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Abstract The Akra–Bazzi method [1], a generalisation of the well-known Master Theorem,
is a useful tool for analysing the complexity of Divide & Conquer algorithms. This work
describes a formalisation of the Akra–Bazzi method (as generalised by Leighton [14]) in the
interactive theorem prover Isabelle/HOL and the derivation of a generalised version of the
Master Theorem from it. We also provide some automated proof methods that facilitate the
application of this Master Theorem and allow mostly automatic verification of Θ -bounds
for these Divide & Conquer recurrences. To our knowledge, this is the first formalisation of
theorems for the analysis of such recurrences.
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1 Introduction

The Master Theorem is the textbook method taught in undergraduate algorithms lectures
for analysing the asymptotic run-time complexity of many Divide & Conquer algorithms.
The general form of the admissible algorithms is several non-recursive base cases and one
recursive case, in which a problem of size n is reduced to a fixed number a of subproblems of
size n/b, which are then solved recursively and their solutions combined to a solution for the
original problem. One simple example is Merge Sort: lists of length ≤ 1 are always trivially
sorted and thus returned unchanged (the base cases); lists of size ≥ 2 are split into half, each
half is sorted recursively, and the two sorted halves are then combined into a single sorted
list. The recurrence relation of this algorithm’s run-time function T is

T (n) = 2T
( 1

2 n
)
+n

and the classical Master Theorem then states T ∈Θ(n lnn). One problem with this is that,
strictly speaking, the recurrence relation for T is actually something like

T (n) = T
(⌊ 1

2 n
⌋)

+T
(⌈ 1

2 n
⌉)

+n
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since one certainly cannot split a list of length 3 into two lists of length 1.5. Intuitively, one
may think that the rounding does not change the asymptotic behaviour of the function, seeing
as the rounding operations are asymptotically small disturbances. This is, in fact, the case,
but proving it is not entirely trivial and is seldom done rigorously in textbooks or lectures,
especially the case when both floors and ceilings are used at the same time, as in the example
above.1

In order to establish a basis for the verified run-time analysis of such algorithms, we
wanted to formalise the Master Theorem in the theorem prover Isabelle/HOL. This must, of
course, include rigorous handling of rounding operations. We therefore chose not to base
our formal proof on any of the literature proofs for the Master Theorem, but to instead prove
a generalisation known as the Akra–Bazzi method [1], and derive the Master Theorem as a
corollary. As a pleasant side effect, this version of the Master Theorem supports much more
complex recursion patterns than the classical Master Theorem from the literature.

To make the application of the Master Theorem in the theorem prover almost as simple
as on paper, we provided some proof automation machinery that facilitates the definition
of functions from Akra–Bazzi-type Divide & Conquer recurrences and allows applying the
Master Theorem to them in a mostly automatic way.

To provide some motivation, consider the following two recurrences, which are related to
a deterministic selection algorithm and so-called Ham-Sandwich trees. They are far outside
the scope of the classical Master Theorem, but their complexities can easily be found and
formally proven in Isabelle/HOL with the generalised Master Theorem we formalised:

f1(n) = f1
(⌊ n

5

⌋)
+ f1

(⌊ 7n
10

⌋
+6
)
+ 12n

5 Result: f1 ∈Θ(n)

f2(n) = f2
(⌊ n

2

⌋)
+ f2

(⌊ n
4

⌋)
+1 Result: f2 ∈Θ(nlog2 ϕ) where ϕ = 1+

√
5

2

Outline. In Section 2, we will list some related work on the type of recurrences that we focus
on in this work. Section 3 then gives some important background information, namely about
the notation used in this work and the notions of integration and Landau symbols that are
used in the formal proof.

Section 4 contains a formal description of the types of recurrences for which our results
– the Akra–Bazzi theorem and the generalised Master theorem – hold, and Sections 5 and
6 state these results. The formal Isabelle/HOL proof of the results is explained in Sec. 7.
Section 8 gives a list of the proof automation we developed for the Master theorem as well as
a few examples of its application.

Finally, Sec. 9 compares the scope of our version of the Akra–Bazzi theorem to Leighton’s
and our Master theorem to the ‘textbook’ version of the Master theorem.

1 In Introduction to Algorithms [7], for example, only the ‘floor’ case is proven and the ‘ceiling’ case is
stated to be analogous. The question of what happens when both floors and ceilings are used is not addressed.
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2 Related Work

The original paper by Akra and Bazzi [1] that introduced the Akra–Bazzi method uses a so-
called order transform to reduce the problem to a two-dimensional problem. Their version of
the method requires very strong assumptions on the parameters of the problem: the recursive
definition must be of the following form:

f (x) = g(x)+
k

∑
i=1

ai · f (b x
bi
c) (bi ∈ N≥2, g non-decreasing)

In particular, recursive calls like f (d x
2e), f (b 2

3 xc), or f (b 1
3 xc+1) are not allowed.

Leighton [14] gives a vastly generalised version of the theorem in which the above
restrictions on g and the recursive call are weakened greatly; in particular, his version allows
small deviations from the linear recursive call, which, among other things, includes rounding
and adding constants. Furthermore, his approach is much more direct; he gives a simple
inductive proof that we deemed much more amenable to formal verification than the original
proof by Akra and Bazzi. The statement of the theorem we proved and its formal proof
in Isabelle/HOL are therefore modelled very closely after his; the only differences in the
theorem statement are that some assumptions in our version have been weakened slightly
(e. g. allowing negative values on some initial segment of the domain).

Based on these two works, Bazzi and Mitter [5] give a version of the Akra–Bazzi theorem
for probabilistic recurrences, where both the factors bi and the non-linear deviations in the
recursive calls are random variables with some restrictions. The theorem then determines
the asymptotic growth of the expectation of the function thus defined in a way that is very
similar to the theorem given by Leighton.

Drmota and Szpankowski [8] analyse recurrences of the form

f (x) = g(x)+
m

∑
i=1

ai · f
(⌊

b j · x+O
(
x1−ε

)⌋)
+

m

∑
i=1

āi · f
(⌈

b̄ j · x+O
(
x1−ε

)⌉)
with the additional restriction that the b j · x+O(x1−ε) are increasing. The class of functions
that they consider is therefore smaller than Leighton’s and ours. However, while Leighton
and we are only interested in finding a Θ -bound for f , Drmota and Szpankowski obtain very
precise approximations for f , such as f (x) =C2 logn+C′2 +o(1) for explicitly computable
constants C2,C′2. They also describe the oscillations that arise in f due to the rounding in the
recurrence and which are not present in the corresponding continuous recurrences. For the
Θ -analysis, these oscillations are irrelevant, since they are asymptotically small.

3 Preliminaries

3.1 Syntactical note

We take some liberties when presenting expressions or theorems from Isabelle/HOL here to
increase readability. In particular: type coercions between real numbers and natural numbers
are always omitted; schematic variables, which are implicitly universally quantified in Isabelle,
are printed with an explicit ∀ for the sake of clarity; Isabelle-specific syntax, such as {0 . .<1}
is replaced with the standard notation [0;1) ; lists are sometimes implicitly used as sets or as
indexed sequences (e. g. asi for the i-th element of as, starting from 1).
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f ∈ O(g) ←→ ∃c > 0. ∃x0. ∀x≥ x0. | f (x)| ≤ c · |g(x)|
f ∈ o(g) ←→ ∀c > 0. ∃x0. ∀x≥ x0. | f (x)| ≤ c · |g(x)|

f ∈Ω(g) ←→ ∃c > 0. ∃x0. ∀x≥ x0. | f (x)| ≥ c · |g(x)|
f ∈ ω(g) ←→ ∀c > 0. ∃x0. ∀x≥ x0. | f (x)| ≥ c · |g(x)|
f ∈Θ(g) ←→ f ∈ O(g)∧ f ∈Ω(g)

Table 1 Definitions of the five Landau symbols

A function taking some value x and returning some t that may depend on x will be written
as λx. t, following Lambda calculus syntax as opposed to the traditional mathematical syntax
x 7→ t. We will occasionally omit the ‘λ’ when it is clear from the context that we mean a
function and what the function variable is, particularly in Landau symbols (e. g. x ∈ O(x2)
instead of (λx. x) ∈ O(λx. x2)).

3.2 Landau symbols

3.2.1 Definition

Before stating the Akra–Bazzi theorem, we shall give the precise definition of the Landau
symbols that were used in the Isabelle formalisation. [10] Since there was no suitable
formalisation of asymptotic growth in Isabelle/HOL, we created a library of Landau symbols
specifically for the formalisation of the Akra–Bazzi method, but with other use cases in
mind as well. The definitions we chose differ slightly from those given in Introduction to
Algorithms by Cormen et al. [7]: for f ∈ O(g) to hold, they require f and g to be positive for
sufficiently large inputs, whereas we do not. According to our definitions,

f ∈ O(g)←→− f ∈ O(g)←→ f ∈ O(−g)←→− f ∈ O(−g) .

This choice was made because, in our experience, formal reasoning with Landau symbols –
especially automatic reasoning – becomes easier this way.

Table 1 shows the definitions of our Landau symbols. In Isabelle, Landau symbols are
defined for functions from any (not necessarily linearly) ordered set to any linearly-ordered
field. The restriction to fields was made due to the fact that the existence of multiplicative
inverses makes Landau symbols more ‘well-behaved’, and one may even argue that Landau
symbols for functions into e. g. the natural numbers do not make much sense – one will
probably always want to view such functions as functions into the reals.

There is one prior formalisation of Landau symbols in Isabelle by Avigad et al. [2]. It is
related to their proof of the Prime Number theorem. They only defined the symbol ‘O’, and
they did so in the following fashion:

O( f ) = {h | ∃c. ∀x. |h(x)| ≤ c · | f (x)|}

This definition differs from the commonly used one in so far as this one requires the inequality
to hold on all inputs, not just for sufficiently large inputs. If the inputs are natural numbers, the
two are almost equivalent, but in the context of the Akra–Bazzi theorem, we also use Landau
symbols for functions of type R→ R and then these two definitions are quite different. We
therefore deemed it necessary to create our own library of Landau symbols.
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3.2.2 Decision Procedure

During the process of proving the generalised Master Theorem, and particularly in its applic-
ations, we encountered a great number of proof obligations like x ∈ O(x3), x2 ∈ o(x2 lnx),
lnx ∈ ω(ln lnx), etc. These problems all have the following in common:

– They are of the form f ∈ L(g), where L is a Landau symbol and f ,g : R→R are products
of ‘elementary building blocks’ like the identity function and iterated logarithms.

– The building blocks can be ordered linearly w. r. t. their growth (e.g. x, lnx, ln lnx, . . . )
in such a way that the growth rate of any positive power of a function in the sequence
eclipses that of any power of the subsequent one (e.g. xp ∈ ω((lnx)q) for any p,q ∈ R
with p > 0).

– These problems are typically very tedious to prove formally.
– Most mathematicians would dismiss them as trivial and not even bother proving them by

hand in a pen-and-paper proof.

The obvious course of action was therefore to develop automation machinery to discharge
these proof obligations automatically. In the following, we will sketch the decision procedure
we developed for this problem without going into too much detail.

Definition 1 (Families of functions)
We call F ⊆ RR a family of functions if

– F is closed under multiplication and multiplicative inverse
– each function in F is positive for all sufficiently large inputs
– F is linearly ordered in the sense that for any f , f̄ ∈F , at least one of f ∈ o( f̄ ), f ∈ω( f̄ ),

and f ∈Θ( f̄ ) holds

Examples for such families are {λx. xp | p ∈ R} or {λx. ax | a ∈ R>0}.

Definition 2 (Dominating families)
We say that a family F dominates a family G if

– there exists an f ∈ F such that g ∈ o( f ) for all g ∈ G
– f (x) ∈ o( f̄ (x)) implies f (x) ·g(x) ∈ o( f̄ (x) · ḡ(x)) for any f , f̄ ∈ F and g, ḡ ∈ G

If F dominates G, we immediately have for all f , f̄ ∈ F and g, ḡ ∈ G:

f (x) ·g(x) ∈ o( f̄ (x) · ḡ(x))←→ f ∈ o( f̄ )∨ ( f ∈Θ( f̄ )∧g ∈ o(ḡ))

f (x) ·g(x) ∈ O( f̄ (x) · ḡ(x))←→ f ∈ o( f̄ )∨ ( f ∈Θ( f̄ )∧g ∈ O(ḡ))

f (x) ·g(x) ∈Θ( f̄ (x) · ḡ(x))←→ f ∈Θ( f̄ )∧ ḡ ∈Θ(ḡ)

In other words: o, O, and Θ on F ·G behave analogously to <, ≤, and = on pairs with
lexicographic ordering.

Furthermore, it is obvious that if F dominates G and G dominates H, then F dominates
G ·H. This notion of transitivity implies that we can lift the above result on pairs to sequences
where each family dominates the next. We can thus reduce any statement of the form

f1(x) . . . fn(x) ∈ L( f̄1(x) . . . f̄n(x)) (with L ∈ {o,O,Θ} and fi, f̄i ∈ Fi)

to a statement involving only Boolean connectives and expressions of the form fi ∈ l( f̄i) for
l ∈ {o,O,Θ}.
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Of course, this means that if the Fi are chosen such that we can decide fi ∈ l( f̄i), we can
also decide f ∈ L( f̄ ). In our decision procedure, the admissible function families are powers
of iterated logarithms; i. e. for each fixed k ∈ N, the functions of the form

λx. (ln . . . ln︸ ︷︷ ︸
k times

x)p (for some p ∈ R)

form one family. Deciding fk ∈ l( f̄k) for two functions in such a family can then be done
easily by comparing the exponents.

Our decision procedure therefore simply analyses a goal like x ∈ o(x lnx) and rewrites it
to x1(lnx)0 ∈ o(x1(lnx)1). By the above result, this holds iff 1 < 1∨ (1 = 1∧0 < 1), which
Isabelle’s simplifier can easily prove automatically. We integrated this decision procedure
into Isabelle’s simplifier, so proof obligations of this form will automatically be rewritten to
necessary and sufficient conditions containing only Boolean connectives and comparisons on
the exponents. Additionally, if these exponents are numeric constants, the conditions are then
proven (or disproven) automatically by the simplifier. This made many of our proofs and the
application of our main results much easier.

In addition to this decision procedure, we also have simplifier setup that can:

– Simplify terms like L( f +g) to L(g) if f ∈ o(g) or to L( f ) if g ∈ o( f )
– Cancel common factors like h from f ·h ∈ L(g ·h) if h(x) is non-zero for large enough x
– Perform simplifications on functions under a Landau symbol that are valid for sufficiently

large values, e. g. ln(2x) = ln2+ lnx. (This is not valid in Isabelle/HOL for x≤ 0)

We initially formalised the proof of the asymptotic inequalities described in section 7.2 in
an elementary way. The resulting proofs were complex and virtually unreadable. After the
introduction of Landau symbols and with heavy use of the automation we just described, we
were able to more than halve the length of these proofs and make them significantly more
readable.

3.3 Integration

Since the statement of the Akra–Bazzi theorem contains an integral, we need to decide on a
definition of integration and a formalisation thereof. Isabelle contains a number of different
integrals, most notably the Henstock–Kurzweil integral (also known as the Gauge integral) on
functions from Euclidean spaces to normed real vector spaces and the Bochner integral (an
extension of the Lebesgue integral) on functions from a measure space to the real numbers [3].

In the proof of the Akra–Bazzi theorem, we noticed that the only properties of integration
that we actually needed are the following:

Integral of constant functions. if a≤ b and c ∈ R≥0, the constant function λx. c is integrable
on [a;b] and ∫ b

a
cdx = (b−a) · c .

Monotonicity. if f and g are integrable on [a;b] and f (x)≤ g(x) for all x ∈ [a;b], then∫ b

a
f (x)dx≤

∫ b

a
g(x)dx .
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Integrability on sub-intervals. if f is integrable on [a;d] and a≤ b≤ c≤ d, then f is also
integrable on [b;c] .

Splitting. if f is integrable on [a;c] and a≤ b≤ c , then∫ b

a
f (x)dx+

∫ c

b
f (x)dx =

∫ c

a
f (x)dx .

We therefore proved the Akra–Bazzi theorem generically w. r. t. the integral definition:
the theorem can be instantiated with any concept of integration and integrability that fulfils
the above four properties. We call such an integral admissible.

The ‘standard’ integrals like the Riemann, Lebesgue, Bochner, and Henstock–Kurzweil
integrals all fulfil these properties and are therefore admissible, as is the non-negative Le-
besgue integral that ignores the negative part of the integrand. Notably, all of these are
generalisations of the Riemann integral on non-negative functions. The natural question is
then: Are there any admissible ‘integrals’ that are not integrals in the usual sense, i. e. not
merely generalisations of the Riemann integral?

The answer to this is not immediately obvious, but it turns out that any admissible integral
I must coincide with the Riemann integral on any function f that is both piecewise continuous
and I-integrable, but it can differ from the Riemann integral and its generalisations on non-
piecewise-continuous functions. Since non-piecewise-continuous functions should rarely
arise in the context of the Akra–Bazzi theorem, we shall not explore the issue further here; a
more detailed explanation and a proof can be found in the appendix.

4 General setting

Let us now set up the context in which the remainder of this work will be set: For our version
of the Akra–Bazzi method, we shall consider a recursively-defined function f : N→ R with
the following properties:

f (x)≥ 0 for all x ∈ [x0;x1)

f (x) = g(x)+
k

∑
i=1

ai · f (bi · x+hi(x)) for all x≥ x1

for a natural number k ∈ N \ {0}, a function g : N→ R, natural numbers x0,x1 ∈ N, real
coefficients ai ∈ R, bi ∈ R, functions hi : N→ R such that:

– g(x)≥ 0 for all x≥ x1

– ai ≥ 0 for all i ∈ [1;k] and ai > 0 for at least one i ∈ [1;k]
– bi ∈ (0;1) for all i ∈ [1;k]
– for every i ∈ [1;k], there exists an ε > 0 such that hi ∈ O(x/ ln1+ε x)
– bix+hi(x) ∈ N and x0 ≤ bi · x+hi(x)< x for all i ∈ [1;k] and all x≥ x1

(well-definedness of f )
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We will now explain the meaning of these variables.

The recursion structure. The parameters x0, x1, k, ai, bi, and hi characterise the recursion
structure of the function f . To understand the role of the different parameters, it is useful to
look at them in the case when f describes the cost of a Divide & Conquer algorithm: the
values between x0 and x1 are the costs of the base cases; the cost of the recursive case is
defined recursively as the sum of the costs of the recursive calls and the costs of combining
the results of the calls. Each triple (ai,bi,hi) corresponds to ai recursive calls of the form
bi · x+hi(x) ; the costs of combining the results are represented by the function g.

Variation terms. The hi represent asymptotically small variation terms in the recursive call,
allowing some deviation from the linear term bi · x . This is not merely a nice gimmick –
it is actually necessary to have something like this, since, due to the discreteness of the
natural numbers, a purely linear term in the recursive call is impossible. This approach covers
rounding and other deviations in a uniform way, as opposed to making ad-hoc arguments
why certain kinds of rounding do not change the result.

For example, the terms f (b x
2c) , f (d x

2e) , and f (d x
2e+42) would be admissible, as they

can be expressed as f (b · x+h(x)) for some b ∈ (0;1) and some h : N→ R where h ∈ O(1).
However, much larger deviations, such as f (b 1

2 n−
√

nc) , are also allowed.
Of course, enough base cases must be provided (i. e. x0 and x1 must be chosen large

enough and far enough apart) to fulfil the well-definedness conditions; a function ‘definition’
like f (x) = f (d 3

4 xe)+1 for x1 = 3 cannot be allowed since f (3) = f (d 9
4e)+1 = f (3)+1 is

contradictory.
Leighton [14] mentions that the condition that the hi be in O(x/ ln1+ε x) for some ε > 0 is

tight in some sense, since the recurrence f (x) = 2 f (x/2+ x/ lnx) has the asymptotic growth
x lnΘ(1) x, whereas the recurrence f (x) = 2 f (x/2) (i. e. without the variation term) has the
growth Θ(x).

5 The Akra–Bazzi method

Having established the necessary context, we will now present the main theorems of the
Akra–Bazzi method for the function f . To do this, we first need to define the characteristic
number of an Akra–Bazzi recurrence: The contribution of the recursion structure (without
the ‘recombination costs’ g) to the asymptotic growth can be summarised as a single real
number, which we call p. This number is defined implicitly as

k

∑
i=1

ai ·b p
i = 1

If the ai are not all zero (which we assumed), this equation defines p uniquely. To show this,
we consider the function

t : R→ R>0, x 7→
k

∑
i=1

ai ·bx
i .

This function is continuous and t(x) -∞−−→ ∞ and t(x) ∞−−→ 0. Therefore, by the intermediate
value theorem, some p such that ∑

k
i=1 ai · bp

i = 1 always exists, and since t is also strictly
decreasing, this p is unique.

We can now state the three variants of the Akra–Bazzi theorem, which give Ω , O, and Θ

bounds on the growth of f :
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Theorem 1 (Akra–Bazzi theorem, Ω version)
Fix ḡ : R→ R with g ∈Ω(ḡ), i. e. ḡ is an asymptotic lower bound for g. Assume that:

– f (x)> 0 for all sufficiently large x
– ḡ(x)≥ 0 for all sufficiently large x
– there exist real constants c > 0 and C with ∀i ∈ [1;k]. C < bi such that for all sufficiently

large x: ∀u ∈ [C · x;x]. ḡ(u)≤ cḡ(x)
– ḡ is bounded above on every real interval [a;b] with a≥ a0 for some a0
– ḡ(x)/xp+1 is integrable on any interval [a;b] with a≥ a0 for some a0

Then

f ∈Ω

(
xp
(

1+
∫ x

t

ḡ(u)
up+1 du

))
for any sufficiently large t.

Theorem 2 (Akra–Bazzi theorem, O version)
Fix ḡ : R→ R with g ∈ O(ḡ), i. e. ḡ is an asymptotic upper bound for g. Assume that:

– ḡ(x)≥ 0 for all sufficiently large x
– there exist real constants c > 0 and C with ∀i ∈ [1;k]. C < bi such that for all sufficiently

large x: ∀u ∈ [C · x;x]. ḡ(u)≥ cḡ(x)
– ḡ(x)/xp+1 is integrable on any real interval [a;b] with a≥ a0 for sufficiently large a0

Then

f ∈ O
(

xp
(

1+
∫ x

t

ḡ(u)
up+1 du

))
for any sufficiently large t.

Combining these two results yields:

Theorem 3 (Akra–Bazzi theorem, Θ version)
Fix ḡ : R→ R with g ∈Θ(ḡ), i. e. ḡ has the same asymptotic growth as g. Assume that:

– f (x)> 0 for all sufficiently large x
– ḡ(x)≥ 0 for all sufficiently large x
– there exist real constants c1,c2 > 0 and C with ∀i ∈ [1;k]. C < bi such that for all

sufficiently large x: ∀u ∈ [Cx;x]. c1ḡ(x)≤ ḡ(u)≤ c2ḡ(x)
– ḡ is bounded above on every real interval [a;b] with a≥ a0 for some a0
– ḡ(x)/xp+1 is integrable on any real interval [a;b] with a≥ a0 for some a0

Then

f ∈Θ

(
xp
(

1+
∫ x

t

ḡ(u)
up+1 du

))
for any sufficiently large t.
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The restrictions on ḡ are somewhat technical, especially the ones of the form ∃c1 >
0. ∀u ∈ [Cx;x]. c1ḡ(x)≤ ḡ(u). Leighton [14] calls these the polynomial-growth conditions2

and also asserts that if |ḡ′| is upper-bounded by a polynomial, the conditions always hold.
This is incorrect, since e. g. g(x) = 1+sin(x) is non-negative and the absolute of its derivative
is upper-bounded by 1, but it does not fulfil either of the two polynomial-growth conditions.

Nevertheless, the most interesting cases are those where ḡ(x) is of the form xr lns x,
and as Leighton also remarks, these functions always satisfy the polynomial-growth con-
ditions. Restricting ḡ to this form, which we shall do in the next section, will lead us to a
specialisation of the Akra–Bazzi method that is very close to the well-known Master Theorem.

Let us now analyse the conclusion of the last Akra–Bazzi theorem more closely in an
informal way: Expanding the product inside the Θ yields

f ∈Θ (xp)+Θ

(
xp
∫ x

t

ḡ(u)
up+1 du

)
.

Clearly, the xp in the left summand is independent from ḡ and would still be present even
for ḡ = 0. The Θ(xp) can therefore be seen as the inherent cost of the recursion itself, which
depends only on p, which in turn is determined uniquely by the ai and bi. The term with the
integral on the right, on the other hand, also depends on the recombination costs ḡ(x), and it
is big whenever ḡ(x) is big.

It is also clear that the values of the base cases are completely irrelevant (as long as they
are non-negative).

6 The Master Theorem

If we look at a restricted class of functions ḡ, we can make the last two observations of the
previous section a bit more precise: If ḡ(x) is of the form xq for some q ∈ R, the conditions
on ḡ (non-negativity, polynomial growth, boundedness, integrability) are all satisfied. If the
other conditions for the Akra–Bazzi theorem are satisfied, we have:

f ∈Θ (xp)+Θ

(
xp
∫ x

t
uq−p−1du

)
=


Θ (xp)+Θ (xq) =Θ (xp) for q < p

Θ (xp)+Θ (xp lnx) =Θ (xp lnx) for q = p

Θ (xp)+Θ (xq) =Θ (xq) for q > p

The three cases differ in how high the inherent costs of the recursion are compared to the
recombination costs. In the first case, the recombination costs are smaller than the recursion
costs, which means that most of the work is done at the bottom of the recursion tree, since
there are many leaves, but recombining them is cheap (‘bottom-heavy recursion’). In the
third case, the recombination costs dominate and most of the work will be done recombining
the results near the top of the recursion tree (‘top-heavy recursion’). In the second case,
the recursion costs and the recombination costs have a similar rate of growth (‘balanced
recursion’). This case can be generalised further by considering ḡ(x) = xp lnq x.

2 His conditions are slightly more restrictive; among other things, he requires them to hold for all x≥ 1.
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This leads to our generalised Master Theorem:

Corollary 1 (Master Theorem)

Bottom-heavy recursion.
If g ∈ O(xq) for some q < p, then f ∈ O(xp). If, additionally, f (x) is positive for all
sufficiently large x, we even have f ∈Θ(xp).3

Balanced recursion.
If g ∈Θ(xp lnq x) for some q, then

f ∈


Θ(xp) if q < -1
Θ(xp ln lnx) if q = -1
Θ(xp lnq+1 x) if q > -1

Top-heavy recursion.
If g ∈Θ(xq) for some q > p, then f ∈Θ(xq) =Θ(g).

7 Proving the Akra–Bazzi theorem and the Master theorem

We shall now describe the proof of our version of the Akra–Bazzi theorem. Some parts
of the proof are very technical; in these parts of the proof, we shall attempt to provide the
reader with a good high-level understanding of what must be proven and how we proved it
without mentioning too many details. For more details, we refer the reader to the formal proof
development in the Archive of Formal Proofs [9] or, where applicable, Leighton’s proof [14].
In any case, we recommend that readers familiarise themselves with Leighton’s proof before
attempting to understand ours.

7.1 Formal setting

First of all, we will explain how the conditions mentioned in Section 4 are stated formally in
Isabelle/HOL: We use a locale [4] called akra_bazzi_function. A locale is a named context
that contains fixed variables, assumptions, and definitions. Such a locale can be instantiated by
providing values for the fixed variables and proving that its assumptions hold for these values.
Instantiating a locale gives the user access to all the facts that were proven in this locale,
specialised to the specific values that it was instantiated with. Figure 1 shows the definition
of the locale akra_bazzi_function, modulo some insignificant notational adjustments.

The only difference to the conditions stated in Section 4 is that the recursive calls are
of the shape f (tsi(x)) instead of f (bi · x+hi x). The reason for this is that the latter would
require expressing a call like f (b 1

2 xc) in the rather awkward form f ( 1
2 x+ (b 1

2 xc− 1
2 x)),

whereas the former is more direct.

3 Note that due to the other constraints on f and g, the condition that f (x) is positive for all sufficiently
large x must hold if either g(x) is positive for all sufficiently large x or f (x) is positive in all the base cases, i. e.
for x ∈ [x0;x1).
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locale akra_bazzi_function =
fixes x0 x1 k :: nat and as bs :: real list and ts :: (nat⇒ nat) list and

f :: nat⇒ real and g :: nat⇒ real

assumes k 6= 0 and length(as) = k and length(bs) = k and length(ts) = k

and ∀a∈as. a≥ 0 and ∀b∈bs. b ∈ (0;1) and ∃i∈ [1;k]. asi > 0
and ∀i∈ [1;k]. akra_bazzi_term(x0,x1,bsi, tsi)

and ∀x∈ [x0;x1). f (x)≥ 0
and ∀x≥x1. f (x) = g(x)+∑

k
i=1 asi · f (tsi(x))

and ∀x≥x1. g(x)≥ 0

Figure 1 The locale akra_bazzi_function that formally captures the conditions imposed upon the recursively-
defined function f

The conditions on the recursive calls are replaced by the condition that all the tsi be
Akra–Bazzi terms, where

definition akra_bazzi_term(x0,x1,b, t) =
(∃ε h. ε > 0 ∧ h ∈ O(λx. x/ ln1+ε x) ∧

(∀x≥x1. t(x)≥ x0 ∧ t(x)< x ∧ b · x+h(x) = t(x))) .

One can then easily prove introduction rules to discharge this condition for specific forms
of recursive calls, e. g.

lemma akra_bazzi_term_ceiling:
assumes b > 0 and b < 1 and x0 ≤ b · x1 and (1−b) · x1 ≥ 1
shows akra_bazzi_term(x0,x1,b,λx. db · xe)

Provided that such rules exist for every recursive call occurring in the recursive equation
of f , this condition and most of the other locale assumptions contain only the constants as,
bs, k, x0, and x1 and can therefore be solved by simple evaluation for a concrete function f
with concrete values for as, bs, etc. The remaining conditions are:

1. ∀x∈ [x0;x1). f (x)≥ 0
2. ∀x≥x1. g(x)≥ 0
3. ∀x≥x1. f (x) = g(x)+∑

k
i=1 asi · f (tsi(x))

These conditions must be shown by the user, but they are typically direct consequences from
the definitions of f and g.

7.2 Asymptotic estimates

We now move on to the actual proofs. First of all, we need to prove a number of asymptotic
inequalities, i. e. inequalities that hold whenever x is large enough. Leighton mentions the first
four of these on page 5, but does not provide any proof (he mentions that they can be proven
using ‘standard Taylor series expansions and asymptotic analysis’). Apart from these, we
found that we need four more inequalities that ensure that conditions like bix+hi(x)< x and
1− ln(bix+hi(x))−ε/2 > 0 will hold for all relevant inputs x. Without these conditions, several
terms that occur in the proof of the Akra–Bazzi theorem would not even be well-defined.
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Lemma 1 (Asymptotic inequalities) For any H,ε ∈R>0, b∈ (0;1), and p∈R, there exists
some x0 ∈ R such that the following inequalities hold for all x≥ x0:

(
1± H

b ln1+ε x)

)p [
1+
(

ln−ε/2
(

bx+
Hx

ln1+ε x

))]
≥ 1+ ln−ε/2 x (1)(

1± H
b ln1+ε x

)p [
1−
(

ln−ε/2
(

bx+
Hx

ln1+ε x

))]
≤ 1− ln−ε/2 x (2)

1
2

(
1+ ln−ε/2 x

)
≤ 1 (3)

2
(

1− ln−ε/2 x
)
≥ 1 (4)[

ln
(

bx− Hx
ln1+ε x

)]−ε/2

< 1 (5)

H
ln1+ε x

<
b
2

(6)

H
ln1+ε x

<
1−b

2
(7)

x
(

1−b− H
ln1+ε x

)
> 1 (8)

(The ± means that the inequality must hold both for a + and for a − in its place.)

Proof All but the first two of these inequalities are trivial and can be proven by comparing the
limits of the left-hand side and the right-hand side; the first two, however, require non-trivial
asymptotic analysis using Taylor series expansions. Since these two inequalities are a crucial
ingredient in the proof of this generalised Akra–Bazzi theorem, we will briefly sketch the
proof of (1). (The proof of (2) is mostly analogous.)

The key ingredient in proving the inequality is the Taylor series expansion

(1± t(x))y = 1± yt(x)+O
(
t(x)2)= 1+O(t(x)) if lim

x→∞
t(x) = 0

In the following, we will indicate such an expansion with the symbol
Taylor
= and a curly

bracket that denotes which term is taken to be t(x) in the expansion.

First of all, we estimate the first factor on the left-hand side with4

(
1±

t(x)︷ ︸︸ ︷
H

b ln1+ε x

)p
Taylor
= 1+O

(
ln−1−ε x

)
= 1+o

(
ln−1−ε/2 x

)

4 The notation here becomes a bit informal. Terms like f (x)+O(g(x)) stand for the set { f (x)+h(x) | h(x)∈
O(g(x))} and all equality symbols are then essentially set inclusions, i. e. f (x)+O(. . .) = g(x)+O(. . .) means
that the left-hand side is a subset of the right-hand side.
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Moreover, we have in the second factor:

ln−ε/2
(

bx+
Hx

ln1+ε x

)
=

[
ln
(

bx
(

1+
H

b ln1+ε x

))]−ε/2

=

=

[
lnbx+ ln

(
1+

H
b ln1+ε x

)]−ε/2

=

=
(

ln−ε/2 bx
)[

1+
1

lnbx
ln
(

1+
H

b ln1+ε x

)
︸ ︷︷ ︸

t(x)

]−ε/2
Taylor
=

=
(

ln−ε/2 bx
)[

1+O
(

1
lnbx

ln
(

1+
H

b ln1+ε x

))]
=

=
(

ln−ε/2 bx
)
+
(

ln−1−ε/2 bx
)

O
(

ln
(

1+
H

b ln1+ε x

))
=

=
(

ln−ε/2 bx
)
+
(

ln−1−ε/2 bx
)

o(1) =

=
(

ln−ε/2 bx
)
+o
(

ln−1−ε/2 x
)

Combining these two asymptotic estimates, we have:(
1± H

b ln1+ε x

)p [
1+
(

ln−ε/2
(

bx+
Hx

ln1+ε x

))]
=

=
[
1+o

(
ln−1−ε/2 x

)][
1+
(

ln−ε/2 bx
)
+o
(

ln−1−ε/2 x
)]

=

= 1+(lnbx)−ε/2 +o
(

ln−1−ε/2 x
)
=

= 1+(lnb+ lnx)−ε/2 +o
(

ln−1−ε/2 x
)
=

= 1+
(

ln−ε/2 x
)(

1+
lnb
lnx︸︷︷︸
t(x)

)−ε/2

+o
(

ln−1−ε/2 x
)

Taylor
=

= 1+
(

ln−ε/2 x
)(

1− ε lnb
2lnx

+O
(
ln−2 x

))
+o
(

ln−1−ε/2 x
)
=

= 1+ ln−ε/2 x+
[
−ε lnb

2
ln−1−ε/2 x+o

(
ln−1−ε/2 x

)]
≥

Since b∈(0;1), we have ln b < 0. Therefore, the term in brackets will be positive for suffi-
ciently large x and we have:

≥ 1+ ln−ε/2 x

�
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7.3 The continuous Akra–Bazzi theorem

For the next part, we closely follow Leighton’s proof (pp. 6–8). Here we prove the Akra–Bazzi
theorem for continuous recurrences, i. e. a function f : R→ R that fulfils all the conditions
stated before, but not just on N, but on R. We therefore look at the following setting, which is
essentially the real-valued analogue to the setting described in Section 4:

Consider f : R→ R with the following properties:

f (x)≥ 0 for all x ∈ [x0;x1]

f (x) = g(x)+
k

∑
i=1

ai · f (bi · x+hi(x)) for all x > x1

for a natural number k ∈ N \ {0}, a function g : R→ R, natural numbers x0,x1 ∈ R, real
coefficients ai ∈ R, bi ∈ R, functions hi : N→ R, and p ∈ R such that:

– g(x)≥ 0 for all x≥ x0

– ai ≥ 0 for all i ∈ [1;k] and ai > 0 for at least one i ∈ [1;k]
– bi ∈ (0;1) for all i ∈ [1;k]
– for every i ∈ [1;k], there exists an εi > 0 such that hi ∈ O(x/ ln1+εi x)
– ∑

k
i=1 ai ·bp

i = 1
– g(u)u−p−1 is integrable on [x0;x] for any x≥ x0

We can assume w.l.o.g. that all the hi fulfil hi ∈ O(x/ ln1+ε x) for the same ε by choosing
the minimum of all the εi values. It is then clear that there exists a constant H such that, for
sufficiently large x, we have |hi(x)| ≤ Hx ln−1−ε x for all i ∈ [1;k].

We also assume that x0 and x1 are chosen large enough such that the following inequalities
hold:

– 1≤ x0 ≤ 1
2 bix1 for all i ∈ [1;k]

– |hi(x)| ≤ Hx lnx−1−ε for all i ∈ [1;k] and all x≥ x1

– the inequalities (1) to (8) from Lemma 1 for any b ∈ {b1 . . .bk} and all x≥ x0

– there exists some real number C such that Cx≤ bix−Hx ln−1−ε x for any i ∈ [1;k] and
all x≥ x1

7.3.1 The lower bound.

We will now show how to obtain an asymptotic lower bound on f (x). For this, we further
have to assume the existence of positive and finite bounds

F := inf
x∈[x0;x1]

f (x) and G := sup
x∈[x0;x1]

g(x)

and the growth condition ∀x≥ x1. ∀u ∈ [Cx;x]. c2g(x)≥ g(u) for some c2 > 0. We can then
show the following two lemmas:

Lemma 2 There exists a c4 > 0 such that, for any i ∈ [1;k] and all x≥ x1:

xp
∫ x

bix+hi(x)

g(u)
up+1 du≤ c4g(x)
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Proof Technical and uninteresting; refer to Leighton’s Lemma 1 or our formal proof devel-
opment for details.

Lemma 3 There exists a c5 > 0 with c5 ≤ 1
2c4

such that, for any x ∈ [x0;x1]:

2c5xp
(

1+
∫ x

x0

g(u)
up+1 du

)
≤ f (x)

Proof We have xp ≤max(xp
0 ,x

p
1) and g(u)u−p−1 ≤ G ·max(x−p−1

0 ,x−p−1
1 ); it is easy to use

this to derive some bound c such that

2
F

xp
(

1+
∫ x

x0

g(u)
up+1 du

)
≤ c

and therefore
2
c

xp
(

1+
∫ x

x0

g(u)
up+1 du

)
≤ F ≤ f (x) .

Setting c5 := min(c−1,(2c4)
−1) yields the desired bound. �

We can then show the following lower bound for f

Lemma 4

c5xp
(

1+ ln−ε/2 x
)(

1+
∫ x

x0

g(u)
up+1 du

)
≤ f (x) for all x≥ x0

Proof The proof is by induction over x with the base case x ∈ [x0;x1] and the inductive step
x > x1 while assuming that the induction hypothesis holds for all bix+hi(x) for any i ∈ [1;k].
This induction scheme is well-founded, since the bounds on the hi and inequality (8) imply
dbix+hi(x)e< dxe for any x≥ x1, so the measure µ : R→ N,x 7→ dxe decreases.

Base case. We have x ∈ [x0;x1] and therefore:

c5xp
(

1+ ln−ε/2 x
)

︸ ︷︷ ︸
≤2

by Lemma 1.(3)

(
1+

∫ x

x0

g(u)
up+1 du

)
≤ 2c5xp

(
1+

∫ x

x0

g(u)
up+1 du

)
Lemma 3
≤ f (x)

Induction step We have x > x1 and we assume the following induction hypothesis for any
i ∈ [1;k]:

c5(bix+hi(x))p
(

1+ ln−ε/2(bix+hi(x))
)(

1+
∫ bix+hi(x)

x0

g(u)
up+1 du

)
≤

≤ f (bix+hi(x)) (IH)
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We can then show:

c5xp
(

1+ ln−ε/2 x
)(

1+
∫ x

x0

g(u)
up+1 du

)
Lemma 3
≤

≤ c5xp
(

1+ ln−ε/2 x
)(

1+
∫ x

x0

g(u)
up+1 du

)
+g(x)−2c5c4g(x)

Lemma 1.(3)
≤

≤ c5xp
(

1+ ln−ε/2 x
)(

1+
∫ x

x0

g(u)
up+1 du

)
+g(x)− c5c4

(
1+ ln−ε/2 x

)
g(x) =

= g(x)+ c5xp
(

1+ ln−ε/2 x
)(

1+
∫ x

x0

g(u)
up+1 du− c4

xp g(x)
)

Lemma 2
≤

= g(x)+ c5xp
(

1+ ln−ε/2 x
)(

1+
∫ x

x0

g(u)
up+1 du−

∫ x

bix+hi(x)

g(u)
up+1 du

)
=

= g(x)+ c5xp
(

1+ ln−ε/2 x
)(

1+
∫ bix+hi(x)

x0

g(u)
up+1 du

)
=

= g(x)+

(
k

∑
i=1

aib
p
i

)
c5xp

(
1+ ln−ε/2 x

)(
1+

∫ bix+hi(x)

x0

g(u)
up+1 du

)
=

= g(x)+
k

∑
i=1

aic5bp
i xp
(

1+ ln−ε/2 x
)(

1+
∫ bix+hi(x)

x0

g(u)
up+1 du

)
Let us now focus on the bp

i xp
(

1+ ln−ε/2 x
)

term. Let s := −1 if p ≥ 0 and s := 1 other-

wise.5By applying first Lemma 1.(1) and then |hi(x)| ≤ Hx lnx−1−ε , we have:

bp
i xp
(

1+ ln−ε/2 x
) (1)
≤ bp

i xp
(

1+
sH

bi ln1+ε x

)p(
1+ ln−ε/2

(
bix+

Hx
ln1+ε x

))
=

=

(
bix+

sHx
ln1+ε x

)p(
1+ ln−ε/2

(
bix+

Hx
ln1+ε x

))
≤

≤ (bix+hi(x))
p
(

1+ ln−ε/2 (bix+h(x))
)

Plugging this result into the inequality chain we interrupted before, we have:

g(x)+
k

∑
i=1

aic5bp
i xp
(

1+ ln−ε/2 x
)(

1+
∫ bix+hi(x)

x0

g(u)
up+1 du

)
≤

≤ g(x)+
k

∑
i=1

aic5 (bix+hi(x))
p
[
1+ ln−ε/2 (bix+h(x))

](
1+

∫ bix+hi(x)

x0

g(u)
up+1 du

)
(IH)
≤

≤ g(x)+
k

∑
i=1

ai f (bix+hi(x)) = f (x)

This concludes the induction. We have thus shown that for all x≥ x0:

c5xp
(

1+
∫ x

x0

g(u)
up+1 du

)
≤ c5xp

(
1+ ln−ε/2 x

)(
1+

∫ x

x0

g(u)
up+1 du

)
≤ f (x)

�

5 Note the implicit case distinction for p≥ 0 and p < 0: for p≥ 0, we need to show bix−Hx ln−1−ε x≤
bix+hi(x) , whereas for p < 0 we need to show bix+Hx ln−1−ε x≥ bix+hi(x) since the negative exponent
flips the inequality. This case distinction is not mentioned by Leighton.
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7.3.2 The upper bound

The proof of the upper bound is analogous with the following exceptions:

– The assumptions we need are supx∈[x0;x1]
f (x) < ∞ and ∀x ≥ x1. ∀u ∈ [Cx;x]. c1g(x) ≤

g(u) for some c1 > 0.
– The inequality we need to show by induction is

f (x)≤ c6xp
(

1− ln−ε/2 x
)(

1+
∫ x

x0

g(u)
up+1 du

)

7.4 Lifting to the discrete case

The remaining work in the proof of the Akra–Bazzi theorem is now to lift this result for
continuous recurrences to discrete recurrences. We will again illustrate this for the lower
bound. We consider the setting given in Theorem 1.

First of all, we find values G > 0 and x̂0, x̂1 such that:

– x1 ≤ x̂0 ≤ x̂1
– f (x)> 0 for all x≥ x̂0
– g(x)≥ Gḡ(x) for all x≥ x̂0 (possible because g ∈Ω(ḡ))
– ḡ(x)≥ 0 for all x≥ x̂0
– bix+hi(x)≥ x̂0 for all x≥ x̂1 and i ∈ [1;k]

Since g has the asymptotic lower bound ḡ and we want to find an asymptotic lower bound
on f , it is natural that the function obtained by copying the definition of f , but with the costs
ḡ instead of g, should be an asymptotic lower bound on f . We therefore define the function
f̂ : N→ R as follows:

f̂ (x) =

{
max(0, f (x)/G) if x < x̂1

ḡ(x)+∑
k
i=1 ai f̂ (bix+hi(x)) otherwise

It is clear that f̂ is non-negative everywhere, positive for large enough x, and G f̂ (x)≤ f (x)
for all x≥ x0. Therefore, any asymptotic lower bound on f̂ will also be a lower bound on f .

Next, we find some x̄0 > x̂1 such that

– the asymptotic inequalities (1) to (8) hold for all x≥ x0, c = H, b = bi for i ∈ [1;k]
– |hi(x)| ≤ Hx ln−1−ε x for all x≥ x̄0 and i ∈ [1;k]
– Cx≤ bix−Hx ln−1−ε x for all x≥ x̄0 and i ∈ [1;k]
– ḡ is bounded from above on all intervals that lie above x̄0
– ḡ(u)≤ c2ḡ(x) for all x≥ x̄0 and u ∈ [Cx;x]
– f̂ (bxc)> 0 and ḡ(x)≥ 0 for all x≥ x̄0
– ḡ(u)u−p−1 is integrable on all intervals that lie above x̄0

and we find a x̄1 such that x̄1 ≥ 2
bi

x̄0 for all i ∈ [1;k].
We can then extend f̂ to a function f̄ : R→ R using the following definition:

f̄ (x) =

{
f̂ (bxc) if x≤ x̄1

g(x)+∑
k
i=1 ai f̄ (bix+hi(x)) otherwise

Clearly, f̄ (x) = f̂ (x) for all natural numbers x.
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We apply the continuous lower bound theorem derived in the previous section to f̄ (x)
with the ‘base cases’ between x̄0 and x̄1. This gives us the lower bound

c5xp
(

1+
∫ x

x̄0

ḡ(u)
up+1 du

)
≤ f̄ (n)

For all natural numbers n≥ x̄0, we then have:

Gc5np
(

1+
∫ n

x̄0

ḡ(u)
up+1 du

)
≤ G f̄ (n) = G f̂ (n)≤ f (n)

and therefore

f ∈Ω

(
np
(

1+
∫ n

x̄0

ḡ(u)
up+1 du

))
.

Since we could have chosen x̄0 larger as well if we had wanted to, we have essentially shown
that

f ∈Ω

(
np
(

1+
∫ n

t

ḡ(u)
up+1 du

))
holds for any sufficiently large t.

The formal proof of all of this consists mostly of finding large enough values for x̄0 and x̄1
and proving that all required properties hold. For instance, the condition that infx∈[x̄0;x̄1] f̄ (x)>
0 is fulfilled because, by definition, f̄ (x) = f̂ (bxc) only takes a finite number of values on the
interval [x̄0; x̄1], all of which are positive.

This entire process of linking the assumptions of the discrete settings to the assumptions
of the continuous setting is very technical and intricate – it takes up almost a quarter of the
entire proof of the Akra–Bazzi theorem – but mathematically uninteresting, which is why we
left out a lot of detail in this paper proof.

7.5 The Master Theorem

From the proof of the Akra–Bazzi theorem in the locale context akra_bazzi_function, we
can now show the Master Theorem, also inside this context. The proofs are straightforward
applications of the Akra–Bazzi theorem. The user can then interpret the akra_bazzi_function
locale for her function f and use the case of the Master Theorem appropriate for her function.

In the Isabelle formalisation, the Master Theorem is split into five cases (cf. Table 2),
with the first case having a weak form (O) and a strong form (Θ ).

8 Automation

The formalisation also contains three proof methods that add a certain degree of automation
to the usage of the Master Theorem. We will describe them in the following sections.

8.1 Akra–Bazzi terms

As mentioned previously in Section 7.1, the condition that recursive calls must be Akra–Bazzi
terms can be discharged by introduction rules that reduce the condition to simple statements
on constants. We provide a theorem collection called akra_bazzi_term_intro to which
the user can add custom introduction rules for Akra–Bazzi terms. The Akra–Bazzi proof
methods then automatically use these rules to discharge conditions of this kind.
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Case name Assumptions Conclusion

Case 1 (O) g ∈ O(xq) q < p f ∈ O(xp)

Case 1 g ∈ O(xq) q < p f (x)> 0
(for suff. large x)

f ∈Θ(xp)

Case 2.1 g ∈Θ(xp lnq x) q <−1 f ∈Θ(xp)

Case 2.2 g ∈Θ(xp/ lnx) f ∈Θ(xp ln lnx)

Case 2.3 g ∈Θ(xp lnq−1 x) q > 0 f ∈Θ(xp lnq x)

Case 3 g ∈Θ(xq) q > p f ∈Θ(xq)

Table 2 The five cases of the Master Theorem as formalised in Isabelle/HOL

8.2 akra_bazzi_termination

It is possible to define recursive functions with complex recursion schemes in Isabelle/
HOL. [13]. For every function definition, the user must show that the function is indeed
well-defined: the definition must be complete, different equations must not overlap with one
another, and the function must terminate, i. e. there must not be any infinite chains of recursive
calls. The first two conditions can virtually always be proven automatically; the last condition,
termination, is usually the most difficult to prove. Isabelle/HOL can prove it automatically
in many cases, but Akra–Bazzi style recursion schemes are usually not among them: for
example, attempting to define the cost function for Merge Sort recursively by its recurrence
relation f (n) = f (b n

2c)+ f (d n
2e)+n for n≥ 2 will fail since Isabelle’s termination prover is

unable to prove that n becomes smaller in every recursion step.
To aid the user in proving termination for such recursion schemes, we developed the

proof method akra_bazzi_termination, which uses the akra_bazzi_term_intro rules
mentioned before to reduce the proof obligation of termination to simpler proof obligations
that contain only constants, which can then be solved automatically using Isabelle’s simplifier.
A typical function definition of an Akra–Bazzi function then looks like this:

function merge_sort_cost :: nat⇒ real where
merge_sort_cost(0) = 0

| merge_sort_cost(1) = 1

| n≥ 2 =⇒merge_sort_cost(n) =

merge_sort_cost(bn/2c)+merge_sort_cost(dn/2e)+n

The termination of this function can be proven using the akra_bazzi_termination
method. In this case, it produces ten proof obligations of the form 0 < 1

2 , 1
2 < 1 , 0≤ 1

2 ·2 ,
etc. These can be solved automatically with the simplifier.

It should be noted that akra_bazzi_termination works in more complicated situations
as well, e. g. when the function has several arguments (curried or tupled), which may even
change during the recursive call.



Proving Divide & Conquer Complexities in Isabelle/HOL 21

In order to achieve this, akra_bazzi_termination performs some analysis of the
function’s type to find a parameter that is a natural number and for which the recursive calls
are Akra–Bazzi terms. It then starts a termination proof using this parameter as a termination
measure and applies the corresponding introduction rules for Akra–Bazzi terms, which leaves
only the simple proof obligations we saw earlier.

Note also that akra_bazzi_termination is completely independent from the Akra–
Bazzi theorem itself; its only connection to Akra–Bazzi is the fact that it helps automate
termination proofs of Akra–Bazzi-style recurrences.

8.3 master_theorem

The main proof method is master_theorem, which can be invoked on goals of the form
f ∈ O(_) or f ∈Θ(_). It takes as an argument the applicable case of the Master Theorem
(e. g. 1 or 2.2) and applies it to the goal. The recursive equation of f and the values x0 and
x1 are optional parameters which the method attempts to guess if absent. The appropriate
values for k, as, bs, ts, and g are always inferred automatically from the recursive equation,
provided the required akra_bazzi_term_intro rules exist.

To provide some more detail as to where all these values come from:

– The function f can obviously be determined from the goal itself.
– If not provided explicitly, the method will try to obtain the recursive equation for f from

its definition.
– p, the characteristic number of the recurrence, never needs to be specified explicitly. If

it appears in the goal, the proof method infers it from the goal; if it does not appear in
the goal, its value is not required explicitly – if there is e. g. a proof obligation that some
number q is larger than p, the user is presented with the equivalent proof obligation that
∑

k
i=1 ai ·bq

i < 1.
– x0 is set to 0 if not given explicitly, which is always a correct choice except in the unusual

case that f is negative for some inputs.
– x1 is determined from the precondition of the recursive equation (e. g. 2 for the precondi-

tion n > 1).
– k, as and ts are determined by partitioning the right-hand side of the recursive equation

into summands and bringing each summand into the form ai · f (tsi n) if possible.
– g is the sum of all summands that cannot be brought into this form.
– for each t ∈ ts, the corresponding b ∈ bs is determined by finding a rule from the theorem

collection akra_bazzi_term_intro that matches t and extracting b from the unifier.

We will now illustrate the practical application of the proof method with two examples.

Example: Merge Sort
As an example, we consider the merge_sort_cost function from Section 8.2. Case 2.3 of
the Master Theorem tells us that the growth of this function is Θ(n lnn). In Isabelle, we write:

lemma merge_sort_cost ∈Θ(λn. n · ln n)

apply (master_theorem 2.3)
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This leaves us with the following proof obligations:

1. ∀n. 0≤ n =⇒ n < 2 =⇒ 0≤merge_sort_cost n
2. ∀n. 2≤ n =⇒ merge_sort_cost(n) =

n + merge_sort_cost(bn/2c) + merge_sort_cost(dn/2e)
3. ∀n. 2≤ n =⇒ 0≤ n
4. (λn. n) ∈Θ(λn. n)

The first goal, non-negativity of merge_sort_cost, can be proven easily by case distinction
using the function definition. All the remaining goals can be discharged automatically by the
simplifier.

Example: Boncelet coding
Another interesting example is given by Drmota and Szpankowski [8]: the average phrase
length d(n) in Boncelet coding [6]. This is not related to Divide & Conquer algorithms at all,
but d does fulfil the Akra–Bazzi-type recurrence

d(n) = 1+ p ·d(bp ·n+δc)+q ·d(bq ·n−δc)

where p∈ (0;1) is a probability, q = 1− p , and δ > 0 , δ < 1 , 2p+δ < 2 . Since our Master
Theorem applies to this recurrence, we can use the master_theorem tactic:

lemma boncelet_phrase_length:

fixes p δ :: real

fixes d :: nat⇒ real

defines q≡ 1− p

assumes p ∈ (0;1) and δ ∈ (0;1) and 2 · p+δ < 2 and ∀n. d(n)≥ 0

assumes ∀n≥2. d(n) = 1+ p ·d(bp ·n+δc)+q ·d(bq ·n+δc)
shows d ∈Θ(λx. ln x)

using assms by (master_theorem recursion: d_rec, simp_all)

This example is particularly interesting because here we do not have a concrete function that
we defined ourselves, but prove a theorem for an entire class of functions satisfying a certain
recurrence. Since d is not a function-package function, we need to give master_theorem
the recurrence rule to use, but then, the lemma can be proven automatically again. Note also
that we did not specify which case to use here; Isabelle implicitly backtracks over all possible
cases and succeeds in case 2.3. It should, however, be mentioned that the Θ -estimate is not
very useful in this case: as Drmota and Szpankowski elaborate, an analysis of the redundancy
of the Boncelet scheme requires more precise asymptotics, like the ones they provide.

Further examples of complexity proofs for recurrences derived from the computational
costs of Divide & Conquer algorithms such as Karatsuba’s multiplication algorithm for
natural numbers, Strassen’s algorithm for matrix multiplication, or the deterministic Median-
of-Medians selection algorithm can be found in the examples file of our entry in the Archive
of Formal Proofs [9].

All examples can be proven mostly automatically with the master_theorem method
and Isabelle’s simplifier. (in no small part thanks to the decision procedure we presented in
section 3.2.2) There are only three kinds of subgoals that are sometimes left behind:

– Positivity/non-negativity for sufficiently large inputs; this can typically be shown by
straightforward induction and simplification.
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– Showing that p satisfies ∑
k
i=1 asi · bsp

i = 1; proving this is usually automatic, but can
be non-trivial in some cases. One such example is that from our introduction: f (n) =
f (bn/4c)+ f (bn/2c)+1 with p = log2 ϕ , where ϕ is the golden ratio.

– Inequalities like q < p for complicated constants p, q (e. g. involving logarithms and
square roots); these can usually be proven automatically by approximation [12].

8.4 akra_bazzi_approximation

In some of the cases of the Master Theorem, the goal contains the parameter p. As shown
before, this p always exists and is unique. It can, however, not always be expressed in a
closed form. One example for such a situation is the function f (x) = f (bx/3c)+ f (b3x/4c),
for which p seems to have no closed form, but can be approximated to 1.152.
Our Master Theorem in Isabelle/HOL yields

lemma f ∈Θ

(
λn. nakra_bazzi_exponent([1,1],[1/3,3/4])

)
where akra_bazzi_exponent is a function that, given lists as and bs that fulfil the usual
conditions, returns the unique p such that ∑

k
i=1 asi ·bsp

i = 1 .
Of course, one would now like to obtain and verify at least an approximate value for this

exponent. An approximate value for p can be found e. g. using an external computer algebra
system or by applying Newton’s method as described in Sec. 8.4. Once such an approximation
has been found, it can then be verified with our proof method akra_bazzi_approximate:

lemma akra_bazzi_exponent([1,1], [1/3, 3/4]) ∈ [1.1519623;1.1519624]
by (akra_bazzi_approximate 29)

This proof method internally uses the approximation tactic [12], which uses Taylor
series expansions, interval arithmetic, and reflection (i. e. Isabelle’s code generator [11])
to certify bounds on the values of certain transcendental functions. The number 29 in the
invocation here indicates the precision (measured in binary digits) of the computation. If it is
too low, the proof attempt might fail even though the statement is true; if it is too high, the
proof will take more time. The user of the proof method should therefore find a precision
value that is as low as possible while still being high enough for the proof to succeed.

Like akra_bazzi_termination, the method akra_bazzi_approximation is com-
pletely orthogonal to the Akra–Bazzi theorem; neither depends on the other. In particular, no
part of the proof of the Akra–Bazzi theorem relies on numerical approximation.

Approximating p. As a side note: p can be approximated quite easily. Recall that p was
defined as the unique real number such that t(p) = 1 where

t : R→ R>0, x 7→
k

∑
i=1

ai ·bx
i .

Note that t(x)−1 is convex and t ′(x) has no zeros. This means that Newton’s method
can be used to approximate p very efficiently: Due to the convexity of t(x)−1, a Newton
step at any lower bound (i. e. intersecting the tangent of t at the lower bound with the x axis)
will yield a better lower bound, and intersecting the secant of a lower bound and an upper
bound on p with the x axis will yield a better upper bound. This can be used to obtain good
approximation intervals for p very quickly.
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As initial lower and upper bounds, one can e. g. use the estimates

− lnak

lnbk
≤ p≤−

ln
(
n ·maxi∈[1;n] ai

)
ln
(
maxi∈[1;n] bi

) where k ∈ [1;n] arbitrary .

We have not verified this approximation algorithm in Isabelle, since the approximation
can easily be done externally in an unverified way and then certified using e. g. the akra_
bazzi_approximation method.

9 Comparison with similar theorems

9.1 Leighton’s Akra–Bazzi theorem

Our version of the Akra–Bazzi theorem differs from Leighton’s [14] in a few minor respects:

– We require only one ai to be positive and the rest to be non-negative. In Leighton’s
version, all of them must be positive.

– Every property that we require to hold between x0 and x1, Leighton requires to hold
between 1 and x0. (which corresponds to our x1)

– We have two separate functions g and ḡ, where the latter is an integrable asymptotic
bound for the former. Leighton essentially requires g and ḡ to be the same.

– We have not only a Θ version of the Akra–Bazzi theorem, but also O and Ω versions,
which may be useful when the behaviour of g is not fully known.

9.2 Master Theorem

Due to its being derived from the Akra–Bazzi theorem, our version of the Master Theorem
is much more general than the versions of the Master Theorem that are typically presented
in the literature (e. g. Introduction to Algorithms [7]). Our version of the Master Theorem
imposes far fewer restrictions on the shape of the recursive call, allowing multiple terms with
floors, ceilings, and other deviations.

Apart from the more general recursion scheme that our version of the Master Theorem
allows, there are two more differences to the version of the Master Theorem given by
Cormen et al. [7]:

The second case of our version of the Master Theorem is more general, as it allows
arbitrary real numbers q whereas the version by Cormen et al. require q≥ 0.6

The third case is more restrictive than that by Cormen et al.: we demand g ∈Θ(xq),
whereas Cormen et al. only demand g ∈Ω(xq) and the existence of some c < 1 such that for
all sufficiently large x, the regularity condition a ·g(x/b)≤ c ·g(x) holds. For a more complex
recursion scheme, as allowed by our Master Theorem, this regularity condition would be so
complicated that it would be very inconvenient:

k

∑
i=1

ai ·g(bi · x+hi(x))≤ c ·g(x)

6 The Master Theorem presented in the book actually demands q = 0, but Exercise 4.2-2 is a generalisation
to q≥ 0.
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Given such a regularity condition, the proof that f is then in Θ(g) is relatively simple and
does not require the Akra–Bazzi theorem at all, which is why we did not include this in our
proof.

It should also be noted that while most informal proofs of the Master Theorem mention
that rounding before the recursive call does not change the result, this is seldom proven
concisely. Cormen et al. give a partial proof that their Master Theorem also holds for f (x) =
a · f (bx/bc)+g(x) and f (x) = a · f (dx/be)+g(x), but they do not address the case f (x) =
a1 · f (bx/bc) + a2 · f (dx/be) + g(x). This is unfortunate, because even simple Divide &
Conquer algorithms such as Merge Sort have cost recurrences of this kind. Ad-hoc arguments
using monotonicity can be made for concrete examples such as Merge Sort, but it is convenient
to handle all of these deviations with a unified theorem like the Akra–Bazzi theorem.

10 Conclusion

We formally verified a very general version of the Akra–Bazzi method [1] with the theorem
prover Isabelle/HOL. This enables users of Isabelle to obtain verified asymptotic bounds for
many typical ‘Divide & Conquer’ recurrence relations. In the process of our formalisation,
we found a missing case in Leighton’s original proof [14]. We also clarified some important
parts of the proof that Leighton does not address (such as the asymptotic inequalities and
lifting the estimate for continuous recurrences to discrete ones) and slightly generalised the
theorem.

Based upon our formal proof of the Akra–Bazzi method, we also proved a generalisation
of the well-known Master Theorem whose generality is somewhere between the ‘classic’
Master Theorem and the Akra–Bazzi method, but with no additional cost compared to the
‘classic’ Master Theorem. In particular, we thus accounted rigorously for any rounding in the
recursive calls, which is often neglected in informal proofs of the Master Theorem.

Additionally, we developed some automated proof methods that facilitate defining such
recursive functions and working with our Master Theorem. We evaluated this machinery on
some standard textbook examples of Divide & Conquer algorithms (Merge Sort, Karatsuba
multiplication, deterministic Median-of-Medians selection) and found that the complexity
proofs were almost completely automatic.
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A The Class of Admissible Integrals

We will now provide a proof of our claim from Section 3.3 that any admissible integral must coincide with the
Riemann integral for all piecewise-continuous functions. First of all, we shall state again what admissibility
means formally: Consider an integral notion I. Formally, I consists of

– A functional I : RR×R2→ R that maps a function f and interval bounds a and b to the I-integral of f
from a to b, denoted by ∫ b

a
I

f (x)dx .

– A set I ⊆RR×R2, the set of I-integrable functions. We say that f is I-integrable on [a;b] if ( f ,a,b)∈ I.

For the remainder of this section, we will always indicate for every use of the integral sign which notion of
integration is meant by writing the name of the integral underneath the integral as we did above.

Now assume that I fulfils the following four properties (which are the same that were stated in Section
3.3, but more formally):

∀a,b,c ∈ R. a≤ b ∧ c≥ 0 −→ ((λx. c),a,b) ∈ I ∧
∫ b

a
I

c dx = c · (a−b) (9)

∀a,b,a′,b′ ∈ R. ∀ f ∈ RR. a≤ a′ ≤ b′ ≤ b ∧ ( f ,a,b) ∈ I −→ ( f ,a′,b′) ∈ I (10)

∀a,b ∈ R. ∀ f ,g ∈ RR. ( f ,a,b) ∈ I ∧ (g,a,b) ∈ I ∧ (∀x ∈ [a;b]. f (x)≤ g(x))

−→
∫ b

a
I

f (x)dx≤
∫ b

a
I

g(x)dx (11)

∀a,b,c ∈ R. ∀ f ∈ RR. a≤ b≤ c ∧ ( f ,a,c) ∈ I −→
∫ c

a
I

f (x)dx =
∫ b

a
I

f (x)dx+
∫ c

b
I

f (x)dx (12)

To show that the I-integral of a non-negative function f over [a;b] coincides with the Riemann integral if
f is both I-integrable and piecewise-continuous on [a;b], we recall that the Riemann integral is equivalent to
the Darboux integral. The Darboux integral is defined as the supremum L f of the lower Darboux sums L f ,P
and the infimum U f of the upper Darboux sums U f ,P over all subdivisions P = (c0 . . .cn) of the interval [a;b]
whenever L f and U f are equal. Formally:

∫ b

a
Darboux

f (x)dx := L f =U f (if L f =U f )

where

L f = sup
P

L f ,P = sup
P

n−1

∑
i=0

(ci+1− ci) inf
x∈[ci ;ci+1 ]

f (x) and U f = inf
P

U f ,P = inf
P

n−1

∑
i=0

(ci+1− ci) sup
x∈[ci ;ci+1 ]

f (x)

Suppose f is non-negative, continuous, and I-integrable on [a;b]. For any subdivision P = (c0 . . .cn) of the
interval [a;b], we can use (10) and (12) to split up the I-integral over [a;b]:

∫ b

a
I

f (x)dx =
n−1

∑
i=0

∫ ci+1

ci
I

f (x)dx

Using this together with the monotonicity and constant-interval property of I, we have:

L f ,P
def
=

n−1

∑
i=0

(ci+1− ci) inf
x∈[ci ;ci+1 ]

f (x)
(9)
=

n−1

∑
i=0

∫ ci+1

ci
I

inf
x∈[ci ;ci+1 ]

f (x)dx
(11)
≤

n−1

∑
i=0

∫ ci+1

ci
I

f (x)dx

︸ ︷︷ ︸
=
∫ b

a
I

f (x)dx

(11)
≤

≤
n−1

∑
i=0

∫ ci+1

ci
I

sup
x∈[ci ;ci+1 ]

f (x)
(9)
=

n−1

∑
i=0

(ci+1− ci) sup
x∈[ci ;ci+1 ]

f (x) def
= U f ,P
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Therefore, the I-integral lies between all lower and upper Darboux sums. Since f is continuous, f is also
Darboux-integrable, and therefore the supremum of the lower Darboux sums and the infimum of the upper
Darboux sums are the same. Since the I-integral lies inbetween, we have:

∫ b

a
Darboux

f (x)dx def
= L f =U f =

n−1

∑
i=0

∫ ci+1

ci
I

f (x)dx =
∫ b

a
I

f (x)dx .

We have therefore shown that I coincides with the Riemann integral on all continuous non-negative functions.
Since we can split the I-integral of a piecewise-continuous function into a sum of I-integrals of continuous
functions, this extends to all piecewise-continuous non-negative functions.

However, this result does not extend to more general notions of integrals and integrability: For example,
let us consider the following integral I: A function is I-integrable if it is a constant function or if it is
[Q] = (λx. if x ∈Q then 1 else 0), the indicator function of the rational numbers. The value of the integral is
defined as ∫ b

a
I

cdx := c · (b−a) and
∫ b

a
I

[Q]dx := b−a

Then I fulfils all four properties, but unlike the Lebesgue/Bochner/Henstock–Kurzweil integral, the I-integral
of [Q] is non-zero on all non-empty intervals.
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