A Decision Procedure for Univariate
Real Polynomials in Isabelle/HOL

Manuel Eberl

Technische Universitit Miinchen

eberlIm@in.tum.de

Abstract

Sturm sequences are a method for computing the number of real
roots of a univariate real polynomial inside a given interval effi-
ciently. In this paper, this fact and a number of methods to con-
struct Sturm sequences efficiently have been formalised with the
interactive theorem prover Isabelle/HOL. Building upon this, an
Isabelle/HOL proof method was then implemented to prove inter-
esting statements about the number of real roots of a univariate
real polynomial and related properties such as non-negativity and
monotonicity.

Categories and Subject Descriptors G.1.5 [Numerical Ana-
lysis]: Roots of Nonlinear Equations—Polynomials, methods for;
D.2.4 [Software Engineering]: Software/Program verification—
Correctness proofs; 1.1.2 [Symbolic and Algebraic Manipulation]:
Algorithms—Algebraic algorithms

General Terms Algorithms, Verification

Keywords Sturm sequences; real arithmetic; decision procedure;
Isabelle

1. Introduction

Sturm sequences are finite sequences of univariate polynomials
with certain properties that, as shown by Sturm’s Theorem [13]],
can be used to determine the number of roots of a univariate real
polynomial in a given interval algorithmically. This is used to prove
properties about the roots of specific polynomials directly, but can
also be part of other algorithms such as approximation of roots
through bisection.

There are different ways to construct Sturm sequences for a
fixed polynomial P. The ‘canonical’ Sturm sequence construction
works only if P has no multiple roots, but it can be adapted to the
more general case of any non-zero polynomial.

Both Sturm’s Theorem and the correctness of these construc-
tions are formally proven in Isabelle/HOL in this work. In the fol-
lowing, we will give a detailed account of the formalisation and the
proof method derived from it, including a very explicit proof that
closely follows the structure of the formal proof in Isabelle/HOL,

[Copyright notice will appear here once ’preprint’ option is removed.]

but omits the proofs for basic lemmas about real analysis and poly-
nomials.

The main contribution of this work is the use of reflection to
use Sturm’s theorem, together with some pre-processing and an in-
terval splitting algorithm, to create a decision procedure for many
interesting and non-trivial properties on univariate real polynomi-
als, e.g.

|(x:real) —3| <2 = 546z —2°>0.

The step from Sturm’s theorem to the decision procedure is done
with Isabelle’s Code Generator [4], which can generate executable
code for Sturm sequences from the definitions. It must be noted that
a very similar approach, albeit in the PVS system, was developed
in parallel and independently by Anthony Narkawicz and César
Muiioz. [[11]]

Such a decision procedure has many applications in the context
of theorem proving, since non-linear real inequalities are often
difficult to prove by hand.

Outline. Section [2] introduces some basic notation for well-
known concepts that are not directly related to Sturm sequences.
Section[3.1]then defines a number of basic concepts that are used in
Sturm’s theorem — in particular, the concept of a Sturm sequence.
Section contains some simple auxiliary lemmas that will be
required in the main proof. Section [3.3] contains the main portion
of the proof: the fact that Sturm sequences can be used to count
the real roots of polynomials. Section [4] then shows how Sturm
sequences can be constructed in different cases and Sect. [3] ex-
plains how these constructions can be used to implement a verified
decision procedure for a number of interesting properties of real
polynomials. Section [6] demonstrates how this proof method can
be used in practice and compares it to other, related Isabelle proof
methods. Finally, Sect.[7|summarises the work we did and what the
overall result was.

2. Notation

In the following proofs, we will use the following notation and
terminology:

* Some property holds in a neighbourhood of some xo € R
if there exists an ¢ > 0 such that the property holds for all
x € (xo —e;x0+¢€) \ {zo} . Note that it does not have to hold
at xo itself. We will write this as

some property involving x
(for all x in a NH of xq)
* R denotes the extended real numbers R U {£o0} .

* R[X] denotes the set of all univariate polynomials in the vari-
able X with real coefficients. When speaking about polynomi-

2015/1/14

als, we will always implicitly mean univariate real polynomi-
als.

* P’ denotes the formal derivative of a polynomial P € R[X] .
* lc(P) denotes the leading coefficient of a polynomial P.

Moreover, the following Isabelle notation will appear in the Isabelle
code examples we give:

* Function application is written in Lambda-calculus style, i.e.
f x stands for f(z). It associates to the left, i.e. f x y is
(fz)y.

* Lambda abstractions denote functions, e. g. Ax. x + 1 stands for
the function x — = 4 1.

* The syntax [: ao,...,a, :] denotes the polynomial a,z™ +

...—|—ao.

* The poly function evaluates a polynomial, i.e. poly p x is the
value of the polynomial p at x.

* The card function returns the cardinality of a set (or, by con-
vention, 0O if the set is infinite).

3. Proof of Sturm’s theorem

Sturm’s Theorem, which we ultimately want to prove, states, in-
formally: given a sequence Py, ..., P, of polynomials that fulfil
a certain set of properties and real numbers a and b, the number
of real roots between a and b can be computed by computing the
sequences Py(a),..., P,(a) and Py(b),..., P,(b), counting the
number of sign changes in these sequences, and subtracting the lat-
ter from the former. [[13]]

In this section, we will go through the definitions, auxiliary
lemmas, and the proof of Sturm’s theorem itself. All lemmas
given here have been formally proven by us in the course of the
formalisation effort as they had not existed in Isabelle’s library
yet. The definitions and proofs are given in standard mathem-
atical notation in order to make them easier to comprehend for
readers not familiar with Isabelle; the Isabelle proofs and defin-
itions, are, however, very similar. Every lemma we give will be
labelled with the name of the corresponding Isabelle lemma in
monospaced font. Unless an explicit theory file is given with the
name (e.g. Misc_Polynomial.some_lemma), the lemmas reside
in Sturm_Theorem. thy.

3.1 Definitions

First, we define two notions that will be important in the proof of
Sturm’s theorem.

Quasi-Sturm sequences. We introduce the term quasi-Sturm se-
quence for a list of polynomials Py, ..., P, € R[X] that fulfils the
following properties:

*n > 0, 1i.e. the sequence is not empty

* P, does not change its sign, i.e. for any z,y € R , we have
sgn(Pn(z)) = sgn(Pr(y))

* foranyi € {0, ...,n—2} and any root o of P41, the property
Pi(xo)Pi+2(mo) < 0 holds

It can easily be seen that any non-empty suffix of a quasi-Sturm
sequence is again a quasi-Sturm sequence. The term ‘quasi-Sturm
sequence’ is, to our knowledge, not used in literature. It was ‘in-
vented’ solely for the purpose of this formal proof, since we need
to perform explicit induction on Sturm sequences, which does not
preserve the Sturm sequence property, but does preserve the weaker
notion of quasi-Sturm sequence.

Sturm sequences. We call a list of real polynomials a Sturm
sequence if it is a quasi-Sturm sequence and fulfils the following
additional properties:

* n > 1,1i.e. the sequence contains at least two polynomials

* for any root zo of Py, the product Py(z)P;(z) is negative in
some sufficiently small interval (zo — ;) and positive in
some sufficiently small interval (zo; zo + €)

* Py and P; have no common roots.

This definition was adapted from the book by Michel Coste [2]] as it
has the virtue of being very general, allowing us to easily generalise
the canonical construction later.

In Isabelle, the two concepts of Sturm and quasi-Sturm se-
quences are captured in predicates of the same name in precisely
the same way.

Sign changes. Next, we define the notion of sign changes. Let
Py,...,P, € R[X] be a sequence of polynomials and z € R .
By evaluating the P; at x, we obtain a sequence of real numbers
Yo,---,Yn . We now traverse this sequence from left to right
and count how often the sign changes, i.e. how often we see a
positive number and the previous number in the sequence was
negative (or vice versa), skipping zeros. This is called the number
of sign changes of the sequence Py, ..., P, at the position x and
is denoted as o (Po, . .., Pn;) .

In Isabelle, this is realised in the sign_changes function (see

Fig.[I).

definition sign_changes :: real poly list = real = nat where
sign_changes ps ¢ =
length (remdups_adj (filter (Az. z # 0)
(map (Ap. sgn (poly p x)) ps))) — 1

Figure 1. The Isabelle/HOL definition of the function that counts
the sign changes of a polynomial sequence ps at a point x.

The signs of the polynomials are evaluated at = and all zeros de-
leted from the resulting list. Then, remdups_adj is applied to the
remaining list, which merges equal adjacent elements (e. g. turning
[1,1,—1,—1,1] to [1, —1, 1]). The length of the resulting list minus
one is then the number of sign changes.

A related notion are the sign changes ‘at infinity’. For this, we
compute the sequences

L)) B G)

and count the sign changes in these sequences in the same way
as before. We write o(Po, ..., Pn; —00) and o (P, ..., Py;00) ,
respectively. Note that the signs of these limits for a P; can easily
be determined from the sign of the leading coefficient of P;: The
sign of P; at co is the sign of the leading coefficient; the sign of P;
at —oo is the sign of the leading coefficient if P; has even degree
and the opposite if it has odd degree.

'n TIsabelle/HOL, this is expressed as ‘the property sgn(PoPy(z)) =
(if z > zo then 1 else —1) holds eventually at xo’. Isabelle’s analysis
library provides filters to express such properties concisely.

2015/1/14

3.2 Important auxiliary lemmas

The first auxiliary lemma describes the behaviour of polynomials
at infinity and will be important for counting roots in intervals of
infinite length.

Lemma 1 (Misc_Polynomial.polys_inf_sign_thresholds).
Let P € R[X]\ {0} . Then there exist l,u € R such thatl < u,
all roots of P are in (l;u) , and

Vz<l. sgn(P(z)) = sgn (lim P(x))

Vz>u. sgn(P(x)) = sgn (lim P(x))
Tr—r0o0
In words: there exist upper and lower bounds s.t. the sign of the
polynomial does not change beyond the bounds and are equal to
the signs of the limit.

Proof. If P is constant, the statement trivially holds, so suppose P
is not constant. Then the limit of P(z) at —oo (resp. co) is either
oo or —oo. Therefore, for any bound c, there exists an [(resp. a u)
such that P(x) is beyond c for every x < [(resp. > u). Choosing
¢ = 0, we obtain that the sign remains constant for all z < [(resp.
T > u).

Also, since the P(z) is either > 0 or < 0 for all = below [(resp.
above w), it has no roots outside the interval (I; u) . Lastly, should
I < w not hold already, we can simply increase v until it does. [

Since Sturm’s theorem is based on counting sign changes, a cru-
cial part in proving it is to formalise the counting of sign changes
in a way that is convenient for subsequent proofs. In our formal-
isation, this was done by proving that under certain conditions, the
computation of the number of sign changes of a sequence can be
‘decomposed’:

Lemma 2 (sign_changes_distrib). Let FPo,..., P, be a se-
quence of polynomials and i € {0,...,n} and x € R . Fur-
thermore, assume P;(x) # 0 . Then we have o(Po, ..., Py;x) =

o(Po,...,P;x)+0(P,...,Pox)

Proof. For our informal definition of sign changes, this is obvious;
for the Isabelle definition using list operation, it can be proven using
simple properties of the list functions. O

Lemma 3 (sign_changes_sturm_triple). Ler P,Q, R € R[X]
and x € R with P(x) # 0 and sgn(R(x)) = —sgn(P(x)) . Then
o(P,Q,R;z) =1

Proof. By case distinction. O

Later, we will also require some algebraic properties of polyno-
mials, such as how to eliminate multiple roots of polynomials:

Lemma 4 (Misc_Polynomial.poly_div_gcd_squarefree).

Let P € R[X]|\ {0} . Let D := gcd(P, P’). Then the following

holds:

1. ged(P/D,(P/D)") = 1, i.e. P/D and its derivative are
coprime, meaning that P/D is square-free and thus has no
multiple roots

2. VzeR. (P/D)(z) =0<«= P(z) =0,

i.e. P and P/ D have the same roots, disregarding multiplicity

Proof. Omitted due to complexity; see formal proof in Isabelle.
O

3.3 Relating roots and Sturm sequences

We will now show how Sturm sequences can be used to determine
the number of roots of polynomials in a given interval. To this end,
we shall first explore when and how the number of sign changes
of a Sturm sequence changes in the neighbourhood of roots and
non-roots.

Informally, what we will show is that when passing through the
real numbers in ascending order and tracking the number of sign
changes of a Sturm sequence of a real polynomial P, that number
decreases by 1 every time one passes a root of P and remains con-
stant otherwise. From this, it should be intuitively clear that Sturm
sequences can be used to count roots.

First, we show that the number of sign changes does not change
in the neighbourhood of a non-root:

Lemma 5 (hd_nonzero_imp_sign_changes_const).

Let Py, ..., P, be a quasi-Sturm sequence and xo € R . Assume
Py(zo) # 0 . Then o(Po,...,Py;x) is constant for all x in a
neighbourhood of xo.

Proof. By induction over the length of the sequence

* if the sequence has length 1, the number of sign changes is, of
course, 0 everywhere.

if the sequence has length 2, we know that P; does not change
its sign anywhere by definition of a quasi-Sturm sequence. Fur-
thermore, since Py(xo) # 0 , the sign of Py does not change in
the neighbourhood of xg, as polynomials are continuous. Since
the signs are constant, the number of sign changes of the se-
quence Py, P; then also remains constant in the neighbourhood
of xzo.

if the sequence has length >3 and P;(xo) # 0 , then we have
Py (x) # 0 for all z in a neighbourhood of z(due to continuity.
Lemma [2]then implies

o(Po,...,Pu;x) =0(Po, Pr;x) +o(Pr,...
(for all x in a NH of xq)

The first summand is constant in a neighbourhood of xo because
Py(x0) and Pi(z0) and non-zero, so their signs do not change
in a neighbourhood of (. The second summand is also constant
in a neighbourhood of zg by induction hypothesis.
if the sequence has length > 3 and Pi(z9) = 0 , we have
Py(z0)P2(z0) < 0 by the definition of a quasi-Sturm sequence
and thus Po(zo) # 0, P2(z0) # 0, and sgn(Ps(x0)) = —
sgn(Po(zo)) . Due to continuity, we then have Py(z) # 0 ,
Py(z) # 0, and sgn(Ps(z)) = — sgn(Po(x)) for all z in a
neighbourhood of x¢. With Lemma@ we have:
O'(Po, .. .,Pn;x) = O’(Po,Pl,PQ;ZL‘) +J(P2,. ..
(for all x in a NH of xq)
With Lemma we then have o(Po, P1, P2;z) = 1 (i.e. con-
stant). As for the second summand, we know that Ps, ..., P, is
again a quasi-Sturm sequence and P2(xo) # 0 , so we can ap-

ply the induction hypothesis and obtain that o (P, . . ., Ps; z) ,
too, is constant for all x in the neighbourhood of z.

7Pn§33)

O

Note: the Isabelle proof works with a recursive function called
split_sign_changes that breaks the quasi-Sturm sequence into a
series of sequences of length < 3 in the same manner as the induc-
tion above. This allows us to carry out the proof in several smaller
steps. Moreover, the definition of split_sign changes as a re-
cursive function in Isabelle automatically generates an appropriate
induction rule that makes the proof more convenient.

2015/1/14

Now we will show that the number of sign changes decreases
when passing through a root:

Lemma 6 (p_zero). Let Po,..., P, be a Sturm sequence and
2o € R . Assume Py # 0 and Py(xo) = 0. Then:

o(Po,...,Py;mo) +1 forz < zo
Po,...,Py;x) =
O'(0,) 1') {O‘(PO,...,Pn;.TO)

(for all x in a NH of xq)

for x > xo

Proof. From the definition of a Sturm sequence, we know that
Py(xzo) = 0 implies Pi(zo) # O . Therefore, Pi(xo) has the
same non-zero sign in a neighbourhood of zy. Moreover, for all
in a neighbourhood of xo, we have Py(x)Pi(x) < 0if x < x and
Py(z)Pi(z) > 0if z > xo . With Lemmal]2] we have:

o(Po,...,Py;x) =0(Po, Pr;z) +o(Py,..., Py x)
(for all x in a NH of xq)

Since Pi(x) # 0 in a neighbourhood of x(, we can apply Lemma
and obtain:

o(Piy..., Pp;z) =0(Pr,...,Pa;x0)
(for all x in a NH of xq)
Of course, since Po(zo) = 0, we also have:

o(Piy...,Py;x0) = 0(Po,. .., Py;xo)
In summary, we have shown so far that:

o(Po,...,Py;x) =0(Po, Pr;x) +0(Po,. .., Pu;xo)
(for all « in a NH of xq)

Therefore, what remains to be shown is that o (P, Pi;z) = 1
for x < xg and U(Po, Py ac) = 0 for x > xo for all x in a neigh-
bourhood of xg. This is a simple consequence of Py(z)Pi(z) < 0
for x < xo and Py(x)P1(z) > 0 for z > xo. O

Using these results, we can now prove Sturm’s Theorem with
induction over the number of roots in the given interval:

Lemma 7 (count_roots_between). Let Py, ..., P, be a Sturm
sequence with Py # 0 and o € R . Fixa,b € Rwitha < b .
Then the following holds:

H{z € (a;b] | Po(z) = 0} =
=o(Po,...,Pn;a) —o(Po,..., Pn;b)

Proof. By induction over k := |{z € (a;b] | Po(z) = 0}] for
arbitrary a, b.

*if k = 0, we have Py(z) # 0 for all z € (a;b] . We now
distinguish two cases:

»if Py(a) # 0 , we have Py(z) # O for all z € [a;b] .
Lemma [5| then implies that o(Po,..., P,) is constant in
the neighbourhood of all z € [a;b] and must therefore be
constant in the entire interval [a; b] .
if Po(a) = 0, we know from Lemma|§|that

o(Poy...,Pu;x) =0(Po,...,Pn;a)

forall z € (a;a+¢€) forsomee > 0 ,i.e. o(Po,...,Py)
is constant in the right neighbourhood of a. Furthermore,
using Po(z) # O for all z € (a;b] and Lemma [5| we
obtain that o (Pp, . .., P,) is constant in the neighbourhood
of every © € (a;b] . Therefore, (P, ..., Py) is constant
on the entire interval [a; b].

Since o(Po, ..., Py) is constant on the entire interval [a;b] ,

we have

o(Poy...,Pa;a) —o(Po,...,Pa;b)=0.

This is exactly the number of roots of Py in (a; b] .

*if k > 0, we take the smallest root of P in the interval (a; b]
and call it z>. From Lemma [6] we know that for all = in a
sufficiently small left neighbourhood of x2:

o(Poy...,Pu;x) =0(Po,...,Ppja2) +1

Let x1 then be some value in (a; z2) that is in this neighbour-
hood. We know that P, has no roots in the interval (a; 1] and
thus

o(Po,...,Pn;a) "
2O’(P(),...,Pn;a71):
:U(Po,...,Pn;x2)+1

Furthermore, the number of roots of Py in the interval (z2;] is
exactly k — 1, so by induction hypothesis,

o(Poy...,Pojx2) —o(Po,...,Pa;b) =k —1
Adding these two equations yields

o(Poy...,Pnja) —o(Po,...,Pn;b) =k
O
Lemma 8 (count_roots). Let Py, ..., P, be a Sturm sequence
with Py # 0. Then the following holds:
{z | Po(z) =0} =
= o(Po,...,Pn;—0) —a(Po,. .., Py;00)

Proof. Using Lemmal[T] for every P; and taking the smallest lower
bound ! and largest upper bound u, we obtain [, u € R with [< u
such that Py has no roots outside the interval (I;) and for all P;:

sn(P(0) = s (tim_Pi(o))

sgn(P;(u)) = sgn (lim Pl(x))
Tr—r0o0
It is then easy to see that the number of sign changes of the
sequence Py, . .., P, at resp. u can be determined by considering
the signs of the limits of the P; at +oo instead of P;(u) and P;(l) .
Since all roots of Py lie in the interval (I;u) , we have thus shown
that the total number of roots of Py can be determined in the way
described above. O

Note: similar statements for the usage of o at 00 to compute
the number of roots > a, < a, > a, or < a for some fixed a € R
can be proven analogously.

4. Constructing Sturm sequences
4.1 The canonical Sturm sequence
The canonical Sturm sequence Py, ..., P, of a polynomial P €
R[X] is constructed as follows:
P fori =0
P, = P’
—P;_omod P;_1 otherwise

fori =1

The corresponding Isabelle function is Sturm_Theory.sturm.

n is chosen such that n > 1 and P, is constant, since this will
simplify formalisation. Choosing a higher value for n only results
in a number of zero polynomials at the end of the sequence, which
do not change the result in any way. Note that this construction al-
ways terminates as the degree of the polynomials involved strictly

2015/1/14

decreases with every step, so that one reaches a constant polyno-
mial in finitely many steps.

We will now show that this construction is indeed a Sturm se-
quence as defined before.

Lemma 9 (sturm_gcd). In a canonical Sturm sequence Py, ..., P,
any P; is divided by ged (P, P').

Proof. By induction on ¢ using the fact that

ged(R, S) = ged(S, R mod S) = ged(S, —R mod S)

Lemma 10 (sturm_adjacent_root_not_squarefree).
If two adjacent polynomials in a canonical Sturm sequence have a
common root, the root is a multiple root of the first polynomial.

Proof. We show that if P;(z) = Pi41(z) = 0, then Vi. Pi(z) =
0, i.e. if x is a root of two adjacent polynomials in the canonical
Sturm sequence, then it is also a root of all the polynomials to
their left. This can easily be shown by induction over 4, using the
definition of the canonical Sturm sequence.

We then have, in particular, that Py(z) = P (z) = Pj(z) =0,
which means that x is a multiple root of Fj. O

Lemma 11 (sturm_seq_sturm). Let P € R[X] with no multiple
roots. Then the canonical Sturm sequence construction of P yields
an actual Sturm sequence.

Proof. We simply prove the five conditions a Sturm sequence has
to satisfy:

* The sequence has at least length 2

Proof. Obvious, by definition
* P, does not change its sign

Proof. Obvious, since P, is constant
* Py and Py have no common roots:
Proof. Py = P and P, = P’ ,soif Py and P; had a common
root, it would be a multiple root of P, which contradicts our
assumption.
For any i € {0,...,n — 2} and any root xo of Pit1, the
property Pi(xo)Pit2(x0) < 0 holds

Proof. By construction, we have P12 = —PF; mod P;+1 and
thus P, = Piy1Q — Pijo for some Q@ € R[X] . With
Pit1(zo) = 0, this implies that Pi;2(z) = —P;(x) , and

because of Lemma[I0]and the fact that P has no multiple roots,
we also have P;(z) # 0 and thus P;(z)Piy2(z) < 0.

* For any root xo of Py, the product Py(x)Pi(x) is negative

in some sufficiently small interval (xo — €; xo) and positive in
some sufficiently small interval (zo; zo + €)
Proof. Since Py = P and P, = P’ are polynomials and
therefore continuous, there exists some neighbourhood of z¢
that does not contain any roots of either P or P;. For any
x < zo in that neighbourhood, we can then apply the mean
value theorem to obtain some & € [z; zo] with

P'(&)(x — w0) = P(z) — P(z0) = P(x)

Due to z < zo , this implies sgn(P(x)) = —sgn(P'(£)) .
Furthermore, recall that we chose a neighbourhood of x¢ that
contains no roots of P or P’; therefore,

0 # sgn(P'(€)) = sgn(P'(x)) = —sgn(P())

This directly implies P(z)P'(z) < 0 . Similarly, for any
z > xo in that neighbourhood, we can use the same argument
to find that P(z)P’'(z) > 0 .

O

2015/1/14

4.2 The case of multiple roots

We now need to find a way to handle polynomials that contain
multiple roots. Of course, one way to handle a polynomial with
multiple roots is to use Lemma [d] and ‘divide away’ the ‘excess
roots’ by dividing the polynomial P by gcd(P, P') . However, it
turns out that as long as the interval bounds a and b are not multiple
roots of P themselves, i. e. at least one of P(a) # 0 and P’ (a) # 0
and at least one of P(b) # 0 and P’(b) # 0 holds, one can simply
use the canonical Sturm sequence without any modification. To
show this, we will first prove the following auxiliary result:

Lemma 12 (sturm_seq_sturm_squarefree’).

Let P € R[X]\ {0} . Let Py,..., P, be the result of the ca-
nonical Sturm sequence construction of P and define Q; :=
P;/ged(P, P') . Then Qo,...,Qx is a Sturm sequence and Qo

has the same roots, disregarding multiplicity, as P.

Proof. First, we note that ged(P, P’) # 0 , since P # 0 by
assumption. Furthermore, Lemma |§| implies that ged(P, P') | P;
for all 4, thus Q; € R[X] , i.e. the); really are polynomials. This
means that our definition of Qo, ..., Q, is well-defined. Now we
show that the five properties for a Sturm sequence are satisfied:

* The sequence has at least length 2

Proof. Obvious by construction of Qo, . .., Qn
* Qn does not change its sign

Proof. Obvious; P, is constant, so @, is, too
* Qo and Q1 have no common roots
Proof. By construction, we know that Qo = P/gcd(P, P")
and Q1 = P’/ gcd(P, P") . Obviously, Qo and Q1 are then
coprime and cannot have any common roots.
Forany i € {0,...,n} and any root zo of Qiy1, the property
Qi(xO)Qi+2 ({E()) < 0 holds
Proof. By construction of the canonical Sturm sequence, we
have:

Pi+2 = —Pi mod Pi+1
Therefore, we have:
(Pz div Pi+1) . Pi+1 — Pi+2 = Pz

Let D := ged(P, P') . Since D divides all the P;, we have
P, =D-Q; , Pt =D -Qit1 ,and P2 =D Qiy2 and
thus:

(D'QidiVD'QH-l)‘D'QH—I _D'Qi+2 :D'Qi
Cancelling D (allowed since R[X] is an integral domain and
D # 0) yields:

(Qz div Q¢+1) “Qit1 — Qite = Qs
Since x is a root of Q;+1(x0) , we then have:
—Qiy2(w0) = Qi(zo)
Since ged(Qs, Qi+1) = 1 and ¢ is a root of Qi+1(z0) , To

cannot be a root of (); and thus we have:

Qi(20)Qit2(w0) = —Qi(20)* < 0

* For any root zo of Qo, the product Qo(z)Q1(z) is negative
in some sufficiently small interval (xo — €; xo) and positive in
some sufficiently small interval (xo; xo + €):

Proof. Let, again, D := ged (P, P’) . Obtain some € > 0 such
that the following two properties hold:
1. D does not have a root in (zo — €;z0 +€) \ {zo}
2. Py(z)Pi(z) < Oforall z € (zo—e; o) and Po(z) Py (z) >
0forall z € (zo; o + €)

Then we have, for any z in (zo — €;z0 +) \ {zo}:

Py(z)Py(z) = Qo(2)Q1(x) - D(x)
N——
>0
This then obviously implies the property we want to show.

It remains to show that Qo has the same roots, disregarding mul-
tiplicity, as P = P . This is precisely the statement of Lemma
O

Of course, there is no reason to use this construction in prac-
tice, since if one has computed gcd(P, P') already, it is easier to
compute the canonical Sturm sequence of P/ ged(P, P') directly
than to compute the canonical Sturm sequence of P and then di-
vide every polynomial in it by ged(P, P’) . However, the result
becomes useful when combined with the following insight:

Lemma 13 (sturm_sturm_squarefree’_same_sign changes).
Let P € R[X]|\{0}. Let Py, ..., Pyand Qo,...,Qn be as in the
previous lemma. Then the following holds:

1. VzeR. P(z) 0V P'(x) # 0 =
o QQ,.-.,Qn;.’E):O'(P(),...,Pn;w)
2. 0(Qoy ..., Qn;to0) = o (Po,..., Pn;to0)

Proof.

1. Let D := gcd(P, P') . Consider an arbitrary x € R for which
P(z) #£0o0r P'(z) #0,i.e. D(z) # 0 . Then we have for all
i

sgn(Qi(x)) = sgn(Pi(z)/D(z)) = sgn(Pi(x)) - sgn(D(z))

It is now easy to see that in both of the two cases D(z) > 0 and
D(z) < 0, the number of sign changes in the two sequences is
the same, since the signs in Qo, . . . , @, are all either the same
asin Py, ..., P, or all flipped w.r.t. the signs in Py, ..., P, .
2. We now consider the case of +oo. Since P, = Q; - D , we
obviously have lc(P;) = lc(D) - 1c(Q;) . When considering
the way in which ¢ at 00 can be computed using the leading
coefficients, it is then again obvious that the two sign sequences
are either the same or one is ‘flipped’ w.r.t. the other; either
way, we have 0(Qo, . . ., Qn; +00) = o(Po, ..., Py;£00) .
O

In conclusion: if we want to count the roots of some P between
bounds a,b € R with a < b , we use o with a Sturm sequence
of P, and such a Sturm sequence can be obtained by applying the
canonical Sturm sequence construction to P if neither a nor b are
roots of both P and P’, or by applying it to P/ ged (P, P’) if they
are.

5. Proof Method

We now use the results proven so far in order to implement an Isa-
belle proof method for a number of interesting categories of proper-
ties of real polynomialsEl The name of this proof method is sturm.
Given a goal statement, sturm performs some pre-processing and
analysis and applies an appropriate rule. This replaces the goal with
another, executable statement involving Sturm sequences. Then,
Isabelle’s code generator [4] is invoked on this new goal in order to
prove it by evaluation.

2To be precise, while it does count real roots, both the polynomial coef-
ficients and the bounds of the interval of interest must be from a set of
numbers with which Isabelle’s code generator can perform computations.
At the moment, this means rational numbers; in the future, it could be ex-
tended to e. g. algebraic real numbers. General real numbers are, of course,
problematic for computations on a computer.

2015/1/14

lemma card {z :: real. 2 =2xa"

lemma card {z :: real. 2 =2xa"
lemma (z :: real)> + 1 > 0 by sturm

lemma (z ::real) > 1 = z° > 1 by sturm

lemma (z :: real) # y = 2 # y® by sturm
lemma abs (z :: real) < 1 =

lemma card {z :: real. (z — 1)® % (z + 1) * (z° + 1) = 0} = 2 by sturm
lemma card {z :: real. —0.010831 <z A z < 0.010831 A
poly [: 0, —17/2097152, —49/16777216,1/6,1/24,1/120 ;] = = 0} = 3 by sturm
A a®—6x2°+11%xz =6} =1 by sturm
V 2® —6x2° +11%z =6} =4 by sturm

lemma [(z :: real) > 0;2 < 2/3] = z*xz # z by sturm

lemma |(z ::real) —3| <2 = 5+ 6z —2° > 0 by sturm

lemma (z ::real) > -1 =z < 2—=3x2>+2 2x4+x2+3*x by sturm

lemma Jdzr ::real. —1<zAx<1A1l—z*x>0 bysturm

lemma mono (Az :: real. 22+ 12x 22 +60%2 + 120) by sturm

lemma strict_mono (Az :: real. 2® + 30 %z + 420 * 2° 4 3360 * 2° + 15120 * = + 30240) by sturm

(3969/65536 + 63063,/4096 2° + 1792791 /4096 * '° + 3002285,/4096 * z'* + 6600165/4096 * 2:**
— 72765/65536 * 2* — 3558555/32768 * 2° — 10207769/65536 * 2°° — 35043645 /32768 * x>
— 95851899/65536 * z'°)** > 0 by sturm

Figure 2. Concrete examples of statements that can be proven in Isabelle/HOL by the sturm method.

We will now give an overview of the different categories of
statements sturm can prove and how it achieves this.

Number of roots. The statements that were proven in Lemma 7]
and Lemma [§] were that Sturm sequences can be used to count
the roots of a polynomial P in an interval of the form (a;b] for
a,b € R witha < b . However, this can be generalised~ to
arbitrary intervals (a;b), [a;b), (a;b], and [a;b] for a,b € R .
This is achieved by performing a case distinction on whether a and
b are roots themselves and, if they are, adding/subtracting 1 from
the number determined with the Sturm sequence.

Pre-processing. Pre-processing of the goal statement is per-
formed in order to normalise statements such as = - ¢ = x to
the form

poly [0,—1,1:]z =0
and analogously for inequalities. Furthermore, statements such as

Vzel. P(x) # 0 can be reduced to counting the number of roots
and checking that it is 0.

Logical connectives. We can further generalise our method to al-
low composition of polynomial equations with the logical operators
A and V. To do that, note that the following holds:

Pz)=0AQ(z) =0 < gcd(P,Q)(x)=0
Plz)=0vQ(z)=0 << (P-Q)(z)=0
We can therefore reduce any combination of polynomial equations
with A and V to a single equation of the form P(z) =0 .

Strict universally-quantified inequalities. Note that Vz. P(x) >
0 holds iff P has no roots and lim,—oc P(z) = oo . Also,
Vzel. P(z) > 0 holds iff P has no roots in [and P(xz) > 0
for some arbitrary x € I . This allows us to decide single strict

inequalities on polynomials, i.e. Vz€l. P(z) > Q(x) . However,
we cannot decide complex combinations of several inequalities
with A and V such as Vzel. Pi(z) > Q1(z) V Pa(z) > Q2(z).

Non-strict universally-quantified inequalities. Deciding non-
negativity (resp. non-positivity) of polynomials is more involved.
We need to split the interval in question into disjoint and adjacent
sub-intervals such that each of these sub-intervals contains exactly
one root and the polynomial is positive (resp. negative) at the bor-
der of each of them. (Some additional case distinction is necessary
if the interval borders themselves are roots.)

It is more convenient to compute the required partition of the
interval outside of Isabelle, in unverified ML code. This partition
is then used as a witness to prove the non-negativity (resp. non-
positivity) of the polynomial by using a rule that states that if
the premises stated above hold for a partition of an interval, the
polynomial is non-negative (resp. non-positive) on the interval.

To prove non-negativity of P on (a; b}[ﬂ the ML code finds
suitable splitting points ci,...,ci by bisection. These splitting
points satisfy a < ¢1 < ... < ¢x < b . To find these points,
bisection is performed with the initial partition (a;b] until every
sub-interval contains exactly one root. If one of the splitting points
found by bisection is a root of P, it is shifted to the side by a
sufficiently small amount. The end result is then an ascending list of
points a, c1, .. .,ck,b , none of which are roots, such that exactly
one root lies between two adjacent numbers. It is then easy to

31f the given interval bounds are infinite, the algorithm first replaces them
by equivalent finite bounds by doubling the initial guess 1 until all roots lie
within these bounds. If a or b are roots themselves, they are shifted to the
left or right by a sufficiently small amount. This shifting can be justified
by the fact that non-zero polynomials are continuous and only have finitely
many roots.

2015/1/14

see that the polynomial is non-negative iff it is positive at each
of these points. Obviously, this algorithm always terminates and
always finds a correct partition.

The fact that this code is unverified is relatively unproblematic
as it does not compromise soundness in any way. If it were to con-
tain a bug and return an incorrect partition, the proof method would
fail even if the goal was provable, rendering the proof method in-
complete. Soundness, on the other end, is not affected, as an incor-
rect witness would still be rejected by Isabelle.

Monotonicity. An obvious application of deciding non-strict in-
equalities is in proving monotonicity of polynomials, i.e. that a
polynomial is monotonically increasing. This is done by proving
non-negativity of the derivative P’, which is equivalent to mono-
tonicity of P. Similarly, strict monotonicity is equivalent to non-
negativity of P’ and P’ # 0. Monotonically decreasing polynomi-
als can be handled by proving that their negation is monotonically
increasing.

Injectivity. It is easy to see that a polynomial is injective iff
it is strictly monotonically increasing or strictly monotonically
decreasing. We can therefore also decide injectivity.

Existentials. Since we can decide universally quantified inequal-
ities with the operators <, <, #, >, >, we can also decide the
opposite: existentials with the operators <, <, =, >, >. The cases
of <, >, and = can simply be mapped to universally-quantified
statements with >, <, and #, since they only require simple root
counting.

The cases of < and >, on the other hand, correspond to nega-
tions of universally-quantified non-strict inequalities. Since the de-
cision procedure for these runs externally, providing a witness with
which they can be proven in Isabelle, we cannot simply use our
existing code for non-strict inequalities and negate the result — we
must instead provide a witness for ‘non-non-negativity’.

The obvious candidate for such a witness is a point x in the
desired interval such that P(z) < 0 . We therefore use the same
interval splitting code in ML as we used before to compute splitting
points and then check if the polynomial is negative at any of them,
returning the first one that is. Additional care must be taken to
ensure that the witness returned is indeed inside the interval and
not at its border if the interval is open. If necessary, the witness is
shifted inwards by some sufficiently small value.

Again, this method always terminates and always finds a wit-
ness (if it exists). It is therefore complete.

Code Generation. As mentioned above, the sturm method relies
on the Code Generator to prove statements by evaluation. For a
statement that can be proven by evaluation, Standard ML code
is generated and executed, and the result becomes a theorem in
Isabelle. The Code Generator is therefore part of Isabelle’s trusted
code base. For a detailed explanation of Isabelle code generation,
see the corresponding work by Haftmann and Nipkow [4].

Examples. For a number of representative examples of state-
ments provable by sturm, see figure 5] For a detailed document-
ation of the sturm proof method, see the user guide in the corres-
ponding entry in the Archive of Formal Proofs [3].

6. Evaluation

The sturm method has direct practical applications within Isabelle
whenever a simple property of real polynomials has to be shown.
A direct, ad-hoc proof for properties such as ‘“The polynomial P
has exactly 3 roots in the interval [—1; 1]” is usually difficult — with
sturm, a proof can be derived fully automatically.

mono (Az. #° + 12 % 2% + 60 * = + 120)
—2t/(2® —6xx+12)2 <0

Figure 3. Two simple examples on which sos with CSDP
takes 30 and 60 seconds to find a SOS witness, whereas sturm
can easily prove them within a few seconds. (the latter cur-
rently requires manual rewriting into a polynomial inequality)

Apart from sturm, there are two other proof methods that can
be used in Isabelle to prove properties of real polynomials automat-
ically:

Sum of squares. The sos method uses an external tool to decom-
pose a polynomial into a sum of squares, which directly im-
plies non-negativity [6]]. For univariate real polynomials, this
method is complete in the sense that every non-negative univari-
ate real polynomial can be decomposed into P% + Q? , where
P,Q € R[X] [9]. It also works for multivariate polynomials,
but is only complete for univariate ones.

The sos method works by invoking external tools such as Neos
or CSDP to obtain a sum-of-squares decomposition of the poly-
nomial in question. This decomposition is then used as a wit-
ness for the proof and can be checked very quickly. However,
finding such a witness is very difficult; in practice, this method
does not work reliably on polynomials of practical interest,
since the search for a suitable decomposition often takes intol-
erably long. Its completeness is therefore only theoretical; see
Fig. B] for an example on which sos performs comparatively
poorly.

Approximation. The approximation method uses interval arith-
metic in order to prove arithmetical statements by approxima-
tion [7]. This is a very powerful and general method, but it often
performs poorly on simple polynomial statements, especially if
the area of interest is close to a root.

Comparison. Compared to these methods, the sturm method is
less general and tailored specifically to real polynomials. It does
not suffer from any of the performance problems with polynomials
that the other two methods have. The computation of the Sturm
sequence is straightforward and can be done efficiently even for
polynomials of high degree and interval splitting for non-strict
inequalities is done by bisection and should also work for any
polynomial without significant performance problems.

Larry Paulson uses sturm on a number of practical examples in
his work on upper and lower bounds for the real exponential func-
tion. This work is related to the MetiTarski system [1} [12]], which
requires knowledge of explicit bounds for functions such as the ex-
ponential function, trigonometric functions, etc. The problems in
question are simple polynomial inequalities such as p(z) > 0 ,
—4.64 < x = p(z) > 0, or monotonicity of a polynomial. The
polynomials involved have degrees < 7. For two examples, see Fig.

These were previously proven with a sum-of-squares cer-
tificate wherever one could be found. In all other cases, the
approximation method was used with appropriate manually-
tuned parameters and often manual splitting of the real line into
several segments, proving the desired property for each of them
separately.

The sum-of-squares method works almost instantaneously,
since its certificates can be verified quickly. Finding the certific-
ates initially, however, often takes very long (between 30 and 150

2015/1/14

seconds in the examples in Fig.). The approximation method,
on the other hand, takes between 1 and 10 secondf] for each in-
vocation on the examples we considered, with about four separate
invocations for every property.

The sturm method was able to prove all the properties that were
previously handled by sos and approximation in about 2 seconds
without any need for a long certificate search or interval splittingE]
In fact, even inequalities of polynomials with a degree of 100 or
200 (see Fig.) are still proven by sturm within a few seconds.

Most of the execution time of the sturm method is taken up by
code generation, since currently, the code for the method is gener-
ated anew with every invocation. This is due to technical limitations
of Isabelle’s code generator. We are currently investigating if it is
possible to avoid this overhead with a reasonable amount of effort.
Even so, the sturm method is already fast enough for practical use.

Required auxiliary results. While Isabelle/HOL already con-
tained a good formalisation of univariate polynomials — most im-
portantly real analysis on univariate polynomials — a sizeable chunk
of background theory we required was missing:

* the remdups_adj function used in sign counting (see Par.|3.1)
* some facts about real intervals

* limits of power functions and polynomials at +co and bounds
for roots

* facts about the neighbourhood of roots
* the square-free part of a of polynomial (cf. Lemma [4)

* Bezout’s lemma for polynomials and other facts related to the
polynomial GCD

Much of this has already been integrated into Isabelle’s library. The
last point is of particular interest: in the course of our formalisation
effort, we found the current definition of the greatest common
divisor (GCD) in Isabelle/HOL somewhat lacking due to the fact
that there are separate definitions of and lemmas about the GCD of
natural numbers, integers, and polynomials. We have since begun
work on a unified definition based on Euclidean rings, which will
eliminate the need for some of the specialised results we had to
prove for polynomials.

Future work. As mentioned before, we are still investigating how
to improve the Code Generator setup in order to speed up the proof
method. Code Generation takes up the vast majority of the run time
of the sturm method and has to be done anew with every invocation
of the method. Another improvement would be additional pre-
processing in order to rewrite rational function inequalities (i.e.
P(z)/Q(x)) to polynomial ones in order to avoid the manual step
required in problem such as the second example in Fig.

Related work. The first formalisation of Sturm’s theorem in a
theorem prover that we are aware of is by John Harrison [5].
However, he only proves it for square-free polynomials since he
did not require the more general result for arbitrary polynomials.
He also does not use Sturm’s theorem to implement a decision
procedure for more complex properties of polynomials such as non-
negativity.

A related, albeit much more difficult problem is deciding
whether a given first-order formula over the real numbers is true.
McLaughlin and Harrison implemented a proof-producing version

4 Intel® Core™ i7-4750HQ @ 2.00GHz, 16 GB RAM

3 The only manual work required was one example which had the form
—P(z)/Q(z) < 0. It had to be manually reduced to the separate goals
P(z) > 0and Q(z) > 0 before it could be proven by sturm, whereas
sos can prove it directly by decomposing it into a sum of squares of rational
functions.

of a decision procedure for this in HOL Light [[10]. Assia Mahboubi
developed a proof-producing implementation of the comparatively
efficient Cylindric Algebraic Decomposition algorithm in Coq [8].

Julianna Zsid6 proved the Theorem of Three Circles in the proof
assistant Cogq [14]. This theorem relates the number of sign changes
in the sequence of Bernstein coefficients of a real polynomial to the
number of roots in a certain area of the complex plane. This can
be used to isolate real roots by bisection. Unlike Sturm’s theorem,
it does not provide the exact number of real roots in an interval
directly.

Lastly, the previously-mentioned work of Anthony Narkawicz
and César Muiioz [[L1] is the most similar to ours. Their work was
carried out in parallel to and independently of ours. They proved
Sturm’s theorem in PVS and implemented a fully-verified decision
procedure for existential and universal univariate polynomial in-
equalities. The capabilities of their decision procedure are there-
fore roughly the same as those of ours, although they perform more
pre-processing for monotonicity statements. They appear to use
a similar interval splitting algorithm for the case of non-strict in-
equalities. The main difference between their work and ours is the
different proof for Sturm’s theorem: Narkawicz and Mufioz give a
direct proof by considering powers of linear divisors of the Sturm
sequence obtained by the canonical construction. We, on the other
hand, use a generalised definition of Sturm sequences not tied to
a particular construction and prove that these properties are suffi-
cient for root counting before introducing concrete constructions.
Additionally, they use pseudo division instead of regular division
on polynomials for better performance. We did not implement this
since it introduces more complexity and code generation is the bot-
tleneck in our implementation, not the arithmetic operations. An-
other difference is that they proved the completeness of their proof
method, whereas we avoided this complicated proof by providing
externally-computed witnesses.

7. Conclusion

We proved Sturm’s theorem and an efficient way of constructing
Sturm sequences in the theorem prover Isabelle/HOL. We also used
reflection to turn this result into an efficient proof method for prov-
ing statements about univariate real polynomials completely auto-
matically. Due to its being tailored specifically to proving a small
(but interesting) set of properties of polynomials, it performs very
well on these properties when compared to earlier, more general
methods. For polynomial inequalities taken from a practical ex-
ample, the new proof method was shown to shorten proofs con-
siderably and eliminate virtually all manual proof work for these
properties.

Acknowledgments

We thank Tobias Nipkow for his helpful comments, suggesting
related work, and encouraging this publication in the first place.
Larry Paulson contributed interesting insights into the performance
of our proof method in practice and encouraged us to implement
non-strict inequalities. We also thank César Muiioz for providing
us with a preliminary version of his paper, allowing us to reference
it as related work and compare our work to his. Finally, our thanks
also go to the anonymous reviewers for their valuable suggestions.

2015/1/14

References

[1] B. Akbarpour and L. C. Paulson. Metitarski: An automatic theorem
prover for real-valued special functions. Journal of Automated
Reasoning, 44(3):175-205, 2010. ISSN 0168-7433. . URL
http://dx.doi.org/10.1007/s10817-009-9149-2.

[2] M. Coste. An Introduction to Semialgebraic Geometry. Institut de
Recherche Mathématique de Rennes, http://perso.
univ-rennesl.fr/michel.coste/polyens/SAG.pdf, October
2002.

[3] M. Eberl. Sturm’s theorem. Archive of Formal Proofs, Jan. 2014.
ISSN 2150-914x.
http://afp.sf.net/entries/Sturm_Sequences.shtml,
Formal proof development.

[4] F. Haftmann and T. Nipkow. Code generation via higher-order
rewrite systems. In M. Blume, N. Kobayashi, and G. Vidal, editors,
Functional and Logic Programming (FLOPS 2010), volume 6009 of
Lecture Notes in Computer Science, pages 103—117. Springer, 2010.

[5] J. Harrison. Verifying the accuracy of polynomial approximations in
HOL. In E. L. Gunter and A. Felty, editors, Theorem Proving in
Higher Order Logics: 10th International Conference, TPHOLs’ 97,
volume 1275 of Lecture Notes in Computer Science, pages 137-152,
Murray Hill, NJ, 1997. Springer-Verlag.

[6] J. Harrison. Verifying nonlinear real formulas via sums of squares. In
K. Schneider and J. Brandt, editors, Proceedings of the 20th
International Conference on Theorem Proving in Higher Order
Logics, TPHOLs 2007, volume 4732 of Lecture Notes in Computer
Science, pages 102-118, Kaiserslautern, Germany, 2007.
Springer-Verlag.

[7

—

J. Holzl. Proving inequalities over reals with computation in
Isabelle/HOL. In G. D. Reis and L. Théry, editors, Proceedings of the
ACM SIGSAM 2009 International Workshop on Programming
Languages for Mechanized Mathematics Systems (PLMMS’09),
pages 38—45, Munich, August 2009.

A. Mahboubi. Implementing the cylindrical algebraic decomposition
within the Coq system. Mathematical Structures in Computer
Science, 17(1):99-127, Feb. 2007. ISSN 0960-1295. . URL
http://dx.doi.org/10.1017/S096012950600586X.

[9]1 M. Marshall. Positive Polynomials and Sums of Squares. University
of Saskatchewan, 2008. ISBN 978-0-8218-4402-1.

[10] S. McLaughlin and J. Harrison. A proof-producing decision
procedure for real arithmetic. In R. Nieuwenhuis, editor, CADE-20:
20th International Conference on Automated Deduction, proceedings,
volume 3632 of Lecture Notes in Computer Science, pages 295-314,
Tallinn, Estonia, 2005. Springer Berlin Heidelberg.

[8

[t}

[11] A. Narkawicz and C. Muiioz. A formally-verified decision procedure
for univariate polynomial computation based on Sturm’s theorem.
Manuscript submitted for publication, 2014.

[12] L. C. Paulson. Metitarski web site. URL
http://www.cl.cam.ac.uk/~1pl5/papers/Arith/.

[13] J. C. F. Sturm. Mémoire sur la résolution des équations numériques.
Bulletin des Sciences de Férussac, 11:419-425, 1829.

[14] J. Zsid6. Theorem of three circles in Coq. Journal of Automated
Reasoning, 53(2):105-127, 2014. ISSN 0168-7433. . URL
http://dx.doi.org/10.1007/s10817-013-9299-0.

2015/1/14

http://dx.doi.org/10.1007/s10817-009-9149-2
http://perso.univ-rennes1.fr/michel.coste/polyens/SAG.pdf
http://perso.univ-rennes1.fr/michel.coste/polyens/SAG.pdf
http://afp.sf.net/entries/Sturm_Sequences.shtml
http://dx.doi.org/10.1017/S096012950600586X
http://www.cl.cam.ac.uk/~lp15/papers/Arith/
http://dx.doi.org/10.1007/s10817-013-9299-0

	Introduction
	Notation
	Proof of Sturm's theorem
	Definitions
	Important auxiliary lemmas
	Relating roots and Sturm sequences

	Constructing Sturm sequences
	The canonical Sturm sequence
	The case of multiple roots

	Proof Method
	Evaluation
	Conclusion

