
Verifying Randomised Social Choice

Manuel Eberl[0000−0002−4263−6571]

Technische Universität München, 85748 Garching bei München, Germany

Abstract This work describes the formalisation of a recent result from
Randomised Social Choice Theory in Isabelle/HOL. The original result
had been obtained through the use of linear programming, an unverified
Java program, and SMT solvers; at the time that the formalisation effort
began, no human-readable proof was available. Thus, the formalisation
with Isabelle eventually served as both independent rigorous confirmation
of the original result and led to human-readable proofs both in Isabelle
and on paper.
This presentation focuses on the process of the formalisation itself, the
domain-specific tooling that was developed for it in Isabelle, and how the
structured human-readable proof was constructed from the SMT proof.
It also briefly discusses how the formalisation uncovered a serious flaw in
a second peer-reviewed publication.

1 Introduction

First of all, it must be stressed that this presentation is not intended as an
introduction to Social Choice Theory, nor will it repeat the detailed explanation
of the proof of the main result in Brandl et al. [1] (of which I am also a co-author).
I must also stress that my contribution consists only of the formalisation and the
human-readable proof for that result, and the purpose of this paper is to present
more details of this formalisation process and the technology behind it.

All the background theory of Social Choice Theory that I will mention
later on is either folklore or comes from the work of Brandl et al.; again, see
their presentation [1] for more details on this background. For the sake of self-
containedness, the result and the necessary definitions from Social Choice Theory
will nevertheless be sketched here very briefly, but without any deeper explanation
or motivation. For this, the reader should consult the original presentation by
Brandl et al.

I will attempt to strike a balance between readability and technical details. In
particular, I attempt to stay close to the Isabelle definitions, but mostly without
actually using Isabelle syntax except in cases where there is real benefit in doing
so. The full formal Isabelle proof developments can be found in the Archive of
Formal Proofs [2,3].

2 The Main Result

The main result that was formalised is a typical impossibility result from Social
Choice Theory: these are of the form

‘There exists no voting scheme for at least m voters and n alternatives
that simultaneously has the following properties:’

A large variety of results like this exists for many different types of voting schemes
and many different choices for the properties that they should have; two famous
ones are Arrow’s Theorem [4] and Gibbard’s Theorem [5].

The setting that we shall focus on is that of Social Decision Schemes (SDSs):
We fix some finite set N = {1, . . . ,m} of agents (or voters) and a finite set of
alternatives A with |A| = n. Each agent i has a preference relation �i over the
alternatives. In our setting, these preferences are total preorders, i. e. reflexive,
transitive, and total relations. The vector R = (�1, . . . ,�m) is called a preference
profile. An SDS is then a function that, given such a preference profile, returns a
lottery : a probability distribution of winning alternatives.

The theorem that was formalised is the following:

Theorem 1. If m ≥ 4 and n ≥ 4, there exists no SDS that has the following
properties:1

Anonymity: Invariance under renaming of agents
Neutrality: Invariance under renaming of alternatives
SD-Efficiency: If the SDS returns some lottery, it is optimal in the sense that
there is no other lottery that all agents prefer to it.

SD-Strategyproofness: No one agent can, by themselves, obtain a better
result by lying about their preferences (i. e. strategic voting is not possible).

As we will see later, it is enough to prove the theorem for m = n = 4 because
any SDS f(R) with the above properties for m ≥ 4 agents and n ≥ 4 alternatives
would give rise to another SDS (denoted as f↓(R)) with the same properties for
exactly 4 agents and alternatives (see Section 3 for details on this). The difficult
part is therefore the case of exactly 4 agents and alternatives.

In a nutshell, the strategy Brandl et al. pursued to find a proof for this case
was the following: Consider the set of all preference profiles for our 4 agents
and alternatives. For each profile R (or pair of profiles R1, R2), there are certain
conditions on the probabilities of the lottery f(R) (resp. the lotteries f(R1) and
f(R2)) resulting from the four conditions (anonymity, neutrality, etc.) It happens
that all these conditions can be written as formulæ in quantifier-free linear real
arithmetic (QF-LRA), which is a decidable logic that SMT solvers can typically
handle fairly efficiently.

Unfortunately, there are 31,640,625 profiles for m = n = 4 (or 471,956 modulo
anonymity and neutrality), which results in far too many QF-LRA formulæ to
compute and check. However, if there really is no SDS with these four properties,
these conditions must be inconsistent. When this is the case, there is often a
much smaller subset of conditions (or, equivalently, a smaller set of profiles) that
is already inconsistent – an unsatisfiable core. If one could guess a small set of
profiles that already leads to inconsistent conditions, one could pass only these
to an SMT solver and obtain a proof of the contradiction more quickly.
1 The meaning of these concepts will be made more precise later – in particular, what
it means for an agent to prefer one lottery over another.

2

Brandl et al. used search heuristics to find such a set of profiles, which they
then narrowed down to only 47. The search for profile sets likely to lead to a
contradiction and the translation to QF-LRA formulæ in the SMT-LIB format
was performed by an unverified Java program.

However, there are various problems with this. Computer proofs are notori-
ously controversial in the mathematical community and even in high-profile
computer proofs such as the Kepler conjecture [6] or the Lorenz Attractor [7,8],
problems with the computer code were later found (although they turned out to
be repairable). In our case, some possible points of criticism are:

– One must trust the SMT solver.
– One must trust the Java program that computes the conditions arising from

the profiles and encodes them into the SMT-LIB format.
– The proof cannot realistically be inspected or verified by a human.

The first problem is not too serious, since one can use several different independent
SMT solvers to check the result. Some of them can produce proof objects that
can be verified by simple independent checkers.

The second problem could be solved by inspecting the generated SMT-LIB
file by hand and checking that the generated inequalities are indeed the ones that
follow from the 47 preference profiles – a very tedious task, but feasible.

The last problem, however, is difficult to address. While solvers like Z3 can
print out unsatisfiability proofs, these proofs are typically fairly large and dense
and provide little insight.

To address these concerns, Brandl et al. sought out my collaboration to
formalise some version of this proof in Isabelle. Since Isabelle can replay SMT
proof objects through its own kernel, we were confident that it should be possible
to obtain some kind of proof of Theorem 1 in Isabelle. It was, however, completely
unclear how to achieve the ultimate goal of finding a more structured and human-
readable proof and whether such a proof even exists.

3 Definitions

First of all, I will define the basic notions that are required to state and prove
the main result. For the Isabelle definitions, I followed the philosophy to keep
definitions as simple and as close to the textbook definitions as possible – including
syntax – or to at least prove more textbook-style versions as alternative definitions
later on. In particular, I also placed great importance on proving various different
views on more complex notions (e. g. Stochastic Dominance, SD-Efficiency, and
Strategyproofness). This makes working with them more convenient as one can
pick whichever form is most suitable in any given situation; it also increases the
confidence that the definitions really are faithful to the textbook definitions.

I aim to present every notion precisely as it is defined in Isabelle, but for the
sake of brevity and readability, I will mostly refrain from using actual Isabelle
notation.

3

Most of the notions discussed here (such as family of preorders, Social Decision
Scheme, SD-efficient SDS) are defined as locales [9]. These are a kind of named
context supporting multiple inheritance that facilitates modular reasoning.

In the remainder of this section, I will list the most relevant definitions for
Theorem 1.

Agents and Alternatives. In the Isabelle formalisation, agents and alternatives
are opaque: We simply assume that we have finite non-empty sets N of some
type ν set (agents) and A of some type γ set (alternatives).2 For convenience, I
invented the name election (with a locale of the same name) to describe a setting
with a fixed set of agents and alternatives.

Preferences. Each agent i has their own preference relation �, which is a total
preorder (reflexive, transitive, and total – i. e. x � y ∨ y � x for all x, y). The
collection of the preferences of all the agents forms a vector (�1, . . . ,�m); this is
called a preference profile.

In Isabelle, the preference relations are modelled as functions γ → γ → bool.
Preference profiles are a modelled as functions ν → γ → γ → bool. By convention,
any preference relation must return false if one of its inputs is not in A and any
preference profile must return an empty relation if its input is not in N . This
ensures extensionality in the sense that e. g. two preference relations are logically
equal if they agree on all alternatives in A.

Lotteries. A lottery is a probability distribution of alternatives. Since there are
only finitely many alternatives, the most convenient representation of this is as a
Probability Mass Function (PMF). In Isabelle/HOL, the type γ pmf is defined
as the type of all functions f : γ → R such that ∀x. f(x) ≥ 0 and

∑
x f(x) = 1.

Various probability- and measure-theoretic concepts are defined for this type so
that one can work with it in a fairly idiomatic way. We can simply define the set
of lotteries as the set of values of type γ pmf whose support is a subset of A.

Anonymity and Neutrality. An SDS is anonymous if renaming the agents does not
change the outcome, i. e. for any permutation π of N , we have f(R ◦ π) = f(R).

For neutrality, we first need to define what it means to rename an alternative.
Let σ be a permutation of A. Then, if � is a preference relation, the relation
�σ obtained by renaming the alternatives with σ can be defined as x �σ y ←→
σ−1(x) � σ−1(y). By renaming all preferences in a profile R like this, we obtain
a profile Rσ. Additionally, we also have to take into account that the elements in
the lottery returned by f must also be renamed. This can be accomplished with
the function map_pmf, which is the push-forward measure, i. e. the covariant
map function for PMFs. All in all, we obtain the condition

f(Rσ) = map_pmf σ (f(R)) .
2 Readers who are used to systems like Coq or Lean might wonder why one does not
simply use the entire types ν and γ. The reason for this is that we sometimes want
to decrease or increase the number of agents and alternatives. Doing this without
explicit carrier sets can be problematic in Isabelle.

4

Pareto preorder. A family (i. e. a vector) R = (�1, . . . ,�n) of preorders gives rise
to the Pareto preorder of that family, which is simply defined as the intersection
of all the �i:

x �Par(R) y ⇐⇒ ∀i. x �i y
Note that here, the �i are not assumed to be total, since we will use Par for
non-total relations later on. Even if the � are total, Par(R) typically is not.

We call x a Pareto loser w. r. t. R if there is y such that x ≺Par(R) y; in other
words, there exists another alternative y that makes all agents at least as happy
as x, and one of them strictly more happy.

Stochastic dominance. As was mentioned before, we need a notion of when
an agent prefers one lottery to another, i. e. to lift a preference relation � on
alternatives to one on lotteries. Such a notion is called a lottery extension. In
general, the resulting relations on lotteries are not total. Lottery extensions are
typically justified by making some reasonable assumption about the behaviour
of agents and then concluding under what circumstances they must prefer one
lottery over another. An extreme example to illustrate this would be that any
agent should be expected to prefer the singleton lottery where their favourite
alternative wins with probability 1 over any other lottery.

The lottery extension we shall use is Stochastic Dominance. The definition is
somewhat technical, namely

p �SD(�) q ⇐⇒ ∀x∈A. Pp[{y | y � x}] ≤ Pq[{y | y � x}] ,

i. e. for any alternative x, the probability of getting something at least as good
as x in the lottery q is at least as big as that in p.

Another equivalent, but perhaps more intuitive definition is

p �SD(�) q ⇐⇒ ∀u∈vnM(�). Ep[u] ≤ Eq[u],

i. e. for all von Neumann–Morgenstern utility functions u : A → R that are
compatible with the preference relation �, the lottery q must yield at least as
much expected utility as p.

The idea behind SD is that agents are assumed to have a utility function and
want to maximise their expected utility. We only know the agent’s preference
relation, but not the underlying utility function. However, if a lottery q yields at
least as much expected utility as p for all utility functions that fit the agent’s
preferences, we expect the agent to consider q at least as good as p – and that is
precisely what SD is.

Efficiency. Efficiency of an SDS, in general, means that the SDS never returns a
lottery that can be improved upon in a way that satisfies all agents. One basic
notion of Efficiency is ex-post-Efficiency, which states that for any profile R, the
resulting lottery f(R) must not contain a Pareto loser w. r. t. R.

SD-Efficiency, which is used in Theorem 1, is a stronger notion. Using the
concepts defined above, we can define it very concisely: a lottery is called SD-
inefficient w. r. t. a profile R if it is a Pareto loser w. r. t. SD ◦ R, i. e. there

5

is another profile R′ that is weakly SD-preferred by all agents and strictly
SD-preferred by at least one agent.

An SDS is called SD-efficient if it never returns an SD-inefficient lottery.

Strategyproofness. Strategyproofness captures the intuitive idea that agents
should have no benefit from voting strategically. There are various notions of
Strategyproofness; for our purposes, we only need (weak) SD-Strategyproofness.
An SDS f is called (weakly) SD-strategyproof if, for any agent i ∈ N , any
preference profile R = (�1, . . . ,�m), and any preference relation �′i we have:

f(R(i := �′i)) �SD(�i) f(R)

Intuitively, this means that no single agent can benefit from lying about their
preferences. If they submit false preferences �′i instead of their true preferences
�i (while all other preferences remain the same), the result can never be better
(w. r. t. SD(�i)) than if they had submitted their true preferences.

Lifting. As was mentioned before, the impossibility result can be ‘lifted’ from
m agents and n alternatives to m′ agents and n′ alternatives with m′ ≥ m,
n′ ≥ n. The general idea is this: Given a preference profile R for m agents and n
alternatives, we can extend this profile to n′ alternatives by adding n′ − n new
‘dummy’ alternatives that are all equally good, but strictly worse than all the
existing n alternatives. Then, we can extend the profile to m′ agents by adding
m′ −m new ‘dummy’ agents that are fully indifferent between all n′ alternatives.
We denote this ‘lifted’ version of R as R↑.

Using this, we can ‘lower’ any SDS f for m′ agents and n′ alternatives to
an SDS f↓ on m agents and n alternatives by defining f↓(R) := f(R↑). In
order for f↓ to be well-defined, however, it must never return any of the dummy
alternatives. Since the dummy alternatives are all Pareto losers, one way to
ensure this is if f is ex-post-efficient. In this case, f↓ is also ex-post-efficient.

Notably, if f is ex-post-efficient, this construction also preserves anonymity,
neutrality, SD-Efficiency, and SD-Strategyproofness. This way, any impossibility
result involving ex-post-Efficiency (or something stronger) and any combination
of the above-mentioned properties can be lifted to a higher number of agents and
alternatives.

Random (Serial) Dictatorship. Let us now turn to two interesting examples of
concrete SDSs that I also formalised in Isabelle as an exercise to myself and to the
library I developed: Random Dictatorship (RD) and Random Serial Dictatorship
(RSD).

The former is normally only defined for the subset of preference profiles
where each agent has a unique favourite alternative. In this case, RD picks an
agent uniformly at random and returns that agent’s favourite alternative as
the winner. Since the present formalisation only allows SDSs over the full set
of preference relations, I chose the obvious generalisation where one first picks

6

an agent uniformly at random and then returns one of that agent’s favourites
uniformly at random if there are more than one. The Isabelle definition of RD is

RD R = do {i← pmf_of_set N ; pmf_of_set (Max_wrt_among (R i) A)}

where pmf_of_set X describes the uniform distribution over the set X and
Max_wrt_among returns the maximal elements among the given set w. r. t. the
given preference relation. For details on the monadic do notation, see e. g. Eberl et
al. [10]. The SDS thus defined can then easily be proven to satisfy anonymity,
neutrality, and SD-Strategyproofness (a stronger version of the latter than the
one defined above even). It is, however, not ex-post-efficient.

Random Serial Dictatorship is another generalisation of RD to the full set
of preference profiles which additionally fulfils ex-post-Efficiency. Here, one first
chooses a random permutation i1, . . . , im of the agents and then lets each agent,
in that order, delete all those among the remaining alternatives that they ‘do
not want’ (i. e. keep only those that they prefer most among the remaining ones).
Then, one returns one of the remaining alternatives (among which all agents are
indifferent) uniformly at random. One possible Isabelle definition is

RSD N A R = do is← pmf_of_set (permutations_of_set N)
pmf_of_set (foldr (λi A′. Max_wrt_among (R i) A′) is A)

where permutations_of_set N returns the set of all lists that contain each element
of N exactly once. An alternative recursive definition is

RSD N A R = if N = ∅ then pmf_of_set A
else do i← pmf_of_set N

RSD (N \{i}) (Max_wrt_among (R i) A) R

The actual definition in Isabelle uses the generic combinator fold_random_
permutation from the Isabelle library that allows traversing a set in random
order. This directly yields the above two definitions as corollaries and allows the
user to use whichever form is more convenient.

RSD can then be proven to be anonymous, neutral, strongly SD-strategyproof,
and ex-post-efficient. The proofs of the first two are fairly simple; the other two
are somewhat more involved. Writing these non-trivial proofs about a concrete
SDS like RSD served as a good first ‘stress test’ of the Social Choice library and
increased the confidence that the formal definitions were as intended. This is
likely the first formalisation of RD and RSD and their properties.

4 Gathering Consequences from Profiles

Having established the necessary definitions, we can now approach the proof of
the main result (Theorem 1). First of all, let us explore how to take the four
conditions – anonymity, neutrality, SD-Efficiency, SD-Strategyproofness – and
derive all of the arising conditions for a fixed set of profiles, from which we can
then hopefully derive a contradiction. Suppose we have an SDS f for some fixed

7

set of m agents and n alternatives. As mentioned before, these four conditions
can be fully characterised by QF-LRA formulæ. The variables in these formulæ
are the probabilities returned by f for each profile R. We denote these variables
as pR,x (the probability that f(R) returns the winner x).

Let us now go through the different types of conditions. Again, I will only
sketch the precise constructions here; for more details, see Brandl et al. [1].

Anonymity and Neutrality. Anonymity can be handled implicitly by simply
considering all preference profiles that differ only by a renaming of agents as
equal. An alternative view is to look at a preference profile as a multiset of
preference relations instead of as a vector.

For neutrality, one can similarly consider all profiles equal that differ only
by a renaming of alternatives. Here, the only way to implement this in practice
seems to be to choose an arbitrary representative among the n! candidates, e. g.
the one with the lexicographically smallest representation.

Orbit conditions. The above does not completely capture anonymity and neut-
rality; what is still missing are the so-called orbit conditions that arise from
profile automorphisms: If a permutation σ of alternatives maps a profile R to
itself (modulo anonymity), it is clear that by neutrality, all alternatives in an
orbit of σ must receive the same probability (e. g. if σ = (a b c)(d), we have
pR,a = pR,b = pR,c). These orbit conditions tend to arise when R has rich sym-
metries. Together with the efficiency conditions, they will be extremely useful in
the proof later since they greatly restrict the possible values for f .

SD-Strategyproofness. This is easy to capture in QF-LRA: For any pair of profiles
R, R̄ we must check if R̄ differs from R only by the preferences of one agent i.
If that is the case, let �i resp. �̄i denote the preference relation of agent i in
R resp. R̄. We must then have ¬f(R̄) �SD(�i) f(R) and ¬f(R) �SD(�̄i)

f(R̄).
When the definition of Stochastic Dominance is unfolded, these conditions simply
reduce to a combination of equations and inequalities in the pR,x and pR̄,x.

Of course, equality must be seen modulo anonymity and neutrality here, and
if a renaming of alternatives was necessary for the manipulation, this renaming
must also be taken into account.

SD-Efficiency. This is the most difficult condition to handle. Here, the key insight
by Brandl et al. is that if a lottery is SD-efficient w. r. t. a profile R, then all
other lotteries with the same support or a smaller support (w. r. t. inclusion) are
also SD-efficient. We can therefore define the notion of an SD-efficient support:
A set X ⊆ A is called an SD-efficient support if the lotteries that have support
X are SD-efficient. Whether such a set X is an SD-efficient support can simply
be encoded as a linear programming problem.

Therefore, we only need to find all the inclusion-minimal SD-inefficient sup-
ports X1, X2, . . . (of which there are < 2m). The condition that some lottery
p be SD-efficient w. r. t. R then reduces to its support not being a superset of
any of these minimal SD-inefficient supports, i. e. ∀k. ∃x∈Xk. pR,x = 0. This

8

is a conjunction of disjunctions, and thus a QF-LRA formula. Of course, this
support-set characterisation of SD-Efficiency is also fully verified in the system.

Another interesting fact is that a singleton support {x} is SD-inefficient iff x
is a Pareto loser. This directly implies that SD-Efficiency is stronger than ex-
post-Efficiency, and it means that we do not have to employ linear programming
for singleton sets; we can simply check if the element is a Pareto loser.

Lottery conditions. Lastly, we still need to take into account that the pR,x are not
independent real variables: since they represent probabilities, they are subject to
the conditions pR,x ≥ 0 and

∑
x∈A pR,x = 1.

5 Tooling

5.1 External Tools and Trusted Code Base

I will now give a brief overview of the two external tools that were used in this
project. Neither of them are trusted, i. e. the correctness of the final result does
not depend on them. First, however, I would like to clarify what exactly the
trusted code base of the result is.

Isabelle is based on a simple intuitionistic logic known as Isabelle/Pure, on
top of which the object logic HOL is then axiomatised. The basic inference rules of
Pure are provided as ML functions by the Isabelle kernel, which is the only part
of Isabelle that can actually produce theorems3. All other parts of Isabelle (e. g.
all of its various proof automation tools) can only prove theorems by interfacing
with this kernel, so that the trusted code base is effectively only the kernel (and
the code for parsing and pretty-printing). A bug in any other part of Isabelle or
in my own ML code should therefore, in principle, never lead to an inconsistency.
To reiterate: all proofs in this work go through the kernel. There is no use of
computational reflection, there are no no external computations, and no trusted
external tools.

Now, let me clarify what the two external tools were used for and in what
form.

Z3. This is a well-known SMT solver. It is bundled with the Isabelle distribution
and integrated via the smt proof method [11], which translates Isabelle/HOL
goals into the SMT-LIB format, calls Z3, and attempts to reconstruct an Isabelle
proof from the Z3 proof. Here, Isabelle proof does not mean Isabelle proof text.
smt does not produce Isabelle code; it rather constructs Isabelle theorems by
emulating the Z3 proof rules with basic logical inference. A replayed Z3 proof
therefore appears as a single opaque invocation of the smt method in Isabelle
proof text. Like the Z3 proofs, these reconstructed proofs are very large and low-
level and therefore not human-readable. They are, however, just as trustworthy
as any other Isabelle proof since the smt method has to go through Isabelle’s
kernel in order to create theorems.
3 Except for oracles, which I do not use here.

9

As will be explained in Section 6, this smt method was very helpful in deriving
the ‘human-readable’ version of the proof of Theorem 1; however the final proof
does not contain any invocations of it anymore.

QSOpt_ex. This software is a Linear Programming solver written in C that uses
exact rational arithmetic [12,13], i. e. it outputs the exact optimal solutions as
rational numbers without any rounding errors. It was developed by Applegate et
al. using their non-exact solver QSopt as a basis and uses a combination of fast,
non-exact floating point operations and exact rational computations based on
GMP arbitrary-precision rational numbers. This is important because we want
to use the solution returned by the solver to construct witness lotteries, and even
a small rounding error would lead Isabelle to reject such a witness.

However, I do not use this version of QSopt_ex since I was unable to compile
the code. Fortunately, there is a fork by Jon Lund Steffenson [14] that provides a
number of improvements, particularly to the build system. I created rudimentary
bindings to interface with this version of QSopt_ex from Isabelle/ML by writing
the problems into a problem description file in the LP format, invoking QSopt_ex
on it, and parsing the result file.

For our purposes, we only need to compute the optimal solutions, but we do
not have to prove that they are optimal. QSopt_ex is used to check if a support
is SD-inefficient and – when it is – to compute a witness for this inefficiency
(i. e. another lottery that is strictly better w. r. t. Pareto-SD). If there were a
bug in QSopt_ex, this would either lead to an unprovable goal when trying
to use the witness or it would cause us to miss some inefficient supports and
therefore give us less information about the consequences of SD-Efficiency. It
can, by construction, never lead to any inconsistency.

Note that we do not need to show the optimality of the solutions found by
QSopt_ex in Isabelle; it is only required on a meta level for the completeness of
the approach. We do need to prove the correctness of the solutions, however, and
this can easily be done by Isabelle’s general-purpose automation.

5.2 Automation in Isabelle/HOL

While all of the many facts following from our four properties for the given
set of preference profiles could easily be derived and proven in Isabelle by a
human, this would have resulted in a considerable amount of work and boilerplate
proofs. Moreover, this work would have to be re-done for a new proof of a related
statement or even if the underlying preference profiles changed slightly, which
discourages experimentation. The goal was therefore to develop specialised auto-
mation for this in Isabelle that is capable of replacing the unverified Java program
by Brandl et al., thereby turning Isabelle into a capable IDE for randomised
Social Choice proofs of this kind.

Isabelle itself is written in Standard ML and contains a sophisticated ML
system based on Poly/ML that allows compiling and adding new code at run-time.
Users can add custom proof methods written in ML to automate proof steps
and commands to automatically define constants, derive facts, etc. I developed

10

a number of such Isabelle commands to automate the fact gathering described
before:

preference_profiles defines preference profiles and automatically proves their
well-definedness. The notation is similar to that found in textbooks: to specify
e. g. the preference relation 1 � {2, 3} � 4 (1 is better than 2 or 3 and 2 and
3 are equally good and better than 4) one would write 1, [2, 3], 4.

derive_orbit_equations computes the orbit conditions for a set of given
preference profiles and proves them automatically. . For each orbit, a canonical
representative x is chosen and the orbit conditions have the form f(R)(y) =
f(R)(x), where y 6= x is some other element on the orbit. This makes it
possible to use the orbit conditions directly as rewrite rules for Isabelle’s
simplifier, since the equations are normalising.

find_inefficient_supports computes Pareto losers and SD-inefficient sup-
ports and automatically proves the corresponding conditions for ex-post- and
SD-efficient SDSs. In order to find SD-inefficient supports and prove their
inefficiency, the ML code invokes the external Linear Programming solver
QSOpt_ex.

prove_inefficient_supports takes a list of ex-post- and SD-inefficient sup-
ports where each SD-inefficient support is annotated with a witness lottery
(i. e. a lottery that is strictly SD-preferred to the uniform distribution on
the inefficient support). This witness lottery can be read directly from the
solution of the corresponding linear program.
The idea is to compute the inefficient supports and their witnesses once with
find_inefficient_supports, which outputs a hyperlink that can be clicked to
automatically insert a corresponding invocation of prove_inefficient_supports
with all the witnesses filled in as needed. This makes the final proof document
completely independent from the external LP solver.

derive_strategyproofness_conditions takes a list of preference profiles and
computes all possible manipulations of all profiles in this list that yield
another profile in the list. It then derives and proves all the conditions that
arise from these manipulations for a (weakly) strategyproof SDS. The user
can specify an optional distance threshold to restrict the search to small
manipulations (measured as the cardinality of the symmetric difference of
the relations). For our purposes, a distance of 2 is sufficient.

Note again that this ML code is untrusted : I did not verify it and – as explained
in Section 5.1 – there is, in fact, no need to verify it.

All of this automation is available in the Archive of Formal Proofs entry on
randomised Social Choice [2]. The automation also provides ML interfaces so
that for future similar projects, one could easily implement the entire pipeline
of candidate set generation, derivation of all the QF-LRA conditions, and the
invocation of the SMT solver inside Isabelle, turning it into a convenient and
extensible IDE for randomised Social Choice.

11

6 The Formal Proof of Theorem 1

The formal proof of the main result begins with a definition of the setting: I
define a locale called sds_impossibility for the setting of an anonymous, neutral,
SD-efficient and SD-strategyproof SDS for m ≥ 4 agents I and n ≥ 4 alternatives
N . Building on this, I then define a sublocale called sds_impossibility_4_4 that
additionally assumes that I = {A,B,C,D} and N = {a, b, c, d} where the four
agents and alternatives are distinct. Our goal is to prove False in the context
of the latter locale and then use the lifting machinery described in Section 3 to
derive False in the first locale.

For illustration purposes, I will track the total number of degrees of freedom
in our problem, i. e. the number of real variables pR,x that are not constrained by
an equation. In the beginning, we have 141 degrees of freedom (4 for each profile,
minus 1 eliminated since the probabilities must sum to 1).

The automatic part. In the context of the locale sds_impossibility_4_4, the
machinery described in Section 5.2 is invoked: The 47 preference profiles listed in
the proof by Brandl et al. are defined using the preference_profiles command. The
orbit and strategyproofness conditions are derived fully automatically – we only
have to supply the list of profiles that we are interested in to the corresponding
commands. For the efficiency conditions, we need to run find_inefficient_supports
once; for the full set of profiles, this takes about 7 s. The final proof document
only contains the invocation of prove_inefficient_supports generated by it.

This automatic part is fairly quick: The proofs of the well-definedness of
the profiles and all the other conditions take about 20 s altogether. The result
returned by these commands is:

– 12 equations of the form pR,x = pR,y from orbit conditions
– 24 equations of the form pR,x = 0 from Pareto losers
– 9 conditions of the form pR,x = 0 ∨ pR,y = 0 from SD-inefficient supports
– 256 conditions from Strategyproofness (of which we will use only 85)

Each orbit and Pareto-loser condition immediately eliminates one degree, and 5
of the SD-Efficiency conditions also each eliminate one degree immediately due
to orbit conditions. This leaves us with 100 degrees of freedom. Using the smt
method mentioned in Section 5.1, we can then already prove False in Isabelle
from all these conditions fully automatically within about 8 s.

Deriving a human-readable proof. As mentioned before, one of the goals of the
project was to obtain a structured proof that a human can follow and, in principle,
check every step. I will now describe how I proceeded to find such a proof.

As a first step, the 5 support conditions mentioned above that eliminate a
degree have to be identified by hand. They happen to have the form pR,x =
0 ∨ pR,y = 0 where we know pR,x = pR,y from an orbit condition, so that we can
conclude pR,x = pR,y = 0. Naturally, this process could also be automated, but
seeing as there are only 5 conditions like this, it is hardly worth the effort.

12

I then naïvely tried to reason ‘forward’ from the conditions by combining
various Strategyproofness conditions and the 4 remaining unused support condi-
tions. It seemed particularly desirable to me to find exact values for variables
(e. g. pR39,b = 0 or pR36,a = 1/2) since this immediately greatly simplifies all
Strategyproofness conditions in which that variable appears. Any value thus
determined can be added to Isabelle’s simplifier so that one can easily see what
remains of any given condition after all the values that were already determined
have been plugged in.

My general approach to derive these new equalities was then initially to pick
two corresponding Strategyproofness conditions (i. e. two profiles R1 and R2 that
differ only by one agent’s manipulation modulo a renaming of alternatives). Then
I hand these – together with lottery conditions and possibly support conditions –
to Isabelle’s auto method. In some cases, the assumptions are then automatically
simplified to some useful equation like pR36,b = 0 or pR18,c = pR9,c or at least an
inequality like pR5,d ≥ 1/2. This worked for quite a while, but eventually, I was
unable to find any new information like this.

I then turned towards the SMT solver for guidance. The situation at this
point is that there are some structured proofs of facts and we hand these facts
(along with many Strategyproofness conditions) to the SMT solver to derive False.
The way forward was to attempt to pull out facts from the set of facts given to
the SMT solver. To do this, I conjectured values of variables (e. g. pR42,a = 0)
that seemed likely to be useful (e. g. because they would simplify many other
conditions). Of course, since the conditions are inconsistent, any conjecture like
this is provable in our context, but a ‘good’ conjecture can be derived from a
small subset of the conditions.

I therefore used the smt method to check how many conditions suffice to
prove my conjecture. When this set was sufficiently small, I proved the conjecture
using the smt method, added it to the set of facts given to smt in the final proof
of False, and removed as many of its preconditions as possible from that set in
order to determine whether the conjecture was indeed a useful one – the goal,
after all, is to make the final ‘monolithic’ proof step smaller.

With this approach, I was able to easily shrink the final proof step until
it disappeared completely. I then proceeded to ‘flesh out’ all the small facts
proven with the smt method into structured Isabelle proofs, which was fairly
easy since they were all relatively small and Isabelle has good automation for
linear arithmetic. The end result was a very linear proof without any ‘big’ case
distinctions, which is remarkable considering that there are over 60 disjunctions in
the conditions altogether. At this stage, the proof was clear and detailed enough
to derive a rigorous and human-readable (albeit rather lengthy) pen-and-paper
proof, which is printed in the appendix of the paper by Brandl et al. [1].

7 A Mistake in a Related Result

A previous paper by Brandl et al. contained a proof of a weaker version of
Theorem 1. The difference is that this weaker theorem additionally assumes that

13

the SDS in question must also be an extension of Random Dictatorship in the
sense that it returns the same result as RD if each agent has a unique favourite
alternative (i. e. whenever RD is defined).

Corollary 1. If m ≥ 4 and n ≥ 4, there exists no SDS that is an extension
of RD and has the following properties: Anonymity, Neutrality, SD-Efficiency,
SD-Strategyproofness.

For the motivation behind this result, see the original presentation by Brandl et
al. [15]. For our purposes, it should only be said that the proof for this theorem
was relatively short and human-readable (it involves only 13 profiles). It was
therefore decided to first formalise this weaker theorem in Isabelle (in the hope
that it would be considerably easier) and then move on to the proof of Theorem 1.

Like their later proof of Theorem 1, the main part here is also the base case
m = n = 4 and then employs the lifting argument described in Section 3. I was
able to formalise the base case of m = n = 4 quickly and without any problems,
although it already became apparent that tool support such as that described in
Section 5.1 would be very useful.

However, once I attempted to formalise the lifting step (which Brandl et al.
only described very roughly in a single paragraph since it is usually not very
interesting), it became apparent that the lifting argument breaks down in this
case: What Brandl et al. missed is that unlike the other four properties, the
property ‘f is an extension of RD’ does not ‘survive’ the lifting, i. e. if f is an
RD-extension, it is possible that f↓ is not an RD-extension anymore.

Brandl et al. acknowledged this mistake and published a corrigendum [16]
in which they suggest to add the additional requirement that f must ignore
fully indifferent agents. The result and its problems were superseded by the
later correct proof of Theorem 1 anyway. Nevertheless, I find it notable that
the formalisation process found a previously undiscovered mistake in a peer-
reviewed published work – in particular, a mistake that could only be repaired
by introducing additional assumptions.

8 Related Work

Brandl et al. [1,15] already give a good overview of work related to Theorem 1 in
Social Choice Theory. Geist & Peters [17] give an overview of computer-aided
methods in Social Choice Theory in general. I shall therefore restrict this section
to formalisations of results from broader Social Choice Theory in theorem provers.

Nipkow [18,19] formalised Arrow’s theorem and the Gibbard–Satterthwaite
theorem. Gammie [20,21] formalised some more results such as Arrow’s theorem,
May’s theorem, Sen’s liberal paradox, and stable matchings. All of these use
Isabelle/HOL. The only formalisation of Social Choice Theory outside of Isabelle
that I am aware of is one of Arrow’s theorem in Mizar by Wiedijk [22].

Brandt et al. [23,24] recently built upon my work to formalise another,
simpler impossibility result in Isabelle/HOL: that there is no Social Choice
Function (SCF) for at least 3 agents / alternatives that fulfils Anonymity, Fishburn-
Strategyproofness, and Pareto-Efficiency. The main differences to this work are:

14

– SCFs return a set of winners, not a lottery. The problem can thus be encoded
into SAT and SMT is not needed.

– The proof involves only 21 preference profiles instead of 47 and only 33
Strategyproofness conditions instead of 85.

– They do not attempt to construct a human-readable proof and instead use
Isabelle’s built-in SAT solver to obtain the contradiction in the end.

Due to the different setting of SCFs, most of the specialised automation developed
for SDSs could unfortunately not be reused. The preference_profiles command
and the substantial amount of library material on preferences, however, could be
reused. The general structure of the proof (locales, definitions of various notions
related to SDSs/SCFs, lifting) was also sufficiently similar that a considerable
amount of material on SDSs could easily be adapted. Due to the much smaller
size of the proof, the derivation of the SAT conditions from the preference profiles
was done by hand since it would have been significantly more work to adapt the
automation to SCFs.

It is worth noting that, in contrast to my work here, all examples listed in this
section were only concerned with non-probabilistic Social Choice Theory. The
present work is therefore probably the first published formalisation concerning
randomised Social Choice Theory.

9 Conclusion

Based on work by Brandl et al. [15,25], I have written a fully machine-checked
proof of the incompatibility of SD-Strategyproofness and SD-Efficiency using
the Isabelle/HOL theorem prover and, based on this, a ‘human-readable’ proof.
In the process, I have also developed a high-level formalisation of basic concepts
of randomised Social Choice Theory and proof automation that automatically
defines and derives facts from given preference profiles. Both of these can be used
for similar future projects.

This work was also an interesting case study in how interactive theorem
provers (like Isabelle) and powerful automated theorem provers (like Z3 and
other SMT solvers) can be used not only to formally verify existing mathematical
theorems, but also to find completely new and – more or less – human-readable
proofs for conjectures. For human mathematicians, simplifying large terms and
combining large numbers of complicated linear equations and inequalities is
tedious and error-prone, but specialised computer programs (such as SMT solvers
or Isabelle’s decision procedures for linear arithmetic) excel at it. Using an
interactive proof system such as Isabelle has the great advantage that

– it is virtually impossible to make a mistake in a proof,
– one receives immediate feedback on everything, and
– it is easy to check whether an idea works out or not.

The last two points are, in my opinion, often not stressed enough when talking
about interactive theorem proving. With a paper proof, changing parts of the

15

proof (e. g. simplifying the presentation or removing unnecessary assumptions)
is usually a tedious and error-prone process. With the support of an interactive
theorem prover, the consequences of any change become visible immediately,
which can make experimentation and ‘proof prototyping’ much more appealing.

I also believe that this work shows that there is an opportunity for fruitful
collaboration between domain experts and interactive proof experts. Together,
even brand-new research-level mathematical results can – at least sometimes –
be formalised. This can improve the confidence in the correctness of the result
tremendously, and, more importantly, it is an excellent way to find and rectify
mistakes (as was the case here).

Acknowledgments

I would like to thank Florian Brandl, Felix Brandt, and Christian Geist for
bringing the field of randomised Social Choice to my attention as a target for
formalisation, and for their continued assistance. I also thank Florian Brandl and
Felix Brandt for commenting on a draft of this document.

References

1. Brandl, F., Brandt, F., Eberl, M., Geist, C.: Proving the incompatibility of efficiency
and strategyproofness via SMT solving. Journal of the ACM 65(2) (January 2018)
6:1–6:28

2. Eberl, M.: Randomised social choice theory. Archive of Formal Proofs (May 2016)
Formal proof development.

3. Eberl, M.: The incompatibility of SD-efficiency and SD-strategy-proofness. Archive
of Formal Proofs (May 2016) formal proof development.

4. Arrow, K.J.: A difficulty in the concept of social welfare. Journal of Political
Economy 58(4) (1950) 328–346

5. Gibbard, A.: Manipulation of schemes that mix voting with chance. Econometrica
45 (02 1977) 665–681

6. Hales, T.C., Adams, M., Bauer, G., Dang, D.T., Harrison, J., Hoang, T.L., Kaliszyk,
C., Magron, V., McLaughlin, S., Nguyen, T.T., Nguyen, T.Q., Nipkow, T., Obua, S.,
Pleso, J., Rute, J., Solovyev, A., Ta, A.H.T., Tran, T.N., Trieu, D.T., Urban, J., Vu,
K.K., Zumkeller, R.: A formal proof of the Kepler conjecture. arXiv 1501.02155
(2015)

7. Tucker, W.: The Lorenz Attractor Exists (revised March 10, 1999). PhD thesis,
Uppsala universitet (1999)

8. Viana, M.: What’s new on Lorenz strange attractors? The Mathematical Intelli-
gencer 22(3) (Jun 2000) 6–19

9. Ballarin, C.: Locales: A module system for mathematical theories. Journal of
Automated Reasoning 52(2) (2014) 123–153

10. Eberl, M., Hölzl, J., Nipkow, T.: A verified compiler for probability density functions.
In Vitek, J., ed.: Proceedings of the 24th European Symposium on Programming,
Springer Berlin Heidelberg (2015) 80–104

11. Böhme, S.: Proof reconstruction for Z3 in Isabelle/HOL. In: 7th International
Workshop on Satisfiability Modulo Theories (SMT ’09). (2009)

16

12. Espinoza, D.G.: On Linear Programming, Integer Programming and Cutting Planes.
PhD thesis, Georgia Institute of Technology (2006)

13. Applegate, D.L., Cook, W., Dash, S., Espinoza, D.G.: Exact solutions to linear
programming problems. Operations Research Letters 35(6) (2007) 693 – 699

14. Steffensen, J.L.: QSopt_ex – an exact linear programming solver (2014)
15. Brandl, F., Brandt, F., Suksompong, W.: The impossibility of extending Random

Dictatorship to weak preferences. Economics Letters 141 (2016) 44 – 47
16. Brandl, F., Brandt, F., Suksompong, W.: Corrigendum to “The impossibility of

extending Random Dictatorship to weak preferences” [Econom. Lett. 141 (2016)
44–47]. Economics Letters 145 (2016) 295

17. Geist, C., Peters, D.: Computer-aided methods for social choice theory. In Endriss,
U., ed.: Trends in Computational Social Choice. AI Access (2017) 249–267

18. Nipkow, T.: Arrow and Gibbard–Satterthwaite. Archive of Formal Proofs (Septem-
ber 2008) http://isa-afp.org/entries/ArrowImpossibilityGS.html, formal
proof development.

19. Nipkow, T.: Social choice theory in HOL. Journal of Automated Reasoning 43(3)
(Oct 2009) 289–304

20. Gammie, P.: Some classical results in social choice theory. Archive of Formal Proofs
(November 2008) http://isa-afp.org/entries/SenSocialChoice.html, formal
proof development.

21. Gammie, P.: Stable matching. Archive of Formal Proofs (October 2016) http:
//isa-afp.org/entries/Stable_Matching.html, formal proof development.

22. Wiedijk, F.: Formalizing Arrow’s theorem. Sadhana 34(1) (Feb 2009) 193–220
23. Brandt, F., Saile, C., Stricker, C.: Voting with ties: Strong impossibilities via sat

solving. In: Proceedings of the 17th International Conference on Autonomous Agents
and MultiAgent Systems. AAMAS ’18, Richland, SC, International Foundation for
Autonomous Agents and Multiagent Systems (2018) 1285–1293

24. Brandt, F., Eberl, M., Saile, C., Stricker, C.: The incompatibility of Fishburn-
strategyproofness and Pareto-efficiency. Archive of Formal Proofs (March 2018)
http://isa-afp.org/entries/Fishburn_Impossibility.html, formal proof de-
velopment.

25. Brandl, F., Brandt, F., Geist, C.: Proving the incompatibility of efficiency and
strategyproofness via SMT solving. Proceedings of the 25th International Joint
Conference on Artificial Intelligence (IJCAI) (2016)

17

http://isa-afp.org/entries/ArrowImpossibilityGS.html
http://isa-afp.org/entries/SenSocialChoice.html
http://isa-afp.org/entries/Stable_Matching.html
http://isa-afp.org/entries/Stable_Matching.html
http://isa-afp.org/entries/Fishburn_Impossibility.html

	Verifying Randomised Social Choice

