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Abstract

In this thesis, the algorithm presented by Ilie, Navarro, and Yu for computing
simulation relations on Nondeterministic Finite Automata [INY04] is implemented
and verified with the interactive theorem prover Isabelle using Peter Lammich’s
Monadic Refinement Framework. This is done by writing an abstract version of the
algorithm and proving it correct and then successively replacing parts of it with
more concrete commands, proving the correctness of each modification, until an
executable algorithm is obtained. This code can then be exported to programming
languages such as ML, OCaml, Haskell or Scala.
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Zusammenfassung

In dieser Arbeit wird der Algorithmus von Ilie, Navarro und Yu zur Berechnung
von Simulationsrelationen auf Nichtdeterministischen Endlichen Automaten [INY04]
implementiert und mit dem interaktiven Theorembeweiser Isabelle unter Verwen-
dung von Peter Lammichs Monadischem Refinement-Framework verifiziert. Der Be-
weis erfolgt über mehrere Stufen, indem zuerst eine abstrakte Version des Algo-
rithmus geschrieben und als korrekt bewiesen wird und dann nach und nach Teile
davon durch konkreteren Code ersetzt werden, wobei die Korrektheit jedes Schrittes
bewiesen wird, bis ausführbarer Code entsteht. Dieser kann dann in Programmier-
sprachen wie ML, OCaml, Haskell oder Scala exportiert werden.
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Introduction

1 Introduction

In [INY04], Ilie,Navarro, andYu give an efficient algorithm for computing simulation
preorders on Nondeterministic Finite Automata (NFAs) and explain how to use these
for reduction of NFAs. This algorithm is based on an earlier algorithm for simulation
preorders on node-labelled graphs presented in [HHK95] by Henzinger et al. The
topic of this thesis is to implement this algorithm as a functional programme with
the interactive theorem prover Isabelle in the context of an existing formalisation
of NFAs and to develop a formal correctness proof for this implementation. The
resulting algorithm could then, for instance, be used to reduce the size of NFAs that
are used in regular expression algorithms. Also, the same algorithm can be applied
to Büchi automata, which are used in model checking.

1.1 Utilised tools

For the formal verification, the interactive theorem prover Isabelle was used, in
particular Isabelle/HOL, i. e. Isabelle with Higher Order Logic. The algorithm was
formalised in a monadic, functional style using the Refinement Framework by Peter
Lammich (described in depth in [LT12]) anduses the finite automata implementation
by Thomas Tuerk [Tue12].
The Refinement Framework provides methods for writing algorithms with pre-

cisely defined semantics in an intuitive way and proving properties of these algo-
rithms. In particular, it allows the user to write and verify algorithms on an abstract
level at first and then refine them successively, by replacing parts of the code with op-
timised ormore concrete statements until an efficient, executable version is obtained,
which can then be exported to other languages using Isabelle’s code generator. This
breaks down the proof obligations for the verification of the algorithm into smaller
steps and makes correctness proofs much more modular and readable.

The Refinement Framework is still in an early stage of development and this thesis
also serves as an evaluation of the current state of the framework with regard to
usability and bugs.

1.2 Outline

In Section 2, we will introduce a number of definitions related to automata and
simulation relations. In particular, we will introduce the notion of the simulation
preorder of an NFA and demonstrate some of its properties and how it can be used
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Introduction

in order to reduce NFAs. In Section 3, we will then explain the algorithm that was
implemented and verified in this thesis, a slightly modified version of the algorithm
by Ilie et al. Wewill also describe how correctness proofs using refinement work and
how the individual steps were performed in the process of verifying this particular
algorithm. Reoccuring patterns (such as refining a set comprehension to a for each
loop) are explained only once and unnecessary details are left out; for the detailed
proof, refer to the commented Isabelle proof.

In Section 4, the verified algorithm, exported to ML, is tested on a small example
automaton and the performance of the algorithm is compared to that of a similar
Java implementation.

In the conclusion,we discuss the advantages and disadvantages of the Refinement
Framework and the problems that were encounteredwith it in the process of writing
this thesis. We also make a number of suggestions how these problems could be
mitigated. Furthermore, we discuss possible improvements of the algorithm and
what applications it could have in the context of the CAVA project.

3



Theory

2 Theory

2.1 Finite automata

A Nondeterministic Finite Automaton (NFA) is a tuple A = (Q,Σ, δ, I, F ), where Q is
a finite set of states, Σ is a finite alphabet, δ : Q×Σ 7→ P(Q) is a transition function,
I ⊆ Q is the set of initial states and F ⊆ Q is the set of final states. Furthermore, we
define the transition relation ∆ ⊆ Q× Σ×Q where (q, c, q′) ∈ ∆ iff q′ ∈ δ(q, c) and
the reverse transition function δ−1(q, c) = {q′| (q′, c, q) ∈ ∆}.
The state q ∈ Q is said to accept ε, the empty word, iff q ∈ F , and q is said to

accept a non-empty word cw with c ∈ Σ and w ∈ Σ∗ iff there is a successor state
q′ ∈ δ(q, c) that accepts w. The set of all w ∈ Σ∗ that a state q ∈ Q accepts is called
the (right) language of the state and denoted by LA(q) or ~LA(q). If the automaton
A is obvious from the context, we will sometimes omit it and simply write L(q) or
~L(q). The language of the automaton A (denoted by L(A)) is defined as the union
of all LA(q) for q ∈ I . Furthermore, we define LA(u, v) as the set of all words w such
that there is a path from u to v with the word w, i. e. LA(u, v) is the language of the
automaton obtained by taking A, but using I = {u} and F = {v}.

Similarly, the left language ~LA(q) is defined as the set of allw ∈ Σ∗ such that either
w = ε and q ∈ I or w = w′c and there is some q′ ∈ δ−1(q, c) such that w′ ∈ ~LA(q′).
The reverse automaton of A is denoted as A−1 and defined as (Q,Σ, δ−1, F, I).

It can be seen quite easily that L(A−1) = L(A)R = {wn . . . w1| w1 . . . wn ∈ L(A)}.
Obviously, we have (A−1)−1 = A.

Note that ~LA(q) =
(
~LA−1(q)

)R
and ~LA(q) =

(
~LA−1(q)

)R
.

2.2 Simulation relations and preorders

All the following definitions are valid in the context of an NFA A = (Q,Σ, δ, q0, F ).

We will now define the concept of simulation relation. A simulation relation is a
relation S ⊆ Q×Q that fulfils the following two conditions for all (u, v) ∈ S:

1. if u is a final state, v is also a final state

2. if u can make a transition to u′ with the character c, v can make a transition to
some state v′ with the character c such that (u′, v′) ∈ S.

4



Theory

Intuitively, (u, v) ∈ S means that every path that can be taken from u can be
matched with a “similar” path from v, where every state vi along the path from v

simulates the corresponding state ui (i. e. (ui, vi) ∈ S) along the path from u.
More formally, we call S ⊆ Q × Q a simulation relation iff for all u, v ∈ Q the

following holds:

(u, v) ∈ S =⇒ (u ∈ F ⇒ v ∈ F ) ∧

(∀c ∈ Σ. ∀u′ ∈ δ(u, c). ∃v′ ∈ δ(v, c). (u′, v′) ∈ S)

sim(A) denotes the set of all simulation relations of A. Furthermore, we say “u
is simulated by v” or “v simulates u” for states u, v ∈ Q iff there is a simulation
S ∈ sim(A) such that (u, v) ∈ S and introduce the shorthand u ≤A v for “u is simu-
lated by v”. Since ≤A is reflexive and transitive (see next section), ≤A is a preorder,
which we call the simulation preorder.

Because of the recursion in the second condition in our definition of a simulation
relation, there are several valid simulation relations for a given NFA in most cases.
In particular, the empty relation ∅ is a simulation relation for all NFAs, albeit a
trivial and therefore uninteresting one. However, it can be shown that for every NFA
A, there exists a largest simulation relation, which we call SA, with the following
properties:

1. SA ∈ sim(A)

2. ∀S ∈ sim(A). S ⊆ SA

The uniqueness of such an SA is obvious, since SA ⊆ S ′A and S ′A ⊆ SA implies SA =

S ′A. The existence is also obvious, since SA can be constructed as SA =
⋃
S∈sim(A) S .

Let us now look at how the simulation preoder ≤ and the largest simulation SA
are related. Consider a pair of arbitrary states u and v. If (u, v) ∈ SA, then u ≤A v
obviously holds by definition. Conversely, if u ≤A v, there is a simulation relation S
that contains (u, v), and since SA contains all simulation relations, (u, v) is then also
contained in SA. Hence, (u, v) ∈ SA and u ≤A v imply each other and are therefore
equivalent, i. e. ≤A= SA

5
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Now we shall take a look at the consequences of simulation. It can easily be
seen that u ≤A v implies L(u) ⊆ L(v): if w ∈ L(u), there is some path from u to a
final state with the word w, and because v simulates u, we can then always find an
equivalent path from v to a final state (proof by induction over word length, see
Isabelle proof).
However, the converse does not hold in the general case: consider an arbitrary

non-empty word cw ∈ L(u). If v is to simulate u, there must be one successor state
v′ ∈ δ(v, c) that fulfils all the criteria for simulation, independently of what w looks
like. For cw merely to be accepted by v, on the other hand, the automaton may take
separate routes from v, depending on w. Therefore, simulation is strictly stronger
than language inclusion. This is also illustrated by Figure 1.

u u′
a

a

b

a

b

v v′?

v′1

v′2

a

a

a

b

Figure 1: An automaton that illustrates that L(u) ⊆ L(v) does not necessarily imply
u ≤A v. In this automaton, L(u) = L(a(a∗|b∗)) = L(v), but neither v′1 nor
v′2 simulate u′, which implies u � v

In a Deterministic Finite Automaton (DFA), that is an NFA in which |I| = 1 and
∀q c. |δ(q, c)| = 1, this situation does not occur – the simulation preorder and right
language inclusion are equivalent for DFAs.
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2.3 Properties of the simulation preorder

2.3.1 Reflexivity

Obviously, any state in an automaton can simulate itself, i. e. for all u ∈ Q, we have
(u, u) ∈ SA and, equivalently, u ≤A u. This can be shown easily by showing that
{(u, u) | u ∈ Q} is a simulation:

u = v =⇒ (u ∈ F ⇒ v ∈ F ) ∧

(∀c ∈ Σ. ∀u′ ∈ δ(u, c). ∃v′ ∈ δ(v, c). u′ = v′)

Both conditions are trivially fulfilled. Therefore, {(u, u) | u ∈ Q} is a simulation,
which implies that it is contained in SA, which implies that SA is reflexive.

2.3.2 Transitivity

The proof for transitivity requires reasoning about the transitive closure S+
A of SA.

It can be shown that S+
A is equal to SA by showing that S+

A is a simulation itself.

The condition that needs to be verified for S+
A to be a simulation is:

(u,w) ∈ S+
A =⇒ (u ∈ F ⇒ w ∈ F ) ∧

(∀c ∈ Σ. ∀u′ ∈ δ(u, c). ∃w′ ∈ δ(w, c). (u′, w′) ∈ S+
A)

This can be shown quite easily by induction over the assumption (u,w) ∈ S+
A , using

the inductive definition of the transitive closure. For details, refer to the formal proof
in Isabelle.

2.4 Reduction of NFAs using simulation preorders

In [INY04] and [CC03], three criteria related to simulation preorders for reducing
NFAs are given. Two states u, v ∈ Q can be merged if one of the following holds:

1. u ≤A v and v ≤A u

2. u ≤A−1 v and v ≤A−1 u

3. u ≤A v and u ≤A−1 v and L(u, u) = {ε}

7
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The reason for this is that for arbitrary p, q ∈ Q, the property p ≤A q implies ~L(p) ⊆
~L(q) and p ≤A−1 q implies ~L(p) ⊆ ~L(q). Therefore, each of the three properties
above implies the corresponding following one:

1. ~L(u) = ~L(v)

2. ~L(u) = ~L(v)

3. ~L(u) ⊆ ~L(v) and ~L(u) ⊆ ~L(v) and L(u, u) = {ε}

The intuitive explanations for why states can be merged if one of these properties
applies are:

1. Once the automaton is in u or v (by reading some word w1), it will accept w2 if
it is in u iff it accepts w2 when it is in v. Therefore, it does not matter whether
the automaton is in u or in v and we may simply contract the two states, since
they behave the same.

2. Since ~L(v) = ~LA−1(v), we have right language equality of u and v inA−1. This
means that by property 1, we can merge u and v in A−1, and this implies that
we can merge them in A as well.

3. For each path that leads from an initial state to u, there is a path from an initial
state to v since ~L(u) ⊆ ~L(v). Also, for each path that leads from u to a final
state, there is a path from v to a final state since ~L(u) ⊆ ~L(v). Therefore, the
state u is completely subsumed by the state v and we can therefore simply
delete u – or, equivalently, merge it with v. The condition L(u, u) = {ε}means
that u may not be non-trivially reachable from itself, i. e. it may only occur
once on any path. This is necessary for the reduction to work [CC05].

However, it is crucial to be aware that merging states according to one of these
properties can interfere with another property. If one merges two states u and v to
some state z due to property 1, the ≤A−1 preorder can change and if one merges
them due to property 2, the ≤A preorder may change.1 This, of course, means that
merging states due to one property may reduce one’s possibilities to merge states
in later steps. Therefore, some merging strategies can lead to smaller automata than
others. In [ISoY05], it is shown that the problem of using these preorders to reduce
an NFA optimally is in fact NP-hard.
1By changewemean that the left and right languages of a new state z may not have a certain property
w. r. t. another state even though the left and right languages of u or v did.

8
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3 The algorithm and the refinement process

3.1 Using the Refinement Framework

Before explaining our correctness proof, we will give a short introduction to how
refinement in general and with the Refinement Framework in particular works. For
a detailed introduction, see [LT12].
Verification by refinement works by first formalising the algorithm on a mathe-

matical level, i. e. working with sets, set comprehensions and so on. Having proven
this abstract algorithm correct, the next step is to successively replace the abstract
statements with more concrete computations, e. g. set comprehensions are replaced
by loops that compute the set. Optimisations such as caching can also be performed
in this way; for instance, a complex expression may be replaced with a cache lookup.
In each step, the refinement has to be proven correct, i. e. one has to prove that the
refined algorithm still does (roughly) the same.2

The advantage of this approach is that most of the interesting part of the correct-
ness proof is done on a very abstract level and the optimisations and implementation
details can be handled separately, after the correctness of the basic algorithm has
already been shown. If one were to prove the entire algorithm without these re-
finement steps, the proof would be very lengthy and difficult to understand and
maintain.

The verification and refinement process is supported by the Refinement Frame-
work with a number of tools, such as a nondeterministic3, monadic programming
language in which abstract algorithms can be implemented easily, a verification con-
dition generator (VCG) to prove the correctness of algorithms in this language, a
refinement condition generator (RCG) to guide the refinement process by extracting
the relevant proof obligations that arise from replacing parts of the algorithm and a
number of other tools that automate parts of the process.

2roughly the same means that, due to nondeterminism, the refined algorithm may have only a subset
of the possible results of the original algorithm, and also, the result may have a different “format”
if data refinement is used. (see 3.4.1)

3The reason why nondeterminism is often required even though the resulting algorithms are, of
course, deterministic, is that on the abstract level, one often has operations such as return some
arbitrary element of the set A and can therefore have many possible results – or indeed none. The
notion programme 1 refines programme 2 then means that programme 1 returns a (not necessarily
proper) subset of the possible results of programme 2. Ideally, in the end one has an executable
programme that has exactly one result and that refines the set of all valid results.

9
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3.2 The abstract algorithm

In this section, we will now define our modified version of the algorithm given in
[INY04] and explain, on an intuitive level, why it is correct.
The idea behind computing simulation preorders is that nonsimulatability4 of

pairs of states propagates backwards in the automaton: for one state v to simulate
another state u, we need to be able to match every step from uwith an equivalent
step from v, i. e. if we know that for some u′ ∈ δ(u, c) there is no v′ ∈ δ(v, c) which
simulates u′, we can conclude that v cannot simulate u.

We can therefore start with an initial, coarse5 estimate of our simulation preorder
SA and successively remove pairs (u, v) that violate the simulation condition6 until
there are no such pairs anymore.
As the initial estimate, we take the set of all (u, v) with u ∈ F ⇒ v ∈ F , which is

the largest set of state pairs that fulfil the first property of a simulation. The follow-
ing piece of pseudocode, which is similar to the abstract algorithm for simulation
preorders on node-labelled graphs given by Henzinger et al in [HHK95], illustrates
this principle of successively removing pairs that violate the second condition:

Algorithm 1 compute_SA_naive(A)
1 S := (Q \ F )×Q ∪ F × F
2 while ∃(u, v) ∈ S. ∃c ∈ Σ. ∃u′ ∈ δ(u, c). @v′ ∈ δ(v, c). (u′, v′) ∈ S do
3 obtain such a (u, v)
4 S := S \ {(u, v)}
5 end while

However, this algorithm is rather inefficient. In each iteration, it traverses the
entire set S , looking for a violating pair. Ilie et al. use several modifications to make
the algorithmmore efficient. First of all, they do not compute≤ directly, but compute
� instead, successively adding pairs of states. The incomplete � relation is called ω
in the algorithm.

Furthermore, they introduce an additional set C which stores all those state pairs
in ω that have not been processed yet, i. e. the (u′, v′) of which we know that v′ does
not simulate u′, but we have not propagated that information backwards to the

4For lack of a better word. What we mean by nonsimulatability of a pair (u, v) is that (u, v) cannot be
in a simulation, i. e. u � v.

5coarse meaning all the pairs that are in SA are in our relation, but there may also be pairs in our
estimate that are not in SA.

6the two properties in the definition of a simulation relation, although we can take care of the
u ∈ F ⇒ v ∈ F condition in our initial estimate so that we only have to check for pairs violating
the second condition

10
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predecessors of u′ and v′. This way, we do not have to look for violating pairs in each
iteration but can simply take a (u′, v′) from C and propagate its nonsimulatability,
adding to ω and C all (u, v) for which v cannot simulate u any longer due to this
new information.

Algorithm 2 INY_basic(A)
1 ω := F × (Q \ F ) ∪ {(u, v) | ∃c. δ(u, c) 6= ∅ ∧ δ(v, c) = ∅}
2 C := ω
3 while C 6= ∅ do
4 obtain (u′, v′) ∈ C
5 C := C \ {(u, v)}
6 T := {(u, v) | c ∈ Σ, v ∈ δ−1(v′, c), u ∈ δ−1(u′, c).

(u, v) /∈ ω ∧ ∀v′′ ∈ δ(v, c). (u′, v′′) ∈ ω \ C} 7 8

7 ω := ω ∪ T
8 C := C ∪ T
9 end while
10 return ω

For given u′ and v′, the setT is the set of all pairs (u, v) /∈ ωwhere u is a predecessor
of u′ w. r. t. c ∈ Σ and v is a predecessor of v′ w. r. t. some c ∈ Σ so that v can no
longer simulate u. It is the set of all pairs that are affected by the fact that v′ cannot
be simulated by u′. Therefore, we have to add T to ω and C.

Note that the second part of the initialisation of ω and C is crucial. Ilie et al. have
chosen F × (Q \ F ) as their initial value for ω and C. This is a mistake, since it fails
to recognise the nonsimulatability of states u, v where there is a u′ ∈ δ(u, c), but
δ(v, c) = ∅, meaning a step from u to u′ with the character c cannot be matched with
any step from v at all. A simple example would be the following automaton:

u v

c

Figure 2: An example for an automaton where u � v for which the algorithm given
by Ilie et al. erroneously computes ω = ∅ and therefore (u, v) /∈ ω.

This, of course, can only be the case in non-total automata. For total automata,
the algorithm works as described in [INY04].

7Note that the syntax {t(a, b, c) | a ∈ A, b ∈ B, c ∈ C. P (a, b, c)}means
{t′ | ∃a ∈ A, b ∈ B, c ∈ C. t′ = t(a, b, c) ∧ P (a, b, c)}.

8You may wonder why it says ω \ C and not ω. The reason for that is that with ω \ C, this expensive
condition can later be optimised easily, but with ω, this would not be possible (see p. 17).
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3.3 Verification

In order to prove the correctness of the algorithm, we first need to give a loop
invariant and a termination proof for thewhile loop.

3.3.1 Termination

Termination can be proven by giving a well-founded relation over our variables ω, C
and showing that the ω′, C′ obtained at the end of one iteration are smaller w. r. t.
that relation than the original ω, C. A good choice for such a relation is a strict order
based on the measure function φ(ω, C) = |(Q×Q) \ (ω \ C)|. In each iteration, this
measure decreases by 1, since we only add elements to both ω and C and remove
exactly one element from C.

3.3.2 Loop invariant

The loop invariant we chose contains the following five facts:

1. ω ⊆ Q×Q

2. F × (Q \ F ) ⊆ ω
(ω contains all (u, v) that violate simulation condition 1)

3. C ⊆ ω

4. ω ∩ SA = ∅
(i. e. ω never becomes too large)

5. (u, v) /∈ ω ∧ u′ ∈ δ(u, c) =⇒ ∃v′ ∈ δ(v, c). (u′, v′) /∈ ω \ C
(i. e. after each iteration, ω is “large enough”; each (u, v) /∈ ω must “justify” its
absence from ω by providing a suitable successor v′ to match any step from u

to some u′)

It can be seen quite easily that our initial values for ω and C fulfil these conditions.
We will now proceed to prove the conservation of these properties after a single
iteration of the loop.

Properties 1-3: The first three properties of the invariant are trivially preserved
by an iteration

Property 4: In essence, we have to show that none of the pairs in T can be in a
simulation relation. This is because the condition for simulating pairs is a
direct contradiction to the definition of T .

12
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Property 5: This reduces to showing that for any (u, v) ∈ T and u′′ ∈ δ(u, c), there
is a v′′ ∈ δ(v, c) such that (u′′, v′′) ∈ ω \ C (which implies (u′′, v′′) 6= (u′, v′), as
(u′, v′) was just removed from C).

This means that if the simulation of u by v relied on the simulation of u′ by
v′ so far and (u, v) is still not in ω after the iteration, there has to be another
suitable v′′ ∈ δ(v, c) for any step from u to u′ with c that previously relied on
simulation of u′ by v′. This is the case because of the definition of T : if there
were no such (u′′, v′′), the pair (u, v) would be in T .

At this point, we have shown that the loop terminates and preserves the invariant.
What remains to be shown is that if the invariant still holds for C = ∅, this implies
the correctness of the algorithm, i.e. SA = (Q×Q) \ ω:

⊆: because ω ⊆ Q × Q and ω ∩ SA = ∅ (from invariant) and SA ⊆ Q × Q (by
definition)

⊇: because (Q × Q) \ ω is a simulation and SA contains all simulation relations.
The fact that it is a simulation is a direct consequence of invariant properties 1,
2, and 5, which correspond directly to the definition of a simulation relation.

Therefore, the algorithm correctly computes the correct value for ω. This concludes
the essential part of the verification; what remains is the concretisation of the abstract
operations in the algorithm, such as the set comprehensions and the ∀ condition.

3.3.3 Refinement

We will now refine the set comprehension in thewhile loop with nested for each
loops. Recall that the set T was defined as:

T := {(u, v) | c ∈ Σ, v ∈ δ−1(v′, c), u ∈ δ−1(u′, c).

(u, v) /∈ ω ∧ ∀v′′ ∈ δ(v, c). (u′, v′′) ∈ ω \ C}

Each of the loops effectively removes one of the three quantified variables c, v, and
u in the set comprehension by iterating over all possible values for the variable. We
will proceed in this order, i.e. the outermost loop iterates over all c ∈ Σ, the next over
all v ∈ δ−1(v′, c) and so on. The conditions (u, v) /∈ ω and ∀v′′ ∈ δ(v, c). (u′, v′′) ∈
ω \ C will be transformed to if statements in the loops. Since the second condition
depends only on v and c, but not on u, the corresponding if statement can be moved
outwards to the loop over all v.
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A subtle complication in the refinement of the algorithm is that it works with
nested loops over all c ∈ Σ, all v ∈ δ−1(v′, c) and so on, updating ω and C with every
iteration. Therefore, later loop iterations do not operate on the original ω – they
already work with an updated version of ω that may contain more elements than
the original ω. However, since any elements added to ω are also added to C, the set
ω \ C stays invariant, which means that the changing ω and C do not change the
overall result, as the loop iterations only work with ω \ C.

It became apparent that due to complications with the nested loops and changing
ω and C, it is easier to use not ω′ = ω ∪ T and C′ = C ∪ T , but a generalised version
of this. In this generalised condition, we allow an arbitrary set T ′ to be added to ω
and C as long as it has the following two properties:

1. T ⊆ T ′ (T ′ must be large enough)

2. T ′ ∩ SA = ∅ (T ′ must not be too large)

The abstract algorithm with the modified obtain statement looks like this:

Algorithm 3 INY_abstract1(A)
1 ω := F × (Q \ F ) ∪ {(u, v) | ∃c. δ(u, c) 6= ∅ ∧ δ(v, c) = ∅}
2 C := ω
3 while C 6= ∅ do
4 obtain (u′, v′) ∈ C
5 C := C \ {(u′, v′)}
6 obtain (ω′, C′) ∈ {(ω′, C′) | T ′ = ω′ − ω = C′ − C and T ′ is valid}
7 ω := ω′

8 C := C′
9 end while
10 return ω

T ′ is valid ⇐⇒ T ⊆ T ′ and T ′ ∩ SA = ∅
(where T is defined as before)

For our refinement, we now have to replace the statement in line 6 with a for each
loop that iterates over all c ∈ Σ and computes such a pair (ω′, C′). This loop will
contain a similar obtain statement, but without the quantification over c. We need
to replace this statement with another for loop that iterates over all v ∈ δ−1(v′, c)

and so on, until no obtain statements remain.
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The three loops look like this:

Algorithm 4 INY_abstract2_loopc(A, ω, C, u′, v′)
1 for each c ∈ Σ do
2 obtain (ω′, C′) ∈ {(ω′, C′) | T ′1 = ω′ − ω = C′ − C and T ′1 is valid}
3 ω := ω′

4 C := C′
5 end for
6 return (ω, C)

T ′1 is valid ⇐⇒ T1(c) ⊆ T ′1 and T ′1 ∩ SA = ∅
where T1(c) = {(u, v) | v ∈ δ−1(v′, c), u ∈ δ−1(u′, c).

(u, v) /∈ ω ∧ ∀v′′ ∈ δ(v, c). (u′, v′′) ∈ ω \ C}

Algorithm 5 INY_abstract3_loopv(A, ω, C, u′, v′, c)

1 for each v ∈ δ−1(v′, c) do
2 if ∀v′′ ∈ δ(v, c). (u′, v′′) ∈ ω \ C then
3 obtain (ω′, C′) ∈ {(ω′, C′) | T ′2 = ω′ − ω = C′ − C and T ′2 is valid}
4 ω := ω′

5 C := C′
6 end if
7 end for
8 return (ω, C)

T ′2 is valid ⇐⇒ T2(c, v) ⊆ T ′2 and T ′2 ∩ SA = ∅
where T2(c, v) = {(u, v) | u ∈ δ−1(u′, c). (u, v) /∈ ω}

Algorithm 6 INY_abstract4_loopu(A, ω, C, u′, v′, c, v)

1 for each u ∈ δ−1(u′, c) do
2 if (u, v) /∈ ω then
3 ω := ω ∪ {(u, v)}
4 C := C ∪ {(u, v)}
5 end if
6 end for
7 return (ω, C)
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After successively expanding all the obtain statements in the algorithm with the
corresponding loops defined above, we get the following pseudocode:

Algorithm 7 INY_abstract4(A)
1 ω := F × (Q \ F ) ∪ {(u, v) | ∃c. δ(u, c) 6= ∅ ∧ δ(v, c) = ∅}
2 C := ω
3 while C 6= ∅ do
4 obtain (u′, v′) ∈ C
5 C := C \ {(u′, v′)}
6 for each c ∈ Σ do
7 for each v ∈ δ−1(v′, c) do
8 if ∀v′′ ∈ δ(v, c). (u′, v′′) ∈ ω \ C then
9 for each u ∈ δ−1(u′, c) do
10 if (u, v) /∈ ω then
11 ω := ω ∪ {(u, v)}
12 C := C ∪ {(u, v)}
13 end if
14 end for
15 end if
16 end for
17 end for
18 end while
19 return ω

In summary: in each iteration of the while loop, one state pair (u′, v′) is removed
from C and the nonsimulatability of (u′, v′) is propagated to the predecessors of u′

and v′, i. e. for all predecessors u of u′ and v of v′ (w. r. t. to some c ∈ Σ), we check
whether (u, v) is affected by the fact that u′ cannot be simulated by v′. If, taking this
new information into account, there is no successor v′′ of v left that can simulate u′,
we now know that v cannot simulate u either, since u can make a step to u′ with c,
but v cannot match this step. Therefore, (u, v) must be added to ω and C.
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Note that the condition of the first conditional, which contains a ∀, was not ex-
panded to a for each loop. The reason for this is that there is a less expensive way to
evaluate this condition without iterating over the entire set δ(v, c): we introduce a
counter N(c, u′, v) that keeps track of the number of the v′′ ∈ δ(v, c) that are not in
ω \ C, i. e. the successors of v w. r. t. c that may – according to the knowledge at that
point of the computation – be used to simulate u′, or which are already known not to
simulate u′ but where this information has not been propagated to the predecessors
yet.

In the beginning, this number is equal to |δ(v, c)| for each triple c, u′, v, since
ω = C. Intuitively: in the beginning, we have not propagated any information, so all
successors of v w. r. t. c fulfil the conditions stated in the previous paragraph, which
is why N(c, u′, v) is simply the number of all successors of v w. r. t. c. During the
execution of the algorithm, counter values will decrease due to backpropagation of
nonsimulatability. Theminimum value is, of course, 0. When a counter value reaches
0, this means no successor of v can be used to simulate u′, which, of course, means
that v cannot simulate any predecessor w. r. t. c of u′. We can therefore replace the
condition in the conditional withN(c, u′, v) = 0, but also need to decreaseN(c, u′, v)

for all c ∈ Σ, v ∈ δ−1(v′, c) whenever we remove some (u′, v′) from C, since this
means that another successor of v w. r. t. c is now known to be unable to simulate u′.
For efficiency, we also store |δ(v, c)| for all v and c in a counter called d (these

values are required in the initialisation of ω, C and N ) and we store δ−1(v, c) for all
v and c in a map δr.

In [INY04], N increases from 0 to a maximum of |δ(v, c)|. We chose to implement
a decreasing counter instead in order to eliminate the lookups in the map d. This
has led to an increase in performance of roughly five per cent compared to the
increasing counter version of the algorithm that was first implemented.
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The optimised algorithm using N , d, and δr looks like this:

Algorithm 8 INY_abstract5(A)
1 for each v, c do d(v, c) := |δ(v, c) |
2 for each v, c: do δr(v, c) := δ−1(v, c)
3 for each c, u′, v: do N(c, u′, v) := d(v, c)
4 ω := F × (Q \ F ) ∪ {(u, v) | ∃c. d(u, c) 6= 0 ∧ d(v, c) = 0}
5 C := ω
6 while C 6= ∅ do
7 obtain (u′, v′) ∈ C
8 C := C \ {(u′, v′)}
9 for each c ∈ Σ do
10 for each v ∈ δ−1(v′, c) do
11 N(c, u′, v) := N(c, u′, v)− 1
12 if N(c, u′, v) = 0 then
13 for each u ∈ δ−1(u′, c) do
14 if (u, v) /∈ ω then
15 ω := ω ∪ {(u, v)}
16 C := C ∪ {(u, v)}
17 end if
18 end for
19 end if
20 end for
21 end for
22 end while
23 return ω

The algorithm still contains a set comprehension in the initialisation. However,
since the implementation is trivial – two nested for each loops with conditionals
that test whether d(u) (resp. d(v)) are non-zero (resp. zero) – we will not write it out
in full. In fact, the initialisation of N , d, and δr is also done somewhat differently in
the algorithm that was defined and verified in Isabelle for reasons of efficiency, and
it is implemented in a separate refinement step, but these are minor details, which
is why we will not describe them in detail here.

3.3.4 Refinement proofs

The correctness proofs for these refinements are relatively straightforward: with
each consecutive replacement of a set comprehension with a for each loop, the
invariant is generalised; for instance, in the loop over all c ∈ Σ the invariant states
that the nonsimulatability of (u′, v′) has been propagated to all predecessors w. r. t.
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some c ∈ Σ \ Σ′, where Σ′ is the set of characters left in the iteration. For technical
reasons, the information (u′, v′) ∈ C is also carried in the invariants. For Σ′ = Σ,
the new invariant is directly implied by the invariant above it, and conversely, for
Σ′ = ∅, the new invariant implies the invariant above it for the next iteration.

After three such refinement steps, the only set comprehensions left are the ones
in the initialisation. The next step is to introduce the counter. This requires augmen-
tation of all the loop invariants with the condition that

∀c, u′, v. N(c, u′, v) = |{v′′ ∈ δ(v, c) | (u′, v′) /∈ ω \ C}|

and similar generalisations of this for the inner loop invariants.
Another small number of refinement steps are then performed to introduce d

and δr and to compute the initial values of ω, C, N , d, and δr. After all of this, the
algorithm would already be executable were it not for the lack of concrete data
structures. At this stage, we still operate on abstract mathematical sets (ω, C, . . . ) and
(partial) functions (N , d, δr). In the next step of the refinement process, these need
to be replaced with data types that the code generator can handle.

3.4 The concrete algorithm and code generation

3.4.1 Data refinement and concretisation

In general, data refinement is the process of replacing data types in an algorithmwith
other data types that refine the original ones. “Refine” means that throughout the
execution of the algorithm, the original abstract value and the new concrete value
must be in a refinement relation. This relation relates two values if the concrete value is
an implementation of the abstract one. The refinement relation can often be written
in the form {(s, s′) | invar(s) ∧ s′ = α(s)}, where invar is some invariant for the
concrete value and α is an abstraction function that transforms the concrete value
to an abstract value. This is the most common case, in which the refinement relation
is single-valued, i. e. any well-formed concrete value represents one (and only one)
abstract value, but an abstract value may have several corresponding concrete values
– or indeed none at all.

A simple example would be the representation of an set with a distinct list. The
refinement relation then is {(s, s′) | s is a distinct list ∧ s′ = set(s)}.9 Note that the
concrete values [23, 42] and [42, 23] correspond to the same abstract value {23, 42},
9A distinct list is a list in which no element occurs more than once, set(s) denotes the set of all values
that occur in the list s.
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whereas the concrete value [42, 42] corresponds to no abstract value at all, since
it does not fulfil the invariant, and the abstract value {1, 2, 3, . . .} does not have a
corresponding concrete value either, since lists are always finite.

Another possible use for data refinement is optimisation, e. g. one might augment
the abstract value with some kind of cache in order to avoid superfluous evaluations
of an expensive expression. For example, the introduction of the counter N was
data refinement: the abstract value is (ω, C), the concrete value is (ω′, C′, N) and the
two are related iff ω′ = ω, C′ = C (the abstraction function) and N has the correct
value for all c, u′, v (the invariant for the concrete value).

Since the optimisations have already been performed, the only remaining data
refinement is the replacement of abstract data types with concrete implementations.
The remaining steps from here on are simple, but can become quite tedious, es-
pecially in relatively complex algorithms such as this. The three remaining steps
that are necessary in order to obtain executable code for our algorithm with the
Refinement Framework are:

1. Replacing the abstract mathematical data types (such as HOL sets and (partial)
HOL functions) with generic interfaces for data structures provided by the
Collection Framework [LL10] that offer the same functionality. (StdSet and
StdMap, respectively) These correspond to abstract data structures such as the
Set andMap interfaces in Java. The connection between the abstract HOL data
types and the concrete Collection Framework data types is also done with an
abstraction function α and an invariant invar. α takes a concrete value, e. g. an
StdSet and returns the corresponding abstract HOL set. The invariant ensures
that the data structure is well-formed (recall the earlier example of the distinct
list).

In order for the implementation to be correct, the operations on the concrete
data types must satisfy certain correctness properties that state that the op-
erations are compatible with the abstraction, e. g. for a well-formed value x,
the abstract operation on α(x) yields the same result as the abstraction of the
concrete operation on x and the result must again be well-formed. For the set
insertion operation, for instance, the correctness property is:

invar(A) =⇒ α(set_ins(a,A)) = α(A) ∪ {a} ∧ invar(set_ins(a,A))
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2. Replacing for each loops with so-called iterators. These iterators are genera-
lised versions of the fold functions in functional programming languages; an
iterator is obtained by using an iterator function on a set data structure10 A.
The iterator is then a function that takes as arguments an initial state σ0 (some
value) and a function f that takes a state and an element of the set andproduces
a new state. The iterator then takes some element a0 from A and computes
σ1 = f(σ0, a0), takes another element a1 from A and computes σ2 = f(σ1, a1)

and so on. Basically, the iterator computes f(. . . f(f(σ0, a0), a1) . . . , a|A|−1).
There are different iterator functions with different properties, but we will
only require the most basic one, set_iteratei.11

3. Replacing the interfaces (e. g. StdSet and StdMap) with concrete implementa-
tions (e. g. red-black tree-based set, distinct list, and hash set (resp. red-black
tree-basedmap and hashmap). These concrete implementations correspond to
collection classes like TreeSet andHashSet (resp. TreeMap andHashMap) in Java.

In order to perform these three steps, we first need some environment in which
we have all the required iterator functions and data structures and the required
operations on them. This is done by declaring a locale and assuming the existence
of these operations. For example, our algorithm computes a relation as a result,
i. e. a set of pairs of automaton states. As a HOL type, this would be written as a
’q×’q set. Therefore, the algorithm requires some data type ’qq_set that serves as a
concrete implementation of a ’q×’q set. In order to provide such a data structure,
the locale fixes a type ’qq_set and a set of operations qq_set_ops :: "(’q×’q, ’qq_set, _)
set_ops_scheme" and assumes its correctness, i. e. StdSet qq_set_ops.12

Within this locale, we can then reformulate statements such as ω′′ ∪ {(u, v)}
as qq_set.ins((u, v), ω′′).13 14 The correctness proof for this is mostly automatic, the
conditions produced by the refinement condition generator can be proven immediately
with the correctness assumptions about the set/map operations. For instance, if we
10i. e. some implementation of StdSet
11For instance, there is also set_iterateoi, which returns an iterator that traverses the set in ascending

order. set_iteratei does not provide any information about the order of traversal, it can be thought
of as fully nondeterministic.

12StdSet is a locale provided by the Collection Framework that contains the correctness lemmas (see
example with set_ins on previous page) for all the operations in the operation record.

13Note that the ω′′ in the first expression is a HOL set of type ’q×’q set, whereas the ω′′ in the second
expression is a Collection Framework set of type ’qq_set.

14We use the mathematical notation f(x, y) for function application here instead of the functional
programming notation f x y for reasons of consistency. In Isabelle, the latter is, of course, used.
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replace a ∅ in the algorithm with a qq_set.empty (), the RCGwill generate a condition
(qq_set_ops.empty (), ∅) ∈ br qq_set_ops.α qq_set_ops.invar, i. e. qq_set.empty () returns
a valid data structure and this data structure corresponds to an empty set.
The refine_autoref proof tactic provides automation for this entire process by

replacing sets and maps and the operations on them with StdSet and StdMap and
the corresponding operations and proving the correctness of these modifications
automatically. However, it requires a rather complicated setup and tends to get stuck
halfway through the process for subtle reasons that only a highly experienced user
can pinpoint and fix. Therefore, only two refinement steps were performed with
this method, with considerable assistance from Peter Lammich.
A minor complication in this particular algorithm is that we have nested data

structures, namely the function δr, that returns a set. Therefore, we cannot simply
refine this to an StdMap that maps to a HOL set, nor can we refine it to a HOL
function that returns an StdSet, but we must refine it to an StdMap that returns an
StdSet. In order to do this, we must also define a special invariant and abstraction
function for this StdMap. This invariant needs to ensure that not only does the
invariant of the map itself hold, but also the invariant of all the sets it contains;
similarly, the abstraction does not only apply abstraction to the map, but also to the
sets that are contained in it. It would be interesting to investigate the possibility of
automating these nested cases in future versions of the framework.
Once we have eliminated all the abstract HOL datatypes and for each loops

from the algorithm, we have a working and executable version that computes the
complement of the simulation preorder. From this, we can easily compute the actual
simulation preorder by subtracting ω from Q×Q, which we do in a function called
compute_SA. This function is now defined and proven correct inside the locale, i. e.
under the assumption that suitable data types and a valid NFA A exist. We can
then do the next concretisation step in another locale by deriving an algorithm that
works on a specific implementation of an NFA, namely NFA_by_LTS, which is an
NFA that uses a so-called labelled transition system (LTS) internally. For convenience,
we also collect all the required data structure operations in a record type. This locale
can then be interpreted by giving such a record of concrete implementations for the
data types, e. g. for qq_ops, we can use rs_ops for red-black trees or lsi_ops for distinct
lists. We then have a completely executable algorithm and a theorem that states
that, when given a valid NFA A, the algorithm correctly computes its simulation
preorder SA.
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The problem now is thatwe have an algorithm that is defined inside our locale and
a lemma inside the locale that states that it always works. However, what we want is
an algorithm that is defined outside of our locale (i. e. without any assumptions) and
a lemma that states that this algorithm works if it is given a valid NFA as a parame-
ter.15 In order to do this, we have to make a number of boilerplate definitions, and
in the end,we have a constant rs_nfa_simulation_preorder and the following corollary:

corollary rs_nfa_simulation_preorder_correct:

nfa_by_lts_defs.nfa_invar rs_ops rs_ops rs_lts_dlts_ops A_impl =⇒

ahs_invar (rs_nfa_simulation_preorder A_impl) ∧

ahs_α (rs_nfa_simulation_preorder A_impl) =

NFA.SA (nfa_by_lts_defs.nfa_α rs_ops rs_ops rs_lts_dlts_ops A_impl)

The meaning of this corollary is: if A_impl encodes a valid NFA A, the function
rs_nfa_simulation_preorder_correct returns an Array Hash Set (note the ahs_α) that
contains SA, i. e. the algorithm is now proven correct. Using Isabelle’s export_code
command, we can now generate verified ML code for compute_SA.

3.4.2 Complexity

In contrast to correctness, the complexity of the algorithm was not proven formally
in this thesis due to the lack of a framework for such proofs. Instead, we will give
a short, informal complexity analysis. In [INY04], it is stated that the complexity
of the algorithm is O(mn) wherem is the number of transitions in the automaton
and n is the number of states. This is not immediately obvious from the four nested
loops, and can be explained as follows:

The initialisation can obviously be performed in O(m+ n2). For the main loop,
the complexity is not quite that obvious. Before we can analyse the main loop, we
need the following lemma for the initial value of N :∑

c,u′,v

N(c, u′, v) =
∑
c,u′,v

|δ(v, c)| = n
∑
c,v

|δ(v, c)| = mn

This means that the sum of all entries in N initially ismn. This will be important
in the following analysis. We will now consider blocks of commands in algorithm 8
on page 18 separately and determine upper bounds for how often they are executed.

15This assumption is, at this state, still part of the assumptions of the locale as well.
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Lines 7–8: reached at most n2 times, since every (u′, v′) ∈ Q×Q can be taken from
C at most once.

Lines 11–12: reached at mostmn times, since one entry in N decreases every time
while the others remain the same, and the sum of all values in N is initially
mn and always non-negative.

Line 13: reached at most once for a given triple c, u′, v, since N(c, u′, v) can only
become zero once. Thus, this line is reached at most n times for given c, u′.

Line 14–16: the number of iterations per loop for c, u′ is |δ−1(u′, c)|. Summed over
all c, u′, this is exactlym (because all transitions are of the form (u, c, u′) for
some c ∈ Σ, u′ ∈ Q and u ∈ δ−1(u′, c)). We also know that the loop in line 13
is reached at most n times, therefore the commands in lines 14–16 are reached
at mostmn times.

Therefore, if we assume constant time for all operations (which is possible with
efficient data strucures), the overall complexity of the algorithm isO(mn+n2). If we
further assumem ≥ n− 1 (which is always the case if the automaton is connected,
i. e. in most cases), this is equivalent to O(mn).
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4 Testing and Evaluation

4.1 Example results

The verified ML code can now be used directly. In the context of his Isabelle au-
tomata library and the Hopcroft minimisation algorithm, Thomas Tuerk has created
excellent ML testing functions for parsing, printing, and drawing automata and
generating random NFAs. We used these in order to test the exported ML code on a
simple example.

For instance, consider the following automaton:

0

1

2

a

a

a

a

Figure 3: A simple example NFA that is used to test the algorithm.

The following Standard ML code creates a representation of this automaton and
applies the simulation preorder algorithm we have exported to it:16

use "Automata_RBT.sml";

open NFA_string;

val automaton1 = NFA_string.nfa_construct ([], [], [(0, ["a"

], 1), (0, ["a"], 2), (1, ["a"], 2), (2, ["a"], 2)],

[0], [2]);

val sim = nfa_simulation_preorder automaton1;

ArrayHashSet.ahs_to_list hashable_natprod sim;

The result is:

val it = [(2, 2), (1, 2), (1, 1), (0, 2), (1, 0), (0, 1),

(0, 0)]: (int * int) list

16A few lines of ML code were written as a wrapper around the rs_nfa_simulation_preorder func-
tion, since it expects not only an automaton, but also, among other things, a linear ordering on
the label type. nfa_simulation_preorder merely calls rs_nfa_simulation_preorder with appropriate
orderings/hash functions.
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This means that 0 ≤A 1 ≤A 2 and 1 ≤A 0, which can easily be checked by looking
at Figure 3. Every path beginning at 0 can be matched with a path beginning at
1 and so on. Moreover, since 0 ≤A 1 and 1 ≤A 0, we can see directly that 0 and 1

are equivalent, i. e. they have the same right language and could therefore bemerged.

4.2 Performance benchmark

Extensive evaluation has shown that the best choice of data structures for the al-
gorithm in its current form is using array hash sets for ω, a distinct list-based set
implementation for C and array hash maps for N , d, and δr. These data structures
provide (almost) constant-time implementations of all the operations used in the
algorithm, the exception being the addition used in calculating hash codes, which is
of logarithmic complexity. The sets of the automaton itself, Q, Σ, ∆, and F are also
of type RBTSet, but since the algorithm does not perform any operations on them
save iteration, their internal representation is virtually irrelevant for its performance.

In order to see how the performance of the generated ML code compares to
unverified, imperative code, we implemented the same algorithm and the same
random NFA generation functions in Java and compared the average computation
time of the algorithm fordifferent parameters. Both inML and in Java, an appropriate
number of random NFAs with n states (i. e. |Q| = n), 4 labels (i. e. |Σ| = 4), a
transition density |∆|

|Q|·|Σ| of 0.8 and a final state density |F ||Q| of 0.2 were created. The
algorithm was then run on each of the generated NFAs. n was varied in order to
observe its effect on average computation time per automaton, and the number
of NFAs generated was adjusted so that it was large enough for the results to be
reproducible, but also small enough to still finish within a reasonable amount of
time.

The evaluationwas done on a 3.50GHz Intel Core i7-2700Kwith 32GiB ofmemory.
The ML code was compiled with MLton and the Java code was executed with the
Oracle Java SE Runtime Environment 1.7.0_06-b24. However, the Java code uses
the native data type int, which is a signed 32 bit integer, whereas the ML code
uses IntInf, an arbitrary-precision integer data type. If one requires mathematically
correct code, arbitrary-precision integers are unavoidable, since fixed-size data types
will be unable to handle very large automata. An automaton with 3 billion states
would – theoretically – lead to incorrect behaviour in the Java code. In order to
see the effect of arbitrary-precision integers versus native, fixed-size integers, we
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created a second version of the ML code, manually replacing IntInf in the exported
code with Int, which is also a 32 bit signed integer, comparable to int in Java.
The following figures show average computation time for n ranging from 100 to

2000 in steps of 100.

n tJava[s] tML (IntInf)[s] tML (Int)[s] tML (IntInf)/tJava tML (Int)/tJava

100 0.01 0.15 0.06 11.46 4.44
200 0.04 0.55 0.21 15.24 5.74
300 0.09 1.21 0.50 13.31 5.53
400 0.16 2.24 0.94 14.14 5.91
500 0.25 3.58 1.47 14.26 5.85
600 0.38 4.92 2.04 12.90 5.36
700 0.52 7.06 2.93 13.51 5.60
800 0.69 8.97 3.91 13.08 5.69
900 0.88 11.04 4.48 12.55 5.09
1000 1.08 13.53 5.99 12.48 5.53
1100 1.38 16.13 6.68 11.71 4.85
1200 1.64 20.13 8.93 12.25 5.43
1300 1.92 21.66 9.78 11.31 5.11
1400 2.22 26.34 12.34 11.84 5.55
1500 2.55 30.77 13.96 12.06 5.47
1600 2.93 39.39 15.32 13.44 5.23
1700 3.33 42.97 16.67 12.89 5.00
1800 3.97 47.71 17.86 12.03 4.50
1900 4.40 52.42 22.61 11.92 5.14
2000 4.86 58.74 25.27 12.08 5.20
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The above figure shows the data points of the three programmes in a log/log plot.
The three straight lines are functions fi(n) of the form ai · nbi that have been fitted
onto the data points. The exponents bi were 2.15, 2.13 and 2.07, which is slightly
above the quadratic17 complexity that we deduced theoretically earlier. This de-
viation is most likely due to effects from memory allocation and fluctuations in
computation time, but it should be noted that the exponents are remarkably close
to the prediction of 2 in any case. In fact, if we count the steps of the algorithm,
i. e. how often the innermost for each loop is executed, we get an increase in steps
of almost exactly 4 when doubling the amount of states (e. g. factor 3.97 from 500
states to 1000 states).

The factor by which the verified ML code is slower than the Java code, shown
in the two rightmost columns of the table, is – averaged over all data points – 12.7
for the ML code using IntInf and 5.3 for the ML code using Int. We believe that
this is a good result considering that the Isabelle algorithm is verified and was not
heavily optimised before exporting to ML. Profiling the ML code shows that 17.0 %

in the IntInf version is spent with garbage collection, 36.9 % with arithmetic of IntInf
values and 21.2 % with hash map operations. In the Int version, garbage collection
makes up 27.0 %, hash map operations 32.6 %.
17We say quadratic complexity here since we had a complexity of O(mn) and here we have m ∝ n · |Σ|

with the transition density as the constant of proportionality. Since |Σ| is constant, we therefore
have O(mn) = O(n2) in this particular case.
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5 Conclusion

We proved the correctness of an algorithm for computation of simulation preorders
on NFAs and, in the process, uncovered a minor mistake in the original version from
[INY04] that affects non-total automata; perhaps the authors implicitly assumed
a total automaton without stating that this was the case. Formal verification is a
powerful tool to uncover such implicit assumptions that might otherwise be missed
by others who implement and use the algorithm.

The verified Isabelle algorithm is only about one order of magnitude slower than
a comparable, unverified Java implementation; further optimisation may make the
difference even smaller. This shows the feasability of proving reasonably complex
algorithms correct with the Isabelle Refinement Framework and deriving executable
code with good performance from it, even compared to unverified imperative code.

5.1 Working with the Refinement Framework

Peter Lammich’s Refinement Framework with its step-by-step approach to verifica-
tion made the initial proofs significantly more manageable than a single correctness
proof of the entire algorithm. It allows the user to reason on an abstract level,without
optimisations such as, in this case, the counter that replaces the lengthy condition in
the if statement, and with abstract mathematical objects such as sets and functions
instead of unnecessarily concrete data structures. Proofs on such an abstract level are
easier to write, easier to understand and easier to maintain, since changing the data
structures or other implementation details does not require changing the important
part, i. e. the abstract correctness proof, at all.

Optimisations can be introduced gradually and separately from the algorithm
itself, i. e. local changes in the algorithm only require local correctness proofs. For
instance, when we replaced the condition in the if statement with a zero check on
the counter, we did not have to prove the correctness of the algorithm again, we
only had to prove that the counter always contains the correct information and that
this information is equivalent to the original if statement. If one were to remove
this optimisation or replace it with something else, one would only have to prove
the correctness of these minor changes and the steps afterwards, but nothing about
the algorithm itself, since its correctness has been proven already. It is obvious that
without this framework, the verification of an algorithm like this would probably
not have been possible in the scope of this thesis.
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However, the framework is still in a very early stage of development and it is still
very difficult to use for people who are not deeply involved in its development. Also,
throughout the course of writing this thesis, a small number of bugs18 have been
discovered by us. The major problems with the Refinement Framework at this stage
are:

Lack of automation, especially in data refinement
Parts of data refinement, such as replacing sets and maps with StdSet and
StdMap are a mere technicality, but the user still has to do much of it by hand
in many cases since the automation fails without a careful and subtle setup.
In fact, for all but the most experienced users, setting up the automation for
data refinement currently takes longer than doing the process by hand. Better
automation would contribute significantly to the usability of the framework.

Considerable amount of boilerplate code
For every type of set and map occurring in the algorithm, a corresponding
StdSet/StdMap type has to be fixed in the locale and its correctness assumed.
Similarly, for every kind of for each loop19, an iterator function has to be fixed
and assumed correct. In algorithms with many different data structures and
for each loops, this leads to a huge number of fixed variables and assumptions
in the locale, all of which can be considered boilerplate code. Automation
could also help in this case.
A possible solution for the iterator problem is already on the way; the introduc-
tion of polymorphic iterator functions will enable moving them to the other set
operations in StdSet. This way, the user only has to fix the set operation record
and assume its correctness, but no iterator functions anymore. However, the
boilerplate from the StdSet and StdMap operations remains. Automation of
this is difficult, since the user may want to implement the same abstract type
with different concrete ones in different parts of their code, which the system
cannot know, of course.

18Of course, none of these bugs compromised soundness, which is ensured by Isabelle; everything
that could be proven correct with the Refinement Framework was correct. The bugs were mainly
related to missing rules, which made it impossible to continue refinement of a for each loop in
some complicated cases, and auxiliary commands not doing what they are supposed to do in
some edge cases.

19two for each loops are of a different kind if they iterate over a different type of set or have a different
kind of state (the value they return)
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Locales
At the moment, several locales have to be defined for each algorithm, and
considerable effort is required to then extract the executable algorithm and its
correctness lemma from these locales. Again, automation would be useful for
this process; we suggest some command that generates these locales internally
and hides them from the user. However, it may be difficult to implement such
a mechanism, as a large number of proof obligations arise in this process –
trivial ones, but not all of them can be proven automatically. It is difficult to
say if automation of this is possible.

5.2 Future work

The algorithm verified in this thesis can be integrated with the CAVA project. As
described in chapter 2, simulation preorders can be used to decrease the size ofNFAs
by merging states, and in contrast to NFA minimisation, which is PSPACE-complete
and for which there is therefore no known efficient algorithm, NFA reduction using
simulation preorders can be done in O(mn), i. e. polynomial time. Functions could
therefore be created that perform reduction of NFAs, encoded with the NFA data
structures from the CAVA project, in polynomial time.

It should be noted that in this thesis, there was no particular focus on performance.
It is difficult to match the performance of unverified, hand-optimised imperative
code with verified algorithms using only verified data structures, especially when
the code is exported to another language, as it was in this case. Heavy performance
optimisation would exceed the scope of this thesis, but minor modifications that
could be made to the algorithm in order to increase performance are:

• Instead of ω and C, use variables that contain ω \ C and C. This would reduce
memory requirements by eliminating redundant data, but would also necessi-
tate the use of a more complex data structure for C (as opposed to the currently
used distinct list), as member checks on C would have to be performed often.

• Further improve the Isabelle Collection Framework, especially the hashing-
based data structures, as their performance is exceedingly bad in some cases,
probably due to poor behaviour of the utilised hash functions for product
types.
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• The hash maps could be nested instead of using tuples as keys, which would
eliminate the difficulty of finding a good hash function for product types. The
Java implementation already does this very successfully and we expect this
improvement to lead to a significant increase in performance in the Isabelle
version as well.

As an interesting side note, Büchi automata, which operate on infinite words,
also use designated final states – like NFAs; their acceptance condition is that the
automaton reaches a final state infinitely often as it processes the word. This is very
similar to the acceptance condition on NFAs and it should therefore be possible to
use the same algorithm on Büchi automata without any modifications. Since Büchi
automata are widely used in model checking, an efficient algorithm to compute
simulation preorders on them could be useful to deduce certain properties about
systems modelled by Büchi automata and to reduce the size of these automata. With
some modifications to the initialisation, the algorithm could perhaps be modified
to work for other ω automata as well.

The importance of verified algorithms, despite the tremendous effort20 required
by the verification process, can be illustrated by a bug in an ML automata library
[Lei00] that remained undiscovered for ten years, and by the issue with non-total
automata in the algorithm from [INY04], which exists despite an informal proof of
correctness of the algorithm given in the paper. Also, [CC03] and [INY04] forgot the
property L(u, u) = {ε} in the third condition for merging states (see p. 7), which,
of course, results in incorrect reductions in some cases. Ultimately, only a formal,
computer-checked proof can provide (virtually) absolute certainty that an algorithm
is free of mistakes like these.

20It is sometimes said that rigour comes from rigor mortis. After 2859 lines of proof code for what is
essentially a simple algorithm, we are tempted to agree.
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