Automating Asymptotics
in a Theorem Prover

Manuel Eberl

Technical University of Munich

Formal Methods in Mathematics
6 January 2020

1/31

My Christmas Project

| found some lovely 5-pages of lecture notes on Transcendental
Number Theory by Filaseta:

4 The Irrationality of ((3)
For s > 1, we define ((s) = >~ 1/n®. We give here a proof by Frits Beukers that ((3) is
irrational (the result itself being originally due to R. Apery).
Theorem 10. The number ((3) = 5_°° 1/n is irrational.

n=1

In addition to Lemma 1 of the previous section (and the notation given there), we make use of
the following results.

Lemma 2. Let r and s be nonnegative integers. If v > s, then

SE
log(xy)

/ /—Mz"j/*([.rrly

Jo Jo 1-ay

is a rational number whose denominator when reduced divides d. Also,

o log(ay) ~ 1
_ oy dedy —2(c(3) - ST =).
/0 /0 17“’1 y"drdy _<<(%) st)

k=1

Proof. Integrating by parts, we obtain that for & > 0

1 1
/ (log z)z"** da = linﬂ/ (log z)x"** dx

Jo €

2/31

My Christmas Project

So | decided to formalise them:

The Irrationality of ((3)

Manuel Eberl

December 28, 2019

Abstract

This article provides a formalisation of Beukers’s straightforward
analytic proof [2] that ((3) is irrational. This was first proven by
Apéry [1] (which is why this result is also often called ‘Apéry’s The-
orem’) using a more algebraic approach. This formalisation follows
Filaseta’s presentation of Beukers’s proof [5].

Contents

1 The Irrationality of ¢(3)
1.1 Auxiliary facts about polynomials
1.2 Auxiliary facts about integrals
1.3 Shifted Legendre polynomials

1.5 Divisor of a sum of rationals
1.6 The first double integral
1.7 The second double integral
1.8 The triple integral

1.4 Auxiliary facts about the ¢ function

1.9 Connecting the double and triple integral
1.10 Themainresult

3/31

The Curse of de Bruijn

Mathematical proofs in a proof assistant (compared to
pen-and-paper)

4/31

The Curse of de Bruijn

Mathematical proofs in a proof assistant (compared to
pen-and-paper)

» are much longer

4/31

The Curse of de Bruijn

Mathematical proofs in a proof assistant (compared to
pen-and-paper)
» are much longer

» take more time to write

4/31

The Curse of de Bruijn

Mathematical proofs in a proof assistant (compared to
pen-and-paper)

» are much longer

» take more time to write

» contain many tedious steps.

4/31

The Curse of de Bruijn

Mathematical proofs in a proof assistant (compared to
pen-and-paper)

» are much longer

» take more time to write

» contain many tedious steps.

There are many reasons for this.

4/31

The Curse of de Bruijn

Mathematical proofs in a proof assistant (compared to
pen-and-paper)

» are much longer
» take more time to write
» contain many tedious steps.

There are many reasons for this.

But | want to talk about one in particular.

4/31

Externalisation of Work in Paper Proofs

» Ambiguities and ‘handwaving'

5/31

Externalisation of Work in Paper Proofs

» Ambiguities and ‘handwaving'

In a proof assistant, you have to define everything
completely rigorously.

5/31

Externalisation of Work in Paper Proofs

» Ambiguities and ‘handwaving'

In a proof assistant, you have to define everything
completely rigorously.

» Side conditions not proven/dismissed as trivial

5/31

Externalisation of Work in Paper Proofs

» Ambiguities and ‘handwaving'

In a proof assistant, you have to define everything
completely rigorously.

» Side conditions not proven/dismissed as trivial

A proof assistant will force you to prove every single side
condition.

5/31

Externalisation of Work in Paper Proofs

» Ambiguities and ‘handwaving'

In a proof assistant, you have to define everything
completely rigorously.

» Side conditions not proven/dismissed as trivial

A proof assistant will force you to prove every single side
condition.

» A huge trove of ‘library’ results that one can use freely

5/31

Externalisation of Work in Paper Proofs

» Ambiguities and ‘handwaving'

In a proof assistant, you have to define everything
completely rigorously.

» Side conditions not proven/dismissed as trivial

A proof assistant will force you to prove every single side
condition.

» A huge trove of ‘library’ results that one can use freely

Most mathematical results have not been formalised

5/31

Externalisation of Work in Paper Proofs

» Ambiguities and ‘handwaving'

In a proof assistant, you have to define everything
completely rigorously.

» Side conditions not proven/dismissed as trivial

A proof assistant will force you to prove every single side
condition.

» A huge trove of ‘library’ results that one can use freely

Most mathematical results have not been formalised
And even if: perhaps not in the system you use.

5/31

The Curse of de Bruijn

Solution: No idea. :(

6/31

The Curse of de Bruijn

Solution: No idea. :(

Partial solutions:

6/31

The Curse of de Bruijn

Solution: No idea. :(

Partial solutions: (in my opinion)

6/31

The Curse of de Bruijn

Solution: No idea. :(

Partial solutions: (in my opinion)

» Good, concise notation

6/31

The Curse of de Bruijn

Solution: No idea. :(

Partial solutions: (in my opinion)
» Good, concise notation
» Good automation

6/31

The Curse of de Bruijn

Solution: No idea. :(

Partial solutions: (in my opinion)
» Good, concise notation
» Good automation

When writing a formal proof, we can externalise work to the
reader as well.

6/31

The Curse of de Bruijn

Solution: No idea. :(

Partial solutions: (in my opinion)
» Good, concise notation
» Good automation

When writing a formal proof, we can externalise work to the
reader as well.

The reader is the proof assistant.

6/31

Domain-Specific Automation

Human mathematicians have a large repertoire of
domain-specific automation procedures in their brain:

» How to solve a quadratic equation

7/31

Domain-Specific Automation

Human mathematicians have a large repertoire of

domain-specific automation procedures in their brain:

» How to solve a quadratic equation

» How to take a derivative

7/31

Domain-Specific Automation

Human mathematicians have a large repertoire of

domain-specific automation procedures in their brain:

» How to solve a quadratic equation
» How to take a derivative

» How to expand into partial fractions

7/31

Domain-Specific Automation

Human mathematicians have a large repertoire of
domain-specific automation procedures in their brain:

» How to solve a quadratic equation
» How to take a derivative
» How to expand into partial fractions

This saves lots of time when writing mathematical papers.

7/31

Domain-Specific Automation

Human mathematicians have a large repertoire of
domain-specific automation procedures in their brain:

» How to solve a quadratic equation
» How to take a derivative
» How to expand into partial fractions

This saves lots of time when writing mathematical papers.

For effective formalisation of mathematics, we need to teach
proof assistants these skills.

7/31

Examples for Domain-Specific Automation

» Cancelling common factors from equations

8/31

Examples for Domain-Specific Automation

» Cancelling common factors from equations
» Linear arithmetic (Chaieb/Nipkow)

8/31

Examples for Domain-Specific Automation

» Cancelling common factors from equations
» Linear arithmetic (Chaieb/Nipkow)
» Approximation using interval arithmetic (Holzl)

8/31

Examples for Domain-Specific Automation

» Cancelling common factors from equations

» Linear arithmetic (Chaieb/Nipkow)

» Approximation using interval arithmetic (Holzl)
» Evaluating v/16 = 4 etc.

8/31

Examples for Domain-Specific Automation

» Cancelling common factors from equations

» Linear arithmetic (Chaieb/Nipkow)

» Approximation using interval arithmetic (Holzl)

» Evaluating v/16 = 4 etc.

» Proving primality using Pratt certificates (Wimmer/E.)

8/31

Examples for Domain-Specific Automation

Cancelling common factors from equations
Linear arithmetic (Chaieb/Nipkow)
Approximation using interval arithmetic (Holzl)

Evaluating /16 = 4 etc.
Proving primality using Pratt certificates (Wimmer/E.)

vVvVvyVvyyvyy

Evaluating winding numbers (Li)

8/31

Examples for Domain-Specific Automation

vVvyVvyVvVvVYVYyYVvVvyy

Cancelling common factors from equations

Linear arithmetic (Chaieb/Nipkow)

Approximation using interval arithmetic (Holzl)
Evaluating v/16 = 4 etc.

Proving primality using Pratt certificates (Wimmer/E.)
Evaluating winding numbers (Li)

Real asymptotics (E.)

8/31

Automating Real Asymptotics
in Isabelle/HOL

» Interactive theorem prover; mostly Higher Order Logic

10/31

» Interactive theorem prover; mostly Higher Order Logic
» Unlike Coq/Lean: No dependent types

10/31

» Interactive theorem prover; mostly Higher Order Logic
» Unlike Coq/Lean: No dependent types

» Large library of real and complex analysis

10/31

» Interactive theorem prover; mostly Higher Order Logic
» Unlike Coq/Lean: No dependent types
» Large library of real and complex analysis

» Archive of Formal Proofs:
Large collection of Isabelle proof developments

10/31

Let's talk about asymptotics in a proof assistant.

11/31

Let's talk about asymptotics in a proof assistant.

Suppose you write a formal proof and sudenly have to prove

lim x2 —x = o0 .
X— 00

11/31

Let's talk about asymptotics in a proof assistant.

Suppose you write a formal proof and sudenly have to prove

lim x2 —x = o0 .
X— 00

Any ‘real’ mathematician would rightly dismiss this as trivial.

11/31

Let's talk about asymptotics in a proof assistant.

Suppose you write a formal proof and sudenly have to prove

lim x2 —x = o0 .
X— 00

Any ‘real’ mathematician would rightly dismiss this as trivial.

But in a theorem prover, even something this trivial requires
some thinking and several lines of proofs

11/31

Let's talk about asymptotics in a proof assistant.
Suppose you write a formal proof and sudenly have to prove

lim x2 —x = o0 .
X— 00

Any ‘real’ mathematician would rightly dismiss this as trivial.

But in a theorem prover, even something this trivial requires
some thinking and several lines of proofs

If you have to do this every 5 minutes, it gets annoying.

11/31

Example: Stieltjes constants

_ i In"k In""(k4+1)—In"tk
W = =t k n+1

12/31

Example: Stieltjes constants

& (In” k In""l(k4+1) —In"H1 k)

’Y":k;l k n+1

Why does this sum exist?

12/31

Example: Stieltjes constants

_ i In"k In""(k4+1)—In"tk
W = =t k n+1

Why does this sum exist?

Because the summand is ~ (k=2In" k) € O(k—3/?)

12/31

Example: Stieltjes constants

’Y":k;l k n+1

& (In” k In""l(k4+1) —In"H1 k)
Why does this sum exist?

Because the summand is ~ (k=2In" k) € O(k—3/?)
and Y k¥ is summable for any x < —1!

12/31

Example: Stieltjes constants

’Y":k;l k n+1

& (In”k _In" (k4 1) — It k)
Why does this sum exist?

Because the summand is ~ (k=2In" k) € O(k—3/?)
and Y k¥ is summable for any x < —1!

But proving those asymptotics by hand is a lot of work.

12/31

Example: Lemma required for Akra—Bazzi
1 2 1
li 1—— 1 =
Xinoo (b|og1+€x> * | e/2 (bX+)

1
1+ ———] = 07
(Iog£/2x>

13/31

Example: Lemma required for Akra—Bazzi

i (1 L),, 14 L
im - —
X—»00 b|og1+€x I e/2 (bX . S)

1 — ot
(1+m) = 0

Original author: ‘Trivial, just Taylor-expand it!’

13/31

In Isabelle:

lemma akra bazzi aux:
filterlim
(Ax. (1=1/(b*xInx"(14¢)) " p) *
(I1+1In (bxx+x/Inx"(1+¢)) " (—¢e/2)) —
(14+1Inx"(—¢/2)))
(at_right 0) at_top

14 /31

In Isabelle:

lemma akra bazzi aux:
filterlim
(Ax. (1=1/(b*xInx"(14¢)) " p) *
(I1+1In (bxx+x/Inx"(1+¢)) " (—¢e/2)) —
(14+1Inx"(—¢/2)))
(at_right 0) at_top

Omitted: 700 lines of messy proofs

14 /31

In Isabelle:

lemma akra bazzi aux:
filterlim
(Ax. (1=1/(b*xInx"(14¢)) " p) *
(I1+1In (bxx+x/Inx"(1+¢)) " (—¢e/2)) —
(14+1Inx"(—¢/2)))
(at_right 0) at_top

Omitted: 700 lines of messy proofs
Luckily, we now have automation for this:

by real asymp

14 /31

In Isabelle:

lemma akra bazzi aux:
filterlim
(Ax. (1=1/(b*xInx"(14¢)) " p) *
(I1+1In (bxx+x/Inx"(1+¢)) " (—¢e/2)) —
(14+1Inx"(—¢/2)))

(at_right 0) at_top
Omitted: 700 lines of messy proofs
Luckily, we now have automation for this:

by real asymp

How does it work?

14 /31

Multiseries Expansions

15/31

Multiseries Expansions

Disclaimer: None of this was invented by me.

Related Work:

» Asymptotic Expansions of exp—log Functions
by Richardson, Salvy, Shackell, van der Hoeven

» On Computing Limits in a Symbolic Manipulation System
by Gruntz

» Verified Real Asymptotics in Isabelle/HOL
by E.

15/31

Multiseries Expansions
Power series expansions are insufficient for many important
functions: exp(x), In(x), T'(x) for x — o0

16 /31

Multiseries Expansions
Power series expansions are insufficient for many important
functions: exp(x), In(x), T'(x) for x — o0

Example:
(x+In(x)"t ~ Ixt—2x2In(x) + Ex 3 In(x)? + ...

Solution: Multiseries
» Like an asymptotic power series, but may contain powers
of several ‘basis functions’ by (x), ..., by(x)

16 /31

Multiseries Expansions
Power series expansions are insufficient for many important
functions: exp(x), In(x), T'(x) for x — o0
Example:
(x+In(x)"t ~ Ixt—2x2In(x) + Ex 3 In(x)? + ...

Solution: Multiseries
» Like an asymptotic power series, but may contain powers
of several ‘basis functions’ by (x), ..., by(x)

» Formally: R[Bq, ..., By or R[B,]...[Bi]

16 /31

Multiseries Expansions
Power series expansions are insufficient for many important
functions: exp(x), In(x), T'(x) for x — o0

Example:
(x+In(x)"t ~ Ixt—2x2In(x) + Ex 3 In(x)? + ...

Solution: Multiseries

» Like an asymptotic power series, but may contain powers
of several ‘basis functions’ by (x), ..., by(x)

» Formally: R[Bq, ..., By or R[B,]...[Bi]
» The basis must be ordered descendingly by ‘growth class’:
Vi. In b,'+1(X) € o(In b,(X))

16 /31

Multiseries Expansions
Power series expansions are insufficient for many important
functions: exp(x), In(x), T'(x) for x — o0

Example:
(x+In(x)"t ~ Ixt—2x2In(x) + Ex 3 In(x)? + ...
Solution: Multiseries

» Like an asymptotic power series, but may contain powers
of several ‘basis functions’ by (x), ..., by(x)

» Formally: R[By, ..., Bn] or R[B,]...[Bi]

» The basis must be ordered descendingly by ‘growth class’:
Vi. In b,'+1(X) € o(In b,(X))

» Typical basis: exp(x2), exp(x), x, Inx, Inln x

16 /31

A coalgebraic view of Multiseries

type Basis = (R — R) list

17/31

A coalgebraic view of Multiseries

type Basis = (R — R) list
datatype MS : Basis — Type where
Const : R — MS []
Series : LList (MS bs x R) — MS (b :: bs)

17/31

A coalgebraic view of Multiseries

type Basis = (R — R) list
datatype MS : Basis — Type where
Const : R — MS []
Series : LList (MS bs x R) — MS (b :: bs)

Additionally: bases and series must be ‘sorted’.

17/31

A coalgebraic view of Multiseries

type Basis = (R — R) list
datatype MS : Basis — Type where
Const : R — MS []
Series : LList (MS bs x R) — MS (b :: bs)

Additionally: bases and series must be ‘sorted’.

Example for a simple operation:
negate : MS bs — MS bs

17/31

A coalgebraic view of Multiseries

type Basis = (R — R) list
datatype MS : Basis — Type where
Const : R — MS []
Series : LList (MS bs x R) — MS (b :: bs)

Additionally: bases and series must be ‘sorted’.

Example for a simple operation:

negate : MS bs — MS bs
negate (Const c) = Const (—c)

17/31

A coalgebraic view of Multiseries

type Basis = (R — R) list
datatype MS : Basis — Type where
Const : R — MS []
Series : LList (MS bs x R) — MS (b :: bs)

Additionally: bases and series must be ‘sorted’.

Example for a simple operation:

negate : MS bs — MS bs
negate (Const c) = Const (—c)
negate (Series ts) = Series [(negate ¢, e) | (¢, e) < ts]

17/31

More Complicated Operations

» Basic operations (defined corecursively):
constants, identity, addition, multiplication

18/31

More Complicated Operations

» Basic operations (defined corecursively):
constants, identity, addition, multiplication

» Substitution into convergent power series:
Gives us division; In, exp, sin, etc. at non-singular points

18/31

More Complicated Operations

» Basic operations (defined corecursively):
constants, identity, addition, multiplication

» Substitution into convergent power series:
Gives us division; In, exp, sin, etc. at non-singular points

» exp and In at singular points require specialised
procedures and may add new basis elements

18/31

More Complicated Operations

» Basic operations (defined corecursively):
constants, identity, addition, multiplication

» Substitution into convergent power series:
Gives us division; In, exp, sin, etc. at non-singular points

» exp and In at singular points require specialised
procedures and may add new basis elements

» For operations like T, erf, li:
factor out singularities and treat them separately

18/31

Connecting Series and Functions

For simple power series, f ~ ts can be expressed coinductively:
f(x) € O(x®) f(x) —cx® ~ ts
f(x) ~ (ce):ts

19/31

Connecting Series and Functions

For simple power series, f ~ ts can be expressed coinductively:
f(x) € O(x®) f(x) —cx® ~ ts
f(x) ~ (ce):ts

Operations are defined corecursively; correctness is proven
coinductively. Both are straightforward.

The same works for multiseries quite similarly.

19/31

Finding Expansions
We can construct expansions for functions ‘bottom up'’:

20/31

Finding Expansions
We can construct expansions for functions ‘bottom up'’:

Example

Find an expansion for sin(1/x) 4 exp(x) for x — oo:

20/31

Finding Expansions
We can construct expansions for functions ‘bottom up'’:

Example

Find an expansion for sin(1/x) 4 exp(x) for x — oo:

» 1/x has the trivial expansion x~1 w.r.t. the basis [x]

20/31

Finding Expansions
We can construct expansions for functions ‘bottom up'’:

Example

Find an expansion for sin(1/x) 4 exp(x) for x — oo:
» 1/x has the trivial expansion x~1 w.r.t. the basis [x]

» substitute the series x ! into the Taylor expansion of sin

20/31

Finding Expansions
We can construct expansions for functions ‘bottom up'’:

Example

Find an expansion for sin(1/x) 4 exp(x) for x — oo:
» 1/x has the trivial expansion x~1 w.r.t. the basis [x]
» substitute the series x ! into the Taylor expansion of sin

> exp(x) has to be added as a new basis element

20/31

Finding Expansions
We can construct expansions for functions ‘bottom up'’:

Example

Find an expansion for sin(1/x) 4 exp(x) for x — oo:
» 1/x has the trivial expansion x~1 w.r.t. the basis [x]

» substitute the series x 1 into the Taylor expansion of sin

> exp(x) has to be added as a new basis element

» exp(x) then has the trivial expansion exp(x)

20/31

Finding Expansions
We can construct expansions for functions ‘bottom up'’:

Example

Find an expansion for sin(1/x) 4 exp(x) for x — oo:
» 1/x has the trivial expansion x~1 w.r.t. the basis [x]
» substitute the series x 1 into the Taylor expansion of sin
> exp(x) has to be added as a new basis element
» exp(x) then has the trivial expansion exp(x)
» our expansion for sin(1/x) must be lifted to the new
basis [exp(x), X]

20/31

Finding Expansions
We can construct expansions for functions ‘bottom up'’:

Example

Find an expansion for sin(1/x) 4 exp(x) for x — oo:

>
>
>
>
>

>

Lw.r.t. the basis [x]

1/x has the trivial expansion x~
substitute the series x 1 into the Taylor expansion of sin
exp(x) has to be added as a new basis element

exp(x) then has the trivial expansion exp(x)

our expansion for sin(1/x) must be lifted to the new
basis [exp(x), X]

add expansions for sin(1/x) and exp(x)

20/31

Finding Expansions

End result: Theorem that sin(1/x) + exp(x) has the following
expansion w.r.t. basis (exp(x), x):

21/31

Finding Expansions
End result: Theorem that sin(1/x) + exp(x) has the following

expansion w.r.t. basis (exp(x), x):

lift _expansion (sin_ms (Series [(1, —1)])) +
Series [(Series [(1,0)],1)]

21/31

Finding Expansions

End result: Theorem that sin(1/x) + exp(x) has the following
expansion w.r.t. basis (exp(x), x):

lift _expansion (sin_ms (Series [(1, —1)])) +
Series [(Series [(1,0)],1)]

which evaluates to

1 1
L3, & 5

exp(x) + x e 150

21/31

Sign Determination

Problem:

» Many operations involve comparisons of real numbers

22/31

Sign Determination

Problem:
» Many operations involve comparisons of real numbers

» ‘Trimming' expansions involves zeroness tests of real
functions

22/31

Sign Determination

Problem:
» Many operations involve comparisons of real numbers

» ‘Trimming' expansions involves zeroness tests of real
functions

» Both of these are difficult or even undecidable

22/31

Sign Determination

Solution: Heuristic approach using Isabelle’s automation

23/31

Sign Determination

Solution: Heuristic approach using Isabelle’s automation

» Use automation to determine signs — might fail

23/31

Sign Determination

Solution: Heuristic approach using Isabelle’s automation
» Use automation to determine signs — might fail

» Use automation to determine if function is identically zero
— might cause non-termination

23/31

Sign Determination

Solution: Heuristic approach using Isabelle’s automation
» Use automation to determine signs — might fail

» Use automation to determine if function is identically zero
— might cause non-termination

» Optionally: Use approximation by interval arithmetic

23/31

Sign Determination

Solution: Heuristic approach using Isabelle’s automation
» Use automation to determine signs — might fail

» Use automation to determine if function is identically zero
— might cause non-termination

» Optionally: Use approximation by interval arithmetic
» User may have to supply additional facts

23/31

Sign Determination

Solution: Heuristic approach using Isabelle’s automation
» Use automation to determine signs — might fail

» Use automation to determine if function is identically zero
— might cause non-termination

» Optionally: Use approximation by interval arithmetic
» User may have to supply additional facts

This works surprisingly well

23/31

Proof Method

With some pre-processing, we can automatically prove
statements of the form
> f(x) — ¢
> f(x) ~ g(x)
> f(x) < g(x) eventually
» f(x) € L(g(x)) for any Landau symbol L
as x — [for | € RU{£o0}

24 /31

Proof Method

With some pre-processing, we can automatically prove
statements of the form

> f(x) — ¢
> f(x) ~ g(x)
> f(x) < g(x) eventually
» f(x) € L(g(x)) for any Landau symbol L
as x — [for | € RU{£o0}

f and g can be built from + — - / In exp min max " |- | /-
without restrictions

24 /31

Proof Method

With some pre-processing, we can automatically prove
statements of the form

> f(x) — ¢
> f(x) ~ g(x)
> f(x) < g(x) eventually
» f(x) € L(g(x)) for any Landau symbol L
as x — [for | € RU{£o0}

f and g can be built from + — - / In exp min max " |- | /-
without restrictions

sin, cos, tan at finite points also possible.

24 /31

Proof Method

Problem: What about ‘oscillating’ functions like sin, |- |, mod?

25/31

Proof Method
Problem: What about ‘oscillating’ functions like sin, |- |, mod?

Example: /x| = v/x+ 0(1)

25/31

Proof Method

Problem: What about ‘oscillating’ functions like sin, |- |, mod?
Example: /x| = v/x+ 0(1)

Obvious solution: Asymptotic interval arithmetic:

25/31

Proof Method

Problem: What about ‘oscillating’ functions like sin, |- |, mod?
Example: /x| = v/x+ 0(1)

Obvious solution: Asymptotic interval arithmetic:
> sinx € [—1;1]

25/31

Proof Method

Problem: What about ‘oscillating’ functions like sin, |- |, mod?
Example: /x| = v/x+ 0(1)

Obvious solution: Asymptotic interval arithmetic:
> sinx € [—1;1]
> x| €[x—1;x]

25/31

Proof Method

Problem: What about ‘oscillating’ functions like sin, |- |, mod?
Example: /x| = v/x+ 0(1)

Obvious solution: Asymptotic interval arithmetic:

> sinx € [—1;1]

> x| €[x—1;x]
Result: Pair of asymptotic lower/upper bound with known
multiseries expansion

25/31

Proof Method

Problem: What about ‘oscillating’ functions like sin, |- |, mod?
Example: /x| = v/x+ 0(1)

Obvious solution: Asymptotic interval arithmetic:

> sinx € [—1;1]

> x| €[x—1;x]
Result: Pair of asymptotic lower/upper bound with known
multiseries expansion

Works in many cases, but does not cope well with
cancellations.

25/31

Proof Method

Problem: What about ‘oscillating’ functions like sin, |- |, mod?
Example: /x| = v/x+ 0(1)

Obvious solution: Asymptotic interval arithmetic:

> sinx € [—1;1]

> x| €[x—1;x]
Result: Pair of asymptotic lower/upper bound with known
multiseries expansion

Works in many cases, but does not cope well with
cancellations. Good enough.

25/31

Proof Method

26 /31

Proof Method

lemma (An. (14+1/n)"n) — exp 1
by real asymp

27/31

Proof Method

Example

lemma (An. (14+1/n)"n) — exp 1
by real asymp

Example

lemma (An. (1+a/n)"n) —> exp a
by real asymp

27/31

Usage

» ~180 uses of real asymp in the Archive of Formal Proofs

28/31

Usage

» ~180 uses of real asymp in the Archive of Formal Proofs
(most of them by me — but not all of them)

28/31

Usage

» ~180 uses of real asymp in the Archive of Formal Proofs
(most of them by me — but not all of them)

» Most uses are for fairly trivial examples

28/31

Usage

» ~180 uses of real asymp in the Archive of Formal Proofs
(most of them by me — but not all of them)

» Most uses are for fairly trivial examples

» But: Some others would have been quite painful without
the method.

28/31

Usage

» ~180 uses of real asymp in the Archive of Formal Proofs
(most of them by me — but not all of them)

» Most uses are for fairly trivial examples

» But: Some others would have been quite painful without
the method.

» And: The benefit of not having to stop and think about
trivialities like x2 — x — oo should not be underestimated!

28/31

My Personal Experience

When formalising some paper and reaching a page full of
limits, integrals, and uniform convergence,

| used to feel like this:

20/31

My Personal Experience

When formalising some paper and reaching a page full of
limits, integrals, and uniform convergence,

| used to feel like this: Now | feel like this:

20/31

Future Work

What could be improved?

30/31

Future Work

What could be improved?
» Incomplete support for T, 1[1(”), erf, arctan

30/31

Future Work

What could be improved?
» Incomplete support for T, 1[1(”), erf, arctan
» Zeroness tests could be improved

30/31

Future Work

What could be improved?
» Incomplete support for T, 1[1(”), erf, arctan
» Zeroness tests could be improved

» Laurent series expansions for complex functions

30/31

Future Work

What could be improved?
» Incomplete support for T, ¢(”), erf, arctan
» Zeroness tests could be improved

» Laurent series expansions for complex functions
— automatic computation of poles, residues, etc.

30/31

Questions? Demo?

