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Abstract
Linear recurrences with constant coefficients are an interest-
ing class of recurrence equations that can be solved explicitly.
The most famous example are certainly the Fibonacci num-
bers with the equation f (n) = f (n − 1) + f (n − 2) and the
quite non-obvious closed form

1
√
5
(φn − (−φ)−n)

where φ is the golden ratio.
This work builds on existing tools in Isabelle – such as

formal power series and polynomial factorisation algorithms
– to develop a theory of these recurrences and derive a fully
executable solver for them that can be exported to program-
ming languages like Haskell.
Based on this development, I also provide an efficient

method to prove ‘Big-O’ asymptotics of a solution automat-
ically without explicitly finding the closed-form solution
first.
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1 Introduction
This paper is about verifying the theory, the asymptotics,
and an executable solver for linear recurrences with constant
coefficients. It supports both homogeneous recurrences and
inhomogeneous recurrences where the inhomogeneous part
is from a certain class. From this point onward, I will use the
term ‘linear recurrence’ and implicitly mean ‘linear recur-
rence in one variable with constant coefficients’.
The most famous such recurrence is certainly the one

defining the Fibonacci numbers:

F0 = 0 F1 = 1 Fn = Fn−1 + Fn−2

They are named after the 12th-century Italian mathematician
Leonardo of Pisa – who is nowadays known better by the
name Fibonacci – although it was studied by Indian math-
ematicians much earlier in connection with the possible
patterns in the metre of Sanskrit prosody. Fibonacci, on the
other hand, presented them in the context of a puzzle about
the population growth of rabbits: assuming a pair of adult
rabbits produces a new pair of baby rabbits every month, rab-
bits take one month to mature, and rabbits never die, what
is the number of adult rabbit pairs after n months, starting
with a single pair of baby rabbits?

The Fibonacci numbers have a number of very interesting
properties and occur in many places in mathematics. They
can be written as the closed-form expression

Fn =
φn −ψn

√
5

where φ = 1
2 (1 +

√
5) is the golden ratio and ψ = 1 − φ =

1
2 (1 −

√
5).

This may seem surprising since the closed form contains
irrational constants that do not cancel in an obvious way
even though the Fibonacci numbers are all natural numbers.
This closed form directly implies the asymptotic estim-

ate f (n) ∼ φn/
√
5, which is very accurate – it turns out, in

fact, that f (n) = [φn/
√
5] for all positive n, where [·] is the

‘nearest integer’ function.

More generally, such recurrences arise in certain enumer-
ation problems: the number of steps required to solve the
‘Tower of Hanoi’, the number of ordered partitions of in-
tegers, or enumerating all lists of a given length with some
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additional restrictions (e. g. forbidden patterns). They also
arise in the average-time analysis of recursive algorithms [6],
in the analysis of imperative programs with loops [12, 17],
and in the analysis of probabilistic algorithms like random
walks[11].

It is therefore of great interest that these recurrences can
be solved automatically. The key is the so-called characteristic
polynomial, which can be read off directly from the recur-
rence equation. The roots of this polynomial determine the
general shape of the solution, whereas the precise coefficients
depend on the initial values. For example, the characteristic
polynomial of the Fibonacci recurrence Fn = Fn−1 + Fn−2
is x2 − x − 1, whose roots are φ andψ , so that the solution
must have the general form c1φ

n + c2ψ
n independently of

the initial values. The initial values do, however, determine
the values of c1 and c2.

Developing the theory behind this in Isabelle/HOL can be
done in the most nice and abstract way using formal power
series (FPSs); in particular, using the well-known correspond-
ence between linear recurrences with constant coefficients
and rational FPSs, i. e. power series that are of the form p/q
for complex polynomials p,q with q , 0.

In the end, I will use some existing Isabelle tools to derive
a fully automatic solver for linear recurrences with con-
stant coefficients. Furthermore, I provide a more efficient
tool to certify ‘Big-O’ asymptotic bounds for the solution
of such a recurrence. To my knowledge, this is the first
general treatment of linear recurrences in a proof assist-
ant. The development is available as an entry in the Archive
of Formal Proofs [4]. At the time of writing, a part of it is
only available in the development version of the Archive
(https://devel.isa-afp.org).

2 Mathematical Basics
2.1 Formal Power Series
A key ingredient in the textbook approach to solving linear
recurrences are formal power series (FPSs) in the form of or-
dinary generating functions. These are purely formal objects;
their purpose is nothing but to have a nice algebraic object
that represents a sequence.

Formally, the commutative (semi-)ring of FPSs over a com-
mutative (semi-)ring R with formal parameter X is written
as R[[X ]], and its elements are written e. g. as

A(X ) =
∞∑
n=0

anX
n ,

where an is the sequence of coefficients. Let us denote an
– the n-th coefficient of the power series A – with [XN ]A,
and call a0 = [X 0]A the constant coefficient. In analogy to

polynomials, the basic operations are defined as:

0 =
∞∑
n=0

0 · Xn

1 =
∞∑
n=0
(if n = 0 then 1 else 0)Xn

A(z) + B(z) =
∞∑
n=0
(an + bn)X

n

A(z) · B(z) =
∞∑
n=0

(
n∑
i=0

aibn−i

)
Xn

From now one, we shall always restrict ourselves to the
case where the underlying ring is a field K , and at some
point, we will also introduce the additional assumption that
K is algebraically closed. In practice, this field will therefore
be the complex numbers, but the theory is developed as
generally as possible.

In the polynomial ring K[X ], the only units (i. e. elements
with a multiplicative inverse) are then the constant non-zero
polynomials. In K[[X ]], on the other hand, all FPSs with
non-zero constant coefficient are invertible with

A(z)−1 =
∞∑
n=0

bnX
n for bn =

{
1
a0

for n = 0
− 1
a0

∑n
i=1 aibn−i otherwise

It is clear that there exists an injective canonical homomorph-
ismK[X ] → K[[X ]]. One therefore implicitly identifies poly-
nomials in K[X ] with the corresponding FPS in K[[X ]]. Fur-
thermore, if p,q ∈ K[X ] and q(0) , 0 (i. e. the constant
coefficient of q is non-zero), then q is a unit in K[[X ]] and
the quotient p(x)/q(x) ∈ K[[X ]] is well-defined. Let us call
FPSs of this form rational, and they form a sub-ring ofK[[X ]].
Algebraically speaking, this ring of rational FPSs is the local-
isation of K[X ] w. r. t. {p | p(0) , 0}.
Note that this ring of rational FPSs is smaller than the

ring of rational functions K(X ): The latter contains e. g. 1/X ,
whereas the former does not. The rational FPSs are essen-
tially those elements of K(X ) that do not have a pole at the
origin.
This sub-ring is what we are interested in, since rational

FPSs are precisely those whose coefficients satisfy linear re-
currences. I therefore defined the Isabelle type ratfps that
corresponds to this sub-ring and connected it to the FPS type
with the injective canonical homomorphism α ratfps →
α fps (where α is the type of the coefficients) on one side
and to the fraction field of polynomials with an injective
homomorphism α ratfps → α poly fract on the other side.
Isabelle’s Code Generator was set up to perform computa-
tions on rational FPSs by representing the quotient as a pair
of coprime polynomials where the second one (the denom-
inator) must be monic and non-zero (which is a convenient
unique representation). This makes it possible to write the
solving algorithms in a very abstract way, operating directly

https://devel.isa-afp.org
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on FPSs, and still directly generate executable code from
these definitions.

A standard approach to solve recurrences is the following:
1. Use the recurrence to find a simple equation that char-

acterises the FPS of the sequence.
2. Solve that equation to find a closed-form expression

for the FPS.
3. Use algebraic transformations to break down the FPS

into simpler parts.
4. Read off the solution as the coefficients of these simple

parts.
In our case, more concretely, the steps are the following:

1. Write the inhomogeneous part as an FPS (in our case:
as a rational FPS).

2. Use this to write the entire recurrence as a (rational)
FPS.

3. Factor the denominator of the FPS into linear polyno-
mials of the form 1 − ciX .

4. Perform Partial Fraction Decomposition to bring this
rational FPS into the form.

p(X ) +
k∑
i=1

bi

(1 − ciX )ki

for a polynomial p ∈ K[X ] and numbers bi , ci ∈ K .
5. Read off the coefficients from this sum.

2.2 The Homogeneous Part
Let us first consider a homogeneous recurrence. To obtain a
more uniform presentation, let us assume that it is given in
the form
∀n ≥ l . c0 f (n) + c1 f (n + 1) + . . . + cm f (n +m) = 0 (1)

withm + l base cases (otherwise, the sequence would not be
uniquely defined). The number l is the number of ‘excess’
base cases and will usually be 0.
Let F (X ) be the generating function of f and define the

polynomial q as
q(X ) = c0X

m + c1X
m−1 + . . . + cm .

Then, for any n ≥ m + l , we have:
[Xn] (q(X )F (X ))

= [Xn]
(
c0X

mF (X ) + c1X
m−1F (X ) + . . . + cmF (X )

)
= c0 f (n −m) + c1 f (n −m + 1) + . . . + cm f (n)

(1)
= 0

Therefore, p(X ) := q(X )F (X ) is a polynomial of degree at
mostm + l . Its coefficients can easily be calculated as

[Xn]p(X ) =

min(m,n)∑
i=0

cm−i f (n − i) .

In other words, we now have F (X ) = p(X )/q(X ). Note that
if cm , 0, which is a reasonable demand to make from a
well-formed recurrence equation, the constant coefficient of
the denominator q(X ) is also non-zero.

2.3 The Inhomogeneous Part
Treating inhomogeneous recurrences can be done in a very
similar way as homogeneous ones. In analogy to (1), we now
consider recurrences of the form

∀n ≥ l . c0 f (n)+c1 f (n+1)+ . . .+cm f (n+m) = д(n+m) (2)

We again let q(X ) be as before and obtain:

[Xn] (q(X )F (X ))

= [Xn]
(
c0X

mF (X ) + c1X
m−1F (X ) + . . . + cmF (X )

)
= c0 f (n −m) + c1 f (n −m + 1) + . . . + cm f (n)

(2)
= д(n)

If we let G(X ) be the generating function of the inhomogen-
eous partд, we therefore know thatp(X ) := q(X )F (X )−G(X )
is a polynomial of degree at mostm + l − 1, and, analogously
to before, its coefficients can be calculated as

[Xn]p(X ) =

(min(m,n)∑
i=0

cm−i f (n − i)

)
− д(n)

and we have F (X ) = (p(X ) +G(X ))/q(X ). In particular, this
means that if G(X ) is rational, F (X ) is as well.

The remaining question is how to go from the closed form
of the sequence д(n) to a rational generating function G(X ).
However, sinceG(X ) is rational iff д(n) can be written as a
sum of terms of the form cnkan for c,a ∈ C and k ∈ N, it
suffices to determine what the generating function of nkan
is. For this purpose, let Bk (X ) :=

∑∞
n=0 n

kXn . We obviously
have:

∞∑
n=0

nkanXn = Bk (aX )

We therefore only have to determine Bk (X ). As it turns out,

Bk (X ) =

{
1/(1 − X ) for k = 0
XEk (X )/(1 − X )k+1 otherwise

where Ek (X ) is the k-th Eulerian polynomial, defined as:

Ek (X ) =


1 for k = 0
(nX −X + 1)Ek−1(X )
+ (X −X 2)E ′k−1(X )

otherwise

This is easily verified by induction over k . In conclusion, we
have

∞∑
n=0

nkanXn =

{
1/(1 − aX ) for k = 0
aXEk (aX )/(1 − aX )k+1 otherwise

and can therefore write the inhomogeneous part as a rational
FPS as long as it is given in polynomial-exponential form.

From now on, we will consider the following recurrence
as a running example:

f (n) − f (n − 1) − 2f (n − 2) = n 2n f (0) = f (1) = 0
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By the above result, the generating function of the inhomo-
genous part n 2n is G(X ) = 2X/(1 − 2X )2 (since E1 = 1).
According to the above definitions, we compute p(X ) = −2X
and q(X ) = −2X 2 −X + 1, leading to the generating function∑

f (n)Xn =
p(X ) +G(X )

q(X )
=

8X 3 − 8X 2

8X 4 − 4X 3 − 6X 2 + 5X − 1 .

2.4 Factoring the Denominator
We now have the generating function for the recurrence
in the form p(X )/q(X ) with q(0) , 0, and w. l. o. g. we can
assume q(X ) to be monic. The next step is to factor q(X )
in order to break down the generating function into easier
terms.
If the field K is algebraically closed, the q(X ) can always

be factored into the form

d (1 − c1X )n1 . . . (1 − ckX )nk (for d, ci ∈ K)

Thiemann et al. [13, 14] have implemented several methods
of factoring real and complex polynomials in Isabelle/HOL,
using an implementation of algebraic real numbers based on
Sturm sequences. Their algorithm produces a factorisation in
terms of linear factors of the form X − c; applying it to qR
(the reflected polynomial) yields a factorisation in terms of
linear factors 1 − cX , as desired.

For our running example, factoring the denominator into
such linear factors yields

8X 4 − 4X 3 − 6X 2 + 5X − 1 = −(1 + X )(1 − 2X )3 .

2.5 Partial Fraction Decomposition
We now have our FPS in the form

p

(1 − c1X )n1 . . . (1 − ckX )nk
and we want to break this up into simpler summands. This
can be done with Partial Fraction Decomposition, which op-
erates, more generally, on a quotient of the form

p

qn1
1 . . .q

nk
k

where all the qk are pairwise coprime. Partial Fraction De-
composition then brings this quotient into the form

r +
k∑
i=1

ni∑
j=1

si j

q ji

where r , si j ∈ K[X ] and each si j has a degree less than that
of qi . In particular, if the qi have degree 1 (which is the case
here), the si j must all be constants.
To do this, consider the fraction p/(qr ) for gcd(q, r ) = 1.

Then the extended Euclidean algorithm gives us s, t ∈ K[X ]
with sq + tr = 1 and therefore

p

qr
=
pt

q
+
ps

r

Iterating this process on our original quotient gives us the
following decomposition:

p

qn1
1 . . .q

nk
k

=

k∑
i=1

ri
qnii

(3)

Iterated polynomial division by qi on each summand yields

ri
qnii
=
si ,ni + qisi ,ni−1 + . . . + q

ni−1
i si ,1 + q

ni
i si ,0

qnii

=
si ,ni
qnii
+
si ,ni−1

qni−1i

+ . . . +
si ,1
qi
+ si ,0

Collecting the si ,0 into a single polynomial r then gives us
the desired form.
Alternatively, one can avoid the polynomial division in

the last step: Since the polynomials qi have the form 1 − cX
in our case, the summands in (3) have the form

rn−1X
n−1 + . . . + r0
(1 − cX )n

and we can apply a Binomial transform to the ri to express
the numerator as a polynomial in 1 − cX . This may yield
slightly better performance and could be implemented as
future work, but the ni are typically relatively low anyway.

Applied to our running example, the decomposition is:

−
8X 3 − 8X 2

(1 + X )(1 − 2X )3 =

16
27

1 + X +
2
3

(1 − 2X )3 −
4
9

(1 − 2X )2 −
22
27

1 − 2X

2.6 Constructing the Solution
We now have the FPS in the form

r (X ) +
k∑
i=1

n0∑
j=1

ai j

(1 − ciX )j
.

To find the closed-form solution of the original recurrence,
we must now extract the coefficients from this FPS. We can
again do this for every summand individually.
For the polynomial summand r , the solution is obvious:

The n-th coefficient of r as an FPS is simply the n-th coef-
ficient of the polynomial r . If n is larger than the degree
of r , we have [Xn] r = 0. The polynomial summand r can
therefore be seen as an adjustment term that influences only
the first few elements of the sequence. This is necessary
when the recurrence is ‘overspecified’, i. e. there are more
initial conditions given than necessary to define the sequence
uniquely.
For the other summands, it suffices to consider the FPS
(1 − cX )−j for j > 0. Using the FPS form of the generalised



Verified Solving and Asymptotics of Linear Recurrences CPP ’19, January 14–15, 2019, Cascais, Portugal

Binomial Theorem, we find that

(1 − cX )−j =
∞∑
n=0

(
−j

n

)
(−cX )n

=

∞∑
n=0

cn
(
j + n − 1

n

)
Xn

=

∞∑
n=0

cn

(j − 1)! ((n + 1) · . . . · (n + j − 1))X
n

Obviously, pj (n) := (n + 1) · . . . · (n + j − 1) is a polynomial
in n. In fact, it turns out that

pj (n) =

j−1∑
i=0

sj ,i+1n
i

where si ,n are the Stirling numbers of the first kind, which
gives a more efficient formula to compute the pj . We can
conclude:

[Xn]
ai j

(1 − ciX )j
=

ai j

(j − 1)!pj (n)c
n
i

With this, we now have a complete procedure starting
from a homogeneous or inhomogeneous recurrence and end-
ing with a concrete and computable representation of the
closed-form solution of the recurrence.

Applying this to our running example, whose generating
function we decomposed into

16
27

1 + X +
2
3

(1 − 2X )3 −
4
9

(1 − 2X )2 −
22
27

1 − 2X ,

we obviously obtain the contribution 16
27 · (−1)

n for the first
summand and −2227 · 2

n for the last one. For the other two
summands, we compute

p2(n) = n + 1 p3(n) = n
2 + 3n + 2

and thereby:

[Xn]

2
3

(1 − 2X )3 =
2
3
2! (n

2 + 3n + 2)2n =
(
1
3n

2 + n +
2
3

)
2n

[Xn]
− 4

9
(1 − 2X )2 =

− 4
9

1! (n + 1)2
n =

(
−
4
9n −

4
9

)
2n

Adding all the contributions together, we obtain the closed-
form solution:

f (n) =

(
1
3n

2 +
5
9n −

16
27

)
2n + 16

27 · (−1)
n

2.7 Asymptotics
Since the closed form of the coefficients of a rational FPS
p(X )/q(X ) involves the complex roots of q, it can be some-
what unwieldy to work with: We have to fully factor the
polynomial and do computations with (potentially complic-
ated) algebraic numbers, which can lead to some problems, as

we will see later. Fortunately, if we do not care about the pre-
cise closed form but only the asymptotics of the coefficients,
there is an easier way.
Since any k-th order complex root z of the denominator

q(X ) contributes a summand r (n)z−n with deg(r ) ≤ k − 1
to the solution, it is clear that the asymptotically dominant
summands are those where |z | is minimal. In fact, it is easy
to see that whenever we can find a radius R > 0 such that
there are no roots z with |z | < R and all roots with |z | = R
have order ≤ k + 1, the solution is O(nkR−n). This fact has
been proven in Isabelle.
Note that the numerator polynomial p(X ) does not ap-

pear in the asymptotics at all. In particular, this implies that
the ‘Big-O’ bound for the solution of a linear recurrence
holds irrespective of the precise initial values. However, the
numerator polynomials (and thereby the initial values of a
recurrence) can influence the asymptotics: If p(X ) and q(X )
have a non-trivial common divisor (i. e. they share at least
one root), we can cancel that divisor from the fraction, which
also reduces the number of roots in the denominator and
may thereby lead to a smaller asymptotic upper bound.
When this is not possible – i. e. when the numerator and

denominator are coprime, which can always be ensured for
concrete polynomials in the numerator and denominator –
then we have not only deg(r ) ≤ k , but deg(r ) = k (see e. g.
Theorem IV.9 by Flajolet and Sedgewick [5]), which means
that the above ‘Big-O’ estimate is tight. If there is a single
dominant root, one therefore even gets a ‘Big-Θ’ bound. One
could show this in Isabelle, but this was not done yet, since I
considered the ‘Big-O’ bounds to be the most relevant ones
for applications, e. g. in the analysis of algorithms.

For our running example, we can automatically prove that
the solution is O(n22n): The square-free factorisation of the
denominator 8X 4−4X 3−6X 2+5X −1 already yields the full
factorisation (1 + X )(2X − 1)3. We then consider the circle
|X | = 1

2 and note that none of the factors have a root inside
that circle and no factor with exponent > 2 + 1 has a root
on the circle (since no such factor exists). This certifies the
upper bound O(n22n).

3 Formalisation in Isabelle
3.1 Formal Power Series
I build on the existing formalisation of FPSs by Chaieb [3],
which I extended, among other things, with a more gen-
eral notion of division: Chaieb only defined division in the
case where the divisor is a unit, i. e. has a non-zero constant
coefficient. This is problematic because division can also
be well-defined when the divisor is not a unit, e. g. X/X or
(X 3+X )/(X 2+X ). I therefore defined the concept of a subde-
gree in Isabelle, i. e. the index of the first non-zero coefficient.
The division of two FPSs is well-defined iff the subdegree
of the divisor does not exceed that of the dividend, and the
new division operator I defined works in all of these cases.
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Before we proceed, the concept of normalisation in a ring
in Isabelle must be explained. In mathematics, one usually
defines the greatest common divisor of the integers 4 and 6
to be 2, even though −2 would also be a perfectly adequate
choice. Similarly, for the polynomials 2X and 3X in the ring
R[X ], it makes sense to define the GCD to be just X , even
though any cX for c ∈ R \ {0} would also be possible. The
underlying problem is that concepts like GCD and LCM do
not really operate on elements of a ring, but on association
classes. However, it is, of course, usually more convenient
to work with ring elements, which is why one designates
a single element of an association class to be the canonical
representative of that class.

In Isabelle, we capture this in the class normalization_semi-
dom, which assumes the existence of a normalize operation
that, given some element x ∈ R, returns the canonical rep-
resentative of the association class of x . We call an element
normalized if it is the representative of its association class.
For us, this is useful in handling fractions: I extended

Chaieb’s fract type, which implements the fraction field of a
given integral domain R, by adding the concept of a normal-
ised fraction. Rational numbers, for instance, can be brought
into a unique normal form by requiring the numerator and
denominator to be coprime and the denominator to be posit-
ive. The same thing can be done for any integral domain R
with a GCD and a concept of normalisation: One can bring
any fractiona/b into normal form by dividinga andb by their
GCD and then normalising the resulting denominator and
adjusting the numerator accordingly. This yields a fraction
a′/b ′ such that a′ and b ′ are coprime and b ′ is normalised,
and this representation can easily be shown to be unique.
I then used this to define the type α ratfps as the subset

of α poly fract on which the denominator of the normalised
fraction has a non-zero constant coefficient. Using Isabelle’s
code_abstype feature and the transfer [8] package, oper-
ations on ratfps can be implemented in terms of pairs of
polynomials with the above-mentioned invariant and thus
make the ratfps type fully executable. This allows us to auto-
matically translate our abstract algorithms on FPSs directly
to executable code. As a bonus, it also makes the ratfps and
fps types available to Isabelle’s counterexample generator
QuickCheck [2], which aids us by automatically providing
counterexamples when we write down an incorrect theorem
statement.

3.2 Partial Fraction Decomposition
I used the following very general view of Partial Fraction De-
composition: Let R be a Euclidean domain and S an arbitrary
ring with a homomorphism φ : R → S . Let n1, . . . ,nk ∈ N>0
and p,q1, . . . ,qk ∈ R such that the qi are pairwise coprime
and all theφ(qi ) are units in S . Then, by following the process

outlined in Section 2.5, we obtain r , si j ∈ R such that

φ(p)

φ(q1)n1 . . .φ(qk )nk
= φ(r ) +

k∑
i=1

ni∑
j=1

φ(si j )

φ(qi )j

and all the si j have a Euclidean norm less than the Euclidean
norm of qi .

In our case, the Euclidean domain R is the ring of polyno-
mials K[X ], the ring S is the ring of rational FPSs, and φ is
the canonical homomorphism ratfps_of_poly. Also, each of
the qi is of the form 1 − cX , such that φ(1 − cX ) is always a
unit in S .

However, thanks to this very general derivation, one could
also use it for R = Z and S = R to bring 1

90 =
1

2·32 ·5 into the
form −1 + 1

2 +
1
32 +

2
5 .

3.3 Complex Root Counting
One step that was still left open in the discussion of coef-
ficient asymptotics before was how to actually check the
conditions that the polynomial has no roots inside a given
circle around the origin, and all the roots on the circle itself
have at most order k . To do this, we need two components:
• Wenda Li’s executable root counting algorithm[9, 10]
that can count the number of complex roots within
certain subsets of the complex plane, e. g. circles, rect-
angles, and half-planes. Many variants are offered, but
I use only root counting inside an open disc (|z | < R)
and on a circle (|z | = R) without taking multiplicities
into account.
• Square-free factorisation as formalised by Thiemann
et al. [15, 16]. This is much less involved than a full
factorisation and allows us to break up a polynomial
into factors of the form pi (X )

ki such that the pi are
square-free and pair-wise coprime. This means that
each root of the original polynomial is present in ex-
actly one of the pi , and the corresponding ki is the
order of the root.

We therefore only have to run the square-free factorisation
algorithm and then check that no pi has a root with |z | < R,
and that additionally no pi with ki > k has any roots with
|z | = R. None of this involves factoring the entire polynomial,
and all computations can be done in the relatively pleasant
field Q[i] – unless, of course, the coefficients or the radius R
itself are already irrational themselves.

3.4 Code generation
The steps given above can be broken down into a number of
Isabelle/HOL functions, which provides some modularity:

3.4.1 lhr_fps
This function takes a list of coefficients c0, . . . , cm and initial
values f0, . . . , fm+l−1 and returns the rational FPS of the cor-
responding recurrence as described in Section 2.2. Note that
this implicitly uses the convention of Section 2.2 where the
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recurrence is only required to hold for n ≥ l ; i. e. extra initial
values can be used to encode exceptions to the recurrence.

3.4.2 lir_fps
This is analogous to lhr_fps, but additionally takes a repres-
entation of the inhomogeneous part. This representation has
the form of a list of tuples (a,b,k), encoding a sum over the
terms ankbn . This is done according to the process outlined
in Section 2.3.

3.4.3 solve_factored_ratfps
This function takes a rational FPS F (X ) = p(X )/q(X ) where
q , 0 and q(X ) has already been factored into terms of the
form 1 − cX with c , 0 and returns a representation of a
closed-form expression for its coefficients. This representa-
tion consists of a complex polynomial al−1X l−1+ . . .+a0 and
a list of pairs (pi (X ),bi )wherepi (X ) is a complex polynomial
and bi is a complex number with the property that

[Xn]F (X ) = an +
∑

pi (n)b
n
i

where an = 0 for all n ≥ l . This is done by following the
process described in Section 2.5 and immediately applying
the process from Section 2.6 to the results.

3.4.4 solve_ratfps
The only missing link is now to factor the denominator poly-
nomial of the rational FPS obtained from lhr_fps or lir_fps
into terms of the form 1 − cX . This is done by simply re-
flecting the polynomial and calling an arbitrary factoring
algorithm.

I use the formalised algorithm by Thiemann et al. [13, 14],
which takes a complex polynomial p(X ) and returns some
complex number d and a list of pairs (ei ,ki ) such that p(X ) =
d ·

∏
(X −ei )

ki+1 and the ei are distinct. Because we reflected
the polynomial, we therefore get p(X ) = d ·

∏
(1 − eiX )ki+1,

which is exactly what we need.
Through the use of the Algebraic Number library by Thie-

mann et al., this method works out-of-the-box for any ra-
tional FPS whose numerator and denominator have rational
coefficients, and therefore the overall method works for any
linear recurrence with rational coefficients.

3.5 Isabelle Theorems
For the purpose of illustration, I shall print some of the main
theorems from the Isabelle formalisation. Some of the nota-
tion was adjusted very slightly to make the statements more
readable without knowledge of Isabelle, but the statements
as printed are still very close to the original ones in Isabelle.
In particular, the explicit homomorphisms between N and Z

or between K[X ] and K[[X ]] that have to be made explicit
in Isabelle are still present.
The following is the statement of the Isabelle theorem

about converting a linear homogeneous recurrence to a ra-
tional FPS:

lemma
fixes f :: nat⇒ (α :: field) and cs :: α list
defines N := length cs − 1
assumes cs , []
assumes ∀n ≥ m.

(∑
k≤N csk · f (n + k)

)
= 0

assumes last cs , 0
shows Abs_fps f = fps_of_poly (lhr_fps_numeratorm cs f ) /

fps_of_poly (lr_fps_denominator cs)

Here, the α :: field stands for an arbitrary type of the type
class field, which is a field in the algebraic sense. This type
class has concrete instances like rat, real, or complex.

The functionAbs_fps converts between a sequence (a func-
tion N→ α ) and an FPS (α fps). The function fps_of_poly is
the canonical homomorphism mapping a polynomial to an
FPS. Note that all the functions on the right-hand side of the
equation in the theorem statement have code equations in
Isabelle and are therefore executable.

Furthermore, the theorem on the closed form of a rational
FPS is:

lemma
assumes is_alt_factorization_of fctrs q and q , 0
shows Abs_fps (interp_ratfps_solution

(solve_factored_ratfps’ p fctrs)) =
fps_of_poly p / fps_of_poly q

with

definition interpret_ratfps_solution (p, cs) n =
coeff p n + (

∑
(q,c)←cs poly q (of_nat n) · c ˆn)

Here, poly evaluates a polynomial and of_nat is the canonical
homomorphism from N into any other semiring. Moreover,
is_alt_factorization_of states that fctrs is a factorization of q
into the form d

∏
(1 − eiX )ni as we have seen before, with

fctrs being a pair consisting of the d and a list of pairs of
the ei and ni . The solution that is being computed is a pair
of a polynomial p, whose coefficients form the ‘correction
terms’ for recurrences with additional initial values, and a
list consisting of pairs of a polynomial ri (X ) and a number ci
such that ri (n) cni is a summand in the solution. The function
interpret_ratfps_solution ‘evaluates’ such a solution for a
given n.

Since these theorems are somewhat notationally technical,
I will not print any more of them here; the correctness the-
orems for converting inhomogeneous recurrences to FPSs
and solving recurrences look very similar to the ones printed
here.
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However, the following more abstract theorem about the
shape of solutions of rational FPSs (and thereby linear recur-
rences) is probably reasonably readable:
theorem
fixes p q :: complex poly
assumes coeff q 0 , 0
defines q′ := reflect_poly q
obtains r rs
where ∀n. fps_nth (fps_of_poly p / fps_of_poly q) n =

coeff r n + (
∑
c | poly q′ c = 0 poly (rs c) (of_nat n) · c ˆn)

and ∀z. poly q′ z = 0 =⇒ degree (rs z) ≤ order z q′ − 1

It states that the solution of a rational FPS is a sum where
each root c of the denominator contributes a summand of the
form p(n)cn , plus a correction term that vanishes for almost
all n. Moreover, the degree of each polynomial is at most the
order of the corresponding root minus 1. The variable rs in
the above Isabelle theorem is the function that associates the
polynomial to each root, and the r is a polynomial whose
coefficients constitute the ‘correction term’.
This also directly implies the key theorem on coefficient
asymptotics:
theorem
fixes p q :: complex poly
assumes square_free_factorization q (b, cs)
assumes q , 0 and R > 0
assumes ∀(c, l)∈cs. ∀x . norm x < 1/R −→ poly c x , 0
assumes ∀(c, l)∈cs. ∀x . l > k ∧ norm x = 1/R −→ poly c x , 0
shows fps_nth (fps_of_poly p / fps_of_poly q) ∈

O(λn. of_nat n ˆk · of_real R ˆn)

The square_free_factorization predicate asserts that the given
polynomial q(X ) has a square-free factorization into some
constant b and some list of factors ci (X )li pairs, represented
as a list of pairs of the form (c, l).

The Landau symbol O(. . .) is defined in the usual fashion
where f ∈ O(д) iff there exists some C ∈ R such that, for all
sufficiently large x , | f (x)| ≤ C |д(x)|.

3.6 Pretty Printing
One disadvantage of using the Algebraic Number library is
that printing irrational algebraic numbers is not straightfor-
ward. Without additional setup, evaluating e. g. sqrt 2 leads
to a few lines of fairly illegible output which corresponds to
the internal representation of irrational algebraic numbers
in the Isabelle library as an integer polynomial with an addi-
tional upper and lower bound that uniquely identifies one
root of the polynomial, which is the number that is being
described.
Thankfully, Thiemann et al. also provide some pretty-

printing functionality which converts a real-algebraic num-
ber into a human-readable string. For algebraic numbers of
degree at most 2, this is exactly what one would expect: a
combination of rational numbers and square roots. However,
for numbers of higher degree, the output is unfortunately still

of the form ‘k-th root of polynomial p’; e. g. 3√2 is rendered
as root #1 of -2 + x^3, in (1,2).
I add to this some more pretty-printing code in order to

display rational FPSs and the solutions computed for linear
recurrences in a natural, human-readable form.

It should be noted that all of the pretty-printing that Thie-
mann et al. and I do is unverified; however, in both cases,
the step from the representation in Isabelle to the human-
readable string is very small.

4 Evaluation
We can now evaluate the solver on some examples using
Isabelle’s value and export_code commands.

4.1 Fibonacci Numbers
For the Fibonacci case, we invoke solve_lhr [-1,-1,1]
[0,1], which – after pretty-printing the complex numbers –
returns:

Some (0, [(sqrt(1/5), (1/2+sqrt(5/4))),
( -sqrt(1/5), (1/2-sqrt(5/4)))])

Alternatively, when using the pretty-printer for solutions of
recurrences, we get:

(sqrt(1/5)) * (1/2+sqrt(5/4)) ^ x +
( -sqrt(1/5)) * (1/2-sqrt(5/4)) ^ x

We can also compute the rational FPS of the recurrence using
lhr_fps directly:

-1x / (-1 + x + x^2)

4.2 A Higher-Degree Recurrence
Another simple example of higher degree is the sequence
0, 1, 2, 3, 0, 1, 2, 3, . . . with the recurrence f (n + 4) − f (n) = 0
and the initial values 0, 1, 2, 3. The output is

(-1/2) * (-1) ^ x + (-1/2+1/2i) * (1i) ^ x +
(-1/2+-1/2i) * (-1i) ^ x + (3/2)

or, in a more readable form:

f (n) = −
(−1)n
2 +

i − 1
2 in −

i + 1
2 (−i)

n +
3
2

4.3 Running Example
Next, let us again consider our running example as an ex-
ample of an inhomogenous recurrence. This can be solved
by evaluating

solve_lir [-2, -1, 1] [0, 0] [(1, 1, 2)]

which returns
(-16/27 + 5/9x + 1/3x^2) * 2 ^ x +

(16/27) * (-1) ^ x

4.4 A pathological Example
Lastly, we look the seemingly innocuous example 5f (n+4)+
4f (n + 3) + 3f (n + 2) + 2f (n + 1) + f (n) = 0 with arbitrary
initial values. The recurrence solver does not terminate for
this example and eventually runs out of memory. Factoring
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the characteristic polynomial itself is no problem, but due
to the way algebraic complex numbers are implemented
by Thiemann et al., the computations with the roots of this
polynomial lead to a significant blow-up in the degrees of the
integer polynomials used to represent the real and imaginary
parts of complex algebraic numbers, which then need to be
factored again.

However, if we only want to know the asymptotics of the
solution, things are much more pleasant: The dominant roots
of the characteristic polynomial have an absolute value of
1.445046..., whose reciprocal is ≈ 0.6920196, so we can easily
show e. g. f (n) ∈ O(0.69202n) automatically.

4.5 Performance Comparison
Evaluating any of these examples directly in Isabelle with
the value command takes about 1 minute. However, almost
all of this is taken up by code generation and compilation.
I therefore exported the code for the functions solve_lhr,
solve_lir, and the pretty printing to Haskell using Isabelle’s
code_export command, wrote a minimal wrapper for in-
put/output and to convert Haskell numbers into the expor-
ted datatype for complex numbers, and compiled everything
with the Glasgow Haskell Compiler.

Comparing the performance of the Isabelle solver to that
of systems like Mathematica and Maple does not make much
sense because the computation time is completely dominated
by the polynomial factorisation, so any attempt to compare
the efficiency of the linear recurrence solvers essentially
boils down to a mere comparison of the efficiency of the
polynomial factorisation algorithms. Nevertheless, Table 1
gives a quick impression of how the verified solver and Math-
ematica’s solver perform on the above examples and some
more randomly-generated examples. The performance for
certifying a reasonably tight ‘Big-O’ bound in Isabelle is also
given.
The measurements are to be taken with a grain of salt

as they were conducted on a shared machine in the com-
puter pool at the Technical University of Munich since this
was the only machine on which a Mathematica licence was
available. However, repeating the measurements at different
times showed that they were fairly stable; they should be
good enough to at least give a qualitative comparison of the
performance behaviour of the different approaches.

The table shows that Mathematica performs considerably
better than the Isabelle solver on the pathological example
of degree 5 mentioned before. However, for similarly patho-
logical polynomials of even a slightly higher degree (e. g.
9), Mathematica also fails to terminate within a reasonable
amount of time (around 5 minutes). The verified asymptotics
certification method works much better than either solver,
but its performance also degenerates very quickly as the
degrees grow, and its performance also depends on how
‘complicated’ the fraction b in the O(nkbn) is. The reason
for this is that the current implementation of Wenda Li’s

root-counting method uses rational arithmetic and the nu-
merators and denominators can grow very large, depending
on the numbers in the input and the degree of the polyno-
mial. This is a known problem with remainder-series-based
approaches like Li’s.

The performance comparison suggests that solving recur-
rences externally and somehow certifying results in Isabelle
is perhaps not very useful, since the verified solver copes
very well with ‘simple’ recurrences and when one moves to
complicated recurrences, the performance of the Mathemat-
ica solver also degrades very quickly. Furthermore, since the
performance degradation seems to comemainly from polyno-
mials with ‘complicated’ roots and the irrational arithmetic
involved in the resulting computations, it seems likely that
any kind of certification in a case like this would also have to
involve the same irrational arithmetic since these roots are
part of the closed-form solution. It therefore seems doubtful
if certification of a closed-form solution makes sense.

However, both the polynomial factorisation by Thiemann
et al. and the root-counting procedure by Li are under active
development and the code developed here will directly profit
from any improvements that they make.

There is no analogue to the verified asymptotics certifier
in Mathematica or Maple, although it would be fairly easy to
write one and it should be very efficient, seeing as systems
like Mathematica tend to have very sophisticated algorithms
for root isolation. In fact, it may be useful to employ a system
like Mathematica to determine the approximate or exact
asymptotics of an equation using its root isolation algorithms
and then certify it in Isabelle using the verified certifier.
However, this has not been implemented yet.

5 Related Work
To my knowledge, this is the first work on the theory and a
solver for linear recurrences in a proof assistant. The theory
of these recurrences has been known for a long time and is
usually taught in undergraduate courses of mathematics. The
classic method of applying partial fraction decomposition
to the rational FPS that was used in this work can be found
in many textbooks [7]. An alternative route is to use results
from Analytic Combinatorics [5] for meromorphic functions
(of which rational functions are a special case) to obtain the
coefficients of the FPS in terms of the complex residues at
its poles.
Many different executable solvers for linear recurrences

are available, e. g. PURRS [1] or those that come with com-
puter algebra systems like Mathematica and Maple. For the
homogeneous part, they also use the approach of factor-
ing the characteristic polynomial (possibly with some pre-
processing to decrease the degree of the recurrence). Unlike
the Isabelle formalisation, these systems typically support
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Table 1. Benchmark results of the solver (the verified one and Mathematica’s) and the verified certifier. The first 4 examples are
the ones from above; the remaining ones have randomly-generated coefficients ranging from −10 to 10. A time of 0 indicates
that the time was below 1 ms; a time of ∞ indicates a timeout after more than 5 minutes. The given asymptotics show an
approximation of the actual (irrational) basis.

Example Degree Asymptotics Time (ms)
Solver (ver.) Solver (Math.) Certifier (ver.)

Fibonacci 2 O(1.619n) 12 20 0
0, 1, 2, 3... 4 O(1) 0 12 0
f (n) + 2f (n − 1) = n · 2n 3 O(n · 2n) 0 12 0
Running example 5 O(n2 · 2n) 7 368 0
Pathological 5 O(0.69202n) ∞ 4600 0
Random 3 O(2.331n) 1200 970 0
Random 9 O(1.1552n) ∞ ∞ 260
Random 11 O(8.876n) ∞ ∞ 5100
Random 14 O(1.1985n) ∞ ∞ 238000

more complicated inhomogeneous parts. This typically re-
quires finding a closed form for some symbolic sum or ‘guess-
ing’ a solution. Furthermore, they also allow solving systems
of recurrences. Both of this is beyond the scope of this work.

6 Conclusion
I formalised the basic theory of and an executable solver for
linear recurrences with constant coefficients, both homogen-
eous ones and inhomogeneous ones where the inhomogen-
eous term is of polynomial-exponential form. An executable
solver for these recurrences and a more efficient certifier for
the ‘Big-O’ asymptotics of their solutions is also provided.
This development makes use of many different components:
• Executable polynomial factorisation and algebraic
numbers (Thiemann et al. [13, 14])
• Square-free polynomial factorisation
(Thiemann et al. [15, 16])
• Formal power series (Chaieb [3])
• Stirling Numbers (Isabelle library)
• Counting complex roots (Li [9, 10])
• Eulerian polynomials (Eberl)
• Partial Fraction Decomposition (Eberl)
• Executable rational FPSs (Eberl)

The last three of these were motivated by this very applica-
tion of solving linear recurrences and the modularity allows
us to e. g. easily improve the Partial Fraction Decomposition
algorithm in the future, or to directly benefit from any per-
formance improvements made by Thiemann et al. without
any changes to the recurrence solver.
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