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Abstract10

Separation Logic with Time Credits is a well established method to formally verify the correctness11

and run-time of algorithms, which has been applied to various medium-sized use-cases. Refinement12

is a technique in program verification that makes software projects of larger scale manageable.13

Combining these two techniques, we present a methodology for verifying the functional correctness14

and the run-time analysis of algorithms in a modular way. As use-cases we verify Kruskal’s minimum15

spanning tree algorithm and the Edmonds–Karp algorithm for Network Flow.16

An adaptation of the Isabelle Refinement Framework [15] enables us to specify the functional17

result and the run-time behaviour of abstract algorithms which can be refined to more concrete18

algorithms. From these, executable imperative code can be synthesized by an extension of the Sepref19

tool [12], preserving correctness and the run-time bounds of the abstract algorithm.20
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1 Introduction31

Recently the literature has seen various interactive verification efforts for run-time analysis32

of efficient algorithms and data structures: Charguéraud et al. [4] verify the union-find33

data structure, Zhan et al. [17] formalize amongst others the median of medians selection34

algorithm, Karatsuba’s algorithm and splay trees, and most recently Guéneau et al. [8] verify35

a state-of-the-art incremental cycle detection algorithm.36

While the largest of these developments fits on one page (Figure 1 in [8]) more ambitious37

projects have been tackled when only functional correctness is concerned: Esparza et al.38

[5] formalized a LTL-model checker, Fleury et al. [6] verified a SAT-solver, Wimmer et39

al. [16] formalized a timed automaton model checker, various graph algorithms have been40

verified [11, 13]. The list is growing. One key ingredient to manage the complexity of larger41

algorithm developments is to use refinement. It allows to separate reasoning about the42

abstract algorithmic idea from reasoning about implementation details. In the Isabelle world,43

the Isabelle Refinement Framework [15] can be used to express abstract algorithms and to44
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23:2 Refinement with Time

use step-wise refinement to form concrete algorithms. As a last step the Sepref tool [12] can45

be used as a back end to synthesize efficient executable imperative code while preserving46

correctness. Target languages for that tool are hybrid languages such as SML, Scala and47

more recently the purely imperative language LLVM [10]. From such verification efforts one48

can obtain executable algorithms that are often competitive with real world implementations49

within one order of magnitude. However, only functional correctness is ensured and not50

run-time bounds.51

This paper brings together run-time analysis and refinement. By extending the refinement52

approach to also reason about the run-time of algorithms in a modular and scalable way, we53

lay the ground for an additional run-time analysis of larger algorithms.54

Our vision is to specify abstract algorithms and their run-time in terms of abstract55

operations with time bounds — say Edmonds–Karp algorithm uses at most E ∗ V find-56

augmenting-path operations. When we then refine an operation like find-augmenting-path to57

a more concrete BFS algorithm involving operations such as set membership test and map58

lookup, we can also refine the abstract compound algorithm to use the more refined operation.59

Just as for plain refinement we separate abstract run-time arguments from reasoning about60

run-times of concrete data structures. As a last step we synthesize executable imperative61

code which refines the abstract algorithm and thus obeys both the high-level correctness62

theorem and the run-time bound.63

The main contributions of this paper are:64

• We build a theory for refinement with time by creating NREST, the non-determinism65

monad with time, together with tools for reasoning about programs in that monad66

(Section 2).67

• We extend the Sepref Tool (Section 3.2) to synthesize executable imperative code in68

Imperative/HOL with time (Section 3.1) supporting imperative and amortized data69

structures seamlessly.70

• We enable modular development of algorithms by providing a library of efficient amortized71

data structures and reusable algorithms with run-time guarantees (Section 4).72

• We show the applicability of our approach to larger algorithm developments by use-cases73

such as Edmonds–Karp and Kruskal’s algorithm (Section 5).74

The formalization described in this paper is available at https://www21.in.tum.de/75

~haslbema/Sepreftime.76

2 Non-determinism Monad With Time77

In this section we introduce NREST, the timed non-determinism monad. It allows specifying78

the result and time consumption of programs. As this is an extension of the NRES monad of79

the Isabelle Refinement Framework, we follow Lammich [12] in some of our explanations.80

2.1 Timed Non-determinism Monad81

We want to specify the result of a computation together with its worst case execution time.82

We allow multiple results with one run-time bound each. Allowing non-determinism is a83

common technique in program refinement, used to hide implementation details of abstract84

algorithms. A program in the timed non-determinism monad is defined over the type85

α NREST:86

′a NREST = RES (′a ⇒ enat option) | FAIL,87

https://www21.in.tum.de/~haslbema/Sepreftime
https://www21.in.tum.de/~haslbema/Sepreftime
https://www21.in.tum.de/~haslbema/Sepreftime
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where enat is the type of extended natural numbers, i.e. N ∪ {∞} and ′a ⇒ ′b option is the88

type of a map from ′a to ′b. The type α NREST describes non-deterministic results with89

time bounds, where RES M describes the non-deterministic choice of an element from the90

domain of M while consuming no more time units than M specifies for that element. FAIL91

describes a failed computation, which usually stems from an assertion that was not satisfied.92

We define a refinement ordering on NREST by first lifting the ordering on enat to option93

with None as the bottom element, then pointwise to functions and finally to α NREST,94

setting FAIL as the top element. With that ordering, NREST forms a complete lattice where95

RES (λs. None) is the bottom element, and FAIL is the top element. Intuitively, N ≤ M96

means that program N refines program M, i.e. all results of N are also results of M, and97

further for each such result, N takes no more time than M does. Note that FAIL is refined98

by any program.99

I Example 1. A program that reverses a list and whose run-time is at most four times the100

length of the list can be specified by: rev_spec xs = RES [rev xs 7→ 4∗|xs| ]101

Here, [a 7→ b] is syntactic sugar for (λx. if x=a then Some b else None).102

On the type NREST we define the following functions:103

104

consume :: ′a NREST ⇒ enat ⇒ ′a NREST where105

consume (RES M) t = RES (λx. case M x of None ⇒ None | Some t′⇒ Some (t + t′))106

consume FAIL t = FAIL107
108

109

return :: ′a ⇒ ′a NREST where110

return x = RES [ x 7→ 0 ]111
112

113

bind :: ′a NREST ⇒ (′a ⇒ ′b NREST) ⇒ ′b NREST where114

bind (RES M) f = Sup { consume (f x) t |x t. M x = Some t}115

bind FAIL f = FAIL116
117

The term consume M t describes the computation M prolonged by t time steps, return x118

is a computation that yields a single result x in no time, and bind m f is the sequential119

composition of two computations: First compute any result x of m, then any result y of f x.120

The time bounds for the final results have to be determined considering all possible ways how121

to reach them. If m or any reachable computation path of f fails the compound computation122

also fails.123

NREST together with bind and return forms a monad and bind as well as consume are124

monotonic w.r.t. the refinement ordering:125

126

m ≤ m′ −→ (∀x. f x ≤ f′ x) −→ bind m f ≤ bind m′ f′127

m ≤ m′ −→ t ≤ t′ −→ consume m t ≤ consume m′ t′128
129

I Example 2. Let m = RES (λ_::nat. Some 0) and f v = consume (return 0) v. Program130

m computes any natural number in no time, and f takes a natural number v as argument and131

computes the result 0 in at most v steps. Now consider bind m f: Both m and f do not fail,132

and together compute the single result 0. But there are computation paths (via any value v133

produced by m) with any natural number as a run-time. The supremum over all these is134

∞. To sum it all up: bind m f = consume (return 0) ∞. This illustrates why we had to135

choose enat for the range of the run-time bound, rather than the type of natural numbers.136

Furthermore we define two derived operations:137
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23:4 Refinement with Time

138

SPEC :: (′a ⇒ bool) ⇒ (′a ⇒ enat) ⇒ ′a NREST where139

SPEC P t = RES (λv. if P v then Some (t v) else None)140
141

142

assert :: bool ⇒ unit NREST where143

assert P = (if P then return () else FAIL)144
145

A computation that returns a result v if and only if P v holds and takes at most t v time146

is described by SPEC P t. The computation assert P fails if the predicate P is not satisfied.147

For assertions we have the following rules:148

149

P −→ m ≤ m′ −→ do { assert P; m } ≤ m′
150

(P −→ m ≤ m′) −→ m ≤ do { assert P; m′ }151
152

Here, we use a Haskell-like do notation as a convenient syntax for bind operations. The153

first rule is used to show that a program m with assertion P refines the program m′. It154

requires to prove P , in addition to the refinement m ≤ m′. The second rule is used to show155

that a program m refines a program m′ with an assertion. It allows one to assume P when156

proving the refinement m ≤ m′. This way, facts that are proven on the abstract level are157

made available for proving refinement.158

2.2 Recursive Programs159

Non-recursive programs can be expressed by the monad operations and Isabelle/HOL’s if160

and case-combinators. Recursion is encoded by a fixed point combinator RECT, such that161

RECT F is the greatest fixed point of the monotonic functor F, w.r.t. to the flat ordering of162

timed result maps with FAIL as the top element. For any non-monotonic F, RECT F is set163

to FAIL:164

165

RECT :: ((′b ⇒ ′a NREST) ⇒ ′b ⇒ ′a NREST) ⇒ ′b ⇒ ′a NREST where166

RECT F x = (if mono2 F then (gfp F x) else FAIL)167
168

Here, mono2 denotes monotonicity w.r.t. both the flat ordering and the refinement169

ordering. The benefits of this are explained in more detail elsewhere [12]. Note that170

programs constructed by the combinators we introduced above are monotonic in that sense171

by construction. The combinator RECT is also monotonic w.r.t. the refinement ordering:172

173

mono2 B ∧ (∀F x. B F x ≤ B′ F x) −→ RECT B x ≤ RECT B′ x174
175

For all other combinators we can show similar monotonicity lemmas. Building on them,176

we also define while loops, foreach loops and a fold function to conveniently express tail177

recursion, folding over the elements of a finite set and folding over a list.178

I Example 3. As a running example we consider the formalization of Kruskal’s algorithm.179

To illustrate the expressive power of NREST we present the abstract algorithm in Figure180

1a: the greedy algorithm to construct a minimum weight basis for a matroid. This abstract181

algorithm will later be instantiated for the cycle matroid, which yields the skeleton of182

Kruskal’s algorithm. Already on this abstract level we can structure the algorithm and prove183

the functional correctness of the algorithmic idea, as well as its run-time — parameterized184

over the run-times of the abstract operations it performs.185

In line two the algorithm obtains a list of the elements of the carrier set E (later this will186

be the set of edges of an undirected graph) sorted w.r.t. some weight function w. Starting from187
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1 minWeightBasis = do {
2 l ← SPEC (λL. sorted_wrt w L
3 ∧ distinct L ∧ set L = E)
4 (λ_. tsc);
5 s ← RES [∅ 7→ teb];
6 T ← nfold l (λe T. do {
7 assert (e/∈T ∧ indep T ∧ e∈c ∧ T⊆E);
8 b ← RES [indep (T∪{e}) 7→tit];
9 if b then do {
10
11 RES [T∪{e}7→ti]
12 } else
13 return T
14 }) s;
15 return T
16 }

(a) The greedy algorithm to construct a minimum
weight basis of a Matroid in the NREST monad.

1Kruskal = do {
2l ← obtain_sorted_edge_list;
3
4
5(djs0, fl0) ← initState;
6(djs, fl) ← nfold l (λ(a,w,b) (djs, fl). do {
7assert (a∈Domain djs ∧ b∈Domain uf);
8b ← RES [¬djs_cmp djs a b 7→ tit];
9if b then do {
10assert ((a,w,b)/∈set fl);
11addEdge djs a b fl
12} else
13return (djs,fl)
14}) (djs0, fl0);
15return fl
16}

(b) A further refinement for the Kruskal algorithm,
where an additional disjoint sets datastructure is
passed around.

Figure 1

an empty independent set, we iteratively add elements if they leave the set T independent188

(i.e. create no cycle in the graph case). For all operations that may cost time, we reserve189

some time parameter of type nat or functions to nat: here tsc, teb, tit and ti stand for sorted190

carrier set time, empty basis time, independence test time and insertion time.191

We can give the specification for this algorithm, and state the refinement theorem:192

193

minWeightBasis ≤ SPEC minBasis (λ_. tsc + tsb + |E| ∗ (tit+ti))194
195

where minBasis S is true iff S is a minimum weight basis. How to prove such a refinement in196

a mechanized way is the subject of the next section.197

2.3 Generalizing the Weakest Precondition198

First let us consider refinement goals with a result on the right hand side: c ≤ RES Q199

That is, we want to prove that a program c meets specification Q. Note that program c200

might be a composed program using the combinators defined above. In order to come up201

with meaningful rules for these combinators we first need to generalize the above goal.202

Instead of asking only whether a program satisfies the specification, we also ask “how203

much” it satisfies the specification, i.e. how much slack time is between the specified and204

actual run-time. As a mental model, we place the “slack time” in front of the actual run-time205

and call it the latest starting time such that executing c always terminates before the deadline206

Q :: ′a ⇒ enat option, and denote it as lst c Q :: enat option.207

If program c does not fulfill a specificationQ then there is no such time and lst c Q = None,208

otherwise its value is the latest feasible starting time. Before we give the definition of lst, let209

us explore what we can do with it. We obtain the following equality:210

211

c ≤ RES Q ←→ Some 0 ≤ lst c Q212
213

XYZ 2019



23:6 Refinement with Time

and we can prove the following equation for the bind operator:214

215

lst (bind m f) Q = lst m (λy. lst (f y) Q)216
217

Intuitively it says: The latest starting time for the compound computation bind m f to218

satisfy Q is the latest starting time for m in order to meet the latest starting time such that219

f y meets the specification Q.220

To determine lst c Q, we need to consider the differences between the specified and the221

actual run-time for every result of c and take the most conservative one:222

223

lst c Q = Inf r. minus Q c r224
225

Operation minus :: (′a ⇒ enat option) ⇒ ′a NREST ⇒ ′a ⇒ enat option formalizes tak-226

ing the difference. We have the following cases:227

– c fails: then c may never be executed and thus there is no valid latest starting time, i.e.228

minus Q c r = None.229

– c=RES C and C r = None: as C will never produce the result r, it can be ignored, i.e.230

the result is the top element: Some ∞.231

– c=RES C and C r = Some m andQ r = None: r is specified to not be obtained, but when232

starting c we obtain r, thus there is no valid starting time for C: minus Q c r = None.233

– c=RES C and C r = Some m and Q r = Some n: if more time is needed than specified234

(n < m) there is no valid latest starting time and we return None, otherwise the difference235

is returned (Some (n−m)).236

We can get some more intuition when unfolding lst in the above equality:237

c ≤ RES Q238

←→ Some 0 ≤ lst c Q (= Inf r. minus Q c r )239

←→ ∀r. Some 0 ≤ minus Q c r240241

The infimum is just a compact version of saying that the difference of Q and c on any242

result r is non-negative. By abusing notation and following the intuition of minus one can243

restate the last line as “∀r. c r ≤ Q r”. In essence it says, that c meets specification Q, iff244

for any r the time that it takes to calculate r for c is at most the time that Q reserved for245

that result.246

2.4 The Refinement Rules are Sound247

Instead of solving problems of the form c ≤ RES Q we solve problems of the more general248

form Some t ≤ lst c Q. This general form allows us to state syntax directed rules in a249

uniform way, which would not be possible otherwise.250

From the equality for lst on bind we can derive an introduction rule for bind:251

252

Some t ≤ lst M (λy. lst (f y) Q) −→ Some t ≤ lst (bind M f) Q253
254

For the other combinators we have:255

256

(∀r∈M. Some (t + M r) ≤ Q r) −→ Some t ≤ lst (RES M) Q257

Some t ≤ Q x −→ Some t ≤ lst (return x) Q258

(∀x. P x −→ Some (t + t′ x) ≤ Q x) −→ Some t ≤ lst (SPEC P t′) Q259

Some (t + t′) ≤ lst M Q −→ Some t ≤ lst (consume M t′) Q260
261

For the fold operation nfold we have the following rule:262
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263

I [] l0 s0264

∧ (∀x l1 l2 s. l0=l1 · [x] · l2 ∧ I l1 ([x] · l2) s265

−→ Some 0 ≤ lst (f x s) (emb (I (l1 · [x]) l2) tbody))266

∧ (∀s. I l0 [] s −→ Some (t + tbody ∗ |l0|) ≤ Q s)267

−→ Some t ≤ lst (nfold l0 f s0) Q268
269

Here, emb P t = (λx. if P x then Some t else None), nfold is defined in a straightfor-270

ward manner and the invariant I is a predicate that takes as its first argument the list of271

already processed elements, then the list of elements still to be processed and finally a state272

s. For showing that nfold l0 f s0 meets its specification Q with slack time t, one has to show273

that an invariant I holds initially, the body preserves the invariant and takes at most tbody274

time steps and the invariant in the end implies the desired specification. As we fold over a275

finite list, a termination argument is not required.276

We also define a rule for RECT and based on that one for while loops. With the above277

rules and analogous rules for assert and the combinators if and case, a syntax directed278

verification condition generator can easily be constructed by exhaustively applying those279

rules.280

I Example 4. After annotating the loop in the abstract program from Figure 1b with281

bodytime = tit + ti and a suitable invariant I = λl1 l2 T. Imwb (T, set l2) (where Imwb(T,E)282

implies minBasis T for the whole carrier set E), we run the VCG on the refinement theorem of283

Example 3 and obtain eleven verification conditions. One of these is the invariant preservation284

of the first branch of the if-expression, i.e. when adding an element e:285

286

sorted_wrt w l ∧ distinct l ∧ set l = E ∧ l = l1 · [e] · l2 ∧ indep (T ∪ {e})287

∧ Imwb(T, set ([e] · l2)) −→ Imwb(T ∪ {e}, set l2)288
289

This verifiction condition is one of the central ones in the correctness proof and can be290

discharged with an interactive proof.291

2.5 Data Refinement292

In the process of refining an abstract algorithm to a more concrete one, a usual task is293

to replace abstract data structures by concrete ones, for example to replace sets by lists.294

Consider the then branch in the algorithm in Figure 1a: instead of using a set to collect the295

elements of a basis, we want to represent this set by a list. We have the following refinement296

in mind. Given that a list l represents a set T (denoted by (l,T)∈list_set_rel), the resulting297

lists of the program on the left hand side refine the resulting sets produced by the right hand298

side program:299

300

(l,T)∈list_set_rel −→RES [l · [x] 7→ it] ≤ ⇓(list_set_rel) RES [T∪{x} 7→ it]301
302

Given a (single-valued) refinement relation R, i.e. a relation that maps a concrete element303

to some (a single) abstract elements, the concretization function ⇓R maps abstract results to304

concrete results w.r.t. R.305

306

⇓R FAIL = FAIL307

⇓R (RES X) = RES (λc. Sup {X a| a. (c,a)∈R})308
309

Data refinement is orthogonal to introducing the time counting, as it only acts on the310

domain of the maps, not on their values. We can lift all monotonicity lemmas to also include311

the data refinement, e.g. for the bind operation we obtain the following rule:312

XYZ 2019



23:8 Refinement with Time

313

M ≤ ⇓R′ M′ ∧ (∀x x′. (x, x′) ∈ R′ −→ f x ≤ ⇓R (f′ x′)) −→ bind M f ≤ ⇓R (bind M′ f′)314
315

Analogous rules can be proven for RECT, while, nfold, assert, and the other combinators316

(like if and case).317

2.6 Setting Up a VCG for Refinement318

In practice, one mostly is confronted with two kinds of refinement goals: first, goals w.r.t.319

a specification c ≤ RES Q, which we already considered, and second, refinement of two320

abstract algorithms that are structurally similar (c.f. Figure 1). For the latter case, one321

simulates the two programs in lock step and uses the monotonicity lemmas mentioned in322

the last section to divide and conquer the problem. Collecting these rules we construct an323

automated refinement solver, which we illustrate with an example:324

I Example 5. Consider the two programs in Figure 1. The concrete program Kruskal is325

a specialized minimum weight basis algorithm for the cycle matroid, where the elements326

of the matroid are edges in an undirected graph, represented by a tuple (a,w, b) of its end327

nodes a and b and weight w. Programs obtain_sorted_edge_list and addEdge are compound328

programs. We want to show the following refinement relation:329

330

Kruskal ≤ ⇓ list_graph_rel minWeightBasis331
332

where list_graph_rel relates a set of abstract edges in the graph with a list of edge tuples333

representing them. In the process of showing this refinement, several other intermediate334

refinement relations are used, e.g. ((djs,fl),T) ∈ djs_graph_rel which relates the abstract335

edge set T to the list of edges fl and its corresponding disjoint-sets data structure. The main336

part of this refinement proof is to show that testing independence if we add an edge (a,w, b)337

(i.e. checking cycle-freedom) can be implemented by comparing the equivalence classes of a338

and b.339

Note that addEdge has to do two things: update the disjoint-sets data structure and add340

the edge tuple to the list. We specify this program abstractly, and reserve time tiu and til341

for the two actions. In the refinement proof we need to prove that tiu + til ≤ ti. Similarly,342

the sum of the costs in obtain_sorted_edge_list must be smaller than tsc.343

The VCG for refinement simulates the two programs side by side, using the monotonicity344

lemmas to split the problem into smaller parts, and then showing the refinements of those smal-345

ler parts. One such part is the goal addEdge djs a b fl ≤ ⇓list_graph_rel (RES [T∪{e} 7→ti])346

(with list_graph_rel motivated as above).347

3 Refinement to Imperative/HOL with Time348

In this section we introduce the time-aware monad of Imperative/HOL [17], which we then349

use as the target monad of the adapted Sepref tool [12] with NREST as the source monad.350

3.1 Imperative/HOL with Time351

Imperative/HOL with time [17] incorporates Atkey’s [1] idea to include time credits in352

separation logic into the Imperative/HOL [2] framework. In essence, it enables reasoning353

about imperative programs and their run-time in Isabelle/HOL. While all the details can be354

found in Section 2.1 of [17], we will give an abstract explanation here that suffices for our355

purposes.356
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A procedure in the monad takes a heap as input and can either fail or return a tuple357

consisting of a return value, a new heap and a natural number, specifying the number of358

computation steps used. The type of a procedure with result type ′a is given by:359

360

datatype ′a Heap = Heap (heap ⇒ (′a × heap × nat) option)361
362

The bind operator as well as fix point iteration, while and other combinators are defined363

in a straightforward manner. The term (h,c) ⇒ (r, h′, t) expresses that procedure c started364

on heap h does not fail and takes time t to produce result r and heap h′.365

While heaps themselves do not form a separation algebra, there is an abstraction function366

α that maps a pair of heap and time credits to an abstract heap. Abstract heaps together367

with suitable definitions of disjointness and heap addition form a separation algebra. An368

assertion P , i.e. a mapping from an abstract heap to bool, being true for a heap h and369

time credits n is denoted by α(h, n) |= P . There are basic assertions for an abstract heap370

containing an array without time credits (a 7→a xs), references without time credits (r 7→r v)371

and time credits ($n).372

The separating conjunction P∗Q of two assertions is defined in a straightforward manner,373

separating both the heap locations and the time credits.374

Hoare triples are defined in the following way:375

376

1 <P> c <λr. Q r>t =377

2 (∀h n. α (h,n) |= P −→ (∃h′ t r. (c,h) ⇒ (r, h′, t)378

3 ∧ α (h′, n − t) |= Q r ∗ true ∧ t ≤ n) )379
380

where the assertion true is true for any heap, thus enabling garbage collection of heap381

elements and time credits. The Hoare triple <P> c <λr. Q r>t denotes that procedure c382

started from a heap satisfying P terminates with a return value r in a resulting heap that383

satisfies Q r ∗ true. In particular it states that the starting heap holds enough time credits384

n in order to pay for the cost t of executing the procedure c (see line 3).385

The cost model assigns most basic commands (e.g. accessing or updating a reference,386

getting the length of an array) to consume one unit of computation time. Commands that387

operate on an entire array take n+1 units of computation, where n is the length of the array.388

Examples for basic commands are:389

390

<a 7→a xs ∗ $1 ∗ ↑(i < |xs|)> Array.upd i x a <λr. a 7→a xs[i:=x] ∗ ↑(r = a)>t391

<$(n+1)> Array.new n x <λr. r 7→a replicate n x>t392
393

where ↑P is a pure assertion, which is valid for an empty heap if P holds globally, xs[i:=x]394

denotes a list xs updated at position i with value x, and replicate n x denotes a list of n395

elements x.396

In Section 4 we review available and new infrastructure and automation for proving valid397

Hoare triples of procedures in the time-aware monad of Imperative/HOL.398

3.2 Generic Sepref399

As a next step we want to automatically synthesize programs in the time-aware Imperat-400

ive/HOL monad from abstract algorithms in the NREST monad. This step is performed by401

an adaptation of the Sepref tool [12]. The core of the tool is the translation phase, where the402

concrete program is synthesized. We focus on that phase as the other phases can be adapted403

in a straightforward manner.404

The translation works by symbolically executing the abstract program, thereby synthes-405

izing a structurally similar concrete program. During the symbolic execution, the relation406
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between the abstract and concrete variables is modeled by refinement assertions. The407

synthesis predicate hnr Γ m† Γ′ R m means that concrete program m† implements abstract408

program m, where Γ contains the refinements for the variables before the execution, Γ′
409

contains the refinements after the execution, and R is the refinement assertion for the result410

of m. For example, a bind is processed by the following synthesis rule:411

412

1 hnr Γ m† Γ′ Rx m ∧413

2 (∀x x†. hnr (Rx x x† ∗ Γ′) (f† x†) (R′
x x x† ∗ Γ′′) Ry (f x))414

3 −→ hnr Γ (do {x† ← m†; f† x†}) Γ′′ Ry (do {x ← m; f x})415
416

To refine x ← m; f x, we first execute m, synthesizing the concrete program m† (line 1). The417

state after m is Rx x x† ∗ Γ′, where x is the result created by m. From this state, we execute418

f x (line 2). The new state is R′
x x x† ∗ Γ′′ ∗ Ry y y†, where y is the result of f x.419

While executing the abstract program, not only a concrete program is created, but also420

the set of refinement assertions Γ evolves: It contains all the data structures (pure or on the421

heap) that the concrete program maintains.422

All the other combinators (RECT, while, if, case ...) have similar rules that are423

used to decompose an abstract program into parts, synthesize corresponding concrete parts424

recursively and combine them afterwards.425

At the leaves of this decomposition one has to find “atomic” operations, with a suitable426

synthesis rule. An example could be the rule for the specification of the compare operation427

of a disjoint-sets data structure as in the concrete Kruskal program in Figure 1b:428

429

hnr (is_uf R′ R ∗ nat_assn a′ a ∗ nat_assn b′ b) (uf_cmp R a b)430

(is_uf R′ R ∗ nat_assn a′ a ∗ nat_assn b′ b)431

bool_assn (RES [djs_cmp R′ a′ b′ 7→ itt] )432
433

The program uf_cmp in the time-aware Imperative/HOL monad refines the abstract434

compare operation djs_cmp. If the parameters fulfill the correct refinement assertions, i.e. R435

is a concrete union-find implementation of the abstract equivalence relation R′, as well as436

a′ = a and b′ = b, then the result of the concrete operation is equal (bool_assn) to the result437

of the abstract one, and the parameters are still in the refinement relations as before.438

3.3 Heap-monad to Nondeterminism Refinement (HNR)439

Now we present how we can link NREST with the Imperative/HOL monad via a suitable440

synthesis predicate.441

442

1 hnr Γ c Γ′ R m ≡ m 6= FAIL −→443

2 (∀h n. α(h, n) |= Γ −→ (∃h′ t r. (c, h) ⇒ (r, h′, t)444

3 ∧ (∃ta ra. α(h′, (n+ta)−t) |= Γ′ ∗ R ra r ∗ true445

4 ∧ consume (return ra) ta ≤ m ∧ n+ta≥t)))446
447

If the abstract program m does not fail, procedure c started from a heap satisfying Γ produces448

a heap satisfying Γ′ and a result r which relates to an abstract result ra via relation R. The449

abstract result ra is a valid result of m and has at least ta time units reserved for it. Together450

with the time credits on the heap n this pays for the execution cost t (line 4).451

In particular, the execution cost t is paid for by the time units ta specified by the abstract452

program and by time credits n that are hidden in the data structures on the heap. One can453

see, that amortized data structures seamlessly integrate into the framework: only amortized454

run-time costs are visible to the abstract algorithm, while the actual run-time and potential455

is hidden in the implementation.456
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In order to verify that this definition makes sense, observe what we can prove for it:457

First, this definition enables us to prove soundness of the synthesis rule for bind from above.458

Second, as a final step in an algorithm analysis we would like to extract a Hoare triple for459

the concrete program we synthesized. The run-time of final algorithms that we analyse is460

typically not dependent on the result, but only on the input. For programs with specifications461

of that special form SPEC P (λ_. t) we can extract a standard Hoare triple from a valid462

synthesis predicate and vice versa:463

464

hnr Γ c Γ′ R (SPEC P (λ_. t)) ←→ <Γ ∗ $ t> c <λr. Γ′ ∗ (∃A r′. R r′ r ∗ ↑(P r′))>t465
466

While during reasoning the abstract time bound needs to depend on the result (in order467

to prove the synthesis rule for bind correct), when proving the run-time of an algorithm, in468

most cases the final run-time only depends on the input parameters.469

Based on that definition we can provide sound synthesis rules for all the combinators470

(bind, return, while, RECT), as well as a frame and a consequence rule. To illustrate that471

the hnr-approach allows to use amortized data structures seamlessly, consider the example472

on usage of dynamic arrays in Appendix A.473

4 Modular Algorithms and Proof Development474

Using our methodology, algorithm design and analysis can be modularized in two ways:475

First, separating the implementation details of data structures from the abstract arguments476

of algorithms enables focusing on one part of the problem at a time. Both levels have their477

own language (time-aware Imperative/HOL and the NREST monad), and the interface is478

realized by abstract operations (e.g. mop_append_list) and hnr rules. Sepref is employed to479

automatically synthesize concrete algorithms from abstract ones. On the abstract level we480

reserve some amount of time for each abstract operation, whose details will get filled in once481

one decides which data structure and concrete operation to use, then yielding a sound upper482

bound on the run-time. A collection of abstract operations and their implementations by483

efficient data structures will be given in the next subsection.484

Second, the refinement calculus of NREST programs enables to formulate abstract485

algorithms that can be reused as components in larger developments. One example is a486

generic BFS component, that is used as a sub-component in the Edmonds–Karp algorithm.487

Also abstract algorithms, such as the minimum weight basis algorithm can be formulated on488

general matroids, and then later be instantiated for the cycle matroid yielding a blue-print489

for Kruskal’s algorithm.490

Library of Operations and Algorithms491

Table 1 lists abstract data structures with their abstract operations and the implementations492

we currently provide in the Timed Imperative Isabelle Collections Framework (TIICF). Note:493

it is easy to extend this list. As an example for a generic re-usable algorithm we provide494

breadth first search, which is used in the formalization of the Edmonds–Karp algorithm.495

Methodology and Automation496

The process of formalizing an algorithm is supported by automation in four stages. We497

present those from the most abstract to the concrete:498
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Table 1 This table shows the abstract data structures with abstract operations that we provide
implementations for in the TIICF. Amortized run-time bounds are marked with an asterisk (*).

abstract operations run-time concrete

matrix create; lookup, update O(n2); O(1) array

set/map create; insert, lookup, delete, update O(1); O(log n) red-black tree
O(n); O(1) array

list create, append; lookup, update O(1)∗; O(1) dynamic array
disjoint sets create; union, find O(n); O(log n) union-find

First, when proving the refinement of a specification in the NREST monad to an abstract499

algorithm the generation of verification conditions is automated. They can be discharged by500

automatic tactics or interactive proof.501

Second, abstract algorithms are refined to structurally similar concrete algorithms. Here502

a lock step simulation is carried out automatically by the refinement condition generator.503

An example is to show the refinement between the programs in Figure 1.504

Third, the adapted Sepref tool automatically synthesizes a program in the time-aware505

Imperative/HOL monad from a given abstract algorithm containing only abstract operations506

with available hnr rules. Automatic proving of side-conditions is performed in a limited507

way. Usually, preconditions of concrete operations are provided as an assert in the abstract508

algorithm.509

Finally, for showing that concrete implementations of abstract operations are correct and510

satisfy the given time bounds one has to show hnr predicates. In essence, these are Hoare511

triples in time-aware Imperative/HOL. Zhan et al. [17] develop a methodology for proving512

functional correctness and (amortized) run-time claims and provide a setup for automation.513

One novel component is a special routine for handling time credits during frame inference.514

Lammich [12] provides sep_auto — a strong automation for vanilla Imperative/HOL — which515

we extend by the above mentioned time frame inference routine to also handle programs in516

the time-aware case. Both approaches can be used in order to establish correct Hoare triples517

of basic data structures and form a library of algorithms and data structures which can be518

used as abstract operations in more advanced algorithms.519

5 Case-Studies520

Besides smaller examples (remove duplicates with set implementation using red-black trees,521

binary search, and Floyd–Warshall) we provide verification of functional correctness and522

time bounds of Kruskal’s algorithm and the Edmonds–Karp algorithm.523

Kruskal524

Kruskal’s algorithm was verified in the standard Refinement Framework in parallel to the525

research reported on in this paper. It can be found in the archive of formal proofs [9]. As a526

case study, we port it to NREST, adding the run-time claims.527

The proof development follows this general structure: first we define the abstract algorithm528

for minimum weight basis in matroids (c.f. Figure 1a) and verify it. Then we instantiate529

it with the cycle matroid for forests in undirected graphs and refine the algorithm with530

the usage of equivalence classes. Figure 1b shows the last-but-one stage in the step-wise531

refinement process. In a last step we fix the vertices to be natural numbers and the domain532
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of the disjoint-set data structure to be the set from {0,...,M}, with M being the maximal533

vertex in the graph. After that, we use the implementation of the union-find data structure534

from the TIICF to synthesize a concrete algorithm with the Sepref tool.535

Provided a procedure that obtains a list of edges of a graph in linear time, a O(n ∗ logn)536

sorting algorithm and a union-find data structure with logarithmic find and union operations537

we obtain a concrete algorithm that calculates the minimum weight spanning forest for the538

graph in time O(E ∗ logE +M +E ∗ logM), with E being the number of edges and M being539

the maximal vertex in the graph.540

We have only proven the logarithmic bounds for the union-find data structure for this541

case-study. Charguéraud et al. [4] verified a union-find data structure with amortized542

run-time O(α(M)) (where M is the size of the domain of the disjoint-set data structure and543

α is the inverse Ackermann function) in Coq.544

When developing this case study, we learned that the correctness arguments can be545

plainly reused, and that adding the proofs of the run-time claims does not interfere. However,546

it is necessary to add more assertions in the algorithms that speak about the sizes of the data547

structures used. This reasoning is mostly done on the abstract level, but the information has548

to be passed to the concrete algorithm via assertions. In the Sepref translation phase, this549

information is needed to discharge the preconditions of the hnr predicates, which demand550

that enough time has been reserved to execute the step.551

Edmonds–Karp: Reuse552

Before starting this project we had the following working hypothesis:553

“Formalizations in the standard Refinement Framework can be easily extended to also554

verify the run-time behaviour. In this process, most of the formalization can be reused, and555

termination arguments can be translated into run-time arguments.”556

We conducted this extension to the Edmonds–Karp algorithm [13, 14] as a case-study.557

The result is two-fold: For procedures where the reasoning on the run-time of the algorithm558

is already well prepared making this claim explicit is straightforward, for procedures where559

only termination has been shown only coarse bounds can be shown with little effort. Fine560

tuned run-time bounds require substantial work.561

Lammich et al. [14] already quite explicitly work out the run-time bound for the outer562

loop of the Edmonds–Karp algorithm. We were able to reuse the whole proof and additionally563

embed the result into our time aware non-determinism monad, thus making the run-time564

claim less ad-hoc. On the other hand the inner breadth-first search is only proven to terminate565

via a terminating lexicographic ordering. Plainly using this leads to a valid but very coarse566

run-time bound. Establishing the tight O(E + V ) bound involves some amortized argument567

on the abstract level and was a considerable verification effort, but again orthogonal to the568

functional correctness proof, which in turn can be reused with no change.569

As this case study uses matrices to represent the residual networks, we had to rework570

the array implementation of matrices for the TIICF, with linear-time initialization, and571

constant-time update and lookup operations.572

6 Conclusion573

Related Work574

Lammich pioneered the Sepref tool [12] and it has been used to verify several interesting575

algorithms and software projects [13, 6, 16]. It was recently adapted to synthesize programs576
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in LLVM [10] instead of Imperative/HOL. Coming up with a generic Sepref tool that is577

parametrized in the target and source language, as well as extending the LLVM semantics to578

run-time are interesting future projects.579

As already mentioned, time-aware Imperative/HOL is due to Zhan et al. [17], which580

builds upon Atkey’s [1] idea to use Time Credits in Separation Logic.581

In the Coq community similar theory [3, 7] and the run-time analysis of interesting582

algorithms [8] and data structures [4] have been formalized.583

To the best of our knowledge, we are the first to combine run-time analysis with refinement.584

Limitations and Future Work585

In particular, we are not satisfied with the parametrization of operations with timing functions.586

We envision not only counting one currency ($) representing one computation step in the587

final concrete algorithm, but to have currencies for abstract operations. Say one abstract588

algorithm A incurs cost of one “A-dollar” $A and can be implemented by an algorithm using589

several operations C1 and C2 costing some $C1 and some $C2 . Refining algorithms that use590

several calls to A should then routinely yield a refinement with costs in terms of $C1 and591

$C2 . A target monad of Sepref then would also differentiate between several actions and592

respective currencies of costs. Refining abstract operations into this target would exchange593

these currencies in a sound way, such that ultimately upper bounds on the usage of these594

currencies are obtained.595

In this paper we only study upper bounds of run-time of algorithms. This should be596

relaxed in at least two ways: First, while run-time is a particularly interesting case, also other597

quantities are possible, e.g. stack usage, or energy usage. Second, not only upper bounds can598

be reasoned about, also lower bounds are feasible. A refinement relation on lower bounds599

seems to be straightforward. Also combining this in a pair of enats and keeping track of600

lower as well as upper bounds seems to be feasible.601

We already mentioned, that Lammich’s LLVM semantics could be extended to counting602

the number of operations.603

Obviously, it is future work to further fill the collection of efficient data structures and604

reusable algorithms, as well as lowering the barriers to verify run-time arguments by providing605

more automation.606

Conclusion607

In this paper, we have combined the refinement approach of algorithm verification with608

techniques to verify the run-time of algorithms: We extended the Isabelle Refinement609

Framework to express the result and time consumption of abstract algorithms as well as the610

Sepref tool to synthesize executable imperative programs for such abstract algorithms. This611

setup makes it possible to carry out the verification of algorithms such as Edmonds–Karp612

and Kruskal in a modular way. Separating concerns into the abstract algorithmic idea and613

the implementation details of data structures makes larger proof developments feasible.614

Our use-cases indicate that for additionally verifying run-time arguments for algorithms615

whose functional correctness has already been shown within the vanilla Isabelle Refinement616

Framework, formalizations can be reused to a large extent. We think that even larger617

developments can be tackled this way, both verifying functional correctness and the run-time618

analysis of such algorithms.619
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A Example: Amortized Dynamic Array and Remove Duplicates669

Let us consider an abstract operation and its implementation: appending an element to the670

back of a list.671

672

mop_push_list t x xs = RES [xs · [x] 7→ t xs]673
674

The operation is specified in the NREST monad, with a new parameter t that represents675

the run-time of the operation, here parametrized in the list xs. For an implementor, this676

leaves open the possibility to later provide an implementation whose time consumption677

depends on xs, e.g. on its length. Let us turn to an implementation of that operation on a678

dynamic array.679

Implementation680

An abstract dynamic list is represented by a pair of a carrier list bs and a fill level n. The681

corresponding abstract list as is the list bs restricted to the first n elements:682

683

dyn_abs (bs,n) as ←→ as = take n bs ∧ n<|bs|684
685

We define a function push_array_fun on abstract dynamic lists that doubles the length686

of the list if it is full and then appends an element. We prove its functional correctness:687

688

dyn_abs (bs,n) as −→ dyn_abs (push_array_fun x (bs,n)) (as · [x])689
690

Recall that p 7→a xs denotes a heap containing an array at address p with content xs.691

Based on this, one can define an assertion692

693

dyn_array_raw (bs, n) (p, m) = (p 7→a bs ∗ ↑(m = n))694
695

relating an abstract dynamic list with a concrete dynamic array represented by a pair of696

address p and fill level m.697

For the functional push_array_fun we define a corresponding procedure push_array698

which appends an element to the back of a dynamic array, doubling the length if it is699

exceeded. We can now show the following raw Hoare triple, with worst-case run-time linear700

in the fill level of the dynamic array, as we might have to double the array. The explicit701

numbers in the run-time stem from the concrete implementation of push_array and the cost702

model of time-aware Imperative/HOL.703

704

n ≤ length bs −→705

<dyn_array_raw (bs, n) p ∗ $(5∗n + 9)>706

push_array x p707

<λp′. dyn_array_raw (push_array_fun x (bs, n)) p′>t708
709

We now incorporate the potential (Φ(bs,n) = 10 ∗ n − 5 ∗ |bs|) into an assertion for a710

compound data structure dyn_array and prove the following Hoare triple with amortized711

constant run-time:712

713

dyn_array r p = dyn_array_raw r p ∗ $(Φ r)714
715

716

n ≤ length bs −→717

<dyn_array (bs, n) p ∗ $19>718

push_array x p719

<λp′. dyn_array (push_array_fun x (bs, n)) p′>t720
721
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Note that for showing the latter amortized Hoare triple it does not suffice to employ the722

raw Hoare triple, rather push_array must be unfolded again.723

As a final step we compose the refinements of abstract lists to abstract dynamic lists724

(dyn_abs) and further to dynamic arrays (dyn_array) and obtain dyna_assn:725

726

dyna_assn as p = (∃Abs n. dyn_array (bs,n) p ∗ ↑(dyn_abs (bs,n) as))727
728

where the list and fill level of the abstract dynamic array are hidden behind an existential729

quantifier. Then we obtain the final Hoare triple of the procedure:730

731

<dyna_assn as p ∗ $19> push_array x p <λp′. dyna_assn (as · [x]) p′>t732
733

Together with the definition of mop_push_list we can state and prove the synthesis734

predicate for the append operation:735

736

19 ≤ t xs′ −→ hnr (dyna_assn xs′ p ∗ Id x′ x) (push_array x p)737

(Id x′ x) dyna_assn (mop_push_list t x′ xs′)738
739

Usage740

The abstract operationmop_push_list can now be used when specifying an abstract algorithm.741

Then a concrete time function t can be specified, which is used to determine the overall cost742

of the algorithm.743

Consider the following program to remove duplicates from a list.744

745

1 remdups_impl as = do {746

2 ys ← mop_empty_list 12;747

3 S ← mop_set_empty 1;748

4 (zs,ys,S) ← whileT (λ(xs,ys,S). |xs| > 0) (λ(xs,ys,S). do {749

5 assert (|xs| > 0 ∧ |xs| + |ys| ≤ |as| ∧ |S| ≤ |ys|);750

6 (x,xs) ← return (hd xs, tl xs);751

7 b ← mop_set_member (λ_. rbt_search_t (|as| + 1) + 1) x S;752

8 if b then753

9 return (xs,ys,S)754

10 else do {755

11 S ← mop_set_insert (λ_. rbt_insert_t (|as| + 1)) x S;756

12 ys ← mop_push_list (λ_. 23) x ys;757

13 return (xs,ys,S)758

14 }759

15 }) (as,ys,S);760

16 return ys761

17 }762
763

The program uses mop_push_list from above as well as other abstract operations. For764

example insertion into a set:765

766

mop_set_insert t x S = RES [S ∪ {x} 7→ t S]767
768

Let remdups_t n = n∗(60 + rbt_search_t (n+1) + rbt_insert_t (n+1)) + 20, then our769

automation can prove the following refinement theorem and asymptotic bound:770

771

remdups_impl as ≤ SPEC (λys. set ys = set as ∧ distinct ys) (λ_. remdups_t |as|)772

remdups_t ∈ Θ(λn. n ∗ logn)773
774
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23:18 Refinement with Time

For each operation in the program some time is reserved. The overall run-time of the775

program is then a function of these reserved quantities. Note that for the set operations we776

reserved time not parametrized in the size of the set it operates on, but in the length of the777

input list as, which is an upper bound.778

When synthesizing an Imperative/HOL program, the synthesis rules will be applied and779

their preconditions must be discharged. For the mop_push_list this boils down to the trivial780

check 16 ≤ 23. Note that in that process only the advertised cost of the dynamic array is781

concerned, while the amortization is hidden on this level.782

Let us consider a more interesting operation. The synthesis rule of the red-black tree783

implementation of mop_insert_set is the following:784

785

rbt_insert_t (card S + 1) ≤ t S −→786

hnr (Id x′ x ∗ rbt_set_assn S p) (rbt_set_insert x p)787

(Id x′ x) rbt_set_assn (mop_set_insert t x′ S)788
789

where rbt_set_assn S p relates a set S with a red-black tree at address p. During synthesis790

the Sepref tool has to check whether there is enough reserved time for the set insertion.791

792

|S| ≤ |ys| ∧ |xs| + |ys| ≤ |as|793

−→ rbt_insert_t (|S| + 1) ≤ (λ_. rbt_insert_t (|as| + 1)) S794
795

The goal can be discharged with the knowledge from the assertions and the monotony of796

rbt_insert_t.797

Once more, note that amortized data structures seamlessly can be modeled using time798

credits, and this comfort can be further extended to also be available for the abstract799

algorithm. At the abstract level, an amortized data structure behaves just as a normal data800

structure does.801
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