
Automating Asymptotics
in a Theorem Prover

Manuel Eberl

Technical University of Munich

Formal Methods in Mathematics
6 January 2020

1 / 31

My Christmas Project

I found some lovely 5-pages of lecture notes on Transcendental
Number Theory by Filaseta:

2 / 31

My Christmas Project
So I decided to formalise them:

3 / 31

The Curse of de Bruijn

Mathematical proofs in a proof assistant (compared to
pen-and-paper)

I are much longer
I take more time to write
I contain many tedious steps.

There are many reasons for this.

But I want to talk about one in particular.

4 / 31

The Curse of de Bruijn

Mathematical proofs in a proof assistant (compared to
pen-and-paper)
I are much longer

I take more time to write
I contain many tedious steps.

There are many reasons for this.

But I want to talk about one in particular.

4 / 31

The Curse of de Bruijn

Mathematical proofs in a proof assistant (compared to
pen-and-paper)
I are much longer
I take more time to write

I contain many tedious steps.
There are many reasons for this.

But I want to talk about one in particular.

4 / 31

The Curse of de Bruijn

Mathematical proofs in a proof assistant (compared to
pen-and-paper)
I are much longer
I take more time to write
I contain many tedious steps.

There are many reasons for this.

But I want to talk about one in particular.

4 / 31

The Curse of de Bruijn

Mathematical proofs in a proof assistant (compared to
pen-and-paper)
I are much longer
I take more time to write
I contain many tedious steps.

There are many reasons for this.

But I want to talk about one in particular.

4 / 31

The Curse of de Bruijn

Mathematical proofs in a proof assistant (compared to
pen-and-paper)
I are much longer
I take more time to write
I contain many tedious steps.

There are many reasons for this.

But I want to talk about one in particular.

4 / 31

Externalisation of Work in Paper Proofs

I Ambiguities and ‘handwaving’

In a proof assistant, you have to define everything
completely rigorously.

I Side conditions not proven/dismissed as trivial
A proof assistant will force you to prove every single side
condition.

I A huge trove of ‘library’ results that one can use freely
Most mathematical results have not been formalised
And even if: perhaps not in the system you use.

5 / 31

Externalisation of Work in Paper Proofs

I Ambiguities and ‘handwaving’
In a proof assistant, you have to define everything
completely rigorously.

I Side conditions not proven/dismissed as trivial
A proof assistant will force you to prove every single side
condition.

I A huge trove of ‘library’ results that one can use freely
Most mathematical results have not been formalised
And even if: perhaps not in the system you use.

5 / 31

Externalisation of Work in Paper Proofs

I Ambiguities and ‘handwaving’
In a proof assistant, you have to define everything
completely rigorously.

I Side conditions not proven/dismissed as trivial

A proof assistant will force you to prove every single side
condition.

I A huge trove of ‘library’ results that one can use freely
Most mathematical results have not been formalised
And even if: perhaps not in the system you use.

5 / 31

Externalisation of Work in Paper Proofs

I Ambiguities and ‘handwaving’
In a proof assistant, you have to define everything
completely rigorously.

I Side conditions not proven/dismissed as trivial
A proof assistant will force you to prove every single side
condition.

I A huge trove of ‘library’ results that one can use freely
Most mathematical results have not been formalised
And even if: perhaps not in the system you use.

5 / 31

Externalisation of Work in Paper Proofs

I Ambiguities and ‘handwaving’
In a proof assistant, you have to define everything
completely rigorously.

I Side conditions not proven/dismissed as trivial
A proof assistant will force you to prove every single side
condition.

I A huge trove of ‘library’ results that one can use freely

Most mathematical results have not been formalised
And even if: perhaps not in the system you use.

5 / 31

Externalisation of Work in Paper Proofs

I Ambiguities and ‘handwaving’
In a proof assistant, you have to define everything
completely rigorously.

I Side conditions not proven/dismissed as trivial
A proof assistant will force you to prove every single side
condition.

I A huge trove of ‘library’ results that one can use freely
Most mathematical results have not been formalised

And even if: perhaps not in the system you use.

5 / 31

Externalisation of Work in Paper Proofs

I Ambiguities and ‘handwaving’
In a proof assistant, you have to define everything
completely rigorously.

I Side conditions not proven/dismissed as trivial
A proof assistant will force you to prove every single side
condition.

I A huge trove of ‘library’ results that one can use freely
Most mathematical results have not been formalised
And even if: perhaps not in the system you use.

5 / 31

The Curse of de Bruijn

Solution: No idea. :(

Partial solutions: (in my opinion)
I Good, concise notation
I Good automation

When writing a formal proof, we can externalise work to the
reader as well.

The reader is the proof assistant.

6 / 31

The Curse of de Bruijn

Solution: No idea. :(

Partial solutions:

(in my opinion)
I Good, concise notation
I Good automation

When writing a formal proof, we can externalise work to the
reader as well.

The reader is the proof assistant.

6 / 31

The Curse of de Bruijn

Solution: No idea. :(

Partial solutions: (in my opinion)

I Good, concise notation
I Good automation

When writing a formal proof, we can externalise work to the
reader as well.

The reader is the proof assistant.

6 / 31

The Curse of de Bruijn

Solution: No idea. :(

Partial solutions: (in my opinion)
I Good, concise notation

I Good automation
When writing a formal proof, we can externalise work to the
reader as well.

The reader is the proof assistant.

6 / 31

The Curse of de Bruijn

Solution: No idea. :(

Partial solutions: (in my opinion)
I Good, concise notation
I Good automation

When writing a formal proof, we can externalise work to the
reader as well.

The reader is the proof assistant.

6 / 31

The Curse of de Bruijn

Solution: No idea. :(

Partial solutions: (in my opinion)
I Good, concise notation
I Good automation

When writing a formal proof, we can externalise work to the
reader as well.

The reader is the proof assistant.

6 / 31

The Curse of de Bruijn

Solution: No idea. :(

Partial solutions: (in my opinion)
I Good, concise notation
I Good automation

When writing a formal proof, we can externalise work to the
reader as well.

The reader is the proof assistant.

6 / 31

Domain-Specific Automation

Human mathematicians have a large repertoire of
domain-specific automation procedures in their brain:
I How to solve a quadratic equation

I How to take a derivative
I How to expand into partial fractions

This saves lots of time when writing mathematical papers.

For effective formalisation of mathematics, we need to teach
proof assistants these skills.

7 / 31

Domain-Specific Automation

Human mathematicians have a large repertoire of
domain-specific automation procedures in their brain:
I How to solve a quadratic equation
I How to take a derivative

I How to expand into partial fractions
This saves lots of time when writing mathematical papers.

For effective formalisation of mathematics, we need to teach
proof assistants these skills.

7 / 31

Domain-Specific Automation

Human mathematicians have a large repertoire of
domain-specific automation procedures in their brain:
I How to solve a quadratic equation
I How to take a derivative
I How to expand into partial fractions

This saves lots of time when writing mathematical papers.

For effective formalisation of mathematics, we need to teach
proof assistants these skills.

7 / 31

Domain-Specific Automation

Human mathematicians have a large repertoire of
domain-specific automation procedures in their brain:
I How to solve a quadratic equation
I How to take a derivative
I How to expand into partial fractions

This saves lots of time when writing mathematical papers.

For effective formalisation of mathematics, we need to teach
proof assistants these skills.

7 / 31

Domain-Specific Automation

Human mathematicians have a large repertoire of
domain-specific automation procedures in their brain:
I How to solve a quadratic equation
I How to take a derivative
I How to expand into partial fractions

This saves lots of time when writing mathematical papers.

For effective formalisation of mathematics, we need to teach
proof assistants these skills.

7 / 31

Examples for Domain-Specific Automation

I Cancelling common factors from equations

I Linear arithmetic (Chaieb/Nipkow)
I Approximation using interval arithmetic (Hölzl)
I Evaluating

√
16 = 4 etc.

I Proving primality using Pratt certificates (Wimmer/E.)
I Evaluating winding numbers (Li)
I Real asymptotics (E.)

8 / 31

Examples for Domain-Specific Automation

I Cancelling common factors from equations
I Linear arithmetic (Chaieb/Nipkow)

I Approximation using interval arithmetic (Hölzl)
I Evaluating

√
16 = 4 etc.

I Proving primality using Pratt certificates (Wimmer/E.)
I Evaluating winding numbers (Li)
I Real asymptotics (E.)

8 / 31

Examples for Domain-Specific Automation

I Cancelling common factors from equations
I Linear arithmetic (Chaieb/Nipkow)
I Approximation using interval arithmetic (Hölzl)

I Evaluating
√
16 = 4 etc.

I Proving primality using Pratt certificates (Wimmer/E.)
I Evaluating winding numbers (Li)
I Real asymptotics (E.)

8 / 31

Examples for Domain-Specific Automation

I Cancelling common factors from equations
I Linear arithmetic (Chaieb/Nipkow)
I Approximation using interval arithmetic (Hölzl)
I Evaluating

√
16 = 4 etc.

I Proving primality using Pratt certificates (Wimmer/E.)
I Evaluating winding numbers (Li)
I Real asymptotics (E.)

8 / 31

Examples for Domain-Specific Automation

I Cancelling common factors from equations
I Linear arithmetic (Chaieb/Nipkow)
I Approximation using interval arithmetic (Hölzl)
I Evaluating

√
16 = 4 etc.

I Proving primality using Pratt certificates (Wimmer/E.)

I Evaluating winding numbers (Li)
I Real asymptotics (E.)

8 / 31

Examples for Domain-Specific Automation

I Cancelling common factors from equations
I Linear arithmetic (Chaieb/Nipkow)
I Approximation using interval arithmetic (Hölzl)
I Evaluating

√
16 = 4 etc.

I Proving primality using Pratt certificates (Wimmer/E.)
I Evaluating winding numbers (Li)

I Real asymptotics (E.)

8 / 31

Examples for Domain-Specific Automation

I Cancelling common factors from equations
I Linear arithmetic (Chaieb/Nipkow)
I Approximation using interval arithmetic (Hölzl)
I Evaluating

√
16 = 4 etc.

I Proving primality using Pratt certificates (Wimmer/E.)
I Evaluating winding numbers (Li)
I Real asymptotics (E.)

8 / 31

Automating Real Asymptotics
in Isabelle/HOL

9 / 31

I Interactive theorem prover; mostly Higher Order Logic

I Unlike Coq/Lean: No dependent types
I Large library of real and complex analysis
I Archive of Formal Proofs:

Large collection of Isabelle proof developments

10 / 31

I Interactive theorem prover; mostly Higher Order Logic
I Unlike Coq/Lean: No dependent types

I Large library of real and complex analysis
I Archive of Formal Proofs:

Large collection of Isabelle proof developments

10 / 31

I Interactive theorem prover; mostly Higher Order Logic
I Unlike Coq/Lean: No dependent types
I Large library of real and complex analysis

I Archive of Formal Proofs:
Large collection of Isabelle proof developments

10 / 31

I Interactive theorem prover; mostly Higher Order Logic
I Unlike Coq/Lean: No dependent types
I Large library of real and complex analysis
I Archive of Formal Proofs:

Large collection of Isabelle proof developments

10 / 31

Let’s talk about asymptotics in a proof assistant.

Suppose you write a formal proof and sudenly have to prove

lim
x→∞

x2 − x = ∞ .

Any ‘real’ mathematician would rightly dismiss this as trivial.

But in a theorem prover, even something this trivial requires
some thinking and several lines of proofs

If you have to do this every 5 minutes, it gets annoying.

11 / 31

Let’s talk about asymptotics in a proof assistant.

Suppose you write a formal proof and sudenly have to prove

lim
x→∞

x2 − x = ∞ .

Any ‘real’ mathematician would rightly dismiss this as trivial.

But in a theorem prover, even something this trivial requires
some thinking and several lines of proofs

If you have to do this every 5 minutes, it gets annoying.

11 / 31

Let’s talk about asymptotics in a proof assistant.

Suppose you write a formal proof and sudenly have to prove

lim
x→∞

x2 − x = ∞ .

Any ‘real’ mathematician would rightly dismiss this as trivial.

But in a theorem prover, even something this trivial requires
some thinking and several lines of proofs

If you have to do this every 5 minutes, it gets annoying.

11 / 31

Let’s talk about asymptotics in a proof assistant.

Suppose you write a formal proof and sudenly have to prove

lim
x→∞

x2 − x = ∞ .

Any ‘real’ mathematician would rightly dismiss this as trivial.

But in a theorem prover, even something this trivial requires
some thinking and several lines of proofs

If you have to do this every 5 minutes, it gets annoying.

11 / 31

Let’s talk about asymptotics in a proof assistant.

Suppose you write a formal proof and sudenly have to prove

lim
x→∞

x2 − x = ∞ .

Any ‘real’ mathematician would rightly dismiss this as trivial.

But in a theorem prover, even something this trivial requires
some thinking and several lines of proofs

If you have to do this every 5 minutes, it gets annoying.

11 / 31

Example: Stieltjes constants

γn =
∞

∑
k=1

(
lnn k

k
− lnn+1(k + 1)− lnn+1 k

n+ 1

)

Why does this sum exist?

Because the summand is ∼ (k−2 lnn k) ∈ O(k−3/2)
and ∑ kx is summable for any x < −1!

But proving those asymptotics by hand is a lot of work.

12 / 31

Example: Stieltjes constants

γn =
∞

∑
k=1

(
lnn k

k
− lnn+1(k + 1)− lnn+1 k

n+ 1

)

Why does this sum exist?

Because the summand is ∼ (k−2 lnn k) ∈ O(k−3/2)
and ∑ kx is summable for any x < −1!

But proving those asymptotics by hand is a lot of work.

12 / 31

Example: Stieltjes constants

γn =
∞

∑
k=1

(
lnn k

k
− lnn+1(k + 1)− lnn+1 k

n+ 1

)

Why does this sum exist?

Because the summand is ∼ (k−2 lnn k) ∈ O(k−3/2)

and ∑ kx is summable for any x < −1!

But proving those asymptotics by hand is a lot of work.

12 / 31

Example: Stieltjes constants

γn =
∞

∑
k=1

(
lnn k

k
− lnn+1(k + 1)− lnn+1 k

n+ 1

)

Why does this sum exist?

Because the summand is ∼ (k−2 lnn k) ∈ O(k−3/2)
and ∑ kx is summable for any x < −1!

But proving those asymptotics by hand is a lot of work.

12 / 31

Example: Stieltjes constants

γn =
∞

∑
k=1

(
lnn k

k
− lnn+1(k + 1)− lnn+1 k

n+ 1

)

Why does this sum exist?

Because the summand is ∼ (k−2 lnn k) ∈ O(k−3/2)
and ∑ kx is summable for any x < −1!

But proving those asymptotics by hand is a lot of work.

12 / 31

Example: Lemma required for Akra–Bazzi

lim
x→∞

(
1− 1

b log1+ε x

)p
1+

1

logε/2
(
bx + x

log1+ε x

)
−

(
1+

1
logε/2 x

)
= 0+

Original author: ‘Trivial, just Taylor-expand it!’

13 / 31

Example: Lemma required for Akra–Bazzi

lim
x→∞

(
1− 1

b log1+ε x

)p
1+

1

logε/2
(
bx + x

log1+ε x

)
−

(
1+

1
logε/2 x

)
= 0+

Original author: ‘Trivial, just Taylor-expand it!’

13 / 31

In Isabelle:

lemma akra_bazzi_aux:
filterlim
(λx . (1− 1/(b ∗ ln x ˆ(1+ ε)) ˆ p) ∗

(1+ ln (b ∗ x + x/ln x ˆ(1+ ε)) ˆ(−ε/2))−
(1+ ln x ˆ(−ε/2)))

(at_right 0) at_top

Omitted: 700 lines of messy proofs

Luckily, we now have automation for this:

by real_asymp

How does it work?

14 / 31

In Isabelle:

lemma akra_bazzi_aux:
filterlim
(λx . (1− 1/(b ∗ ln x ˆ(1+ ε)) ˆ p) ∗

(1+ ln (b ∗ x + x/ln x ˆ(1+ ε)) ˆ(−ε/2))−
(1+ ln x ˆ(−ε/2)))

(at_right 0) at_top

Omitted: 700 lines of messy proofs

Luckily, we now have automation for this:

by real_asymp

How does it work?

14 / 31

In Isabelle:

lemma akra_bazzi_aux:
filterlim
(λx . (1− 1/(b ∗ ln x ˆ(1+ ε)) ˆ p) ∗

(1+ ln (b ∗ x + x/ln x ˆ(1+ ε)) ˆ(−ε/2))−
(1+ ln x ˆ(−ε/2)))

(at_right 0) at_top

Omitted: 700 lines of messy proofs

Luckily, we now have automation for this:

by real_asymp

How does it work?

14 / 31

In Isabelle:

lemma akra_bazzi_aux:
filterlim
(λx . (1− 1/(b ∗ ln x ˆ(1+ ε)) ˆ p) ∗

(1+ ln (b ∗ x + x/ln x ˆ(1+ ε)) ˆ(−ε/2))−
(1+ ln x ˆ(−ε/2)))

(at_right 0) at_top

Omitted: 700 lines of messy proofs

Luckily, we now have automation for this:

by real_asymp

How does it work?

14 / 31

Multiseries Expansions

Disclaimer: None of this was invented by me.

Related Work:
I Asymptotic Expansions of exp–log Functions

by Richardson, Salvy, Shackell, van der Hoeven
I On Computing Limits in a Symbolic Manipulation System

by Gruntz
I Verified Real Asymptotics in Isabelle/HOL

by E.

15 / 31

Multiseries Expansions
Disclaimer: None of this was invented by me.

Related Work:
I Asymptotic Expansions of exp–log Functions

by Richardson, Salvy, Shackell, van der Hoeven
I On Computing Limits in a Symbolic Manipulation System

by Gruntz
I Verified Real Asymptotics in Isabelle/HOL

by E.

15 / 31

Multiseries Expansions
Power series expansions are insufficient for many important
functions: exp(x), ln(x), Γ(x) for x → ∞

Example:
(x + ln(x))−1 ∼ 1

2x
−1 − 1

4x
−2 ln(x) + 1

8x
−3 ln(x)2 + . . .

Solution: Multiseries
I Like an asymptotic power series, but may contain powers

of several ‘basis functions’ b1(x), . . . , bn(x)
I Formally: R[B1, . . . ,Bn] or R[Bn] . . . [B1]

I The basis must be ordered descendingly by ‘growth class’:
∀i . ln bi+1(x) ∈ o(ln bi (x))

I Typical basis: exp(x2), exp(x), x , ln x , ln ln x

16 / 31

Multiseries Expansions
Power series expansions are insufficient for many important
functions: exp(x), ln(x), Γ(x) for x → ∞

Example:
(x + ln(x))−1 ∼ 1

2x
−1 − 1

4x
−2 ln(x) + 1

8x
−3 ln(x)2 + . . .

Solution: Multiseries
I Like an asymptotic power series, but may contain powers

of several ‘basis functions’ b1(x), . . . , bn(x)

I Formally: R[B1, . . . ,Bn] or R[Bn] . . . [B1]

I The basis must be ordered descendingly by ‘growth class’:
∀i . ln bi+1(x) ∈ o(ln bi (x))

I Typical basis: exp(x2), exp(x), x , ln x , ln ln x

16 / 31

Multiseries Expansions
Power series expansions are insufficient for many important
functions: exp(x), ln(x), Γ(x) for x → ∞

Example:
(x + ln(x))−1 ∼ 1

2x
−1 − 1

4x
−2 ln(x) + 1

8x
−3 ln(x)2 + . . .

Solution: Multiseries
I Like an asymptotic power series, but may contain powers

of several ‘basis functions’ b1(x), . . . , bn(x)
I Formally: R[B1, . . . ,Bn] or R[Bn] . . . [B1]

I The basis must be ordered descendingly by ‘growth class’:
∀i . ln bi+1(x) ∈ o(ln bi (x))

I Typical basis: exp(x2), exp(x), x , ln x , ln ln x

16 / 31

Multiseries Expansions
Power series expansions are insufficient for many important
functions: exp(x), ln(x), Γ(x) for x → ∞

Example:
(x + ln(x))−1 ∼ 1

2x
−1 − 1

4x
−2 ln(x) + 1

8x
−3 ln(x)2 + . . .

Solution: Multiseries
I Like an asymptotic power series, but may contain powers

of several ‘basis functions’ b1(x), . . . , bn(x)
I Formally: R[B1, . . . ,Bn] or R[Bn] . . . [B1]

I The basis must be ordered descendingly by ‘growth class’:
∀i . ln bi+1(x) ∈ o(ln bi (x))

I Typical basis: exp(x2), exp(x), x , ln x , ln ln x

16 / 31

Multiseries Expansions
Power series expansions are insufficient for many important
functions: exp(x), ln(x), Γ(x) for x → ∞

Example:
(x + ln(x))−1 ∼ 1

2x
−1 − 1

4x
−2 ln(x) + 1

8x
−3 ln(x)2 + . . .

Solution: Multiseries
I Like an asymptotic power series, but may contain powers

of several ‘basis functions’ b1(x), . . . , bn(x)
I Formally: R[B1, . . . ,Bn] or R[Bn] . . . [B1]

I The basis must be ordered descendingly by ‘growth class’:
∀i . ln bi+1(x) ∈ o(ln bi (x))

I Typical basis: exp(x2), exp(x), x , ln x , ln ln x

16 / 31

A coalgebraic view of Multiseries

type Basis = (R→ R) list

datatype MS : Basis→ Type where
Const : R→ MS []
Series : LList (MS bs×R)→ MS (b :: bs)

Additionally: bases and series must be ‘sorted’.

Example for a simple operation:
negate : MS bs→ MS bs
negate (Const c) = Const (−c)
negate (Series ts) = Series [(negate c , e) | (c , e)← ts]

17 / 31

A coalgebraic view of Multiseries

type Basis = (R→ R) list
datatype MS : Basis→ Type where
Const : R→ MS []
Series : LList (MS bs×R)→ MS (b :: bs)

Additionally: bases and series must be ‘sorted’.

Example for a simple operation:
negate : MS bs→ MS bs
negate (Const c) = Const (−c)
negate (Series ts) = Series [(negate c , e) | (c , e)← ts]

17 / 31

A coalgebraic view of Multiseries

type Basis = (R→ R) list
datatype MS : Basis→ Type where
Const : R→ MS []
Series : LList (MS bs×R)→ MS (b :: bs)

Additionally: bases and series must be ‘sorted’.

Example for a simple operation:
negate : MS bs→ MS bs
negate (Const c) = Const (−c)
negate (Series ts) = Series [(negate c , e) | (c , e)← ts]

17 / 31

A coalgebraic view of Multiseries

type Basis = (R→ R) list
datatype MS : Basis→ Type where
Const : R→ MS []
Series : LList (MS bs×R)→ MS (b :: bs)

Additionally: bases and series must be ‘sorted’.

Example for a simple operation:
negate : MS bs→ MS bs

negate (Const c) = Const (−c)
negate (Series ts) = Series [(negate c , e) | (c , e)← ts]

17 / 31

A coalgebraic view of Multiseries

type Basis = (R→ R) list
datatype MS : Basis→ Type where
Const : R→ MS []
Series : LList (MS bs×R)→ MS (b :: bs)

Additionally: bases and series must be ‘sorted’.

Example for a simple operation:
negate : MS bs→ MS bs
negate (Const c) = Const (−c)

negate (Series ts) = Series [(negate c , e) | (c , e)← ts]

17 / 31

A coalgebraic view of Multiseries

type Basis = (R→ R) list
datatype MS : Basis→ Type where
Const : R→ MS []
Series : LList (MS bs×R)→ MS (b :: bs)

Additionally: bases and series must be ‘sorted’.

Example for a simple operation:
negate : MS bs→ MS bs
negate (Const c) = Const (−c)
negate (Series ts) = Series [(negate c , e) | (c , e)← ts]

17 / 31

More Complicated Operations

I Basic operations (defined corecursively):
constants, identity, addition, multiplication

I Substitution into convergent power series:
Gives us division; ln, exp, sin, etc. at non-singular points

I exp and ln at singular points require specialised
procedures and may add new basis elements

I For operations like Γ, erf, li:
factor out singularities and treat them separately

18 / 31

More Complicated Operations

I Basic operations (defined corecursively):
constants, identity, addition, multiplication

I Substitution into convergent power series:
Gives us division; ln, exp, sin, etc. at non-singular points

I exp and ln at singular points require specialised
procedures and may add new basis elements

I For operations like Γ, erf, li:
factor out singularities and treat them separately

18 / 31

More Complicated Operations

I Basic operations (defined corecursively):
constants, identity, addition, multiplication

I Substitution into convergent power series:
Gives us division; ln, exp, sin, etc. at non-singular points

I exp and ln at singular points require specialised
procedures and may add new basis elements

I For operations like Γ, erf, li:
factor out singularities and treat them separately

18 / 31

More Complicated Operations

I Basic operations (defined corecursively):
constants, identity, addition, multiplication

I Substitution into convergent power series:
Gives us division; ln, exp, sin, etc. at non-singular points

I exp and ln at singular points require specialised
procedures and may add new basis elements

I For operations like Γ, erf, li:
factor out singularities and treat them separately

18 / 31

Connecting Series and Functions

For simple power series, f ∼ ts can be expressed coinductively:

f (x) ∈ O(xe) f (x)− c xe ∼ ts

f (x) ∼ (c , e) :: ts

Operations are defined corecursively; correctness is proven
coinductively. Both are straightforward.

The same works for multiseries quite similarly.

19 / 31

Connecting Series and Functions

For simple power series, f ∼ ts can be expressed coinductively:

f (x) ∈ O(xe) f (x)− c xe ∼ ts

f (x) ∼ (c , e) :: ts

Operations are defined corecursively; correctness is proven
coinductively. Both are straightforward.

The same works for multiseries quite similarly.

19 / 31

Finding Expansions
We can construct expansions for functions ‘bottom up’:

Example
Find an expansion for sin(1/x) + exp(x) for x → ∞:
I 1/x has the trivial expansion x−1 w. r. t. the basis [x]
I substitute the series x−1 into the Taylor expansion of sin
I exp(x) has to be added as a new basis element
I exp(x) then has the trivial expansion exp(x)

I our expansion for sin(1/x) must be lifted to the new
basis [exp(x), x]

I add expansions for sin(1/x) and exp(x)

20 / 31

Finding Expansions
We can construct expansions for functions ‘bottom up’:

Example
Find an expansion for sin(1/x) + exp(x) for x → ∞:

I 1/x has the trivial expansion x−1 w. r. t. the basis [x]
I substitute the series x−1 into the Taylor expansion of sin
I exp(x) has to be added as a new basis element
I exp(x) then has the trivial expansion exp(x)

I our expansion for sin(1/x) must be lifted to the new
basis [exp(x), x]

I add expansions for sin(1/x) and exp(x)

20 / 31

Finding Expansions
We can construct expansions for functions ‘bottom up’:

Example
Find an expansion for sin(1/x) + exp(x) for x → ∞:
I 1/x has the trivial expansion x−1 w. r. t. the basis [x]

I substitute the series x−1 into the Taylor expansion of sin
I exp(x) has to be added as a new basis element
I exp(x) then has the trivial expansion exp(x)

I our expansion for sin(1/x) must be lifted to the new
basis [exp(x), x]

I add expansions for sin(1/x) and exp(x)

20 / 31

Finding Expansions
We can construct expansions for functions ‘bottom up’:

Example
Find an expansion for sin(1/x) + exp(x) for x → ∞:
I 1/x has the trivial expansion x−1 w. r. t. the basis [x]
I substitute the series x−1 into the Taylor expansion of sin

I exp(x) has to be added as a new basis element
I exp(x) then has the trivial expansion exp(x)

I our expansion for sin(1/x) must be lifted to the new
basis [exp(x), x]

I add expansions for sin(1/x) and exp(x)

20 / 31

Finding Expansions
We can construct expansions for functions ‘bottom up’:

Example
Find an expansion for sin(1/x) + exp(x) for x → ∞:
I 1/x has the trivial expansion x−1 w. r. t. the basis [x]
I substitute the series x−1 into the Taylor expansion of sin
I exp(x) has to be added as a new basis element

I exp(x) then has the trivial expansion exp(x)

I our expansion for sin(1/x) must be lifted to the new
basis [exp(x), x]

I add expansions for sin(1/x) and exp(x)

20 / 31

Finding Expansions
We can construct expansions for functions ‘bottom up’:

Example
Find an expansion for sin(1/x) + exp(x) for x → ∞:
I 1/x has the trivial expansion x−1 w. r. t. the basis [x]
I substitute the series x−1 into the Taylor expansion of sin
I exp(x) has to be added as a new basis element
I exp(x) then has the trivial expansion exp(x)

I our expansion for sin(1/x) must be lifted to the new
basis [exp(x), x]

I add expansions for sin(1/x) and exp(x)

20 / 31

Finding Expansions
We can construct expansions for functions ‘bottom up’:

Example
Find an expansion for sin(1/x) + exp(x) for x → ∞:
I 1/x has the trivial expansion x−1 w. r. t. the basis [x]
I substitute the series x−1 into the Taylor expansion of sin
I exp(x) has to be added as a new basis element
I exp(x) then has the trivial expansion exp(x)

I our expansion for sin(1/x) must be lifted to the new
basis [exp(x), x]

I add expansions for sin(1/x) and exp(x)

20 / 31

Finding Expansions
We can construct expansions for functions ‘bottom up’:

Example
Find an expansion for sin(1/x) + exp(x) for x → ∞:
I 1/x has the trivial expansion x−1 w. r. t. the basis [x]
I substitute the series x−1 into the Taylor expansion of sin
I exp(x) has to be added as a new basis element
I exp(x) then has the trivial expansion exp(x)

I our expansion for sin(1/x) must be lifted to the new
basis [exp(x), x]

I add expansions for sin(1/x) and exp(x)

20 / 31

Finding Expansions

End result: Theorem that sin(1/x) + exp(x) has the following
expansion w. r. t. basis (exp(x), x):

lift_expansion (sin_ms (Series [(1,−1)])) +
Series [(Series [(1, 0)], 1)]

which evaluates to

exp(x) + x−1 − 1
6
x−3 +

1
120

x−5 − . . .

21 / 31

Finding Expansions

End result: Theorem that sin(1/x) + exp(x) has the following
expansion w. r. t. basis (exp(x), x):

lift_expansion (sin_ms (Series [(1,−1)])) +
Series [(Series [(1, 0)], 1)]

which evaluates to

exp(x) + x−1 − 1
6
x−3 +

1
120

x−5 − . . .

21 / 31

Finding Expansions

End result: Theorem that sin(1/x) + exp(x) has the following
expansion w. r. t. basis (exp(x), x):

lift_expansion (sin_ms (Series [(1,−1)])) +
Series [(Series [(1, 0)], 1)]

which evaluates to

exp(x) + x−1 − 1
6
x−3 +

1
120

x−5 − . . .

21 / 31

Sign Determination

Problem:
I Many operations involve comparisons of real numbers

I ‘Trimming’ expansions involves zeroness tests of real
functions

I Both of these are difficult or even undecidable

22 / 31

Sign Determination

Problem:
I Many operations involve comparisons of real numbers
I ‘Trimming’ expansions involves zeroness tests of real

functions

I Both of these are difficult or even undecidable

22 / 31

Sign Determination

Problem:
I Many operations involve comparisons of real numbers
I ‘Trimming’ expansions involves zeroness tests of real

functions
I Both of these are difficult or even undecidable

22 / 31

Sign Determination

Solution: Heuristic approach using Isabelle’s automation

I Use automation to determine signs – might fail
I Use automation to determine if function is identically zero

– might cause non-termination
I Optionally: Use approximation by interval arithmetic
I User may have to supply additional facts

This works surprisingly well

23 / 31

Sign Determination

Solution: Heuristic approach using Isabelle’s automation
I Use automation to determine signs – might fail

I Use automation to determine if function is identically zero
– might cause non-termination

I Optionally: Use approximation by interval arithmetic
I User may have to supply additional facts

This works surprisingly well

23 / 31

Sign Determination

Solution: Heuristic approach using Isabelle’s automation
I Use automation to determine signs – might fail
I Use automation to determine if function is identically zero

– might cause non-termination

I Optionally: Use approximation by interval arithmetic
I User may have to supply additional facts

This works surprisingly well

23 / 31

Sign Determination

Solution: Heuristic approach using Isabelle’s automation
I Use automation to determine signs – might fail
I Use automation to determine if function is identically zero

– might cause non-termination
I Optionally: Use approximation by interval arithmetic

I User may have to supply additional facts

This works surprisingly well

23 / 31

Sign Determination

Solution: Heuristic approach using Isabelle’s automation
I Use automation to determine signs – might fail
I Use automation to determine if function is identically zero

– might cause non-termination
I Optionally: Use approximation by interval arithmetic
I User may have to supply additional facts

This works surprisingly well

23 / 31

Sign Determination

Solution: Heuristic approach using Isabelle’s automation
I Use automation to determine signs – might fail
I Use automation to determine if function is identically zero

– might cause non-termination
I Optionally: Use approximation by interval arithmetic
I User may have to supply additional facts

This works surprisingly well

23 / 31

Proof Method
With some pre-processing, we can automatically prove
statements of the form
I f (x) −→ c

I f (x) ∼ g(x)

I f (x) < g(x) eventually
I f (x) ∈ L(g(x)) for any Landau symbol L

as x → l for l ∈ R∪ {±∞}

f and g can be built from + − · / ln exp min max ˆ | · | n
√
·

without restrictions

sin, cos, tan at finite points also possible.

24 / 31

Proof Method
With some pre-processing, we can automatically prove
statements of the form
I f (x) −→ c

I f (x) ∼ g(x)

I f (x) < g(x) eventually
I f (x) ∈ L(g(x)) for any Landau symbol L

as x → l for l ∈ R∪ {±∞}

f and g can be built from + − · / ln exp min max ˆ | · | n
√
·

without restrictions

sin, cos, tan at finite points also possible.

24 / 31

Proof Method
With some pre-processing, we can automatically prove
statements of the form
I f (x) −→ c

I f (x) ∼ g(x)

I f (x) < g(x) eventually
I f (x) ∈ L(g(x)) for any Landau symbol L

as x → l for l ∈ R∪ {±∞}

f and g can be built from + − · / ln exp min max ˆ | · | n
√
·

without restrictions

sin, cos, tan at finite points also possible.

24 / 31

Proof Method
Problem: What about ‘oscillating’ functions like sin, b·c, mod?

Example:
√
bxc =

√
x + o(1)

Obvious solution: Asymptotic interval arithmetic:
I sin x ∈ [−1; 1]
I bxc ∈ [x − 1; x]

Result: Pair of asymptotic lower/upper bound with known
multiseries expansion

Works in many cases, but does not cope well with
cancellations. Good enough.

25 / 31

Proof Method
Problem: What about ‘oscillating’ functions like sin, b·c, mod?

Example:
√
bxc =

√
x + o(1)

Obvious solution: Asymptotic interval arithmetic:
I sin x ∈ [−1; 1]
I bxc ∈ [x − 1; x]

Result: Pair of asymptotic lower/upper bound with known
multiseries expansion

Works in many cases, but does not cope well with
cancellations. Good enough.

25 / 31

Proof Method
Problem: What about ‘oscillating’ functions like sin, b·c, mod?

Example:
√
bxc =

√
x + o(1)

Obvious solution: Asymptotic interval arithmetic:

I sin x ∈ [−1; 1]
I bxc ∈ [x − 1; x]

Result: Pair of asymptotic lower/upper bound with known
multiseries expansion

Works in many cases, but does not cope well with
cancellations. Good enough.

25 / 31

Proof Method
Problem: What about ‘oscillating’ functions like sin, b·c, mod?

Example:
√
bxc =

√
x + o(1)

Obvious solution: Asymptotic interval arithmetic:
I sin x ∈ [−1; 1]

I bxc ∈ [x − 1; x]
Result: Pair of asymptotic lower/upper bound with known
multiseries expansion

Works in many cases, but does not cope well with
cancellations. Good enough.

25 / 31

Proof Method
Problem: What about ‘oscillating’ functions like sin, b·c, mod?

Example:
√
bxc =

√
x + o(1)

Obvious solution: Asymptotic interval arithmetic:
I sin x ∈ [−1; 1]
I bxc ∈ [x − 1; x]

Result: Pair of asymptotic lower/upper bound with known
multiseries expansion

Works in many cases, but does not cope well with
cancellations. Good enough.

25 / 31

Proof Method
Problem: What about ‘oscillating’ functions like sin, b·c, mod?

Example:
√
bxc =

√
x + o(1)

Obvious solution: Asymptotic interval arithmetic:
I sin x ∈ [−1; 1]
I bxc ∈ [x − 1; x]

Result: Pair of asymptotic lower/upper bound with known
multiseries expansion

Works in many cases, but does not cope well with
cancellations. Good enough.

25 / 31

Proof Method
Problem: What about ‘oscillating’ functions like sin, b·c, mod?

Example:
√
bxc =

√
x + o(1)

Obvious solution: Asymptotic interval arithmetic:
I sin x ∈ [−1; 1]
I bxc ∈ [x − 1; x]

Result: Pair of asymptotic lower/upper bound with known
multiseries expansion

Works in many cases, but does not cope well with
cancellations.

Good enough.

25 / 31

Proof Method
Problem: What about ‘oscillating’ functions like sin, b·c, mod?

Example:
√
bxc =

√
x + o(1)

Obvious solution: Asymptotic interval arithmetic:
I sin x ∈ [−1; 1]
I bxc ∈ [x − 1; x]

Result: Pair of asymptotic lower/upper bound with known
multiseries expansion

Works in many cases, but does not cope well with
cancellations. Good enough.

25 / 31

Proof Method

26 / 31

Proof Method

Example
lemma (λn. (1+ 1/n) ˆ n) −→ exp 1

by real_asymp

Example
lemma (λn. (1+ a/n) ˆ n) −→ exp a

by real_asymp

27 / 31

Proof Method

Example
lemma (λn. (1+ 1/n) ˆ n) −→ exp 1

by real_asymp

Example
lemma (λn. (1+ a/n) ˆ n) −→ exp a

by real_asymp

27 / 31

Usage

I ∼180 uses of real_asymp in the Archive of Formal Proofs

(most of them by me – but not all of them)
I Most uses are for fairly trivial examples
I But: Some others would have been quite painful without

the method.
I And: The benefit of not having to stop and think about

trivialities like x2− x → ∞ should not be underestimated!

28 / 31

Usage

I ∼180 uses of real_asymp in the Archive of Formal Proofs
(most of them by me – but not all of them)

I Most uses are for fairly trivial examples
I But: Some others would have been quite painful without

the method.
I And: The benefit of not having to stop and think about

trivialities like x2− x → ∞ should not be underestimated!

28 / 31

Usage

I ∼180 uses of real_asymp in the Archive of Formal Proofs
(most of them by me – but not all of them)

I Most uses are for fairly trivial examples

I But: Some others would have been quite painful without
the method.

I And: The benefit of not having to stop and think about
trivialities like x2− x → ∞ should not be underestimated!

28 / 31

Usage

I ∼180 uses of real_asymp in the Archive of Formal Proofs
(most of them by me – but not all of them)

I Most uses are for fairly trivial examples
I But: Some others would have been quite painful without

the method.

I And: The benefit of not having to stop and think about
trivialities like x2− x → ∞ should not be underestimated!

28 / 31

Usage

I ∼180 uses of real_asymp in the Archive of Formal Proofs
(most of them by me – but not all of them)

I Most uses are for fairly trivial examples
I But: Some others would have been quite painful without

the method.
I And: The benefit of not having to stop and think about

trivialities like x2− x → ∞ should not be underestimated!

28 / 31

My Personal Experience
When formalising some paper and reaching a page full of
limits, integrals, and uniform convergence,

I used to feel like this:

Now I feel like this:

29 / 31

My Personal Experience
When formalising some paper and reaching a page full of
limits, integrals, and uniform convergence,

I used to feel like this: Now I feel like this:

29 / 31

Future Work

What could be improved?

I Incomplete support for Γ, ψ(n), erf, arctan
I Zeroness tests could be improved
I Laurent series expansions for complex functions

=⇒ automatic computation of poles, residues, etc.

30 / 31

Future Work

What could be improved?
I Incomplete support for Γ, ψ(n), erf, arctan

I Zeroness tests could be improved
I Laurent series expansions for complex functions

=⇒ automatic computation of poles, residues, etc.

30 / 31

Future Work

What could be improved?
I Incomplete support for Γ, ψ(n), erf, arctan
I Zeroness tests could be improved

I Laurent series expansions for complex functions
=⇒ automatic computation of poles, residues, etc.

30 / 31

Future Work

What could be improved?
I Incomplete support for Γ, ψ(n), erf, arctan
I Zeroness tests could be improved
I Laurent series expansions for complex functions

=⇒ automatic computation of poles, residues, etc.

30 / 31

Future Work

What could be improved?
I Incomplete support for Γ, ψ(n), erf, arctan
I Zeroness tests could be improved
I Laurent series expansions for complex functions

=⇒ automatic computation of poles, residues, etc.

30 / 31

Questions? Demo?

31 / 31

