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ABSTRACT
Interactive theorem provers (or proof assistants) are software with
which mathematical definitions and theorems can be formalised.

They assist the user in writing formal proofs and check the cor-

rectness of these proofs, typically down to the level of basic logical

inference steps. This provides a very high degree of assurance that

any proof accepted by them is actually sound. Theorem provers

contain varying amounts of tools for automation to assist the user,

but unlike computer algebra systems, their focus is not on efficient

automatic computation.

In this work, we focus on the particular problem of symbolically

determining and proving asymptotics of real-valued functions: lim-

its, ‘Big-O’ statements, and asymptotic expansions. The tool that is

presented here uses an approach based on multiseries expansions

and can handle functions built from basic arithmetic and standard

functions like exp, ln, sin, | · |, etc. as well as parameters. The pro-

cedure is efficient enough to handle big problems and it is fully

automatic in many cases.
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1 INTERACTIVE THEOREM PROVERS
An interactive theorem prover (or proof assistant) is a piece of soft-
ware designed to assist in the development of a formal proof. All
definitions and proof steps have to be made in a formal way and

proofs are checked by the computer – typically down to the level

of basic logical inference. Consequently, this involves much more

work than a paper proof, but also provides much more clarity and

a high assurance that the proofs are actually sound.
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There are many different theorem provers; some popular ones

are Coq, Isabelle, HOL Light, HOL4, Lean, and Mizar. They differ

in their underlying logic and in the infrastructure they provide. In

this paper, we focus on Isabelle/HOL, which is the combination of

the generic Isabelle theorem prover with Higher-Order Logic.
Unlike computer algebra systems, theorem provers focus not

on providing a framework for computation designed to automatic-

ally return a result quickly, but on providing a consistent logical

infrastructure in which mathematical definitions and proofs can be

made with high assurance of correctness. Like many other systems,

Isabelle has a kernel, which is the only part of the system that can

produce theorems. This kernel provides only basic logical inference

rules (such as modus ponens or ∀-introduction/elimination) and a

mechanism for non-recursive definitions. Outside the kernel, many

additional tools exist, such as tactics to automate proofs (e. g. re-

writing, first-order logic, linear arithmetic) and more sophisticated

definitional mechanisms (e. g. for recursive functions, inductive

predicates, and algebraic datatypes). However, all these additional

tools need to go through the kernel to prove a theorem or define a

function. The intention behind this design is that:

(1) A user must not be able to accidentally introduce inconsist-

encies by defining e. g. f (x) = f (x) + 1.

(2) Bugs in proof automation or definitional tools (e. g. termina-

tion checkers for recursive definitions) must not compromise

the integrity of the entire system.

Formal proofs – even computer-assisted ones – are very verbose,

since every step of a proof has to be written down in much more

detail than in a pen-and-paper proof. Many steps that are elided in

paper proofs need to be written out explicitly. To make theorem

provers usable for the formalisation of non-trivial mathematics,

it is therefore crucial that they provide good proof automation to

reduce the burden on the user.

This work focuses on the particular problem of proving asymp-

totic properties of concrete real-valued functions such as that in

Figure 1. Computer algebra systems like Mathematica and Maple

are very good at solving these problems. They employ specialised

algorithms to compute asymptotic expansions for a wide variety of

functions efficiently and fully automatically. On the other hand, to

our knowledge, no theorem prover has anything comparable to this

so far. In this work, we attempt to integrate a procedure very much

like the one used by computer algebra systems into Isabelle/HOL

with the goal of providing a similarly effective and automatic ‘push-

button’ solution to prove limits and other asymptotic properties.

It is important to emphasise that, naturally, we did not invent any

of the underlyingmethods used in this work (such asmultiseries and

expansions of exp-log functions [8, 12]). The novel contribution

of our work is that we integrate these methods into a theorem

prover in a way that is effective and convenient to use, and that we

successfully use this for non-trivial mathematical developments.
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As of Isabelle 2018, the work described here can be found in the

HOL-Real_Asymp session, which is a part of the Isabelle distribution.

2 MOTIVATION
Proving limits in a theorem prover can be very tedious. Of course,

simple limits like those of exp(1/x) or 1 − 1

x + lnx for x →∞ can

be proven in an entirely syntax-directed way, which makes them

very easy to automate. Indeed, just passing the right theorems to

Isabelle’s general-purpose proof automation is enough to prove

these two examples:

lemma filterlim (λx . exp (1/x )) (nhds 1) at_top

by (force intro: tendsto_eq_intros real_tendsto_divide_at_top filterlim_ident)

lemma filterlim (λx . 1 − 1/x + ln x ) at_top at_top

by (force intro: tendsto_diff filterlim_tendsto_add_at_top

real_tendsto_divide_at_top filterlim_ident ln_at_top)

Even for these simple examples, one can see that one has to

search for (or remember) many facts and pass them to the proof

method, which a user might expect the system to do for them.

Tomakematters worse, the above problemswere actually cherry-

picked: If one permutes the summands in the second example a bit,

the method does not work anymore, since many of the theorems

only exist in one form; e. g. the rule filterlim_tendsto_add_at_top
states that if f (x) −→ c and д(x) −→ ∞, then f (x) + д(x) −→
∞. However, there is no equivalent theorem for the situation of

д(x) + f (x) or f (x) − д(x), or when д(x) −→ −∞. When one has

one of these situations, one first has to rearrange terms in order for

the theorem to apply, which can become very tedious especially for

larger terms. Proving different forms of these theorems for every

possible situations would possibly improve this, but creating this

would require a lot of effort and duplication.

Moreover, in many interesting examples, the proofs are not en-
tirely syntax-directed. Consider the following examples:

lim

x→∞

x + 1

x − 1

lim

x→∞

x

(lnx)c
lim

x→0

sin(tanx) − tan(sinx)

x7

These are easy to solve by hand:

• The first one can be rewritten to (1 + x−1)/(1 − x−1), for

which the syntax-directed method immediately gives us the

limit 1.

• The second one can be attacked by applying L’Hospital’s

rule again and again until we get C1x(lnx)
C2

with C1 > 0

and C2 ≥ 0, which clearly goes to∞.

• The third one can be solved using Taylor expansions to find

that the limit is − 1

30
.

The drawback of the first two methods is that they typically require

a certain amount of creativity and that there is no clear-cut class of

problems on which they will work; the third method can become

very tedious and error-prone on paper. In Isabelle, all of these
methods are typically tedious, since ‘obvious’ steps need to be

made explicit:

• Rewriting limits often requires proving side conditions; e. g.

non-zeroness in the above example.

• L’Hospital’s rule requires proving several other (albeit usu-

ally easier) limits and derivatives. Also, there are many dif-

ferent cases and each one requires a different variant of the

rule to be used.

• Manual Taylor expansion-based proofs also require proving

many derivatives and asymptotic estimates.

As one of the more extreme examples of the limit problems that can

arise, consider Figure 1. This problem is part of Leighton’s proof of

the Akra–Bazzi theorem. The first formal proof of this statement

in Isabelle [3] was 700 lines long and required considerable effort.

The above examples should demonstrate vividly that in order to

do non-trivial mathematics involving asymptotic analysis in a the-

orem prover, better automation is needed. This state of affairs seems

particularly bizarre when compared to the capabilities of modern

computer algebra systems, which can typically solve problems like

the ones above fully automatically within fractions of a second.

The goal of this work is to bring Isabelle’s capabilities w. r. t. limit

computations and asymptotic analysis closer to that of a computer

algebra system – while still constructing a machine-checked proof.

3 ASYMPTOTICS IN ISABELLE/HOL
First, we must explain some notation concerning asymptotics in

Isabelle/HOL. Asymptotics in Isabelle are centred around filters [2].
For our purposes, a filter can be thought of as a kind of local neigh-

bourhood or approach: The neighbourhood of a real number (i. e.

all numbers that are sufficiently close to that number) is a filter,

and so are ∞ (all sufficiently large numbers) and −∞. There are

also filters for ±∞ (all numbers whose absolute value is sufficiently

large) and 0
+
(all sufficiently small positive numbers).

What is convenient about filters for theorem proving is that they

compose in very natural ways and they can be used to uniformly ex-

press many different concepts related to topology, analysis, measure

theory, or asymptotics: properties that hold ‘eventually’ (‘for all val-

ues that are sufficiently . . . ’), limits, summable families, pointwise

and uniform continuity, derivatives, Landau symbols, etc.

For a detailed introduction to the way filters are used in Isabelle

and the precise definition, see the paper by Hölzl et al. [6]. For this
presentation, the notation listed in Table 1 will suffice. Similarly to

the Isabelle notation, we will use ∀
∞
x . P(x) from now on to denote

that P(x) holds for large enough x .

4 MULTISERIES
For the sake of simplicity, we only ever consider functions at the

neighbourhood of∞ and reduce all other cases to this. Therefore,

any ‘eventually’, limit, or ‘Big-O’ from now on is to be understood

for x →∞ unless otherwise indicated.

At the core of our method is the concept of a multiseries. This
is a representation of a Poincaré expansion of a given real-valued

function, where each summand in the expansion is a monomial of

the form cb1(x)
e1 · . . . · bk (x)

ek with c, e1, . . . , ek ∈ R. The bi are
basis functions; they are functions tending to ∞ and they are the

same for all summands. The list of the bi is assumed to be ordered

by descending growth in such a way that lnbi+1(x) ∈ o(lnbi (x))

for all i . The reason for this is that then bi+1(x)
e ∈ o(bi (x)

e ′) for

any e, e ′ ∈ R with e ′ > 0 so that we can easily compare two

monomials asymptotically by comparing their exponent vectors

2



lim

x→∞

(
1 −

1

b log
1+ε x

)p ©­­«1 +
1

log
ε/2

(
bx + x log

−1−ε x
) ª®®¬ −

(
1 +

1

log
ε/2 x

)
= 0
+

for real-valued parameters b, p, ε with b ∈ (0; 1) and ε > 0

Figure 1: A limit-problem related to Leighton’s proof of the Akra–Bazzi theorem.

Notation Meaning

nhds c neighbourhood filter around c ∈ R

at_top neighbourhood of∞ in R

∀x in F . P(x) P(x) holds eventually at F , i. e. for all x that are sufficiently F

filterlim f F G f (x)
x→G
−−−−−→ F

f ∈ O [F ](д) ∃c>0. ∀x in F . | f (x)| ≤ c |д(x)|

f ∈ o[F ](д) ∀c>0. ∀x in F . | f (x)| ≤ c |д(x)|

f ∼[F ] д f − д ∈ o[F ](д)

f and д are real-valued functions; F and G are filters.

If the filter argument F for the Landau symbols is not given, it defaults to at_top.

Table 1: Common asymptotic notation in Isabelle.

lexicographically. We call such a list a well-formed basis. A typical

basis would be(
exp(x lnx), exp(x), x, lnx, ln lnx

)
.

Abstractly, a multiseries is a formal power series in k variables

standing for the basis functions, i. e. a function mapping exponent

tuples (e1, . . . , ek ) ∈ R
k
to coefficients in R. We write this suggest-

ively as ∑
Ce1, ...,ekb1(x)

e1 . . .bk (x)
ek .

The link between these formal objects and a concrete real func-

tion f (x) is made by demanding that the multiseries be a Poincaré

expansion of f (x), i. e. that approximating f (x) by the finite sum

of all the monomials with exponent vectors ≥lex ē for some fixed

(ē1, . . . , ēk ) yields an error that is o(b1(x)
ē1 . . .bk (x)

ēk ). Given a

multiseries expansion of a function, its limit can then be computed

by determining the leading monomial, i. e. the smallest exponent

vector (e1, . . . , ek ) whose coefficient is non-zero.

A computationally convenient view of multiseries is the follow-

ing: By isolating the first basis element, we can view a multiseries as

a (univariate) formal series in b1(x) whose coefficients are multiser-

ies w. r. t. the k − 1 basis functions b2(x), . . . ,bk (x). This univariate
series can be represented as a (possibly infinite) list whose elements

are a pair of a coefficient (which is again a multiseries, but in k − 1

variables) and an exponent (which is just a real number). Iterating

this yields a kind of ‘nested infinite list’ structure with k levels.

The reason for this nested structure is the following: If one

were to view multiseries simply as linear sequences of summands,

cancellation can lead to an infinite number of zeros in the front

and therefore to non-termination when trying to find the leading

term. The nested list representation solves this problem because

we can discard infinitely many zeros at once: Each element of

the outermost list corresponds to a summand c(x)b1(x)
e
with a

multiseries expansion for c(x) in terms of b2(x), . . . ,bk (x) attached
to it. If c(x) is identically zero, we can discard the element and

proceed with the next one until we find a term such that c(x) is not
identically zero. We then proceed analogously with the multiseries

expansion of c(x) etc. We refer to this process as trimming the

representation of the multiseries.

When the distinction is necessary, we will write multiseries in

double square brackets to distinguish them from the functions of

which they are an expansion and separate the monomials with a

vertical bar, e. g. ⟦x | 1⟧(x ,ln) is a multiseries w. r. t. the basis (x, ln)

that corresponds to the formal sum 1 · x1
ln(x)0 + 1 · x0

ln(x)0. Sim-

ilarly, the notation ⟦cb(x)e | F ⟧b#bs indicates that the leading entry

in the list has coefficient ⟦c⟧bs and exponent e ∈ R and ⟦F ⟧b#bs is

the remainder of the series. Variables denoting multiseries are in

upper-case calligraphic font, e. g. F . We also write addition, multi-

plication, etc. on multiseries as ⊕, ⊙, etc. to distinguish them from

the operations on real numbers.

To obtain nice theoretical properties of these multiseries, further

restrictions must be placed on the support of this coefficient func-

tion (e. g. well-ordered or ‘grid-based’ [14]), but for our purposes,

such assumptions need not be modelled explicitly. Since all our

definitions work directly on the nested list representations, our

multiseries have well-ordered coefficient support by construction.

In fact, all the multiseries that our constructions yield will even

be grid-based, but we do not need to talk about these notions in

Isabelle/HOL explicitly to show the soundness of the approach;

they are only relevant for a discussion of completeness.

Although the actual implementation in Isabelle is different due

to lack of dependent types, we will, for the sake of this presentation,

pretend that there exists a type of multiseries mseries that takes a
list of basis function as its type parameter. Morally, we then have

[] mseries = R

(b # bs) mseries = (bs mseries × R) llist

where α llist (‘lazy list’) is the type of possibly infinitely long lists

with elements of type α and # denotes prepending a single basis

3



function b to a list of functions bs. The llist type is a codatatype
defined using Isabelle’s codatatype package [1]. This allows us to

define and reason about ‘infinitely recursive’ functions on infinite

structures in an intuitive way. We make extensive use of this to

define operations on multiseries, to link these formal series to real

functions, and to prove correctness of the former w. r. t. the latter.

A technical subtlety that is not shown here is that every Multiser-

ies implicitly ‘knows’ what function it is supposed to be an expan-

sion of. For a Multiseries F , we denote this function as F (x). For
F to be well-formed, it needs to be a Poincaré expansion of F (x).

5 TRIMMING AND RECOGNISING ZERO
An important auxiliary operation on our multiseries representation

is the afore-mentioned trimming. We call a multiseries trimmed if

its leading monomial is non-zero. The process of trimming is to

discard terms at the beginning of the list until this is the case. The

difficulty here is that when considering a leading term of the form

⟦Cb(x)e⟧b#bs, we need to decide whether or not it is identically 0

and discard it if it is; if we fail to recognise this and try to trim C

instead, we may trim infinitely many zeros and never terminate.

Note, however, that the leading zeros can already contain some

information: if e. g. f (x) ∼ 0 · x2 + . . ., then we can immediately

see that f (x) ∈ O(x2). It is therefore sometimes sufficient to only

partially trim a series. However, if we want more precise asymptotic

information (in particular an asymptotic lower bound), we indeed

need to make sure that the expansion is fully trimmed first. We will

also see that some of the operations we will define on multiseries

only work if the series is already trimmed. Trimming will therefore

be an essential part in our expansion algorithm.

This leads us to the problem of recognising zeros, which is one

of the central problems in automated symbolic asymptotics. Given

some expression representing a real constant, how do we determine

whether or not it is zero? Depending on the class of expressions

considered, this problem ranges from difficult to undecidable [4].

For exp-log constants, it is known to be semi-decidable but the

theory behind the decision procedure is fairly complicated and out

of the scope of this work. [7]

We therefore chose a very simple approach: The algorithm uses

a modular zeroness oracle1 that receives an Isabelle term c of type
R as an input and either fails with an informative error message or

returns a theorem stating that c = 0, c ≥ 0, c > 0 etc. depending on

the exact configuration. A similar eventual-zeroness oracle receives
a term f of type R → R and either fails silently or returns the

theorem that f (x) is eventually zero.

The standard implementation of these oracles uses Isabelle’s sim-
plifier, which is one of Isabelle’s default proof methods. It is a simple

directed term rewriting engine with a large setup of rewrite rules

and some additional specialised procedures (e. g. for arithmetic).

Since most zeroness problems encountered in practice are trivial

(e. g. ‘1 + 2 · (1 + 0) = 0’), this works reasonably well. This oracle is

even able to handle parameters, but it sometimes reaches its limits

when larger arithmetic expressions or functions like

√
, exp, and

ln are involved. The user can load an optional additional oracle

based on interval arithmetic approximation [5] that can handle

1
Note that the name ‘oracle’ does not mean that we blindly trust the oracle. It is still

required to return an Isabelle theorem.

many of these cases. Improving Isabelle’s automation for problems

such as these or adding more zeroness oracles is a worthwhile goal,

but certainly outside the scope of this work. If the oracle fails, the

users receive an error message indicating on which expression it

got stuck so that they can provide a manual proof of its sign and

re-run the proof method with this new knowledge.

It should be mentioned that the trimming algorithm sketched

here only terminates if the eventual-zeroness oracle never fails on a

provable result and that we do not encounter an all-zero expansion

of a non-zero function. The latter would be an instance where we

have some function f (x) that goes to 0 faster than can be measured

by the basis of its multiseries (e. g. exp(−x) with the basis (x)). It
is the responsibility of the expansion algorithm to ensure that this

does not happen. For the basic class of exp-log functions, this is

ensured since the expansion algorithm always produces convergent
expansions. When we add more functions (e. g. Γ), this is no longer

the case and the analysis becomes more complicated. Whether or

not the algorithm is still complete in such cases is not clear to us and

we consider this beyond the scope of this work since, in the context

of a proof method in an interactive theorem prover, completeness

is desirable but not absolutely necessary.

Neither of these issues make our procedure untrustworthy: non-

termination of the trimming will simply lead to non-termination of

the entire algorithm. If the algorithm does terminate, a full proof will

have been produced and has passed through the Isabelle kernel. The

afore-mentioned issues can therefore, by design, only compromise

the completeness of the algorithm, not its soundness.

6 OPERATIONS ON MULTISERIES
We will now give examples of how concrete operations on our

multiseries expansion can be implemented. The presentation is

fairly close to that in Isabelle but with simplified, type-theory in-

spired syntax. Due to space constraints, we only show a few basic

operations and refer to Shackell [12] for the remaining ones.

6.1 Basic Arithmetic
Constant functions, the identity function and powers thereof have

obvious multiseries representations. Also, given an abstract multi-

series (i. e. a mapping from exponent vectors to coefficients), it is

easy to see how they can be negated, added, and multiplied. As an

example, negation and addition can be defined like this:

(⊖) :: ∀bs :: basis. bs mseries→ bs mseries

⊖[] ⟦c⟧ = ⟦−c⟧
⊖b#bs ⟦Cb(x)e | F ⟧ = ⟦(⊖bs C)b(x)e | ⊖b#bs F ⟧

(⊕) :: ∀bs :: basis. bs mseries→ bs mseries→ bs mseries

⟦c1⟧ ⊕[] ⟦c2⟧ = ⟦c1 + c2⟧
⟦C1b(x)

e1 | F ⟧ ⊕b#bs ⟦C2b(x)
e2 | G⟧ =

if e1 > e2 then�
C1b(x)

e1

�� F ⊕b#bs ⟦C2b(x)
e2 | G⟧�

else if e1 < e2 then�
C2b(x)

e2

�� ⟦C1b(x)
e1 | F ⟧ ⊕b#bs G

�
else�
(⟦C1⟧ ⊕bs ⟦C2⟧)b(x)e1

�� F ⊕b#bs G
�

4



In the addition algorithm, the first equation is the base case for an

empty basis; the second equation ‘merges’ two series by descending

exponents. Note that each of the three cases in the second equation

contains a corecursive call to the addition function on the same

basis and the third case additionally contains a recursive call to the

addition function for the truncated basis.

Multiplication can be implemented analogously (using an auxili-

ary function that performs multiplication with a monomial Cb(x)e ),
but operations like the division and powers are slightly more com-

plicated: We first need to implement substitution of a multiseries

into a asymptotic or convergent power series.

6.2 Substituting into a Power Series
For this, consider some function h : R→ R that has an asymptotic

power series expansion c0 + c1x + c2x
2 + . . . at x = 0. Other points

are, of course, also possible (including at ∞), but x = 0 will be

enough for our purposes. If we have a function f : R → R with

some multiseries expansion F whose leading exponent is negative,

then f clearly tends to 0 for x → ∞ and we can substitute the

multiseries expansion for f into the power series expansion for h to

obtain amultiseries expansion forh(f (x)). This can be implemented

as follows:

powser :: ∀bs :: basis. R llist→ bs mseries→ bs mseries

powser [] F = ⟦⟧bs
powser [c | cs] F = ⟦c | F ⊙ powser cs F ⟧

bs

In particular, this allows us to turn a multiseries expansion for f
into a multiseries expansion for h ◦ f if f (x) −→ 0 and h is analytic

at 0. This will be a key ingredient for the remaining operations that

we implement.

6.3 Division and Powers
Consider the multiplicative inverse function x 7→ 1

x , which we

can use to handle division. Given a function f with a multiseries

expansion F = ⟦Cb(x)e | ¯F ⟧b#bs, we consider the remainder after

dropping the leading term of the expansion, i. e.
¯f (x) := f (x) −

C(x)b(x)e with the expansion
¯F . We will use

¯F and
¯f (x) with that

meaning from now on. We can then write:

1

f (x)
=

1

C(x)
b(x)−e

1

1 + 1

C(x )b(x)
−e ¯f (x)

Since t 7→ 1

1+t has the power series expansion 1 + t + t2 + . . . at

t = 0, we can then define the multiplicative inverse I(F ):

I :: ∀bs :: basis. bs mseries→ bs mseries

I(⟦c⟧[]) = ⟦ 1

c ⟧[]
I(⟦Cb(x)e | ¯F ⟧b#bs) = ⟦I(C)b(x)−e⟧ ⊙b#bs

powser [1, 1, . . .] (⟦I(C)b(x)−e⟧ ⊙b#bs
¯F )

Note that I is only well-defined if the multiseries it is given is

trimmed. Also note that the argument of powser indeed always has

a negative leading exponent here since lead_exp ( ¯F ) < e .
The same approach can be used to handle the case f (x)u for any

constant u ∈ R by writing

f (x)u = c(x)ub(x)ue (1 + c(x)−1b(x)−e ¯f (x))u

and using the power series expansion for t 7→ (1 + t)u . Here the
condition is that the multiseries must be trimmed with positive

leading coefficient (so that it is eventually positive).

6.4 Sine and Cosine
The sine and cosine functions can also be treated similarly: Given

f (x) ∼ F with F = ⟦Cb(x)e | ¯F ⟧b#bs, we distinguish three cases:

• If e < 0, we substitute F into the power series for sin or cos.

• If e > 0, then f (x) tends to infinity and no multiseries ex-

pansion for sin f (x) or cos f (x) can exist.

• If e = 0, we can write

sin f (x) = sinC(x) · cos
¯f (x) + cosC(x) · sin

¯f (x)

and analogously for cos f (x). Expansions for sinC(x) and
cosC(x) can be computed by a recursive call, and cos

¯f (x)
and sin

¯f (x) are covered by the e < 0 case.

6.5 Logarithm
If we apply this same approach to the ln function, we arrive at the

expression

ln f (x) = ln c(x) + e lnb(x) + ln

(
1 + c(x)−1b(x)−e ¯f (x)

)
.

The first and last summand can be handled analogously to the

previous cases; however, there is a problem in the second summand:

If e , 0, we need a multiseries expansion for lnb(x) w. r. t. the
basis b # bs. In our definition of a well-formed basis, we assumed

that for i < n, each lnbi (x) has a known expansion in terms of

bi+1, . . . ,bn so that we only have a problem if b is the very last

element in the basis (i. e. bs = []). The solution in this case is to add

bn+1(x) := lnb(x) as a new basis element at the very end of the

basis. This ensures that when we now reach the last basis element

bn+1, the exponent e is zero and we do not encounter the problem.

Note that inserting a new basis element is a global operation, which
means that we must lift all expansions computed before to the new,

larger basis. E. g. when we expand f (x) + д(x) by first expanding

f (x) ∼ F and then д(x) ∼ G, the latter step may have enlarged the

basis, in which case we need to lift F to the new basis.

6.6 Exponentials
For the exponential function, the situation is much more complic-

ated. If e < 0, we can simply use the power series expansion for exp.

If e = 0, we have exp(f (x)) = exp(c(x)) exp( ¯f (x)) and have there-

fore reduced the problem to a recursive call and the ‘e < 0’ case. If,

on the other hand, e > 0, various case distinctions are required to

determine whether exp(f (x)) has an expansion w. r. t. the current

basis or whether exp(f (x)) or exp(−f (x)) or some variation thereof

has to be added as a new basis element – and if yes, where. For the

details of this case distinction, we refer again to Shackell [12].

6.7 Other Functions
All functions discussed so far had sufficiently nice properties w. r. t.

addition or multiplication of their argument that allowed us to

handle the case f (C(x) + ¯f (x)). Indeed, this is enough to handle

the class of all functions built from basic arithmetic, exp, ln as well

as sin, cos, and tan at finite points. For functions without these nice

5



properties, this simple approach does not work, as we will see later

in section 9.

7 CONNECTING SERIES TO FUNCTIONS
We have defined a representation for multiseries and implemented

a number of operations on them; however, we have so far not

formally defined what it means for a multiseries to be an expansion

of a particular function. Since we want to prove theorems inside

the logic, this connection has to be defined explicitly inside the

logic, and the correctness of all the operations we defined must be

formally proven w. r. t. it. This is the crucial difference to Computer

Algebra Systems and it results in a high level of confidence in the

results produced by the expansion algorithm, but also includes a

much greater amount of effort.

We will introduce a predicate wfbs(F ) whose meaning is that

F is a well-formed multiseries w. r. t. the basis bs and it is a valid

expansion of the functionF (x) that it is implicitly connected to. The

former includes things like ‘the exponents are strictly decreasing’

and that the depth of the nested list structure is the same as the

length of the basis. To understand what the latter means explicitly,

we recall the notion of a Poincaré expansion: If we take a finite initial

segment of the (possibly infinite) series, we obtain an approximation

to the function such that the error is ‘Big-O’ of the first omitted

term. However, we will use a slightly different formulation of this

that is more suitable for our representation of multiseries.

Recall that the type of multiseries is defined by recursion on

the associated basis: A multiseries C w. r. t. the empty Basis is

simply ⟦c⟧[] for a real constant c . The obvious definition of well-

formedness in this case is to require that C(x) = c eventually.
On the other hand, a multiseries w. r. t. a non-empty basis b # bs

is a (possibly infinite) list. As mentioned before, these lists are a

codatatype and a natural way to define predicates for a codatatype

is coinductively. For this, we need to express wfb#bs(⟦F ⟧) in terms

of wfb#bs(
¯F ), where F = ⟦Cb(x)e | ¯F ⟧. To see how to do this, it is

instructive to consider the situation for a power series:

f (x) ∼ cxe + F ←→ f (x) ∈ O(xe ) ∧ e > lead_exp(F ) ∧

f (x) − cxe ∼ F

Adapting this for multiseries, we find that wfb#bs(F ) requires:

wfbs(C) ∧ wfb#bs(
¯F ) ∧

e > lead_exp( ¯F ) ∧ ∀e ′>e . F (x) ∈ o(b(x)e
′

)

Since in our formalisation, multiseries can also have finite length,

we also need to consider the case of an empty multiseries. There

are two natural possibilities here:

(1) demand that the function f (x) being expanded is flat w. r. t.
b(x), i. e. f (x) ∈ O(b(x)e ) for all e

(2) demand that f (x) = 0 eventually

These two differ only if f (x) goes to 0 faster than we can measure

with our basis (e. g. exp(−x) with the basis x ). Our algorithm never

produces such ‘expansions’, so we chose the stronger option (2).

We then define wf to be a coinductive predicate given by these

three rules. This means that wf holds iff there is some finite or

infinite derivation tree using these three rules. This is equivalent to

the Poincaré expansion definition (with the caveat about expansions

of finite length), but we never show this connection in Isabelle since

we do not need it. That this definition of wf makes sense can be

seen from the following theorem:

Theorem 7.1 (Connection between wf and ∼).

If wf bs(F ) for a well-formed basis bs and a trimmed multiseries F
with leading monomial cb1(x) · . . . · bn (x), then

F (x) ∼ cb1(x) · . . . · bn (x) .

It remains to show the correctness of the multiseries operations

we defined. As an example, the correctness theorems for addition

and the multiplicative inverse have the following form, assuming a

well-formed basis bs:

wfbs(F ) ∧wfbs(G) =⇒ wfbs(F ⊕ G)

wfbs(F ) ∧ trimmed(F ) =⇒ wfbs(I(F ))

Here, trimmed is a predicate that states that F is trimmed. All

of these proofs are straightforward inductions over bs where the
recursive case requires coinduction w. r. t. the coinductive predicate

wf. As a simple example, let us consider the correctness proof of

the negation operation:

Theorem 7.2 (Correctness of series negation).

If bs is a well-formed basis and wfbs(F ) holds, then wfbs(⊖F ).

Proof. We proceed by induction over the basis. The case for an

empty basis is trivial. Let us therefore consider a basis of the shape

b # bs. Then applying coinduction w. r. t. the wf predicate gives us
the following proof obligation:

∀F . wfb#bs(F ) =⇒

⊖F = [] ∧
(
∀
∞
x . − F (x) = 0

)
∨

∃ C e ¯F . ⊖ F = ⟦Cb(x)e | ⊖ ¯F ⟧ ∧
(∀x . − F (x) − C(x)b(x)e = − ¯F (x)) ∧
wfbs(C) ∧wfb#bs(

¯F ) ∧

(∀e ′ > e . − F (x) ∈ o(b(x)e
′

) ∧

e > lead_exp(⊖ ¯F )

By unfolding one step of the corecursive definition of ⊖, this

simplifies to the following two cases:

Case 1: F = ⟦⟧
Then wfb#bs(F ) implies ∀

∞
x . F (x) = 0 by definition and the

proof obligation simplifies to ∀
∞
x . −F (x) = 0 , which is then

obviously true.

Case 2: F = ⟦Cb(x)e | ¯F ⟧ for some C, e, ¯F

It is clear that the values C, e , and ¯F in the existential quan-

tifier must be instantiated with ⊖C , e , and ¯F , respectively.

After simplification, all the proof obligations follow trivially

from the induction hypothesis and the definitions. □

Series negation is certainly one of the easiest operations, but the

above proof still illustrates three things:

• The proof obligations, even for simple operations, can get

quite big and confusing.

• The case distinctions that have to be made are obvious from

the definition of the operation.

• Once the right case distinctions are made, the proof obliga-

tions become much simpler and seem very obvious.
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The proofs for more involved operations are larger and have more

cases, but otherwise very similar to this one. Ultimately, writing

these proofs is relatively easy due to the guidance from Isabelle. It is

always obvious what has to be done, even though this is somewhat

obscured by the fact that Isabelle presents the proof obligations in

the rather unwieldy form of disjunctions of existential quantifiers

that we saw above. We also modified the definitions of the opera-

tions several times and were able to adjust the correctness proofs

with little effort.

8 COMPUTING AND USING EXPANSIONS
Isabelle is written in Standard ML and exposes this interface to

users to add new tools on-the-fly. While the notions of multiseries

and expansions is fully formalised in the system, the procedure to

compute them is not; it is merelyML code. This makes the procedure

much easier to implement and more flexible since it lives outside
the system, but a disadvantage is that we cannot reason about

it inside the system – e. g. we cannot prove that it is correct or

terminates. However, due to the architecture of Isabelle, a mistake in

our procedure would result in a run-time error or non-termination

at worst, but never an incorrect result since all reasoning performed

by the procedure still passes through the Isabelle kernel.

The basic procedure is fairly simple:

(1) Convert the expression defining the function f (x) that is to
be expanded into an AST.

(2) Find expansions ‘bottom up’ to produce a theorem of the

form wf bs(F ) with F (x) = f (x). Trim only when necessary.

(3) Trim the resulting multiseries until the desired result can be

read off.

To perform the trimming, the multiseries expressions (which are

Isabelle terms) need to be ‘evaluated’ partially until the leading

monomial can be read off. To this end, we wrote a small lazy eval-

uation framework for Isabelle terms that supports lazy pattern

matching on terms and returns a theorem showing that the reduced

term is indeed equal (w. r. t. equality in Higher-Order Logic) to the

original term.

The entire procedure is then packaged into a proof tactic called
real_asymp that can be applied to problems of the form

• f (x)
x→G
−−−−−→ F

• f (x) ∈ L[F ](д(x)) where L is any of the five Landau symbols

• eventually f (x) ≤ д(x) w. r. t. F
• f (x) ∼[F ] д(x)

where F andG are filters corresponding to either the full / pointed /

left / right neighbourhood of a real number or ∞ /−∞ /±∞. This

tactic constitutes the most important part of this work: Isabelle

is a document-oriented theorem prover, so the typical use case is

that a user will already know the limit of the function, write down

the corresponding statement, and then prove it with our method.

However, for convenience, we also added the diagnostic commands

real_limit and real_expansion that display the limit (resp. an

initial fragment of the multiseries expansion) of a given function.

Since some more advanced functions and their asymptotic be-

haviour are not available in Isabelle’s core library but only in the

external Archive of Formal Proofs, we also provide an interface to

register new user-defined functions with the expansion procedure

at a later time. This is done to achieve partial support for the Γ and

erf functions.

‘Oscillating’ expressions like sin(x) for x →∞, (−1)n , or ⌊x⌋ do
not have a multiseries expansion, but limited support for them is

provided using what we call ‘asymptotic interval arithmetic’: When

encountering such an expression f (x), we attempt to compute

bound functions l(x) and u(x) with known multiseries expansions

such that l(x) ≤ f (x) ≤ u(x). For example, for sin(x) and (−1)n

the bounds would be [−1; 1]; for ⌊x⌋ they would be [x − 1;x]. This
method is clearly not complete since it does not handle cancellations

of any kind; e. g. the bounds computed for sin(x) − sin(x) would
be [−2; 2]. Nevertheless, this is enough to handle many interesting

cases, e. g. sin(x)/x
x→∞
−−−−−→ 0 or lnx − ln⌊x⌋ ∈ O(1/x).

9 LIMITATIONS
There are three limitations of the current implementation:

Zero-checking.Asmentioned before, recognising whether a given

constant (even an exp-log constant) is zero is difficult. The two

methods that we implemented so far use Isabelle’s simplifier and

interval arithmetic to attack this problem. This works well for many

interesting examples, and whenever this fails, the user can simply

prove the corresponding fact by hand and add it to the hypotheses.

Automating this further would be desirable, but would require great

improvements to Isabelle’s automation for arithmetic reasoning.

Worst-case performance. It is well-known that the algorithm im-

plemented here has very poor worst-case behaviour; e. g. Richard-

son et al. [8] give the example

1

1 − 1

x
−

1

1 − 1

x
+ x−n .

Here, many initial zeros need to be trimmed before arriving at the

x−n term. The algorithm therefore takes at least linear time in n,
leading to poor performance for large n. A possible solution for this

problem is given by van der Hoeven [13] in the form of cartesian
representations, but it would be highly non-trivial to integrate this

approach with our current work and we have not observed such

severe performance problems in our examples.

Non-exp-log functions. The ‘oscillating’ functions sin, cos, and

tan are only fully supported if their argument is bounded. More

comprehensive approaches for sin etc. exist [10], but to our know-

ledge, these are not used in practice.

Functions like arctan, Γ, and erf are only partially supported:

Γ(x) and erf(x) are currently only supported for x → ∞ since

other cases tend to involve complicated constants that Isabelle’s

automation cannot handle well.

As a more fundamental problem, for any of these functions, we

cannot expand expressions like f (x + exp(−x)) where the larger
basis element exp(x) is not present in the leading term of the argu-

ment of f but is present in terms of smaller order. Implementing

this requires substituting a multiseries with leading exponent 0 into

an asymptotic power series. Shackell [12] shows how to do this,

but it is not clear to us how to formally prove that this is correct.
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10 EVALUATION
We evaluated our procedure on a large number of examples, in-

cluding the list given in Section 8 of Gruntz’s PhD thesis [4]. Ac-

cording to Gruntz, this list consists of various problems that were

difficult for computer algebra systems in the early 1990s. Indeed

Maxima still returns an incorrect result for one of them.
2
All of

the 20 exp-log examples can be proven fully automatically by our

tactic within less than a second (average 0.24 s, maximum 0.65 s).

Of the 17 non-exp-log examples, most lie outside the scope of our

procedure due to unsupported functions (e. g. Bessel functions) or

our incomplete support for Γ and erf. The 5 that are supported,

however, all work in ≤ 2.5 s . Our list of examples can be found in

the file src/HOL/Real_Asymp/Real_Asymp_Examples.thy of the
Isabelle distribution. A short user manual is also provided.

Let us return to our introductory example from Figure 1 and

compare our tactic with two CASs capable of handling additional

assumptions on the parameters, Mathematica and Maple.

Maple computes the limit to be 0 in 0.8 s. However, this alone

does not tell us that the approach is from the right. If we force Maple

to really compute the leading term of the expansion by multiplying

the function with ln
1+ ε

2 x and then asking for the limit, it gives up

almost immediately and returns the unevaluated expression.

Mathematica computes the limit to be 0 in 21 s. If we force it

to compute the leading term, it produces the correct result in 463 s,

but it also imposes the unnecessary side condition ε < 1.

Our tactic fails on this example with an errormessage indicating

that it could not determine the sign of lnb · ε . The reason for this

is that the simplifier does not use the theorem x < 0 ∧ y > 0 =⇒

x ·y < 0 by default. If we add this to the simplifier’s rewriting rules,

the tactic successfully proves the limit to be 0
+
in 0.3 s. It is even

able to compute the leading term − 1

2
ε lnb · ln−1− ε

2 x in 0.4 s.

All in all, these examples show that, within its scope, our tactic

works well and perhaps even handles parameters somewhat bet-

ter than proprietary CASs like Mathematica and Maple. In general,

however, these CASs are of course much better both in terms of per-

formance and number of supported functions. Still, we are pleased

with this result, especially considering the immense additional dif-

ficulty imposed by working inside a proof assistant where we want

not only a result, but a proof.

11 RELATEDWORK
The first complete algorithm for the computation of exp-log func-

tions was given by Shackell in 1990 [11]. Gruntz built on this al-

gorithm and implemented it in Maple [4]. Gruntz’s algorithm was

later also implemented in Mathematica by Richter [9]. As stated be-

fore, our work builds directly on themultiseries approach presented

by Richardson et al. [8].
In our prior work on the proof of the Akra–Bazzi theorem [3],

we introduced some very simple automation related to asymptot-

ics, e. g. to automatically prove or disprove statements of the form

f (x) ∈ O(д(x)) where f and д are products of powers of iterated

logarithms, e. g. x lnx ∈ O(x2(ln lnx)3). Apart from Isabelle/HOL,

there are some other systems that have a library around limits

2
Maxima claims that limx→∞ ln ln(x + exp(ln x ln ln x ))/ln ln ln(exp(x ) + x ) = 0,

whereas the correct result is 1. We reported this bug in February 2018 but have not

received a response.

and asymptotics (e. g. Coq, HOL Light, Mizar), but to our know-

ledge, none of them has any automation for proving limits or other

asymptotic properties for any non-trivial class of problems.

12 CONCLUSION
We provide the first implementation of automated real asymptotics

inside a proof assistant. The procedure provides:

• full support for basic arithmetic, exp, ln, roots, and | · |

• full support for sin, cos, and tan at finite points

• ‘best effort’ support using interval arithmetic for oscillating

functions like sin, cos, tan at infinity and ⌊·⌋ and ⌈·⌉

• partial support for arctan, Γ, and erf

• support for parameters

All results produced by the procedure are trustworthy by construc-

tion as they pass through the Isabelle kernel, which reduces them

down to definitions and basic logical inferences. On most practical

examples, the procedure works quickly and fully automatically.
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