0 ≤ z ∧ x < y).

th-lemma tags theory-specific propositions, for example a disjunction of
inequalities for the theory of linear arithmetic. Dually, this proof rule
may also occur inside proofs, that is, non-axiomatically, and then de-
duce ⊥ from an arbitrary number of assumptions.

4 Proof Reconstruction in Isabelle/HOL

We reconstruct proofs in a bottom-up manner starting from the axioms
and going towards the final sequent. Every reconstruction step, that is,
every application of a proof rule, yields an Isabelle theorem, which encodes
both the hypotheses and the proposition of a sequent; and due to the LCF
architecture, Isabelle ensures that every such deduction is sound. After every
step, we compare the inferred theorem’s proposition with the proposition
given in the proof term. Any mismatch indicates a potential bug either in
our reconstruction or in Z3’s proof terms. In the final step, we check that
the resulting theorem (corresponding to the final sequent) complies with the
above condition for a valid proof term, that is, its hypotheses are a subset
of the assertions given to the solver.
It is worth noting that our proof reconstruction for Z3 is sound, but possibly
incomplete: We guarantee that, whenever the reconstruction succeeds, the
underlying proof term is correct. However, the failure of proof reconstruction
may either mean that the given proof term is invalid or that there is a bug
in our reconstruction method. With the help of a large test bed, we hope
to eliminate the latter source of failures.

4.1 Z3 Terms and Formulas in Isabelle/HOL

There is a natural mapping of many-sorted first-order terms and formulas as
presented in Subsection 3.1 to higher-order terms of Isabelle/HOL, except for
one issue: There is no notion of equisatisfiability in Isabelle/HOL. However,
there is no need to provide a formalization for it: Careful study of Z3’s
proof rules reveals that nearly all occurrences of equisatisfiability can also
be replaced by equivalences (see, for example, iff∼, refl', or introQ in
Figure 1). To maintain soundness, we only need to interpret the proof rule
skQ in a special way (see also the paragraph on Skolemization in the next
subsection).

5

Technique Proof rules
basic inference rules asserted, hyp

single theorem true, iff>, iff⊥, iff∼, mp , refl', symm', trans',
comm'�

several theorems elim∧, elim¬∨, lemma, unit, mono', introQ

tactics inst∀, der, distrib, def-axiom, nnf-pos, nnf-neg,
elimQ, pushQ, pushQ

specialized methods def-intro, apply-def, skQ, rewrite, th-lemma

Table 1: Z3 proof rules and their reconstruction techniques.

4.2 Z3 Proof Rules in Isabelle/HOL

We use five different techniques to model Z3 proof rules in Isabelle/HOL:

1. basic inference rules of Isabelle;
2. a single theorem, which is the translation of a Z3 proof rule into Is-

abelle/HOL;
3. a composition of several theorems, controlled by the structure of the

assumptions or of the conclusion; this is essentially an iterative appli-
cation of the previous technique;

4. proof tactics of Isabelle;
5. specialized methods, if none of the other techniques applies.

Table 1 gives a condensed overview of our proof reconstruction implemen-
tation by mapping every technique to the proof rules modeled with it. Let
us now consider in more detail the second and third techniques and some of
the specialized methods.

Proof Rules as Theorems. Isabelle/HOL allows us to model simple proof
rules directly as (schematic) theorems. To illustrate this idea, let us have a
look at the proof rule mp→:

Γ1 ` P1 Γ2 ` P1 → P2

Γ1 ∪ Γ2 ` P2
mp→

Mapping this proof rule to Isabelle/HOL, we get the following theorem:

?P1 =⇒ ?P1 −→ ?P2 =⇒ ?P2

With concrete theorems to instantiate ?P1 and ?P1 −→?P2 with, we can
deduce the theorem corresponding to the conclusion ?P2.
This technique can only be applied to proof rules with a fixed format. Proof
rules with a varying number of assumptions, for example, cannot be directly
expressed as theorems in Isabelle/HOL. Still, in some cases, a variant of this

6

idea can be applied. For example, consider the proof rule elim∧ and the
following two theorems:

?P ∧ ?Q =⇒ ?P ?P ∧ ?Q =⇒ ?Q

Given a concrete conjunction as assumption and one of its conjuncts as
conclusion of elim∧, iterative application of the above rules, guided by the
structure of the conjunction, yields the conjunct.

Skolemization. Isabelle/HOL provides an axiomatization of the Hilbert
choice operator ε: If ∃x. P x holds, then the term εx. P x is equivalent to
one witness x such that P x holds. With this operator, it is straightforward
to model the skQ proof rules. Consider, for example, the sequent

∅ ` (∃x. y < x) ∼ (y < f y)

where f is a Skolem function. With the choice operator, we can write this
sequent equivalently as follows:

∅ ` (∃x. y < x) ∼ (y < (λy. εx. y < x) y)

This näıve approach of replacing Skolem functions by choice operators has
one drawback: The size of propositions grows exponentially. Therefore,
we treat Skolem functions as locally defined functions with hypothetical
definitions:

{f = (λy. εx. y < x)} ` (∃x. y < x) ∼ (y < f y)

Note that this way, the proposition is identical to the original proposition
above. As a consequence, our special treatment of the skQ rules requires no
changes to other proof rules.
The additionally introduced hypotheses are discharged at the end of the
reconstruction. For example, from the final sequent

{f = (λy. εx. y < x), . . .} ` ⊥

we infer a theorem with proposition f = (λy. εx. y < x) =⇒ ⊥, instantiate
f (which does not occur elsewhere) with the right-hand side of its definition
and apply the following theorem:

(?t = ?t =⇒ False) =⇒ False

Our treatment of the skQ rule has the benefit that, due to the additional
hypotheses, we can soundly replace equisatisfiability by logical equivalence.

Theory Lemmas. Z3 handles all theory-specific properties uniformly by
the proof rule th-lemma. Since there is no direct hint as to which theory
the proposition under consideration belongs to, we need to sequentially try
different decision procedures: a linear arithmetic solver and, for propositions
of the array theory, the simplifier instrumented with the usual axiomatiza-
tion for extensional arrays.

7

Logic Solved Reconstructed Failed Factor
Time # Time #T #Z #R

QF UF 96 2.992 s 33 19.52 s 36 27 0 6.5
QF UFLIA 99 0.534 s 93 15.80 s 6 0 0 29.6
QF UFLRA 100 0.189 s 43 105.51 s 57 0 0 558.3
AUFLIA 100 0.180 s 50 14.64 s 19 0 31 81.3
AUFLIRA 100 0.051 s 81 1.24 s 13 0 6 24.3

Table 2: Results of proof reconstruction for selected SMT-LIB logics.

Rewrite Rules. Similar to theory lemmas, the proof rule rewrite is generic;
that is, concrete propositions may stem from any of the supported theories
or from the propositional logic core. There is no explicit hint of the source
of such propositions (except by analyzing the head function symbol of the
proposition’s left-hand side). Consequently, we need to (sequentially) try
different means to reconstruct applications of this proof rule. Our set of
reconstruction tools consists of a list of (schematic) theorems (see second
technique above) expressing basic rewrite steps, a special tactic exploiting
associativity and commutativity of conjunction and disjunction, the simpli-
fier, and a linear arithmetic decision procedure.

5 Experimental Results

We tested the presented proof reconstruction for Z3 on the database of
SMT-LIB benchmarks [1]. From each of the logics QF UF, QF UFLIA,
QF LRA, AUFLIA, and AUFLIRA, we randomly chose 100 unsatisfiable
benchmarks and applied Z3 with a timeout of 2 minutes to them. To all
proofs found by Z3, we applied reconstruction with a timeout of 5 minutes.
Table 2 summarizes our experimental results. For every SMT-LIB logic,
the table gives the number of benchmarks solved by Z3 along with the
corresponding average run-time, the number of successfully reconstructed
proofs along with the corresponding average run-time, the number of failed
reconstructions (broken down into the number of timeouts #T, Z3 bugs
#Z, and reconstruction bugs #R), and the ratio between the run-times of
reconstruction and proof finding. The experiments were conducted on a
Linux system running on an Intel Core 2 Duo processor with 2.4 GHz and
4 GB RAM.
The first observation is that proof reconstruction takes much longer than
proof finding, and even times out in many cases. There are at least two
reasons to this: (1) Our implementation is not (yet) optimized for speed. (2)
Proof terms of Z3 contain high-level proof steps requiring expensive proof
search in Isabelle (for example, for th-lemma). Additional information
accompanying the proof rules (indicating the theory for th-lemma or giving
the kind of simplification for rewrite) would be helpful to improve the
second point.

8

The second observation is that proof reconstruction does not always succeed
due to reconstruction bugs; we still need further tuning of the applied tactics.
Finally, we found four different bugs in Z3 related to the creation of proof
terms leading to several failures in the logic QF UF. Furthermore, while
developing our reconstruction, we have found a few inconsistencies of Z3’s
proofs with respect to the available documentation2; more precisely, the
proof rules’ documentation is more restrictive than their instances in proof
terms. We reported these issues, and they have been fixed.

6 Related Work

Proof reconstruction for SMT solvers in higher-order theorem provers is
not a new idea. There is work on reconstructing haRVey’s proofs using Is-
abelle/HOL [8], but it is restricted to quantified formulas over uninterpreted
functions, that is, first-order logic with equality; in particular, it does not
consider linear arithmetic. The reconstruction of CVC3’s proofs using HOL
Light [5] differs from our work due to the fact that the CVC3 proof format
follows a different philosophy: CVC3 proof terms provide a much finer level
of detail especially concerning theories. For example, instead of two inference
rules bundling all theory-specific reasoning in Z3, there are approximately
60 rules in CVC3 only for the theory of linear arithmetic. Reconstructing
such fine-grained proof terms requires some more work, but implementing
particular CVC3 inference rules can also be simpler than implementing one
complex Z3 rule. Although comparative measures showing the advantage of
either approach are hard to take, we think that a small set of rules (like in
Z3) with additional information to guide proof reconstruction (for theory-
specific rules like rewrite or th-lemma) are a good compromise between
the two philosophies.
In contrast to using a higher-order theorem prover, other approaches to
proof checking for SMT solvers have also been studied, notably based on a
rewrite system [9] and on the LF logical framework [11].

7 Conclusion

We presented the proof format and the proof rules of the SMT solver Z3
and described a method to reconstruct (and thus check) proofs found by Z3
in the theorem prover Isabelle/HOL.3 To the best of our knowledge, this is
the first independent work to exploit Z3’s proof terms.

Future work. Our main goal is to eliminate the discussed short-comings
and to improve the performance of proof reconstruction.
We are also in progress to incorporate our work into Isabelle/HOL (see [2] for

2This refers to the API documentation provided with Z3.
3Our work is publicly accessible from http://www4.in.tum.de/∼boehmes.

9

http://www4.in.tum.de/~boehmes

preliminary work in this direction), similar to an already existing SAT solver
integration [12], with the goal to combine the power of automated proof
search with the trustworthiness of Isabelle/HOL proof checking. Eventually,
this will result in a proof procedure for Isabelle based on Z3.
Finally, we would like to apply proof reconstruction to problems involving
bit-vectors which will require to enhance at least our treatmeant of the proof
rules rewrite and th-lemma.

Acknowledgments. The author thanks Leonardo de Moura and Niko-
laj Bjørner for their support and fruitful discussions, as well as Alexander
Krauss, Jasmin Blanchette, and the referees for comments on this work.
This work was supported by the German Federal Ministry of Education and
Research under grant 01IS07008.

References

[1] C. Barrett, S. Ranise, A. Stump, and C. Tinelli. The Satisfiability Modulo Theories
Library (SMT-LIB). http://www.smt-lib.org, 2008.

[2] S. Böhme, M. Moskal, W. Schulte, and B. Wolff. HOL-Boogie — An Interactive
Prover-Backend for the Verifying C Compiler. Journal of Automated Reasoning,
2009. To appear.

[3] L. de Moura and N. Bjørner. Proofs and Refutations, and Z3. In Proceedings of
the LPAR 2008 Workshops, Knowledge Exchange: Automated Provers and Proof
Assistants, and the 7th International Workshop on the Implementation of Logics,
volume 418 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

[4] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In Conference on Tools
and Algorithms for the Construction and Analysis of Systems, volume 4963 of LNCS,
pages 337–340. Springer, 2008.

[5] Y. Ge and C. Barrett. Proof Translation and SMT-LIB Benchmark Certification:
A Preliminary Report. In Workshop on Satisfiability Modulo Theories, Aug. 2008.
Extended abstract.

[6] M. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mechanised Logic
of Computation. LNCS, 78, 1979.

[7] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A theorem proving
environment for higher order logic. Cambridge University Press, 1993.

[8] C. Hurlin, A. Chaieb, P. Fontaine, S. Merz, and T. Weber. Practical Proof Recon-
struction for First-Order Logic and Set-Theoretical Constructions. In Proceedings of
the Isabelle Workshop 2007, pages 2–13, July 2007.

[9] M. Moskal. Rocket-Fast Proof Checking for SMT Solvers. In Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), volume 4963 of Lecture Notes
in Computer Science, pages 486–500. Springer, 2008.

[10] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[11] A. Stump. Proof Checking Technology for Satisfiability Modulo Theories. Electronic
Notes in Theoretical Computer Science, 228:121–133, 2009.

[12] T. Weber. Integrating a SAT Solver with an LCF-style Theorem Prover. In Pro-
ceedings of the Third Workshop on Pragmatics of Decision Procedures in Automated
Reasoning (PDPAR 2005), volume 144(2) of Electronic Notes in Theoretical Com-
puter Science, pages 67–78. Elsevier, Jan. 2006.

10

http://www.smt-lib.org

A Z3 Proof Rule Names

The following table maps the short proof rule names used in this work to
the names used by Z3.

short name Z3 name short name Z3 name
true true der der
asserted asserted inst quant-inst
goal goal hyp hypothesis
mp→ mp lemma lemma
mp↔ mp unit unit-resolution
refl refl iff> iff-true
symm symm iff⊥ iff-false
trans trans comm'� commutativity
mono monotonicity def-axiom def-axiom
introQ quant-intro def-intro def-intro
distrib distributivity apply-def apply-def
elim∧ and-elim iff∼ iff~
elim¬∨ not-or-elim nnf-pos nnf-pos
rewrite rewrite nnf-neg nnf-neg
pullQ pull-quant skQ sk
pushQ push-quant mp∼ mp~
elimQ elim-unused-vars th-lemma th-lemma

11

	Introduction
	Isabelle/HOL
	Proof Terms of Z3
	Terms and Formulas
	Proof Terms
	Proof Rules

	Proof Reconstruction in Isabelle/HOL
	Z3 Terms and Formulas in Isabelle/HOL
	Z3 Proof Rules in Isabelle/HOL

	Experimental Results
	Related Work
	Conclusion
	Z3 Proof Rule Names

