
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelorarbeit in Informatik

Verified decision procedures for the
equivalence of regular expressions

Maximilian Haslbeck

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelorarbeit in Informatik

Verified decision procedures for the equivalence of
regular expressions

Verifizierte Entscheidungprozeduren für die Äquivalenz
von Regulären Ausdrücken

Author: Maximilian Haslbeck
Supervisor: Prof. Dr. Tobias Nipkow
Advisor: Prof. Dr. Tobias Nipkow
Date: 10. Juli, 2013

Ich versichere, dass ich diese Bachelorarbeit selbständig verfasst und nur die angegebenen
Quellen und Hilfsmittel verwendet habe.
I assure the single handed composition of this bachelor’s thesis only supported by de-

clared resources.

München, den 10. Juli, 2013 Maximilian Haslbeck

Abstract

Many procedures for deciding regular expression equivalence were proposed. We ex-
amine four methods that do not rely on automata but work directly on regular expressions:
based on derivatives, partial derivatives and two closely related versions of pointed reg-
ular expressions. We formalize and verify them in the ITP Isabelle. The methods can be
formulated in a generic algorithm, for which we show soundness, termination and com-
pleteness.

vii

Contents

Abstract vii

1 Introduction 1

2 Foundations 3
2.1 Languages and Regular Expressions . 3
2.2 Derivatives of Regular Expressions . 4
2.3 Partial Derivatives of Regular Expressions . 5
2.4 Link between partial Derivatives and Derivatives 7

3 Pointed Regular Expressions 9
3.1 Asperti . 9
3.2 Fischer et al. 12
3.3 Synthesis . 12

4 Bisimulation 15
4.1 Generic bisimulation . 15

4.1.1 Bisimulation . 17
4.1.2 Computing the Bisimulation Closure 17

4.2 Applied bisimulation . 20

5 Conclusion 21

Bibliography 23

ix

1 Introduction

Equivalence of regular expression still is a ongoing topic in computer science. Despite the
task being relatively old in the past few years various methods have been proposed and
verified in different interactive theorem provers (ITP).
We examine four of these algorithms and condense them into a generic form. We formalize
and verify this generic algorithm in the ITP Isabelle [6] and obtain four executable desicion
procedures for regular expression equivalence. We build our development upon the work
done by Krauss and Nipkow [5]
In Section 2 we revise the standard notions of regular languages, their left quotients and
regular expressions. We revise the concept of derivatives of regular expressions due to
Brzozowski [3] and partial derivatives of regular expressions due to Antimirov [1]. After
that we obtain an upper bound for the number of partial derivatives and give a link to
derivatives.
Pointed regular expressions (PRE) are discussed in Section 3: we first formalize and verify
one kind of PRE along the lines of Asperti [2]. After that we introduce a version of PRE by
Fischer et al. [4] and show that they are closely related.
In Section 3 we define bisimulations and show how to use them for testing regular expres-
sion equivalence. Then we come up with a generic algorithm in order to integrate the four
introduced ways of handling regular expressions. We show soundness, termination and
completeness of the algorithm and finally instantiate it by the four methods.

1

1 Introduction

2

2 Foundations

2.1 Languages and Regular Expressions

Definition 2.1 A language is a set of words; a word is a list of characters over an alphabet Σ. We
define operations concatenation @@, power An and Kleene star ∗ on languages:
A @@ B = {xs @ ys | xs ∈ A ∧ ys ∈ B}
A0 = {[]}
An + 1 = A @@ An

A∗ = (
⋃

n An)

Definition 2.2 Also we define the left quotient of a language w.r.t. a single character a and lift it
to a word w:
Deriv x A = {xs | x·xs ∈ A}
Derivs xs A = {ys | xs @ ys ∈ A}

It is easy to see that as an alternative to checking whether a word w is in a language we
can check whether the empty word ([]) is in the left quotient w.r.t w.

Lemma 2.3 (w ∈ A) = ([] ∈ Derivs w A)

Definition 2.4 Regular expressions are defined as a recursive datatype α rexp. we use the canon-
ical definition with constructors + for alternative, · for concatenation, ∗ for Kleene star, ∅ for the
additive and ε for the multiplicative identities.

datatype ′a rexp = ∅ | ε | Atom ′a | op + (′a rexp) (′a rexp)
| op · (′a rexp) (′a rexp) | Star (′a rexp)

Definition 2.5 On this datatype we define a function atoms which returns the set of atoms in a
regular expression and a function alph which determines the number of atoms in a regular expres-
sion. alph is also called the alphabetic width of a regular expression.

atoms ∅ = ∅
atoms ε = ∅
atoms (Atom a) = {a}
atoms (r + s) = atoms r ∪ atoms s
atoms (r · s) = atoms r ∪ atoms s
atoms r∗ = atoms r

alph(∅) = 0
alph(ε) = 0
alph(Atom a) = 1
alph(r1 + r2) = alph(r1) + alph(r2)

alph(r1 · r2) = alph(r1) + alph(r2)

alph(r1∗) = alph(r1)

3

2 Foundations

Note that the alphabetic width is not equal to the cardinality of the set of atoms, as we
possibly count identical atoms multiple times.

Definition 2.6 We define the language of a regular expression in the standard way.

L(∅) = ∅
L(ε) = {[]}
L(Atom a) = {[a]}

L(r + s) = L(r) ∪ L(s)
L(r · s) = L(r) @@ L(s)
L(r∗) = L(r)∗

Throughout the whole document we use L(t) to denote the language of some term t re-
gardless of which type t is, we leave the simple disambiguation task to the reader.
It is decidable whether the language of a regular expression contains the empty word. The
function nullable determines this.

Definition 2.7 (nullable)

nullable ∅ = False
nullable ε = True
nullable (Atom c) = False

nullable (r1 + r2) = (nullable r1 ∨ nullable r2)

nullable (r1 · r2) = (nullable r1 ∧ nullable r2)

nullable r∗ = True

By induction we obtain the characteristic property nullable r = ([] ∈ L(r)).
For convenience we say two languages are conullable if and only if both contain the empty
word, as well as two regular expressions are conullable if and only if both are nullable.
Equality of two languages can be shown by coinduction. The following lemma is the key
to the soundness proof of our decision procedures.

Lemma 2.8 Let R be a binary relation between languages such that every pair in R is conullable
and for every pair in R and symbol x the pair of its left quotients w.r.t. x is also in R. Then if (K,
L) is in R the languages are the same.
[[R K L;

∧
K L. R K L =⇒ ([] ∈ K) = ([] ∈ L);

∧
K L x. R K L =⇒ R (Deriv x K) (Deriv x L)]] =⇒

K = L

Example 2.9 Consider the simple regular expression (a + ε) · (b∗ · a). Its associated language is
{a,aa,ba,aba,bba,abba,. . . } and it is not nullable. Its atoms are {a,b} and its alphabetic width is 3.

2.2 Derivatives of Regular Expressions

Derivatives of regular expressions were first introduced by Brzozowski [3] in 1964. A
derivative deriv a r is a regular expression that describes a language equal to the left quo-
tient of r w.r.t. a symbol a. The derivatives are implemented in the function deriv

4

2.3 Partial Derivatives of Regular Expressions

Definition 2.10 deriv c ∅ = ∅
deriv c ε = ∅
deriv c (Atom c ′) = (if c = c ′ then ε else ∅)
deriv c (r1 + r2) = deriv c r1 + deriv c r2
deriv c (r1 · r2) = (if nullable r1 then deriv c r1 · r2 + deriv c r2 else deriv c r1 · r2)

deriv c r∗ = deriv c r · r∗

By induction on the form of r we obtain the characteristic property:

Lemma 2.11 L(deriv c r) = Deriv c (L(r))

So we can use derivatives of regular expressions to calculate the left quotient of a language.
We can lift the derivative in natural form to words.
As we do not operate on the language itself, which might be infinite, but on the regular
expression and a finite word we obtain a computable matcher:

Definition 2.12 matcher r s = nullable (derivs s r)

Again by induction we obtain the property matcher r s = (s ∈ L(r)).

Example 2.13 (continuing)
The derivative of (a + ε) · (b∗ · a) w.r.t symbol a is (∅+ε)·(b∗·a) + ∅·b∗·a + ε.

Brzozowski showed, that the set of derivatives modulo ACI of the operator + (i.e. associa-
tivety, commutativity and idempotence) is finite. (Theorem 5.2 in [3]) He uses this result
to construct a DFA from a regular expression r.
Formalizing this idea is not part of this Bachelor’s Thesis, but would be needed to form
directly a decision procedure for the equivalence of regular expressions based on deriva-
tives.

2.3 Partial Derivatives of Regular Expressions

As an addition to derivatives Antimirov [1] introduced the notion of partial derivatives as
its “non-deterministic generalization”.

Definition 2.14 pderiv c ∅ = ∅
pderiv c ε = ∅
pderiv c (Atom c ′) = (if c = c ′ then {ε} else ∅)
pderiv c (r1 + r2) = pderiv c r1 ∪ pderiv c r2
pderiv c (r1 · r2) = (if nullable r1 then Timess (pderiv c r1) r2 ∪ pderiv c r2 else Timess (pderiv
c r1) r2)

pderiv c r∗ = Timess (pderiv c r) r∗

5

2 Foundations

In the definition of the partial derivatives we use the helper funciton Timess, which lifts the
concatenation of regular expressions to sets of regular expressions.
As before for derivatives, we obtain the left quotient of r using partial derivatives of r.
Every element p in pderiv is one ”part” of the left Quotient of r, hence the name.

Lemma 2.15 Deriv c (L(r)) =
⋃ {L(p) | p ∈ pderiv c r}

Here we can also see the tight connection between partial derivatives and derivatives —
the union of languages of all elements of a partial derivative form the language of a deriva-
tive:

Lemma 2.16
⋃ {L(p) | p ∈ pderiv c r} = L(deriv c r)

Operations like atom, nullable, L(r) and pderiv can be lifted to sets of regular expressions:

Definition 2.17 Atoms R ≡ ⋃
r∈R atoms r

Nullable R ≡ ∃ r∈R. nullable r
L(R) ≡ ⋃

r∈R L(r)
Pderiv a R ≡ ⋃

r∈R pderiv a r

Regular expressions, derivatives and partial derivatives were already formalized in Is-
abelle in the way presented here by Krauss and Nipkow [5]. We base further development
on their work.

Example 2.18 (continuing)
The partial derivatives of (a+ε)·(b∗·a) w.r.t symbol a are {ε·b∗·a, ε}.

As one of the main theoretical results of Antimirov’s paper [1], he shows that there are
only finitely many partial derivatives for a given regular expression r and gives an upper
bound for the cardinality of the set:

Theorem 2.19 (upperbound for partial derivatives) |pderivs-lang UNIV1 r| ≤ alph(r)
|pderivs-lang UNIV r| ≤ alph(r) + 1

Here UNIV is the language containing all words and UNIV1 the language with out empty
word. pderivs-lang A r is the set of partial derivatives w.r.t. every word in A. The theorem
states that there are no more partial derivatives of r then alph(r)+1.
To prove this theorem we first show the first goal, only considering non empty words
and prove the upperbound alph(r). By later adding the partial derivative of the empty
word again we obtain desired result. The pending goal can be proved by induction on the
structure of the regular expression r. The proof is along the lines of Theorem 3.4 in [1].
As a second theoretical result Antimirov shows that the partial derivative of a regular ex-
pression r only consists of a possibly empty and bounded concatenation of subexpressions
of r (Theroem 3.8 in [1]). So given r one could calculate all subexpressions and every par-
tial derivative can be represented in a quite condensed datastructure: a list of references
to subterms of r. With that at hand, testing for equality of two partial derivatives can be
implemented quite efficiently.

6

2.4 Link between partial Derivatives and Derivatives

2.4 Link between partial Derivatives and Derivatives

As we have seen in Lemma 2.16 the language of a derivative can be composed by the lan-
guage of the elements of the partial derivatives. More specifically we can give a function
set-of that maps a derivative to its partial derivative:

Definition 2.20 set-of (r1 + r2) = set-of r1 ∪ set-of r2
set-of (r1 · r2) = Timess (set-of r1) r2
set-of ∅ = ∅
set-of ε = {ε}
set-of (Atom v) = {Atom v}
set-of v∗ = {v∗}

The desired property set-of (deriv a r) = pderiv a r can be shown by induction.

Example 2.21 (continuing)
Applying set-of on the derivative obtained in Example 2.13 yields {ε·b∗·a, ε}, which is (as expected)
the set of partial derivatives from Example 2.18.

As we have seen, to obtain a finite number of states when using derivatives we need to
quotient the derivatives w.r.t. a suitable abstraction function. The function set-of can be
seen as such an abstraction function. It maps a derivative of a regular expression to an
equivalence class. As we know that the set of partial derivatives is finite and we already
have obtained an upper bound in Theorem 2.19 for its cardinality, we now use this to show
that the number of derivatives modulo set-of is finite and give an upper bound:

Lemma 2.22 |⋃ w {set-of (derivs w r)}| ≤ 1 + 2alph(r)

Note that we use the first part of Theorem 2.19 and then add the set-of the derivative w.r.t.
the empty word (which is only one element).
Lemma 2.22 enables formulating an terminating algorithm for testing regular expression
equivalence based on derivatives. Before doing this we take a detour to some alternative
to derivatives.

7

2 Foundations

8

3 Pointed Regular Expressions

3.1 Asperti

Asperti [2] formalizes an algorithm for testing regular expression equivalence, based on
the notion of pointed regular expression.
According to Asperti derivatives have the weakness, that they are forced to quotient deriva-
tives w.r.t a suitable notion of equivalence in order to get a finite number of states. Using
pointed regular expressions one could avoid these problems. Asperti formalized the no-
tion of pointed regular expressions in the ITP Matita. Here we reconstruct his work in
Isabelle.
A pointed item (pitem) is a regular expression where every atom can be either pointed or
not. Intuitively speaking, a point marks a position that is reached after reading some prefix
of the input string. As we can not mark the end of the regular expression, a pointed regular
expression (pre) is a pitem i with an additional flag b.

Definition 3.1 We model the pitem as a regular expression over pairs of a bool and an element of
type α. The pre in turn is defined as a pair 〈i,b〉 of a bool b and a pitem i.
α pitem = (bool × α) rexp
α pre = (α pitem × α)

We introduce the notion of the carrier |i| of a pitem i, which is the regular expression ob-
tained when deleting all the points of i. This definition can be lifted to pre also.
The language of a pre is the the language associated with its pitem and the empty word if its
flag is true. The language of a pitem is the union of the language of all its points. In turn the
language associated with a point is the language that is accepted by the regular expression
starting from its position. This semantics is captured in the following definitions:

Definition 3.2 L(∅) = ∅
L(ε) = ∅
L(Atom (False,)) = ∅
L(Atom (True, a)) = {[a]}
L(r + s) = L(r) ∪ L(s)
L(r · s) = L(r) @@ L(|s|) ∪ L(s)
L(r∗) = L(r) @@ L(|r|)∗

Definition 3.3 L((i, b)) = (if b then L(i) ∪ {[]} else L(i))

As a result we obtain the property ([] ∈ L((i, b))) = b

9

3 Pointed Regular Expressions

So in Asperti’s pointed regular expressions the points in the regular expressions are just
before the atoms. Thus the points represent positions where we could start reading the
next character. When we now actually read a new character a all those positions have to
be considered. All pointed atoms with associated character a are then active and have to
be broadcast. Unpointed atoms and atoms with associated character different from a just
get ignored. If the character is the same as the pointed character, the point gets broadcast.
Asperti introduces the operation eclose (•), that broadcasts a point into an pitem. As the
point could reach the end of the pitem this operation generates a pre.

Definition 3.4 • ∅ = (∅, False)
• ε = (ε, True)
• Atom (False, x) = (Atom (True, x), False)
• Atom (True, x) = (Atom (True, x), False)
• i1 + i2 = • i1 ⊕ • i2
• i1 · i2 = • i1 � (i2, False)
• i∗ = (fst (• i)∗, True)

With the operators lifted from pitem to pre:

Definition 3.5 r1 ⊕ r2 = (fst r1 + fst r2, snd r1 ∨ snd r2)

r1 � r2 = (let (i ′, b ′) = if snd r1 then con-item-pre (fst r1) (• fst r2) else (fst r1 · fst r2, False) in
(i ′, b ′∨ snd r2))

r? = (let (i, b) = r in if b then (fst (• i)∗, True) else (i∗, False))

We can characterize the semantics of eclose and the lifted operators. Furthermore by induc-
tion we can show, that the carrier does not change after applying eclose.

Theorem 3.6 L(• i) = L(i) ∪ L(|i|)
L(e1 ⊕ e2) = L(e1) ∪ L(e2)

L(p1 � p2) = L(p1) @@ L(|fst p2|) ∪ L(p2)

L(p?) = L(p) @@ L(|fst p|)∗

|fst (• i)| = |i|

The operation eclose can be lifted to a pre 〈i,b〉 (preclose). The effect is, that a point is broad-
cast into the pitem i and the resulting flag is true if a point reaches the end of the item or
the flag b already was true.

Example 3.7 (continuing, cf. example 2 of [2])
When we shift a point into our example regular expression (a+ε)·(b∗·a) we start working in parallel
on the first occurence of a (where the point stops), and on ε that gets traversed. We have hence
reached the end of a+ε and must pursue broadcasting inside (b∗·a). Thus, the point is allowed to
both enter the star, and to traverse it, stopping in front of a. No point reached the end of (b∗·a)
hence, no further propagation is possible. In conclusion:
•(a+ε)·(b∗·a) = 〈(•a+ε)·(•b∗·•a), false〉.

10

3.1 Asperti

Then we define a move operation, that takes a pitem and a character and returns a new pre.
The semantics of this operation is that we obtain the pre after reading one character.

Definition 3.8 move c ∅ = (∅, False)
move c ε = (ε, False)
move c (Atom (False, x)) = (Atom (False, x), False)
move c (Atom (True, x)) = (Atom (False, x), c = x)

move c (i1 + i2) = move c i1 ⊕ move c i2
move c (i1 · i2) = move c i1 � move c i2
move c i∗ = move c i?

What happens: for every point in front of an atom a, let the point traverse the character
and broadcast it. All points preceding a character different from a must be removed.

Example 3.9 (continuing, cf. example 3 of [2])
When we now consider the pitem we obtained in the example before: (•a+ε)·(•b∗·•a). Let us apply
the move operation w.r.t. the character a. For a we have two possible positions (the other point will
be erased). The first point gets broadcasted inside (b∗·a) like in the previous step and stops before
the b and the a. The second point reaches the end of the term. In total:
move a (•a+ε)·(•b∗·•a) = 〈(a+ε)·(•b∗·•a), true〉.

With the knowledge of Theorem 3.6 it is easy to show that the move operation corresponds
to the left quotient. We obtain the characteristic property of move:

Theorem 3.10 L(move a i) = Deriv a (L(i))

Moreover we can show that the carrier stays unchanged after a move operation:

Lemma 3.11 |move a i| = |i|

When we consider all pitem i with carrier r, every atom can be pointed or not. So the set of
all those i is finite and has cardinality 2alph(r).

Lemma 3.12 (Upperbound for pitem) |{s | |s| = r}| = 2alph(r)

Lifting this to pre just doubles the upper bound (as there are two possible values for the
flag). With Lemma 3.12 we obtain an upper bound for the number of states in the DFA of
r.
This is essentially all we need: a computable variant of the left quotient (by Lemma 3.10)
and an upper bound for the number of states (by Lemma 3.12).

11

3 Pointed Regular Expressions

3.2 Fischer et al.

In “A Play on Regular Expressions” Fischer et al. [4] give an elegant way of working directly
with regular expressions in a functional programming setting. They present a matching
algorithms on regular expression with boolean marks indicating where in the regular ex-
pression the matching process has arrived. In contrast to the version of pointed regular
expressions we have just examined, those symbols are marked that have just been read.
One can easily suspect that the two versions are closely related.
We transfer the implementation of Fischer et al., which is basically only 15 lines of code.
We extend the setup to the additive identity ∅ and model the “postpointed” regular ex-
pressions just as the “prepointed” regular expressions: by a regular expression over a pair
of a bool and an element of a type α. (Just the interpretation is different). As in turn “post-
pointed” regular expressions can’t be pointed in the beginning we complete the setup by
forming a pre as pair of a pitem and a flag. As this flag is only true before the first read of
a character (points can not reach the beginning again) the flag was left away by Fischer et
al.
The two operations final and shift are what we take from Fischer et. al.

Definition 3.13 final ε = False
final ∅ = False
final (Atom (b,)) = b
final (p + q) = (final p ∨ final q)

final (p · q) = (final p ∧ nullable q ∨ final q)

final r∗ = final r

Definition 3.14 shift ε = ε

shift m (Atom (, x)) c = Atom (m ∧ x = c, x)

shift m (p + q) c = shift m p c + shift m q c
shift m (p · q) c = shift m p c · shift (m ∧ nullable p ∨ final p) q c
shift m r∗ c = shift (m ∨ final r) r c∗

Proving facts about the “postpointed” regular expressions requieres defining a semantics
of those, i.e. what the associated language is. As the atoms are marked on the back they
have to be broadcast throughout the regular expression to bring them in front of the next
atom to be read. Then we can determine the language associated with the term. This
broadcasting sounds quite familiar to the broadcasting we did for the “prepointed” regular
expressions. To save some work and to show that the two constructs are very closely
related we generalize them and then use the results for the first to show correctness of the
second.

3.3 Synthesis

The move operation on the “prepointed” regular expressions can be carried out in two
steps: First the points that preceed an atom with the character we are currently reading

12

3.3 Synthesis

traverse the atom. This step takes a “prepointed” and returns a “postpointed” regular
expression.
Secondly, the points that succeed an atom get broadcast so that they again stand in front of
some atom. This operation translates a “postpointed” into a “prepointed” regular expres-
sion.

Example 3.15 (continuing)
Consider again the “prepointed” regular expression (•a+ε)·(•b∗·•a). After executing operation
traverse w.r.t. character a we obtain (a•+ε)·(b∗·a•).
The operation broadcast afterwards pushes the first point into (b∗·a) and the second point reaches
the end of the term, thus yields: 〈(a+ε)·(•b∗·•a), true〉.

The following definitions implements the idea:

Definition 3.16 (traverse)
traverse ∅ c = ∅
traverse ε c = ε

traverse (Atom (False, x)) c = Atom (False, x)

traverse (Atom (True, x)) c = Atom (x = c, x)

traverse (p + q) c = traverse p c + traverse q c
traverse (p · q) c = traverse p c · traverse q c
traverse r∗ c = traverse r c∗

Definition 3.17 (broadcast)
broadcast ε m = (ε, m)

broadcast ∅ m = (∅, False)
broadcast (Atom (b, x)) True = (Atom (True, x), b)

broadcast (Atom (b, x)) False = (Atom (False, x), b)

broadcast (p + q) m = (fst (broadcast p m) + fst (broadcast q m), snd (broadcast p m) ∨ snd
(broadcast q m))

broadcast (p · q) m = (let (i1, b1) = broadcast p m; (i2, y) = broadcast q b1 in (i1 · i2, y))

broadcast r∗ m = (let (i1, b1) = broadcast r m in if b1 then (fst (broadcast r True)∗, True) else
(i1∗, m ∧ ¬ nullable r ∨ False))

We can show that move and shift indeed are compositions of traverse and broadcast:

Lemma 3.18 move c r = broadcast (traverse r c) False
shift m r c = traverse (fst (broadcast r m)) c

Now we define the semantics of a “postpointed” pre by first performing a broadcast on its
pitem, obtaining a pre and then using the already defined semantics for pre. In the case that
the flag is set to true we add the language of the carrier of the pitem to the language; this
corresponds to a point preceeding the regular expression.

13

3 Pointed Regular Expressions

Definition 3.19 L(l) = L(broadcast (fst l) False) ∪ (if snd l then L(|fst l|) else ∅)

With this definition we can use Lemma 3.10 to show an equivalent property for Fischer et
al.

Lemma 3.20 L((shift b i a, False)) = Deriv a L((i, b))

Analogously to the “prepointed” regular expressions (Lemma 3.12) we obtain an upper
bound for the number of possible states in a DFA when using “postpointed” regular ex-
pressions.

14

4 Bisimulation

Krauss and Nipkow [5] describe an algorithm for testing equivalence of regular expres-
sions r and s based on derivatives: it incrementally constructs the relation of all (derivs w r,
derivs w s). Provided that r and s are equivalent, all pairs of states have to behave the same
w.r.t acceptance of input words. If the procedure terminates, it either yields a bisimulation
relation (then r and s are equivalent) or it must find a pair (r ′, s ′) where one of them is a
final state and the other one not.
They proceed by defining a normalization function for regular expressions and then state
the algorithm explicitely. Furthermore they show soundness for the procedure.
We generalize this idea for an decision procedure for regular expression equivalence and
not only allow to use derivatives but any transition function δ a r. This function can be
lifted from characters a to words (δ w r). Then we incrementally construct the relation of
all (δ w r, δ w s). Provided that r and s are equivalent all pairs of states must be equivalent
w.r.t accepting the word w. If this procedure termintates, it either returns a bisimulation
relation or a counterexample for equivalence. Additionally we show that the procedure
actually terminates.

4.1 Generic bisimulation

In the sections before we saw four different transition functions δ and arguments why
the number of states of a DFA induced by it is finite. We now generalize the equivalence
checker check-eqv by Krauss and Nipkow [5].
For partial derivatives and the versions of pointed regular expression the development
is pretty straightforward. But for derivatives we have to add an abstraction: when enu-
merating all pairs of states we should not visit two pairs such that they are in the same
equivalence class w.r.t to an abstraction function. Otherwise we loose the finiteness of the
state space.
In Isabelle we can use locales to define local scopes. We define the locale g-bisim which
requiers certain operations with some properties. Inside the scope of the locale we then
can refer to these operations and properties. From these we can derive new properties
and methods. Later this locale can be instantiated by providing the requiered operations
satisfying the requiered properties.
Here is a full listing of the requiered operations with their types.

Definition 4.1 lang :: ′b⇒ ′a list set
prep :: ′a rexp⇒ ′b
δ :: ′a⇒ ′b⇒ ′b
sink :: ′b⇒ ′b

15

4 Bisimulation

nullo :: ′b⇒ bool
atoms :: ′b⇒ ′a set
reachable :: ′a rexp⇒ ′a rexp⇒ (′c × ′c) set
ub-card-reachable :: ′a rexp⇒ ′a rexp⇒ nat
abstr :: ′b⇒ ′c

Those operations have to satisfy the following properties.

Definition 4.2 step-sink: ”δ a (sink r) = sink r”
sink-conullable-aux: ”nullo (sink r) = nullo (sink s)”
atoms-sink: ”atoms (sink r) ⊆ atoms r”
nullable-iff-pointed: ”nullo r = ([] ∈ L(r))”
lang-pointed: ”L(δ a r) = Deriv a L(r)”
step-no-occurrence: ”x /∈ atoms r =⇒ L(δ x r) = L(sink r)”
atoms: ”atoms r1 = atoms (prep r1)”
atoms-step: ”atoms (δ a r) ⊆ atoms r”
lang-prep: ”L(r1) = L(prep r1)”
lang-abstr: ”abstr r = abstr s =⇒ L(r) = L(s)”
sink-sink: ”sink i = sink (sink i)”
sink-step: ”sink (δ a r) = sink r”
reachable-finite: ”finite (reachable r1 s1)”
reachable-bounded: ”|reachable r1 s1| ≤ ub-card-reachable r1 s1”
inset: ”(abstr (prep r1), abstr (prep s1)) ∈ reachable r1 s1”
staysinset: ”(abstr h, abstr i) ∈ reachable r1 s1 =⇒ (abstr (δ a h), abstr (δ a i)) ∈ reachable r1 s1”

In the following we describe the most important operations and properties that are needed:
The specific algorithms perform not necessarily on regular expressions but on terms of
some type β. Thus we require a operation L to convert a term of β into a language. In the
beginning of the equivalence computation the regular expressions are converted to terms
of β. This is done by a prep operation, that must generate a term with the same associated
language (assured by property lang-prep).
Furthermore there must be a δ function that performs an analogous operation on β as the
left quotient (property lang-pointed). For the case that a symbol can not be read by a term
t of β we provide a sink state, to which the δ operation directs in that case. An operation
nullo on β has to determine whether the empty word is in the corresponding language.
For the termination argument we require an abstraction function abstr, that only merges
terms of β with same corresponding language (property lang-abstr). One must specify a
superset reachable of the abstracted state space and a bound ub-card-reachable for its cardi-
nality. To ensure termination it must hold, that reachable contains the starting pair and is
closed under the δ operation.

16

4.1 Generic bisimulation

4.1.1 Bisimulation

The predicate is-bisimulation checks for a given alphabet Σ whether a given list ps of pairs
of states is a bisimulation.
We demand that for every pair (r, s) in ps and every character a there is already an element
(δ a r, δ a s) in ps modulo some abstraction function. Furthermore the predicate requieres
that all expressions in ps contain only atoms from Σ, that for every pair (r, s) in ps either
both contain the empty word or none and that for every two pairs in ps the sink of the first
components are the same, and the sink of the second components are the same.

Definition 4.3 is-g-bisimulation as ps =
(∀ (r, s)∈set ps.

(∀ (r ′, s ′)∈set ps.
sink r = sink r ′∧ sink s = sink s ′) ∧

atoms r ∪ atoms s ⊆ set as ∧
conullable r s ∧
(∀ a∈set as. (δ a r, δ a s) ∈a set ps))

So with Lemma 2.8 we can show that if we have a list ps of pairs of regular expressions that
forms a bisimulation containing the pair (rS, sS) then languages of rS and sS are equal.

Lemma 4.4 [[is-g-bisimulation as ps; (rS, sS) ∈ set ps]] =⇒ L(rS) = L(sS)

4.1.2 Computing the Bisimulation Closure

In order to get the method computable, we have to define a computable bisimulation clo-
sure. What we do to show that two regular expressions r , s are equal is:
We start from the pair (r, s) and successively generate all pairs (δ a r ′, δ a s ′). This is done
with a worklist based algorithm: it uses a worklist ws and a list of pairs that are already
done ps. In every step we take the first pair (r ′, s ′) out of ws and put it into ps. For this
pair (r ′, s ′) we compute for every character a from Σ (where Σ is the set of atoms in r and
s) δ a r ′ and δ a s ′. Every (δ a r ′, δ a s ′) computed like this is added to ws. Such a pair is
only inserted if it is not yet inside ws or ps. ”Is inside” (denoted by ∈a) means, that there is
already an element inside the set that is equal w.r.t. the abstraction function.
These ideas are implemented in the bistep function:

Definition 4.5 bistep as (ws, ps) =
(let (r, s) = hd ws; ps ′ = (r, s)·ps;

succs = map (λa. (δ a r, δ a s)) as;
new = [p←succs . ¬ p ∈a (set ps ∪ set ws)]

in (remdups-a new @ tl ws, ps ′))

To the intermediate list new only elements are added that to not have an equal element in
ws or ps. remdups-a removes duplicates w.r.t. abstr from that list. We keep on iterating this
step until the worklist is empty or we find a counter example.

17

4 Bisimulation

Definition 4.6 test (ws, ps) = (case ws of []⇒ False | (p, q)·xs⇒ nullo p = nullo q)

Definition 4.7 closure as = while-option test (bistep as)

To show that this closure computation is sound we need to specify an invariant for the
execution of bistep. Given some starting pair (r, s) and alphabet Σ a pair of a worklist ws
and donelist ps satisfy the invariant pre-bisim if several conditions are fulfilled:
the pair (r, s) is already done or in the worklist. every pair already worked off or in the
work list has the same sink. every pair worked off is conullable, i.e. either both elements
of the pair contain the empty word or none. And for every pair worked off its successors
are in the worklist or also worked off.

Definition 4.8 pre-bisim as r s =
(λ(ws, ps).

(r, s) ∈ set ws ∪ set ps ∧
(∀ (r ′, s ′)∈set ws ∪ set ps.

sink r = sink r ′∧ sink s = sink s ′) ∧
(∀ (r, s)∈set ws ∪ set ps. atoms r ∪ atoms s ⊆ set as) ∧
(∀ (r, s)∈set ps.

nullo r = nullo s ∧
(∀ a∈set as. (δ a r, δ a s) ∈a (set ps ∪ set ws))))

We show that this invariant holds after the execution of a bistep if it also held before and
the test is true:

Lemma 4.9 [[pre-bisim as r s st; test st]] =⇒ pre-bisim as r s (bistep as st)

It is easy to see that pre-bisim holds initially and we have already shown that it is an in-
variant of bistep. Assuming that the process terminates with an empty worklist, we can
derive that the invariant also holds after termination. The invariant holding with an empty
worklist implies that we obtained a bisimulation. Finally with Lemma 4.4 we have that r
and s are equal.

Theorem 4.10 (closure sound)
[[closure as ([(r, s)], []) = Some ([], ps); atoms r ∪ atoms s ⊆ set as]] =⇒ L(r) = L(s)

Having proven soundness we can now proceed with showint termination and complete-
ness.
The set of pairs (δ w r, δ w s) is finite, or better the cardinality is bounded. So we can
prove termination for closure. If we can show that in every step of the closure computation
one new pair is added to the donelist, we have an argument for termination. This can be
ensured by another invariant for bistep bistep-invariant: it makes sure that the worklist and
the donelist contain only distinct elements w.r.t. abstraction, that worklist and donelist are
disjoint w.r.t abstraction and that the abstraction of any pair considered is in the superset
reachable.

18

4.1 Generic bisimulation

Definition 4.11 bistep-invariant r1 ′ r2 ′ =
(λs. distinct-a (fst s) ∧

distinct-a (snd s) ∧
disj-resp-same (set (fst s)) (set (snd s)) ∧
(∀ (r ′, s ′)∈set (fst s) ∪ set (snd s).

(abstr r ′, abstr s ′) ∈ reachable r1 ′ r2 ′))

The ranking function for the closure computation is defined as:

Definition 4.12 closure-rank r s x = ub-card-reachable r s − |snd x|

The invariant bistep-invariant holds and the ranking function decreases if the invariant held
before the execution and the test is true:

Lemma 4.13 [[bistep-invariant r1 ′ r2 ′ s; test s]] =⇒ bistep-invariant r1 ′ r2 ′ (bistep as s)
[[bistep-invariant r1 ′ r2 ′ s; test s]] =⇒ closure-rank r1 ′ r2 ′ (bistep as s) < closure-rank r1 ′ r2 ′ s

With the ranking function decreasing after every iteration the closure computation termi-
nates.

Lemma 4.14 (closure terminates)
[[prep r1 ′= r1; prep r2 ′= r2]] =⇒ ∃P. closure as ([(r1, r2)], []) = Some P

We further can conclude that the closure computation is complete:

Theorem 4.15 (closure complete)
[[L(r1 ′) = L(r2 ′); prep r1 ′= r1; prep r2 ′= r2]] =⇒ ∃ ps. closure as ([(r1, r2)], []) = Some ([], ps)

Finally we integrate closure computation into a function check-eqv that takes two regular
expressions and returns whether they are equal. For this it converts the input to a equiv-
alent term on which the respective method computes, determines a list of symbols of r
and s (by a function add-atoms) and checks whether closure has terminated with an empty
worklist.

Definition 4.16 check-eqv r s =
(case closure (add-atom r (add-atom s [])) ([(prep r, prep s)], []) of
None⇒ False | Some ([], x)⇒ True | Some (a·list, x)⇒ False)

As a final result we can show soundness and completeness for the overall procedure as a
corollary of Theorem 4.10 and Theorem 4.15:

Corollary 4.17 (L(r) = L(s)) = check-eqv r s

19

4 Bisimulation

4.2 Applied bisimulation

With the generic version of bisimulation in place we can instantiate it by various methods.
For a equivalence checker based on derivatives we use the standard operations on regular
expressions, deriv as the δ operation and set-of as an abstraction function. The superset and
the upper bound for its cardinality follow from Lemma 2.22: As we consider pairs of sets
we have to multiply the cardinalities and obtain an upper bound ((1:: ′d) + (2:: ′d)alph(r)) ∗
((1:: ′d) + (2:: ′d)alph(s)). The main property needed is Lemma 2.11.
We lift operations on regular expressions to sets of regular expressions (as in Definition 2.17)
and do not use any abstraction (abstr is identity) to obtain an equivalence checker based
on partial derivatives. The states that operations are performed on is a pair of subsets of
the set of partial derivatives. Resulting from Lemma 2.19 and the subset construction we
obtain an upper bound 21 + alph(r) ∗ 21 + alph(s) for this set. That a step can be performed is
ensured by Lemma 2.15.
Those two methods essentially do the same, as working on derivatives modulo set-of is the
same as working on subsets of the set of partial derivatives. Nevertheless the development
enables using derivatives when a suitable abstraction function is provided. Suitable in
that way, that finiteness of the state space is proven also. For example one could use the
normalization norm on regular expressions by Krauss and Nipkow [5] when provining a
proof for the finiteness of the set of derivatives modulo norm. Two different upper bounds
for the cardinality of reachable were obtained. Further investigation could reveal whether
the better upper bound can be proven also for the method with pderivs or the method
with derivs really has some advantage.
For pointed regular expressions we lift the appropriate operations to pre and use no ab-
straction function. The finiteness of the state space was already discussed and success-
ful steps are ensured by Lemma 3.10 respectively Lemma 3.20. For an upper bound of
the cardinality of reachable we obtain 22 + alph(a) + alph(b) which is the same as for partial
derivatives.
As for the “postpointed” regular expressions, the flag is only true before reading the first
character, one could obtain a smaller set reachable and thus a better upper bound for its
cardinality (similar to the one for derivatives).
Following from Corollary 4.17 proof obligations L(r) = L(s) may now be reduced to any
variant of check-eqv r s. By executing the equivalence checker the proof is reduced to a
computation.

20

5 Conclusion

We examined four different ways of determining the left quotient of a regular expression.
We proved an upper bound for number of partial derivatives of a regular expression, and
thus obtained also an upper bound for the number of derivatives modulo an abstraction
function set-of.
We reconstructed the formalization of pointed regular expressions from [2]. Afterwards
we showed that this can be used to verify another version of pointed regular expressions,
which is closely related.
Finally we generalized the equivalence checker by Krauss and Nipkow [5] and applied it
for our four methods. By defining the algorithm appropriately it was possible to not only
show soundness but also termination and completeness.

21

Bibliography

[1] V. Antimirov. Partial derivatives of regular expressions and finite automaton construc-
tions. Theoretical Computer Science, 155(2):291 – 319, 1996.

[2] A. Asperti. A compact proof of decidability for regular expression equivalence. In
L. Beringer and A. Felty, editors, Interactive Theorem Proving, volume 7406 of Lecture
Notes in Computer Science, pages 283–298. Springer Berlin Heidelberg, 2012.

[3] J. A. Brzozowski. Derivatives of Regular Expressions. Journal of the ACM, 11:481–494,
1964.

[4] S. Fischer, F. Huch, and T. Wilke. A play on regular expressions: functional pearl. In
P. Hudak and S. Weirich, editors, ICFP, pages 357–368. ACM, 2010.

[5] A. Krauss and T. Nipkow. Proof pearl: Regular expression equivalence and relation
algebra. J. Automated Reasoning, 49:95–106, 2012. published online March 2011.

[6] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-
Order Logic, volume 2283 of LNCS. Springer, 2002.

23

	Abstract
	Introduction
	Foundations
	Languages and Regular Expressions
	Derivatives of Regular Expressions
	Partial Derivatives of Regular Expressions
	Link between partial Derivatives and Derivatives

	Pointed Regular Expressions
	Asperti
	Fischer et al.
	Synthesis

	Bisimulation
	Generic bisimulation
	Bisimulation
	Computing the Bisimulation Closure

	Applied bisimulation

	Conclusion
	Bibliography

