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Abstract

We present a framework for the competitive analysis of online algorithms formalized in
Isabelle/HOL and formally verify the analysis of the three most popular algorithms for
the List Update Problem: MTF, BIT and TS.
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1 Introduction

The list update problem consists of maintaining a singly-linked list of distinct elements and
serving access requests. An access has to be served by traversing the list from the front
until the requested element has been found. The cost of such an access is thus the position
of the requested element. Instantly after the access, it is allowed to bring the requested
element nearer to the front of the list by so called free exchanges. Any other swap of two
consecutive elements in the list costs one unit and is called a paid exchange. The goal of an
algorithm for the list update problem is to minimize the total cost of serving the request
sequence.
The list update problem has received a lot of attention in recent decades and is a fundamen-
tal problem in the area of online algorithms. An online algorithm has to serve requests from
a sequence in order of occurrence without knowledge of future requests. A vast amount
of such online problems have been studied, including the paging problem, load balancing
and bin packing; stock portfolio selection can also be viewed as an online problem.
For all of these problems a variety of algorithms have been proposed. A natural question
is how to measure the quality of these.
A classical answer is competitive analysis: Suppose there is an oblivious adversary that
knows the future and specifically the complete request sequence. This offline adversary
is able to compute an optimal strategy. Then algorithms can be compared to this adver-
sary. An algorithm is deemed competitive if the ratio between its cost and the optimal cost
is bounded by a constant for any request sequence. This bound is called the competitive
ratio and an algorithm is c-competitive if the ratio is at most c. A formal definition follows
in Section 2.2.

The list update problem, in particular, has been studied extensively in this framework. The
recent survey by Kamali et al. [14] gives an overview of the field.
This thesis is structured as follows.
In Chapter 2 a general framework for competitive analysis of (randomized) online algo-
rithms is specified and its formalization in Isabelle/HOL is presented. We then interpret it
for the list update problem.
The rest of this thesis follows the lines of the first two chapters of “Online Computation
and Competitive Analysis” by Borodin and El-Yaniv [9] and chronologically presents the
most popular algorithms and their verified analysis.
Sleator and Tarjan showed in their seminal paper [23] that the deterministic online algo-
rithm MTF is 2-competitive. In fact this algorithm attains the best possible ratio for deter-
ministic algorithms. This lower bound was established by Irani [13]. The analysis of MTF
has already been formalized by Nipkow [16] and was integrated into our framework. In
Chapter 3 we formally define MTF and sketch its analysis.
The randomized online algorithm BIT due to Reingold et al. [21] breaks the lower bound
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1 Introduction

for deterministic algorithms – its formalization and the proof of its competitiveness are
presented in Chapter 4.
In Chapter 5 we introduce the list factoring technique, which we use to analyse the al-
gorithm TS in Chapter 7. In order to do that we need some more information about the
optimal offline algorithm for lists of length 2. In Chapter 6 we address the algorithm OPT2
which is optimal on such lists and can be stated compactly.
Results for BIT and TS could then be combined to show that the algorithm COMB due
to Albers [4] is 1.6-competitive. Ambühl showed that no algorithm could have a better
ratio than 1.50115 [6]. Hence there still exists a gap between the hardness result and the
known algorithms. Further algorithms and results that may be formalized in future work
as well as open research questions are collected in Chapter 8. Chapter 9 finally provides a
conclusion to the thesis.
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2 Competitive Analysis

For the analysis of online algorithms several techniques have been proposed (Section 2.1);
the most prominent being the competitive analysis (Section 2.2) which we formalize in
Isabelle/HOL (Section 2.3). We instantiate this framework for the list update problem in
Section 2.4 and analyze the most popular algorithms in the remainder of this thesis.

2.1 Online Algorithms

Online algorithms process a request sequence serially and can make their decisions based on
the past but without secure information about the future. The study of online algorithms
can be seen as a part of ”decision making in absence of full information” and is a natural
topic of various disciplines such as computer science, economics, finance and decision
theory.
Opposed to online algorithms are offline algorithms which possess full knowledge of future
requests.
There are many examples of online problems studied including the list update problem,
caching and load balancing. But the analysis of online algorithms can not only be applied
to intrinsically online problems but also for the approximation of many combinatorial op-
timization problems. Approximation algorithms for NP-hard problems are of special in-
terest.
Early work on the analysis of online algorithms falls into the class of distributional analysis:
a distribution of events is presumed and the expected cost is studied. This amounts to an
average case analysis. Algorithms for the list update problem have already been studied
in this way [22, 8, 7].
Research over the past 30 years focused on competitive analysis, which we already intro-
duced briefly and will define formally in the next section.
Unfortunately, competitive analysis seems to be too pessimistic compared to the behaviour
of the algorithms in practice. The competitive ratios predicted are substantially higher
than the observed ones. Recent studies refine the competitive analysis and try to model
a phenomenon called locality of reference: in any subset of the request sequence the set of
requested elements is relatively small. This has already been addressed for the paging
problem [10] as well as for the list update problem [3].

2.2 Competitive Analysis

For a request sequence σ let OPT (σ) denote the minimal total cost for serving σ, and also
let ALG(σ) denote the total cost of an online algorithm ALG for serving σ.
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2 Competitive Analysis

Definition 2.1 ([9, sec. 1.1.2]). An online algorithm ALG is c-competitive if there is a constant
α such that for all finite input sequences σ

ALG(σ) ≤ c ·OPT(σ) + α.

When the additive constant α is less than or equal to zero, we may say for emphasis that ALG is
strictly c-competitive.
The infimum over the set of all values such that ALG is c-competitive is called the competitive
ratio of ALG.

The fact that a c-competitive online algorithm is a c-approximation algorithm, makes re-
sults from competitive analysis available to approximation theory.
A possible way of viewing an online problem is that of a game between an online player
and an adversary. The adversary creates an malicious request sequence that has to be
served by the online player via an online algorithm. There are different graduations of
strength of the adversary [9, chapter 4]. We will only consider the oblivious adversary
that knows the complete request sequence in advance and for deterministic online algo-
rithms also knows exactly how the online player will react on each requested element. For
randomized algorithms the above definition has to be refined.

Definition 2.2 ([9, sec. 2.1]). Let ALG be a randomized online algorithm. Based on the knowl-
edge of ALG – in particular, the probability distribution(s) ALG uses – the oblivious adversary
must choose a finite request sequence σ in advance. ALG is c-competitive against an oblivious
adversary if for every such σ

E [ALG(σ)] ≤ c ·OPT(σ) + α.

where α is a constant independent of σ, and E[·] is the mathematical expectation operator taken
with respect to the random choices made by ALG.

Note if ALG is deterministic this definition collapses to the deterministic one. Similarly as
for the deterministic case, the competitive ratio is defined.

2.3 A Framework for Competitive Analysis in Isabelle/HOL

We now present a framework for competitive analysis of randomized online algorithms
formalized in Isabelle/HOL. We use the probability theory already present in Isabelle/HOL
to state the behaviour of online algorithms and the definition of competitiveness. A short
introduction is given in Section 2.3.1. We present the framework in Section 2.3.2, which
is parameterized by functions capturing specific behaviour of online problems. Subse-
quently we give an interpretation of the framework for the list update problem in Section
2.4, by providing these functions.

2.3.1 Probability Theory in Isabelle/HOL

As we want to express statements about distributions of states (e.g. for the randomized
online algorithms) and expectations of costs, we need some formalization of such concepts.
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2.3 A Framework for Competitive Analysis in Isabelle/HOL

Therefor we use the type of probability mass function (pmf) formalized in Isabelle/HOL by
Hölzl et al. [12, section 4].
They formalize the type pmf on a type α, representing distributions of discrete random
variables on α.
The theory provides a function for the support set of the pmf as well as a function pmf D x
that returns the probability of x in the pmf D.

Example 2.3. The theory for instance defines the Bernoulli distribution bernoullipmf , a pmf on the
type bool which satisfies amongst others the following properties:
setpmf (bernoullipmf p) ⊆ {True, False}
pmf (bernoullipmf (1 / 2)) x = 1 / 2
[[0 ≤ p; p ≤ 1]] =⇒ pmf (bernoullipmf p) True = p

Furthermore the monadic operators
bindpmf :: ′a pmf ⇒ ( ′a⇒ ′b pmf )⇒ ′b pmf,
returnpmf :: ′a⇒ ′a pmf
are provided. M >>= f is short for bind-pmf M f. To apply a function to every element of a
probability distribution the function
mappmf ::( ′a⇒ ′b)⇒ ′a pmf ⇒ ′b pmf
can be used. It is defined in terms of the other two: mappmf f M = M >>= (λx. returnpmf (f
x)). With the help of these functions more complex pmf s can be synthesized from easier
ones.

Example 2.4. Consider a random experiments that flips two independent different coins, which
turn out to show heads (True) with probability 0.4 and 0.5 respectively. We then say the experiment
succeeds if at least one of the coins shows heads. We can model this as follows:

twocoins = do {
x← bernoullipmf (4 / 10);
y← bernoullipmf (5 / 10);
returnpmf (x ∨ y)
}

Note that the “do/←”-notation is syntactic sugar for one or more op >>= statements. We now can
formulate and easily prove
pmf twocoins True = 7 / 10.

In order to abstract from their development we defined the expectation E::real pmf ⇒ real
of a probability distribution over the reals and encapsulated all properties we need about
it in our formalization. These properties include monotonicity, congruence and linearity:

Lemma 2.5. Let X be a probability distribution with finite support set. Then the following state-
ments hold,
E[X] = (

∑
x∈setpmf X. x ∗ pmf X x)

∀ x∈setpmf X. f x ≤ u x =⇒ E[mappmf f X] ≤ E[mappmf u X]

∀ x∈setpmf X. f x = u x =⇒ E[mappmf f X] = E[mappmf u X]

E[mappmf (λx.
∑

i∈A. f i x) D] = (
∑

i∈A. E[mappmf (f i) D])

5



2 Competitive Analysis

2.3.2 Competitive Analysis Formalized

In this section we will present our framework for competitive analysis of randomized al-
gorithms.
For capturing the dynamics of an online problem we parameterize our framework the
following way:
We assume the problem maintains a configuration c:: ′configuration of some data structure
during the service of a request sequence, which in turn is modelled by a list of ′query
elements. An algorithm’s reaction to a request is summarized in an ′action. See the last
part of this section for a comparison of our approach with the formal definition of online
problem and online algorithm in [9].
In the following it may be beneficial to have the list update problem in mind, but the frame-
work can be instantiated for any other online problem. You may think of the configuration
being the current state of the list, a query being an requested element of the list and an
action being instructions for paid and free exchanges.
In order to avoid confusion, we denote a state of the list configuration, as opposed to the
internal state of an online algorithm and the state tuple consisting of both, a configuration
and an internal state.

We require a function step:: ′configuration⇒ ′query⇒ ′action⇒ ′configuration that returns the
configuration after serving a request on a configuration by an action. Function t:: ′configuration
⇒ ′query⇒ ′action⇒ nat determines the costs incurred in that process.
Those two functions suffice to capture the dynamics of a single step of an online problem.
We now can lift these to the total cost T of the serving of a request sequence:

Definition 2.6.
T s [] [] = 0
T s (q · qs) (a · as) = t s q a + T (step s q a) qs as

Note that T is only well defined if the length of the request sequence matches the length of
the action list.
We model an offline algorithm as a function taking the initial list init as well as the whole
request sequence qs and returning an appropriate list of actions.

Additionally we can define the optimal cost for serving a request sequence qs on the initial
configuration init as the infimum over the costs of all well-formed strategies as.

Definition 2.7. Topt init qs = Inf {T init qs as | |as| = |qs|}

In contrast, modelling an online algorithm is a bit more involved, as the algorithms may
maintain internal states during their execution. Furthermore, as we need to support ran-
domization we have to express statements about distributions of these states. We first split
the definition of an online algorithm into two functions: an online algorithm consists of an
initialization phase I and a service phase S.
Firstly, in the initialization phase I the algorithm gets the initial list init and may form a
probability distribution over internal states is. This distribution will later be paired with
the list configuration to form a distribution over state tuples (is, init).
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2.3 A Framework for Competitive Analysis in Isabelle/HOL

In the serving phase S the algorithm gets a request q and a specific state tuple (is, s) and
returns a probability distribution over the tuples (a, is ′) consisting of the action taken to
serve q and the internal state after serving.
The function config A qs init n formalizes the execution of an algorithm by denoting the
distribution of state tuples after the nth step of A serving the request sequence qs on the
initial list init:

Definition 2.8 (config).
config (I, ) qs init 0 = do {

is← I init;
returnpmf (is, init)
}

config (I, S) qs init (Suc n) = do {
(is, s)← config (I, S) qs init n;
(a, is ′)← S is s qs[n];
returnpmf (is ′, step s qs[n] a)
}

For the initial distribution the initial list configuration is paired with the distribution of the
internal states the algorithm obtained by I. For the step case: for every state tuple (is, s) in
the distribution before the request, execute S together with the requested item obtaining a
distribution over the action taken and the following internal state. For any such tuple (a,
is ′) compute the list state s ′ after serving qs[n] with action a and package it up to form the
new state tuple (is ′, s ′).
Note that the list configuration s only is manipulated by step, thus invariants of step carry
over to the second component of any state tuple in the distribution config. We can formu-
late this as an induction rule:

Lemma 2.9. [[P init;
∧

s q a. P s =⇒ P (step s q a)]] =⇒ ∀ x∈setpmf (config (I, S) qs init n). P
(snd x)

Definition 2.10. Now we can define the expected cost for one step of the serving by referring to
config and mimicking the execution similarly:
ton (I, S) qs init n = E[do {

(is, s)← config (I, S) qs init n;
(a, is ′)← S is s qs[n];
returnpmf (t s qs[n] a)
}]

Which can be lifted to the whole request sequence to obtain the total cost:
Ton A qs init ≡∑

i<|qs|. ton A qs init i

Finally we can state the competitiveness of an online algorithm formally:

Definition 2.11. compet A c S0 = (∀ s0∈S0. ∃ b≥0. ∀ qs. Ton A qs s0 ≤ c ∗ Topt s0 qs + b)

Please note the order of the quantifiers. For every initial configuration, from a set that can
be specified, there is a constant term b such that for every request sequence the inequality

7



2 Competitive Analysis

holds. Thus b has to be constant in terms of the request sequence, but may be dependent
on the initial configuration.

Comparison to Request-Answer-Games

We relate our formalization of online algorithms and online problems to the Request-
Answer-Games in [9, chapter 7].
In our formalization we use as request set the whole range of the type ′query and only have
one answer set being the range of type ′action.
Our implicit definition of randomized online algorithms via the function config is different
from the one in [9]. We defined an algorithm step as the transformation of a distribution
over state tuples into another distribution over state tuples. In contrast to that Borodin
et al. define a randomized online algorithm as a probability distribution over the set of
all deterministic online algorithms {ALGx} (with ALGx meaning the deterministic online
algorithm obtained when fixing a stream of random bits x). The author suspects that these
notions are equivalent but no proof will be given.

2.4 The List Update Problem Formalized

We interpret the framework for competitive analysis for the list update problem.

For the list update problem we choose the configuration to be a list of elements of some type
α. An action consists of a list of indices pi::nat that specify the paid exchanges and a value
mf that specifies the free exchange.
For carrying out the list operations we define swapSuc n xs to swap consecutive elements
at indices n and n + 1 in xs if in bounds.

Definition 2.12. swapSuc n xs = (if Suc n < |xs| then xs[n := xs[Suc n], Suc n := xs[n]] else xs)

This function is lifted to lists of indexes (forming swapSucs), with the convention that the
list is processed from the back, i.e. the index located at the last position of the list is
swapped first.
The free exchange mtf2 n q c of the requested element q n positions to the front in c is
defined by bubbling q to the front via swapSucs. This enables us to use the lemmas proven
about swapSucs also for mtf2. Note that index xs x is the index of the first occurrence of x in
xs.

Definition 2.13. mtf2 n x c = (if x ∈ set c then swapSucs [index c x − n..<index c x] c else c)

Finally we can state step and t:

Definition 2.14.
step s q a = (let (k, sws) = a in mtf2 k q (swapSucs sws s))
t s q a = (let (mf , sws) = a in index (swapSucs sws s) q + 1 + |sws|)
t∗ s q a = (let (mf , sws) = a in index (swapSucs sws s) q + |sws|)

8



2.4 The List Update Problem Formalized

step first executes the paid exchanges and then the free exchange. The total cost of a step
measured by t is the position of the requested element plus 1 and the number of paid
exchanges executed. This holds for the full cost model, which will be used in chapter 3
and 4.
For the partial cost model, which will be used from Chapter 5 on, we also define t∗ to be
the cost for a single step: The only change is that the cost of the request omits the additional
cost of 1.
Note that we interpret the framework for step and t obtaining the functions T, Topt etc,
when we interpret it for the partial cost model (i.e. for step and t) we obtain functions T ∗,
T ∗opt etc.
Concerning the second component of the distribution of the state tuples of any algorithm
(the lists maintained by the algorithm), we can use the invariant preservation. As we know
that step only permutes the initial list configuration, we can easily show the following
lemma by the induction principle 2.9:

Lemma 2.15.
∀ x∈setpmf (config (I, S) σ init n).

set (snd x) = set init ∧
distinct (snd x) = distinct init ∧ |snd x| = |init|

Now we have the tools in place to analyse several algorithms for the list update problem:
we analyze the deterministic online algorithm Move to Front (chapter 3), the randomized
online algorithm BIT (chapter 4), the offline algorithm OPT2 (chapter 6), and finally the
deterministic online algorithm TS (chapter 7).

9
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3 MTF: an Easy Algorithm for the LUP

3.1 Definition of MTF

The first algorithm we consider is MTF (Move To Front). As its name suggests this algo-
rithm moves every requested element to the front by free exchanges.

Definition 3.1 (MTF informal). After accessing an element, move it to the front of the list, with-
out changing the relative order of the other items.

The formal definition of MTF that fits into our framework is straightforward. The internal
state is empty and the action taken to serve a request is constant.

Definition 3.2 (MTF).
MTF-init s = returnpmf ()
MTF-step is s q = returnpmf ((|s|, []), ())
MTF = (MTF-init, MTF-step)

3.2 MTF is 2-competitive

As the proof of this section has already been formalized [16] and was only integrated into
the framework, we will not go into great detail about it. Nevertheless, we present the
following two concepts and the structure of the proof as we will reuse them for the analysis
of BIT in Chapter 4.

Amortized Analysis

We use the amortized complexity analysis with a potential function which has been for-
malized in Isabelle/HOL [17]. Essentially we use the following lemma from it:

Lemma 3.3.
[[Φ 0 = 0;

∧
n. 0 ≤ Φ n;

∧
n. t n + Φ (n + 1) − Φ n ≤ u n]] =⇒ (

∑
i<n. t i) ≤ (

∑
i<n. u i)

It states that, given an appropriate potential function Φ and showing that the amortized
cost can be bounded by u, we can conclude that u is indeed an upper bound for the real
cost t.

11
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Inversions

A key concept we exploit in the following proof is the way how to compare the lists main-
tained by two algorithms. We introduce the concept of inversions:

Definition 3.4. Suppose xs is a permutation of the list ys and x < y in xs denotes that element x
precedes y in xs, then we define the inversions between xs and ys as,
Inv xs ys = {(x, y) | x < y in xs ∧ y < x in ys}

A natural interpretation of the number of inversions of two lists is the number of swaps
needed to transform one list into the other. Thus it also bounds the difference of the indexes
of an element in both lists. This fact will later be exploited

The proof

The analysis of MTF was first conducted by Sleator and Tarjan [23].
The proof in [16] begins with fixing a request sequence qs and an adversary strategy as of
an adversary A. A bunch of helper functions are defined including cA (the cost incurred by
the access of the requested element for A), pA (the cost for paid exchanges of A) and fA (the
number of positions A moves the requested item to the front), sAn the list configuration of
A after step n, tA n the cost of A in step n and smtf n the list configuration of MTF after step
n, . Then an amortized argument is used for showing that MTF’s total cost can be bounded
by the double of the cost incurred by as serving qs.

For that purpose a potential function is defined that maps the configurations of A and MTF
to the number of inversions between the two lists.
Φ n = |Inv (sA n) (smtf n)|
The demanding part of the proof – showing that the amortized cost of a single step of MTF
can be bounded by the cost of A – will be ommited here. The proof obligation is:

Lemma 3.5. tmtf n + Φ (n + 1) − Φ n ≤ 2 ∗ cA n − 1 + pA n − fA n

Together with the potential function technique (Lemma 3.3) it can be used to show the
2-competitiveness of MTF against any adversary A and thus against the optimal offline
algorithm:

Theorem 3.6.
[[init 6= []; distinct init; set qs ⊆ set init]] =⇒ Ton MTF qs init ≤ (2 − 1 / |init|) ∗ Topt init qs

and thus

Theorem 3.7. compet MTF 2 {init | distinct init}

This concludes this section. It is notable that MTF, albeit its simplicity, attains the best
competitive ratio possible for deterministic online algorithms [13].
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4 BIT: an Online Algorithm for the List
Update Problem

In this chapter we study a simple randomized algorithm for the list update problem called
BIT due to Reingold and Westbrook [19]:

Definition 4.1 (BIT informal). BIT keeps for every element x on the list a mod2-counter, b[x ]:
For each element x on the list, randomly initialize its bit b[x ] independently and uniformly. When a
request to access an element x is given, first complement its bit b[x ]. Then, if b[x ] = True, move x to
the front; otherwise (b[x ] = False) do nothing.

It turns out that this algorithm breaks the 2-competitive barrier mentioned in the introduc-
tion and it can be shown that BIT is 1.75-competitive.
In this chapter we first provide the necessary machinery to define BIT, then give a defini-
tion of BIT that fits into our framework and finally prove that BIT is 1.75-competitive.
Therefor we proceed as in the proof of Theorem 3.7: an amortized analysis is employed
with a potential function involving inversions. Nevertheless, as the proof talks about ex-
pectations rather than concrete values it is a bit more intricate.

4.1 Formalization of BIT

In contrast to MTF, BIT maintains an internal state.
In this section we first define a uniform probability distribution over bit vectors of length
n, and call it L n. We will prove some basic properties about it and will use it in order to
define BIT. As BIT flips some bit during a request, such a function has to be provided and
the effect on the probability distribution has to be examined.

4.1.1 The Internal State

We define L n as the uniform distribution over bit vectors (bool list) of length n recursively
and prove the following characteristic lemmas about it:

Definition 4.2.
L 0 = returnpmf []

L (Suc n) = do {
xs← L n;

x← bernoullipmf (5 / 10);

returnpmf (x · xs)
}

13



4 BIT: an Online Algorithm for the List Update Problem

Lemma 4.3.
finite (setpmf (L n))

setpmf (L n) = {x | |x| = n}
n < l =⇒ mappmf (λy. y[n]) (L l) = bernoullipmf (5 / 10)

As expected, if we look one specific bit, in the distribution of all bit vectors of length n, it
has equal probability to be True and False.
We use the notation [[b]](n) for the value of the nth bit in the bit vector b as a natural number.
We further define the simple function flip i b that flips the ith bit of the bit vector b.
We then see that if we apply flip i on every member of the probability distribution L n we
obtain again the same probability distribution:

Lemma 4.4. mappmf (flip i) (L n) = L n

4.1.2 Definition of BIT

With L n and flip in place we are able to define the BIT algorithm in our framework with
an initialization and a step function:

Definition 4.5 (BIT). BIT-init init = L |init|
BIT-step is s q = (let a = (if is[q] then 0 else |s|, []) in returnpmf (a, flip q is))
BIT ≡ (BIT-init, BIT-step)

To initialize BIT, it generates the probability distribution L n over the possible bit vectors.
The step function of BIT formalizes what has been stated before informally: given the cur-
rent internal state is, list configuration s and the requested element q: return a probability
distribution of the appropriate action taken by BIT and the resulting internal state. As we
have mentioned BIT is a barely random algorithm, thus the step function deterministically
yields one possible reaction. Note that ”behavioural algorithms” (like RMTF) might use
randomization here.
Together, the initialization and step function form the online algorithm BIT.

4.1.3 Properties of BIT’s state distribution

We can prove some interesting properties about BIT:
Note that BIT does not use paid exchanges: ∀ ((f , p), is ′)∈setpmf (BIT-step is s q). p = [].
Throughout the execution of BIT the distribution of internal states stays the same:

Lemma 4.6. mappmf fst (config (BIT-init, BIT-step) qs init n) = L |init|.

This stems from the fact that all internal states get the requested element’s bit flipped and
as we have seen this does not alter the distribution. This property can be established by an
induction on n and lemma 4.4.

14



4.2 BIT is 1.75-competitive

It follows directly that the internal state maintains the same length during the serving of
the requests.
∀ x∈setpmf (config (BIT-init, BIT-step) qs init n). |fst x| = |init|
Concerning the second component of the distribution of the state tuples of BIT (the lists
maintained by BIT) we already know Lemma 2.15, i.e. that it is always a permutation of
the initial list configuration.

4.2 BIT is 1.75-competitive

Now that we defined BIT, we can tackle the proof of its competitiveness.
The proof works similar as the one for MTF: first we fix an adversary A and the request
sequence, then we show that BIT’s expected cost can be bounded by 7

4 times the cost of A.
As we can prove this for any adversary, it also holds against the optimal offline strategy
and we can conclude that BIT is 7

4 -competitive.
The strategy is clear, but it still is a long way to go:

4.2.1 Definition of the Locale and Helper Functions

As mentioned we fix a request sequence qs and an adversary Ā’s actions acts, appropriately
chosen (it has to hold |acts| = |qs|). Furthermore we restrict the initial list to be a permuta-
tion of the numbers {0..<|init|}. This seems to be a natural restriction, as any list of items
could be transformed into such a permutation by a bijection between the elements of the
list and their position in the list.

This time we want to exclude paid exchanges of Ā which are out of bounds. It is clear that
these do not have an effect on Ā’s list (c.f. definition 2.12) but only add to Ā’s cost. To that
end by filtering out these paid exchanges one obtains an algorithm A. We formally verify
that the costs won’t rise while the effect on the list stays the same:
Similar to the proof of MTF we now define a whole bunch of helper functions.
First we define the functions freeA, fA n being the list of free exchange actions and the
number of positions the requested element is moved forward in the nth step. Furthermore
paidA (paidĀ), sA n (sĀ n), cA (cĀ), pA (pĀ), tA (tĀ), being the list of paid exchanges, the list
after the nth step, cost of the free exchanges in nth step, number of paid exchanges in the
nth step, and total cost in the nth step of A and Ā respectively.
Then we verify that the filtering does not rise the cost while the effect stays the same:

Theorem 4.7.
n ≤ |qs| =⇒ TA n ≤ TĀ n
n < |qs| =⇒ sA n = sĀ n

In the following we show that BIT is competitive to A (the filtered strategy), which then
implies that it is also competitive against the strategy Ā.
Furthermore we define a function that determines the list configuration at the point in time
just after the mth paid exchange has been executed while the nth element is requested.
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4 BIT: an Online Algorithm for the List Update Problem

In the proof it will be important which element is swapped in each step. This is determined
by the function gebub and clearly these elements are always in bounds:
[[n < |paidA|; m < |paidA[n]|]] =⇒ gebub n m < |init|.

4.2.2 The Potential Function

As already mentioned we will prove the result via an argument using the potential func-
tion technique. In contrast to the proof of MTF the potential function will be a bit more
complicated and takes into account the internal state maintained by BIT.
Similar to the potential function in the proof of Theorem 3.5, the potential function we use
here counts the number of inversions between BIT and A’s lists. Recall, an inversion is an
ordered pair of items (x, y) such that x precedes y in BIT’s list and y precedes x in A’s list.
We define w(x,y), the weight of the inversion (x, y), as the number of accesses to y before
y passes x in BIT’s list. As mentioned, [[b]](y) denotes the value of the bit of element y as
a natural number. Since y passes x by moving to the front, by the definition of BIT and
[[b]](y), we have w (x, y) = [[b]](y)+1.
Finally we define the potential for step n with a pair of internal state and list configuration:

Definition 4.8. ϕ n (b, c) = (
∑

(x, y)∈Inv c (sA n). [[b]](y)+1)

When now define the potential as the expectation of ϕ over the probability distribution of
BIT’s states after the nth request:

Definition 4.9. Φ n = E[mappmf (ϕ n) (config BIT qs init n)]

Φ is clearly nonnegative (0 ≤ Φ n), and as BIT and A start with the same initial list the
initial potential Φ 0 = 0.

4.3 Upper Bound on the Cost of BIT

The worst case cost for a single step of BIT occurs when the requested element is located
at the end of the list. Thus BIT’s cost can be bounded by the list length, this simple result
can be lifted to bound BIT’s total cost from above:

Theorem 4.10. ∀ i<n. qs[i ] ∈ set init =⇒ TBIT n ≤ n ∗ |init|
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4.4 Main Lemma

4.4 Main Lemma

So now we are ready to state the main lemma in this chapter and formalize its proof.

Theorem 4.11. tBIT n + Φ (n + 1) − Φ n ≤ 7 / 4 ∗ tA n − 3 / 4

Proof. We first consider the degenerate case that the initial list is empty, then the potential
function is always zero, cost of BIT is 1 and cost of A is a least one.

In every step of the algorithm both BIT and the algorithm A serve the same request. This
involves the movement to front of BIT as well as the paid and free exchanges by A.
To name the respective list configurations and internal states we have the following con-
ventions, which are depicted in Figure 4.1: A’s list at the beginning of the request is called
xs, after the paid exchanges xs ′ and after the free exchanges xs ′′. The position of the re-
quested element after the paid exchanges (which also is part of A’s cost) is denoted by k,
whereas the position it is moved to by free exchanges by k ′.
As BIT does not use paid exchanges we name its list at the beginning of the request ys and
after the potential move to front ys ′. The position of the requested element is before the
request is labelled l. The internal states of BIT are called b and b ′ before and respectively
after the processing of the step. Note that in any case the requested element’s bit is flipped.

A:
xs

paid exch.

xs’

k′

q

k

. . .

free exch.

xs”

q

k′ k

. . .

BIT:

ys
q

l

Φ2Φ1Φ0
ys

q

ys’
? ?

b

q

x

b’

q

x̄

Figure 4.1: Overview of the conventions of naming.

We denote the probability distribution over the state tuples of BIT by D:
D ≡ config (BIT-init, BIT-step) qs init n.
The current goal now is to show that the cost of BIT plus the change in potential is bounded
by 7 / 4 the cost of A.
As a first step, we transform the lhs of our goal to obtain an certain expectation over the
distribution of BIT’s state:

tBIT n + Φ (n + 1) − Φ n = E[mappmf (λx. cost x + Φ2 x − Φ0 x) D] (4.1)
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4 BIT: an Online Algorithm for the List Update Problem

This is obtained by unfolding the definitions (of Φ and tBIT ), and linearity lemma of E. For
now, to calculate the costs of BIT, we need to know exactly the list configuration of BIT. In
the next proof step we will approximate this cost for every pair of internal state and list
configuration without using information about the list configuration. This approximation
then will only depend on the BIT’s internal state (the bit vector) and information from A’s
strategy (position of the requested element, etc.).
As a preview of the total proof’s structure: this approximation can then be used to take the
expectation of the cost over the distribution of the first component of BIT’s states, which
we already know: we have shown in Lemma 4.6 that this distribution is always L n.
Thus we can take the expectation over all possible bit vectors and obtain the desired result
by bounding the resulting term.

4.4.1 The Transformation

But let us now turn to the approximation of BIT’s cost independent of its list configuration:
What we will show in the following is this lemma:

Lemma 4.12.
∀ x∈setpmf D.

cost x + Φ2 x − Φ0 x
≤ k + 1 +

(if q ∈ set init
then if (fst x)[q] then k − k ′ else

∑
j<k ′. [[fst x]](xs ′[j ])+1 else 0) +

(
∑

i<|paidA[n]|. [[fst x]](gebub n i)+1)

Proof. For any state x that is a possible state in the distribution D we show that we can
approximate the cost of the nth step plus the change in potential by k + 1 (which is the cost
of A for the list access), a term for the paid exchanges A processes and a term for the free
exchanges both A and BIT execute.
Note that Φ2 x measures the inversions after the request (i.e. in xs ′′ and ys ′), whereas Φ1

x counts the inversions after the paid exchanges (i.e. in xs ′ and ys) and Φ0 x counts the
inversions before the request (i.e. in xs and ys).
First we examine how inversions evolve during the paid exchange phase of A.

Upper bound of the inversions created by paid exchanges of A

Consider what happens during the paid exchange phase of A. By definition every paid
exchange of A costs one unit, does not affect BIT’s state and only swaps two elements of
A’s list. Thus with every paid exchange maximum one new inversion can be created. This
inversion will then be weighted according to whether the second component’s bit is set in
BIT’s internal state.

Essentially, the potential after the paid exchanges can thus be bounded from above by the
potential before the paid exchange plus the number of paid exchanges weighted according
to the swapped element’s bit:
Φ1 x ≤ Φ0 x + (

∑
i<|paidA[n]|. [[b]](gebub n i)+1)
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4.4 Main Lemma

This theorem can easily be established by an induction on the length of the paid exchange
list. The already prepared function s ′-A n i gives the state in the nth request after the ith
paid exchange. gebub n i specifies the element that was swapped in the nth request at the
ith paid exchange, and thus determines (in the case an inversion was created by that swap)
the weight of that inversion.
Hence we have expressed the potential after the paid exchanges, and thus before the free
exchanges, by the initial potential and a sum over some bits of BIT’s internal state.
Next we investigate on how the cost of BIT can be approximated.

Upper bound for the costs of BIT

We worked off the paid exchanges of A. As every paid exchange costs A one unit, the
change in potential is compensated so far.
Now, following our conventions, we denote the position of the requested element q in A’s
list by k; that is, A’s access cost is k + 1. Let I count the number of inversions of the form
(x, q) of either weight. As mentioned in section 3.2 we see that q is located in BIT’s list at
most at location k + I.

Let cost x denote the cost of BIT when operating on the state tuple x, then we can bound
this cost following the idea from above: cost x ≤ k + 1 + I.

Upper bound for inversions generated by free exchanges

We are in a good position as we can determine exactly the effects of A’s transportations and
for BIT there are only two possibilities (move q to front or do nothing) which just depends
on BIT’s internal state.

In the case that q is not in the list, neither BIT’s internal state, nor BIT’s and A’s lists change,
thus the potential does not change.

In the case that q is in the list, we want to express the change of potential independently of
BIT’s current list configuration.

To analyze the change, we express the change as Φ2 x − Φ1 x = A − B + C, where A is the
contribution of new inversions created, B is the contribution of old inversions removed
and C is the contribution of old inversions that remain but change their weight. Formally
A ≡∑

(x, y)∈Inv ys ′ xs ′′− Inv ys xs ′. [[b ′]](y)+1
B ≡∑

(x, y)∈Inv ys xs ′− Inv ys ′ xs ′′. [[b]](y)+1
C ≡∑

(x, y)∈Inv ys ′ xs ′′∩ Inv ys xs ′. [[b ′]](y)+1 − [[b]](y)+1

We first consider B and C, thus the inversions that get removed or change their weight. We
have to examine two cases:
Either the requested elements bit is set (b[q] = True): then q stays in place in BIT’s list; how-
ever, since b[q] is flipped to False, each inversion of the form (x, q) changes its weight from 2
to 1. Since q stays in place, BIT does not eliminate any old inversion. Furthermore, A’s free
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4 BIT: an Online Algorithm for the List Update Problem

transportations will not eliminate any old inversions that are counted by I. Consequently
C = − I. Only inversions of the form (q, x) may be touched by A, hence 0 ≤ B.

We present this first case, in which the bit is set and thus BIT leaves the list unchanged,
more formally: ys ′= ys. It is obvious that 0 ≤ B, as B counts inversions. Furthermore the
contribution of inversions that change their weight can be determined this way:

C
=

∑
(x, y)∈Inv ys ′ xs ′′∩ Inv ys xs ′. [[b ′]](y)+1 − [[b]](y)+1

=
∑

(x, y)∈Inv ys ′ xs ′′∩ Inv ys ′ xs ′. [[b ′]](y)+1 − [[b]](y)+1
=

∑
(x, y)∈Inv ys ′ xs ′′∩ Inv ys ′ xs ′. if q = y then − 1 else 0

=
∑

(x, y)∈{(x, y) | (x, y) ∈ Inv ys ′ xs ′′∩ Inv ys ′ xs ′∧ y = q} ∪
{(x, y) | (x, y) ∈ Inv ys ′ xs ′′∩ Inv ys ′ xs ′∧

y 6= q}. if q = y then − 1 else 0
= (

∑
(x, y)∈{(x, y) | (x, y) ∈ Inv ys ′ xs ′′∩ Inv ys ′ xs ′∧ y = q}. − 1) +

(
∑

(x, y)∈{(x, y) | (x, y) ∈ Inv ys ′ xs ′′∩ Inv ys ′ xs ′∧ y 6= q}. 0)
= − |{(x, y) | (x, y) ∈ Inv ys ′ xs ′′∩ Inv ys ′ xs ′∧ y = q}|
= − I

First we unfold the definition of C, being the contribution of inversions that exist both
before and after the free exchanges. As BIT’s list does not change, ys can be replaced by ys ′.
Then one can observe that the difference in the sum is nonzero iff the second component
of the inversion is the requested element: in that case the weight decreases by 1. Now we
split the set on whether it has the requested element as a second component; then we see
that the second part has no contribution and the first one matches the set of inversions of
the form (z, q) before the free exchange occurred (being exactly what is counted by I). This
is the case because algorithm A only moves q further to the front, which cannot eliminate
any inversion of that form.

If (b[q] = False), q is moved to front in BIT’s list. This eliminates all inversions of the form
(x, q). These were of weight 1 prior to the access and counted by I. There might be more
inversions eliminated by A’s transportation but we have at least: I ≤ B. Clearly there are
no inversions that change their weight: C = 0.
We do not present this case formally as it is proven similarly to the first case. The interested
reader may look at the theory files for more details.
In both cases we learn:
C − B ≤ − I
As we saw, the approximation of the cost of BIT involves a positive I, in the final summa-
tion it will cancel out again.
Now we have to find an approximation for A, the newly created inversions.

Remark 4.13. Consider we move the element c further to the front in a list. This move leaves
the relative order of all other elements untouched and thus does not create nor modify an inversion
between two other elements a and b. Thus, when we look at free exchanges only inversions involving
the requested element q could be created: either of the form (q, z) or (z, q).
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4.4 Main Lemma

In case b[q] = False, q is moved to front.

As we learnt that in this case q is moved to front no inversion of the form (z, q) will be
generated. Thus we can investigate on which inversions of the form (q, z) are newly gen-
erated.
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q
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BIT:
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Figure 4.2: Situation when BIT moves q to the front

Figure 4.2 depicts the situation: Any element z that is located in front of position k ′ in
A’s list was not in an inversion of the form (q, z) with q before the free exchanges, but is
afterwards.
Note that this is only true if z was also in front of q in BIT’s list. Consequently we overap-
proximate the set of newly created inversions:

Lemma 4.14. Inv ys ′ xs ′′− Inv ys xs ′⊆ {(a, b) | a = q ∧ b 6= q ∧ index xs ′ b < k ′}

To determine the contribution of these newly generated inversion to A we sum up over all
positions {0..<k} the bit of the respective element.

A
=

∑
(x, y)∈Inv ys ′ xs ′′− Inv ys xs ′. [[b ′]](y)+1

≤ ∑
(x, y)∈{(a, b) | a = q ∧ b 6= q ∧ index xs ′ b < k ′}. [[b ′]](y)+1

=
∑

(x, y)∈{(a, b) | a = q ∧ b 6= q ∧ index xs ′ b < k ′}. [[b]](y)+1
≤ ∑

(x, y)∈{(q, b) | index xs ′ b < k ′}. [[b]](y)+1
=

∑
j<k ′. [[b]](xs ′[j ])+1

First the definition of A is unfolded and we use the overapproximation of the set of new
inversions (Lemma 4.14). Afterwards we use the knowledge that the second component
is not the requested element to infer that the bit vector is not flipped in the requested
positions; this condition is dropped afterwards. Finally we rearrange the sum in order to
obtain the desired form.
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A similar argument works in the case that BIT does not move q to the front, i.e. b[q] = True:
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Figure 4.3: Situation when BIT keeps q at its place

In this case Figure 4.3 depicts the situation: now only A executes a free exchange while
BIT’s list stays untouched. Thus only elements that are located between position k ′ and k
will generate new inversions of the form (z, q).
Again, as not all elements between positions k ′ and k in A’s list might precede q in BIT’s
list, this is an overapproximation.

Lemma 4.15. Inv ys ′ xs ′′− Inv ys xs ′⊆ {(xs ′[i ], q) | i ∈ {k ′..<k}}

A
=

∑
(x, y)∈Inv ys ′ xs ′′− Inv ys xs ′. [[b ′]](y)+1

≤ ∑
(z, y)∈{(xs ′[i ], q) | i ∈ {k ′..<k}}. [[flip q b]](y)+1

=
∑

z∈{(xs ′[i ], q) | i ∈ {k ′..<k}}. [[flip q b]](q)+1
=

∑
y∈{(xs ′[i ], q) | i ∈ {k ′..<k}}. 1

= k − k ′

We first unfold the definition of A then apply the overapproximation 4.15. The weight of
the newly created inversions are determined by the second component of the pair. As this
is the requested element, and thus the bit unset, the weight is always 1. Finally we obtain
A ≤ k − k ′ for this case.

Merging the findings about A, B and C, we obtain the desired result.
Φ2 x − Φ1 x ≤ − I + (if q ∈ set init then if b[q] then k − k ′ else

∑
j<k ′. [[b]](xs ′[j ])+1 else 0)

We can put together the results about the paid exchanges and the free exchanges:
∀ x∈setpmf D.

cost x + Φ2 x − Φ0 x
≤ k + 1 +

(if q ∈ set init
then if (fst x)[q] then k − k ′ else

∑
j<k ′. [[fst x]](xs ′[j ])+1 else 0) +

(
∑

i<|paidA[n]|. [[fst x]](gebub n i)+1)
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We have seen how to bound the cost of BIT and the change in potential for every possible
state of BIT independently of the actual list configuration of BIT.
In a next step, in order to obtain a concrete bound for the total cost of BIT, we have to take
the expectation of every term over the probability distribution of the state tuples of BIT,.

4.4.2 Approximation of the Term for Free exchanges

The next part of the proof clearly takes a tiny fraction of the informal proof as human
reader perform quite well in understanding expectations and their summations.
In a formal treatment this has to be stated a bit more extensively.

We want to show the following inequation:
E[mappmf (λx. if q ∈ set init

then if (fst x)[q] then k − k ′ else
∑

j<k ′. [[fst x]](xs ′[j ])+1
else 0) D]

≤ 3 / 4 ∗ k
If the requested element is not in the list, the left hand side gets 0 and thus the inequation
is proven trivially.
In the case that the requested element is in the list, we first show how to transform the two
terms individually by the following two lemmas and then combine them:

Transformation of the first term

Lemma 4.16. (
∑

x∈{l | |l| = |init| ∧ l[q]}. k − k ′) = (k − k ′) ∗ 2|init| − 1.

The first term is used iff (fst x)[q] = True, hence we look at the sum over all bool lists of
length |init| with the qth bit fixed to True. As the inner sum is independent of the bool
list of the outer sum it can be simplified to a product of k − k ′ and the cardinality of the
set. Obviously the latter equals to 2|init| − 1. Formalizing the last step includes proving the
following lemma:

Lemma 4.17. Let X and Y be disjoint sets of indices in the range [0, . . . ,m− 1] then,

|{xs | (∀ i∈X. xs[i ]) ∧ (∀ i∈Y. ¬ xs[i ]) ∧ |xs| = m}| = 2m − |X| − |Y|

Transformation of the second term

Now we consider the more complex second sum:

Lemma 4.18. (
∑

x∈{l | |l| = |init| ∧ ¬ l[q]}.
∑

j<k ′. [[x]](xs ′[j ])+1) = 3 / 2 ∗ k ′ ∗ 2|init| − 1

In the original term the second sum is used iff (fst x)[q] = False, thus we look at the sum
over all possible bit vectors that fix the bit on position q to False. Intuitively it is clear that
there are 2|init| − 1 many. Furthermore all indices j in the inner sum are smaller than k ′

hence smaller than k and thus xs ′[j ] 6= q. That means albeit fixing the qth position, all value
combinations are still possible and the expectation for the inner expression is
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4 BIT: an Online Algorithm for the List Update Problem

[[x]](xs ′[j ])+1 = 3 / 2.
Although this might be a simple derivation for a mathematician, it is quite some work to
formalize. In the heart of this formal proof lies the following lemma, which can be proven
by an induction on the finite set S.

Lemma 4.19. Let S, Tr and Fa be pairwise disjoint sets of indices in the range of [0, . . . , l−1], then
the following equality holds:
(
∑

x∈{xs | (∀ i∈Tr. xs[i ]) ∧ (∀ i∈Fa. ¬ xs[i ]) ∧ |xs| = l}.∑ j∈S. [[x]](j)+1) =

3 / 2 ∗ |S| ∗ 2l − |Tr| − |Fa|

Equational transformations to the goal

E[mappmf (λx. if (fst x)[q] then k − k ′ else
∑

j<k ′. [[fst x]](xs ′[j ])+1) D]

= E[mappmf (λx. if x[q] then k − k ′ else
∑

j<k ′. [[x]](xs ′[j ])+1) (L |init|)]
=

∑
x∈setpmf (L |init|). (if x[q] then k − k ′ else

∑
j<k ′. [[x]](xs ′[j ])+1) ∗ pmf (L |init|) x

=
∑

x∈{l | |l| = |init|}. (if x[q] then k − k ′ else
∑

j<k ′. [[x]](xs ′[j ])+1) ∗ (1 / 2)|init|

= (1 / 2)|init| ∗ (
∑

x∈{l | |l| = |init|}. if x[q] then k − k ′ else
∑

j<k ′. [[x]](xs ′[j ])+1)

= (1 / 2)|init| ∗ ((
∑

x∈{l | |l| = |init| ∧ l[q]}. if x[q] then k − k ′ else
∑

j<k ′. [[x]](xs ′[j ])+1)
+ (

∑
x∈{l | |l| = |init| ∧ ¬ l[q]}. if x[q] then k − k ′ else

∑
j<k ′. [[x]](xs ′[j ])+1))

= (1 / 2)|init| ∗ ((
∑

x∈{l | |l| = |init| ∧ l[q]}. k − k ′) + (
∑

x∈{l | |l| = |init| ∧ ¬ l[q]}.∑
j<k ′. [[x]](xs ′[j ])+1))

= (1 / 2)|init| ∗ ((k − k ′) ∗ 2|init| − 1 + 3 / 2 ∗ k ′ ∗ 2|init| − 1)
= 1 / 2 ∗ (k − k ′+ k ′ ∗ (3 / 2))
≤ 1 / 2 ∗ (3 / 2 ∗ (k − k ′) + k ′ ∗ (3 / 2))
= 3 / 4 ∗ k

With this in place we can transform the expectation. First we observe that the expression
only depends on the first component of BIT’s state, which is by Lemma 4.6 always L |init|.
Then as L |init| is finite we can rewrite the expectation as a finite sum over the expressions
evaluated for a state times the probability of that state. By properties of L we know this
probability is (1 / 2)|init| and the set of states are the bool lists with length |init|. We can pull
out the factor and then divide the set of states on whether the requested element’s bit is set
or not. This decides which of the two sums is evaluated; the sum can be pulled apart and
simplified. The next step is to use lemmas 4.16 and 4.18 and then contract the expression
to 3 / 4 ∗ k.
Finally we obtain the result:

Lemma 4.20.
E[mappmf (λx. if q ∈ set init

then if (fst x)[q] then k − k ′ else
∑

j<k ′. [[fst x]](xs ′[j ])+1
else 0) D]

≤ 3 / 4 ∗ k
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4.5 Lift the Result to the Whole Request List

4.4.3 Transformation of the Term for Paid Exchanges

A similar but far shorter development can be done for the term concerning the paid ex-
changes. We again observe that only the first component of the state is needed, then we
sum over all the possible internal states. The property of gebub n i being in bounds of the
internal state is needed to complete the proof, and we obtain:

Lemma 4.21. E[mappmf (λx.
∑

i<|paidA[n]|. [[fst x]](gebub n i)+1) D] = 3 / 2 ∗ |paidA[n]|

4.4.4 Combine the Results

tBIT n + Φ (n + 1) − Φ n
= E[mappmf (λx. cost x + Φ2 x − Φ0 x) D]
= E[mappmf (λx. k + 1) D] +

(E[mappmf (λx. if q ∈ set init
then if (fst x)[q] then k − k ′ else

∑
j<k ′. [[fst x]](xs ′[j ])+1

else 0) D] +
E[mappmf (λx.

∑
i<|paidA[n]|. [[fst x]](gebub n i)+1) D])

≤ k + 1 + (3 / 4 ∗ k + 3 / 2 ∗ |paidA[n]|)
= 7 / 4 ∗ k + 3 / 2 ∗ |paidA[n]| + 1
≤ 7 / 4 ∗ (k + |paidA[n]|) + 1
= 7 / 4 ∗ (tA n − 1) + 1
= 7 / 4 ∗ tA n − 3 / 4

First we use Equation 4.1. Then with monotonicity of E, we apply the approximation of
the expression inside (Lemma 4.12) and pull out the sums with linearity of E. Then we use
the results from Lemma 4.20 and 4.21 to obtain concrete bounds for the expectations. After
some transformation we can plug in the cost of A and then simplify to the desired result.
Finally we finish the proof of the main lemma.

4.5 Lift the Result to the Whole Request List

The result can be lifted to TBIT n with the potential function method:

Corollary 4.22. n ≤ |qs| =⇒ TBIT n ≤ 7 / 4 ∗ TA n − 3 / 4 ∗ n

Furthermore, recall that we first filtered out all paid exchanges from algorithm Ā in order
to obtain a well-formed algorithm A, we already showed that this filtering does not alter
the effect of the algorithm but decreases its cost. As we showed the inequality for the
filtered algorithm A we can simply obtain the corresponding result for Ā:

Corollary 4.23 ([9, Theorem 2.1]). n ≤ |qs| =⇒ TBIT n ≤ 7 / 4 ∗ TĀ n − 3 / 4 ∗ n

With an upper bound for the cost of BIT (TBIT n≤ n ∗ |init|) we obtain the competitiveness
result:
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4 BIT: an Online Algorithm for the List Update Problem

Lemma 4.24.
[[n ≤ |qs|; init 6= []; ∀ i<n. qs[i ] ∈ set init]] =⇒ TBIT n ≤ (7 / 4 − 3 / (4 ∗ |init|)) ∗ TĀ n

Until now we used the newly defined functions (c.f. Section 4.2.1) to express the costs of
BIT and Ā; in order to integrate them into our framework for competitive analysis we have
to show the equivalence with the related notions:

Lemma 4.25. TBIT |qs| = Ton BIT qs init
TĀ |qs| = T init qs acts

Ultimately we can state the final lemma of this section: BIT is 7
4 -competitive against any

strategy A:

Lemma 4.26. [[init 6= []; ∀ i<|qs|. qs[i ] ∈ set init]] =⇒ Ton BIT qs init ≤ (7 / 4 − 3 / (4 ∗ |init|))
∗ T init qs acts

4.6 Generalize Competitivness of BIT

It obviously follows that BIT is also 7
4 -competitive against the optimal strategy. Formally

this is done by interpreting the above locale with any valid strategy and conclude from the
interpretation of Lemma 4.26 that BIT is also competitive against the optimal strategy:

Theorem 4.27. compet BIT (7 / 4) {init | init 6= [] ∧ set init = {0..<|init|}}

4.7 Conclusion and Remarks

With the proof of competitivenss of BIT, we have seen a similar proof as for MTF: we fixed
an adversary and a specific request sequence (via a locale) and then showed competitiv-
ness in that setting by an amortized analysis. Again, the potential function technique was
used, with a slightly more complicated potential function. As we chose the adversary
and the request sequence arbitrarily we were able to conclude that BIT is 1.75-competitive.
As BIT is a random algorithm we had to express statements about distributions of states
which complicated the proof. Eventually, reasoning about simple probability distributions
required more effort than its informal counterpart: concepts that mathematicians are quite
familiar with – e.g. uniform distributions of bit vectors, reasoning with expectations and
transformations of sums – had to be formalized and thus blew up the proof.
Note that surprisingly BIT’s behavioural brother Random Move To Front (RMTF), which
moves any requested element to front with probability 1

2 , is no better than 2-competitive
[9, Section 2.3].

As we have seen in the last two chapters, proofs for competitive analysis of quite easy
algorithms already are quite complicated and intricate. But we also have seen that most
arguments involve only the relationship between two elements: i.e. we counted the inver-
sions of two elements. In the following chapter we will introduce the list factoring tech-
nique, which allows us for a specific class of algorithms (including MTF, BIT and others)
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4.7 Conclusion and Remarks

to first reason only on lists of length 2 and then naturally lift the result to lists of arbitrary
list length. Typically these algorithms are much easier to analyse on the restricted lists.
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5 List factoring technique

In the last two chapters we have seen proofs for competitiveness of the algorithms MTF
and BIT. Albeit these algorithms are simple to state, their analysis is already quite compli-
cated. In order to analyse more complex algorithms we long for better techniques.
The proof technique list factoring enables us to reason about a certain algorithm only on
lists of length 2 and then lift the result to lists of arbitrary length. As most algorithms
collapse into quite easy ones, once they only work on two elements, the proofs typically
get much shorter, and thus enable us to tackle more involved algorithms.
Borodin gives quite easy proves of TS being 2-comp, BIT being 1.75-comp and their com-
bination COMB being 1.6-comp, once the proof technique of list factoring is available.
The downside of this approach is, that a lot of work has to be done in order to obtain this
proof technique.

In this chapter we introduce the list factoring technique for analyzing algorithms for the
list update problem. Therefor we first present a different representation of the cost of a
list update algorithm with which we can decompose this cost to the costs only involving
pairs of elements. We then introduce the pairwise property of online algorithms, which is
satisfied by a number of proposed algorithms (e.g BIT, MTF, TS, etc.). With these two in-
gredients we are able to show the factoring lemma which enables us to lift competitiveness
results of lists of length two to arbitrary list lengths.
Note that from this chapter on we consider the partial cost model for the list update problem, i.e. an
access to the front element has cost 0.

5.1 Another view on the cost of an algorithm for the list update
problem

The list factoring technique only works for algorithms that do not execute paid exchanges.
These have the property that a request’s cost only depends on the position in the list.
The main idea of the list factoring technique is to count the cost of accesses in a different
way: Instead of thinking about the cost of a request as the position i in the list and attribut-
ing the entire access cost of i to that element, we describe it as the number of elements that
precede the requested element. We thus change our view and attribute a “blocking cost”
of 1 to every element that precedes the requested element. For the requested element and
all following the “blocking cost” is 0.

Formally we state the blocking cost of an element x for the requested element qs[i ] for a
current state tuple s as. Remember that a state tuple (is, c) is a pair of an internal state is
and a list configuration c.

Definition 5.1. ALG x qs i s = (if x < qs[i ] in snd s then 1 else 0)
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5 List factoring technique

We now lift this definition into the randomized world, where we have to cope with a dis-
tribution over states and expectations: ALG ′A qs init i x determines the expected blocking
cost of element x in the ith step of the execution of the online algorithm A on the request
sequence qs starting from initial list state init.

Definition 5.2. ALG ′A qs init i x = E[mappmf (λxa. ALG x qs i xa) (config∗ A qs init i)]

We can find another representation of the cost of an online algorithm without paid ex-
changes:

T ∗on (I, S) qs init
=

∑
i<|qs|. t∗on (I, S) qs init i

=
∑

i<|qs|.∑ x∈set init. ALG ′ (I, S) qs init i x
=

∑
x∈set init.

∑
i<|qs|. ALG ′ (I, S) qs init i x

=
∑

x∈set init.
∑

y∈set init.
∑

i | i < |qs| ∧ qs[i ] = y. ALG ′ (I, S) qs init i x
=

∑
(x, y)∈{(x, y) | x ∈ set init ∧

y ∈ set init ∧
x 6= y}.∑ i | i < |qs| ∧ qs[i ] = y. ALG ′ (I, S) qs init i x

=
∑

(x, y)∈{(x, y) | x ∈ set init ∧
y ∈ set init ∧
x < y}.∑ i | i < |qs| ∧ (qs[i ] = y ∨ qs[i ] = x).

ALG ′ (I, S) qs init i y +
ALG ′ (I, S) qs init i x

First we unfold the definition of the algorithm’s cost, then the cost of step i is equivalent
to the sum of blocking cost of all elements in step i. We rearrange the summations and
denote the inner summation of the last expression ALGxy A qs init x y, meaning the cost
generated by x blocking y or vice versa:

Definition 5.3.
ALGxy A qs init x y = (

∑
i | i < |qs| ∧ qs[i ] ∈ {y, x}. ALG ′A qs init i y + ALG ′A qs init i x)

We can summarize the above derivation:

Lemma 5.4 ([9, Equation 1.4]).
T ∗on (I, S) qs init = (

∑
(x, y)∈{(x, y) | x ∈ set init ∧ y ∈ set init ∧ x < y}. ALGxy (I, S) qs init

x y)

5.1.1 The pairwise property

At this point we want to find a possibility to determine ALGxy A qs init x y. The only thing
the term depends on is the relative order of x and y during the execution. Note that this
order can only change when either x or y is requested and thus can get in front of the other
element via free exchanges.
We now examine the cost of an algorithm on a projected list and request sequence:
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5.2 List Factoring for OPT

Denote with qs[{x , y}] the projection of qs over x and y, being the request sequence qs af-
ter deleting all requests for elements other than x and y. Similarly let init[{x , y}] be the
projection of the initial list.
Thus we can state the cost of serving the projected request sequence on the projected initial
list as:
T ∗on A qs[{x , y}] init[{x , y}]

Definition 5.5 (pairwise property). We then say that the algorithm A satisfies the pairwise
property if
∀ qs init.
∀ (x, y)∈{(x, y) | x ∈ set init ∧ y ∈ set init ∧ x < y}.
T ∗on A qs[{x , y}] init[{x , y}] = ALGxy A qs init x y

Remark: Algorithm MTF and BIT are examples of algorithms that satisfy the pairwise
property. Also algorithms TS and COMB satisfy it.

5.1.2 Desire for the list factoring technique

With Lemma 5.4 and the definition of the pairwise property we are in the position to de-
scribe the list factoring technique:
Suppose we have an algorithm A that does not use paid exchanges and satisfies the pair-
wise property. Assume for the moment that OPT also satisfies the pairwise property as
well as Lemma 5.4. Now suppose that we have proven that A is c-competitive for all
projected request sequences qs[{x , y}] and initial lists init[{x , y}]:
T ∗on A qs2 init2 ≤ c ∗ T ∗on OPT qs[{x , y}] init[{x , y}]

With the pairwise property of both A and OPT we obtain
ALGxy A qs init x y ≤ c ∗ ALGxy OPT qs init x y
By Lemma 5.4 we could conclude that A is c-competitive.

T ∗on A qs init
=

∑
(x, y)∈{(x, y) | x ∈ set init ∧ y ∈ set init ∧ x < y}. ALGxy A qs init x y

≤ ∑
(x, y)∈{(x, y) | x ∈ set init ∧ y ∈ set init ∧ x < y}. c ∗ ALGxy OPT qs init x y

= c ∗ T ∗on OPT qs init

Unfortunately, OPT neither can avoid paid exchanges in general nor does it necessarily
satisfy the pairwise property. That is why some detour has to be taken. In the next section
we develop similar equations to Lemma 5.4 and the pairwise property for the optimal
offline algorithms.

5.2 List Factoring for OPT

The crucial lack, why we cannot conduct the same development for OPT as in Lemma 5.4
is that OPT may use paid exchanges. Thus we have to take these into account.
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5 List factoring technique

For that purpose we define the function ALG-P sws x y s that determines how often ele-
ments x and y are swapped while executing the swaps sws on the list s.
Note that we now want to use list factoring for a specific strategy (say Strat), thus we do
not have to talk about expectations. So we can easily lift ALG-P up to ALG-Pxy Strat qs init
x y – denoting the number of paid exchanges between elements x and y while executing
Strat on request sequence qs and initial list init. Similarly we lift the blocking cost ALG to
ALGxy-det.

Then we are able to state the following theorem:

Theorem 5.6 ([9, Equation 1.7]). Suppose we have a strategy Strat that attains the optimal cost
on qs and init, then the optimal cost for the projected case is at most the blocking cost plus the
number of paid exchanges executed between x and y:
T ∗opt init[{x , y}] qs[{x , y}] ≤ ALGxy-det Strat qs init x y + ALG-Pxy Strat qs init x y

Proof. Note that the right-hand side of this inequality gives the total cost of some offline
algorithm Strat{x, y} that is a projection of Strat over x and y: It includes all costs incurred
by Strat for either accesses (via the blocking costs) and paid exchanges between x and y.
The proof can be established by constructing Strat{x, y} and showing that its total cost in
serving qs[{x , y}] is the right-hand side of the inequality. Surely this algorithm pays at least
as much as the optimal offline algorithm.

Furthermore, with a similar development as in Lemma 5.4, taking into account the paid
exchanges, we can prove:

Theorem 5.7 ([9, Equation 1.8]).
T ∗ init qs Strat =

(
∑

(x, y)∈{(x, y) | x ∈ set init ∧
y ∈ set init ∧
x < y}. ALGxy-det Strat qs init x y +

ALG-Pxy Strat qs init x y)

Combining the last two theorems we can conclude:

Corollary 5.8. (
∑

(x, y)∈{(x, y) | x ∈ set init ∧ y ∈ set init ∧ x < y}. T ∗opt init[{x , y}] qs[{x , y}])
≤ T ∗opt init qs
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5.3 Factoring Lemma

5.3 Factoring Lemma

Now as we have taken this detour, with the help of the pairwise property, Lemma 5.4 and
Corollary 5.8 we can easily show the desired result:

Theorem 5.9 ([9, Lemma 1.2]). Assume α to be nonnegative, c to be greater than 1 and A to be
an online algorithm that has the pairwise property. If A is c-competitive on lists of length 2
pairwise A
we can conclude that A is c-competitive on lists of arbitrary list length:
∀ s0∈S0. ∃ b≥0. ∀ qs. T ∗on A qs s0 ≤ c ∗ T ∗opt s0 qs + b.
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6 OPT2: an Optimal Algorithm for Lists of
Length 2

One key feature of the list factoring technique, introduced in the last chapter, is certainly
that even complicated algorithms for the list update problem are surprisingly simple on
lists of length 2. It is even possible to state an optimal offline algorithm: OPT2.
We have seen in the analysis of MTF and BIT, that in principle competitive analysis can be
carried out without any knowledge of the optimal offline algorithm. With OPT2 we have
more information about the structure of the optimal algorithm which can be used when
proving competitivness of algorithms for the list update problem on lists of size 2.
In this chapter we study the nature of OPT2: we give its definition due to Reingold and
Westbrook [20], show that it indeed attains the optimal cost on lists of size 2 and then
determine the cost of OPT2 on different specific request sequences.

6.1 Formalization of OPT2

First we state the informal definition due to Reingold and Westbrook [20]:

Definition 6.1 (OPT2 informal). After each request, move the requested item to the front via free
exchanges if the next request is also to that item. Otherwise do nothing.

Observe that this algorithm only needs knowledge of the current and next request. Thus
OPT2 is neither a pure offline nor an online algorithm; it is called an algorithm with looka-
head. Further remarks on such algorithms can be found in the last section of this chapter.
We define a function OPT2 that, given a request sequence and an initial list of two ele-
ments, generates OPT2’s strategy:

Definition 6.2 (OPT2).
OPT2 [] [x, y] = []
OPT2 [a] [x, y] = [(0, [])]
OPT2 (a · b · σ ′) [x, y] = if a = x then (0, []) · OPT2 (b · σ ′) [x, y]

else if b = x then (0, []) · OPT2 (b · σ ′) [x, y]
else (1, []) · OPT2 (b · σ ′) [y, x]

Two simple properties of OPT2 can be stated: The length of the strategy matches the length
of the request sequence and if the next requested element is in front of the list OPT2 will
not do anything in this step. Recall that an action consists of the number of positions the
requested element is moved forward by free exchanges and a list of indices for the paid
exchanges.
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Lemma 6.3. |OPT2 σ [x, y]| = |σ|
OPT2 (x · σ ′) [x, y] = (0, []) · OPT2 σ ′ [x, y]

6.2 OPT2 is Optimal on Lists of Length 2

Before we tackle the proof for OPT2 observe that the following lemma holds:

Lemma 6.4. T ∗opt [x, y] σ ≤ 1 + T ∗opt [y, x] σ

Proof. Suppose we have a strategy S to optimally serve the request sequence σ with initial
list [y, x] and look for a strategy to serve σ starting from [x, y]. We can first swap the two
elements by one paid exchange and then use S to serve the sequence. This way we can
bound the optimal cost for σ starting from [x, y].

Let us now turn to proving OPT2’s optimality. As OPT2 obviously pays at least as much as
the optimal offline algorithm the more demanding part of the proof is showing that OPT2
pays no more than the optimal offline algorithm:

Lemma 6.5 ([20, Proposition 4]). T ∗ [x, y] σ (OPT2 σ [x, y]) ≤ T ∗opt [x, y] σ

Proof. First we will give an outline of the proof and then show the details for one case.
Assume the initial list to be [x, y] and only elements x and y being requested.
The lemma is proven by well-founded induction on the length of the request sequence σ.
We start by doing a case distinction on whether the requested element is x and thus in front
of the list.
If indeed x is requested, no matter what requests follow, OPT2 will do nothing in this
move and keep the list untouched (Lemma 6.3). The optimal offline algorithm now has
two options: Either it acts as OPT2 – then the induction hypothesis can be applied right
away – or it swaps the list, then we can use Lemma 6.4 and it remains to show that serving
the request while reversing the list costs at least 1 more than acting like OPT2 and leaving
the list untouched.
In the second case (the requested element is y) another case distinction has to be done on
the second requested element. Depending on whether the optimal algorithm transforms
the list as OPT2 or not, the induction hypothesis can be applied at once or again with
lemma 6.4.
We will present the first case in more detail. As for the second case, the proof is established
essentially by the same method, only some more case distinctions obscure the argument.
For more details feel free to look into the proof text.

Consider now the case that the request sequence is of the form σ = x · σ ′. Our current goal
is T ∗ [x, y] (x · σ ′) (OPT2 (x · σ ′) [x, y]) ≤ T ∗opt [x, y] (x · σ ′).

To show that, we fix an arbitrary optimal strategy Strat.
In the case that Strat leaves the list untouched (step [x, y] x (hd Strat) = [x, y]) the induction
hypothesis suffices to complete the proof:
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T ∗ [x, y] (x · σ ′) (OPT2 (x · σ ′) [x, y])
= T ∗ (step [x, y] x (hd (OPT2 (x · σ ′) [x, y]))) σ ′

(OPT2 σ ′ (step [x, y] x (hd (OPT2 (x · σ ′) [x, y]))))
= T ∗ [x, y] σ ′ (OPT2 σ ′ [x, y])
≤ T ∗opt [x, y] σ ′

≤ T ∗ [x, y] σ ′ (tl Strat)
≤ t∗ [x, y] x (hd Strat) + T ∗ (step [x, y] x (hd Strat)) σ ′ (tl Strat)
= T ∗ [x, y] (x · σ ′) Strat

First we unfold the calculation of OPT2’s strategy: it will not do anything and also pay
nothing, as x is located in the first position. Then we can apply the induction hypothesis
for the shorter request sequence σ ′. Obviously, if we use the tail of Strat as a strategy for
the request sequence σ ′ it will cost at least as much as the optimal strategy. The last two
steps bridge the gap to the total cost of strategy Strat on the whole request sequence and
are justified by the fact that Strat does not change the list in this case and the cost of that
step is non-negative.

The case that Strat reverses the list (step [x, y] x (hd Strat) = [y, x]) is a bit more intricate as
we cannot simply apply the induction hypothesis. Lemma 6.4 comes to the rescue:

T ∗ [x, y] (x · σ ′) (OPT2 (x · σ ′) [x, y])
= T ∗ (step [x, y] x (hd (OPT2 (x · σ ′) [x, y]))) σ ′

(OPT2 σ ′ (step [x, y] x (hd (OPT2 (x · σ ′) [x, y]))))
= T ∗ [x, y] σ ′ (OPT2 σ ′ [x, y])
≤ T ∗opt [x, y] σ ′

≤ 1 + T ∗opt [y, x] σ ′

≤ 1 + T ∗ [y, x] σ ′ (tl Strat)
= 1 + T ∗ (step [x, y] x (hd Strat)) σ ′ (tl Strat)
≤ t∗ [x, y] x (hd Strat) + T ∗ (step [x, y] x (hd Strat)) σ ′ (tl Strat)
= T ∗ [x, y] (x · σ ′) Strat

We begin as for the first case, but after applying the induction hypothesis we use Lemma
6.4. Then again using Strat on the remainder of the request sequence costs at least as much
as the optimal strategy and we bridge the gap until we obtain the total cost of Strat on the
request sequence. The tricky part, showing that 1 ≤ t∗ [x, y] x (hd Strat), can be done by a
proof by contradiction: if the strategy does not pay anything for the serving of the request,
it must not do any paid exchange but then it is not able to reverse the list.

As a corollary we obtain the result that OPT2 is optimal on lists of length 2.

Corollary 6.6 (OPT2 is optimal). T ∗ [x, y] qs (OPT2 qs [x, y]) = T ∗opt [x, y] qs

With OPT2 we obtain an reference algorithm which can be used to analyse online algo-
rithms on lists of length 2. In the following chapter we analyze the online algorithm TS
and determine its cost on 3 different types of request sequences for lists of size 2. With
the knowledge of the optimal cost for these request sequences we can prove TS to be 2-
competitive. With OPT2 at hand this can easily be determined.
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6.3 Further properties of OPT2

In this section we will examine further properties of OPT2 that will help in the analysis of
other online algorithms.

First, for known request sequences it is now easy to calculate the optimal cost on lists of
length 2. We can use this to determine the cost of certain classes of request sequences
which can be represented by regular expressions over two elements x and y. The proofs
can be established by mere simulation and induction on the number of repetitions in the
case of star expressions.

σ T ∗ [x, y] σ (OPT2 σ [x, y])

x?yy 1

x?yx(yx)∗yy |σ|
2

x?yx(yx)∗x |σ| − 1
2

Table 6.1: Costs of OPT2 for request sequence of three classes.

Furthermore we can give an easy upper bound on the cost of OPT2: Obviously OPT2 can
at most have cost 1 for every request and we obtain the following lemma:

Lemma 6.7. T ∗ [x, y] σ (OPT2 σ [x, y]) ≤ |σ|

Moreover we can show that requesting the last requested element again has additional
cost at most 1.

Lemma 6.8.
If R ∈ {[x, y], [y, x]} then T ∗ R (σ @ [x, x]) (OPT2 (σ @ [x, x]) R) ≤ T ∗ R (σ @ [x]) (OPT2 (σ
@ [x]) R) + 1

Proof. Unfortunately the calculation of OPT2’s strategy depends on the rest of the request
sequence (if only it needs lookahead 1) thus one cannot append one more element easily.
One way of proving the lemma nonetheless is by induction on σ for arbitrary R and again
a lot of case distinctions which can fortunately be solved mechanically.

Finally, observe that in an execution of OPT2 after the occurrence of two equal elements xx
one after the other OPT2’s list has element x at the front. This enables us to partition the
request sequence in phases and restart OPT2 repeatedly.

Lemma 6.9. If R ∈ {[x, y], [y, x]} then OPT2 (σ1 @ [x, x] @ σ2) R = OPT2 (σ1 @ [x, x]) R @
OPT2 σ2 [x, y].

Proof. This lemma can be proven by an induction on σ1 for arbitrary R. For the inductive
step assume without loss of generality that R = [x, y]; then with a case distinction on the
following requests one can apply the induction hypothesis.
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6.4 Remarks

6.4 Remarks

As we observed, OPT2 is no online algorithm but an algorithm with lookahead.

Definition 6.10 ([20]). A list update algorithm is said to have lookahead-k(n) if it makes each de-
cision knowing only the next k(n) unprocessed requests, where k(n) is some function independent
of the request sequence, but perhaps depending on the initial list size.

Consequently an online algorithm has lookahead-0, while an offline algorithm has un-
bounded lookahead. For further results on algorithms for the list update problem with
lookahead [1] by Albers is a good starting point.
In the next chapter we will exploit the knowledge we obtained in this chapter when
analysing the online algorithm TS. As we have seen we can partition the request sequence
in phases ending with two requests to the same element, knowing OPT2’s list state at
the end of these phases. This technique will be introduced in the next chapter as phase
partitioning and will be used together with the list factoring technique to show TS being
2-competitive.
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7 TS: another 2-competitve Algorithm

We now study another deterministic algorithm: TS was introduced as a member of the
family of randomized online algorithms TIMESTAMP due to Albers [2]. The best member
of this family is Φ-competitive (with Φ ≈ 1.62 being the golden ratio). A little later a
combination of TS and BIT called COMB was presented by Albers et al [4] and it even
improved that bound to 1.6.
This is to date the best known algorithm for the list update problem. As for a lower bound
of the competitive factor, Ambühl showed that no randomized online algorithm (in the
partial cost model) can attain a better competitive ratio than 1.50155 [5].
The proof of the competitivness of COMB in [4] is based on the analysis of TS and BIT on
lists of length 2. The first step of this development, proving TS’s 2-competitiveness for lists
of length 2, is the topic of this chapter.
In the following we will first define the deterministic online algorithm TS, then will intro-
duce to the phase partitioning technique that we suggested in the last chapter and finally
use it to show that TS is 2-competitive on lists of length 2. Assuming we had proven
the pairwise property of TS we could use the list factoring lemma to conclude TS being
2-competitive on lists of arbitrary length.

7.1 Definition of TS

The deterministic online algorithm due to Albers [2] can be formulated as follows:

Definition 7.1 (TS informal). After each request, the accessed item x is inserted immediately in
front of the first item y that precedes x in the list and was requested at most once since the last
request to x. If there is no such item y or if x is requested for the first time, then the position of x
remains unchanged.

In order to formalize this algorithm we take the history of the request sequences already
processed as the internal state. Consequently we initialize TS with an empty history list.
Also we formalize the deterministic step.

Definition 7.2.
TS-init s = returnpmf [] TS-step-d is s q =

((let li = index is q
in if li = |is| then 0

else let sincelast = take li is;
S = {x | x < q in s ∧ count sincelast x ≤ 1}

in if S = ∅ then 0 else index s q −Min (index s ‘ S),
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7 TS: another 2-competitve Algorithm

[]),

q · is)

To determine the action taken by TS to serve a request q with list state being s and history
being is, we first compute to what position the requested element is moved, then add no
paid exchanges and update the history with the currently requested element q. As for the
position q gets moved to, it is a literal translation of the informal definition. Note that take
n xs returns the length n prefix of xs.

To conform with the format of the framework we lift this definition to an online algorithm:

Definition 7.3.
TS-step is s q = returnpmf (TS-step-d is s q)

rTS = (TS-init, TS-step)

As we want to avoid working in the randomized setting with expectations and distribu-
tions we first work on a deterministic version while establishing the proof and will later
reintegrate it into the framework. Hence we define a deterministic TSstep s.t. the following
lemma holds:

Lemma 7.4. setpmf (config∗ rTS qs init n) = {TSdet init [] qs n}

We denote by s-TS init initH qs n the list state of TS after serving the nth request of the
request sequence qs starting with the initial list init and initial history list initH. Thus s-TS
is just the first component of TSdet.
As TS does not use paid exchanges the cost for a single step only depends on the position
of the requested element. Hence the costs for a single step and the whole execution are

Lemma 7.5.
t∗TS init initH qs n = index (s-TS init initH qs n) qs[n]

T ∗TS init initH qs = (
∑

i<|qs|. t∗TS init initH qs i)

and it can be easily shown that we can reintegrate it into the framework:

Lemma 7.6. T ∗on rTS qs init = T ∗TS init [] qs

From that point on we will work in the deterministic domain, being able to lift it back into
the framework with lemma 7.6.

Note that TS maintains the history list the expected way:

Lemma 7.7. n ≤ |xs| =⇒ fst (TSdet init initH (xs @ zs) n) = rev (take n (xs @ zs)) @ initH
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7.2 Phase Partitioning Technique

In this technique we cut the request sequence in phases ending with two consecutive re-
quests to the same element (xx or yy).
These phases come in different types, which will be characterised by regular expressions
over the alphabet {x, y}. In order to show equivalence of the languages represented by
these, we use the theory of regular expressions: A regular expression equivalence checker
has already been formalized in Isabelle/HOL [18], which we extend to regular expressions
with variables.
With this tool in place, we can easily show that the regular expressions defining the differ-
ent types really cover all possible request sequences.

7.2.1 Regular Expressions Equivalence

In the following we will partition all request sequences into phases that end with two con-
secutive requests to the same element and possibly a trailing incomplete phase. These
phases can be summarized into 4 types, which can be represented by regular expressions
over the elements x and y. In order to check whether we covered all possible request se-
quences we formalize these regular expressions and use a regular expression equivalence
checker available in Isabelle/HOL.
All request sequences can be described by (x +y)∗, the phases that end in two identical el-
ements by x?(yx)∗yy +y?(xy)∗xx and the incomplete phases (sequences that do not contain
any occurrence of two consecutive elements) by x?(yx)∗y +y?(xy)∗x.
First we show that any request sequence can be described by a concatenation of several
phases and an trailing incomplete phase:

Lemma 7.8. lang (myUNIV x y) = lang ((x?(yx)∗yy +y?(xy)∗xx)∗(1 +x?(yx)∗y +y?(xy)∗x))

Furthermore a phase can be of one of the following types:

σ

A x?yy
B x?yx(yx)∗yy
C x?yx(yx)∗x
D xx

Table 7.1: 4 types of phases.

In Chapter 6 we determined OPT2’s cost for serving request sequences of the first three
types. We verify that they cover all proper phases:

Lemma 7.9. lang (x?yy +x?yx(yx)∗yy +x?yx(yx)∗x +xx) = lang (x?(yx)∗yy +y?(xy)∗xx)

Note that these results naturally also hold for x and y interchanged. All the proofs of this
section can be proven mechanically with the regular expression equivalence checker.
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7 TS: another 2-competitve Algorithm

Example 7.10. Figure 7.10 shows the request sequence xyxyxxxyxyxyxyyxxxyxyxyxyxyxy par-
titioned into phases and a trailing incomplete phase. Any such incomplete phase can be padded to
form a proper phase by repeating the last requested element. This also can be ensured via proving
the equivalence of two regular expressions.

σ:

type:

xyxyxx

C

xyxyxyxyy

B

xx

D

xyxyxyxyxyxy

incomplete

y

padding

7.2.2 Analysis of the Phases

Let us first consider the 4 different phase types we just introduced and proof that TS is
2-competitive for request sequences of these types:

Without loss of generality, we only consider servings of the phases with the element x in
front of the current list. For every phase we assume that a certain invariant holds before
the serving of the sequence: h = [] ∨ (∃ hs. h = [x, x] @ hs)
It states that either we are in the beginning of a request sequence and no element has been
processed so far or the last two requests went to element x. This invariant implies that for
the first request to y, the element would not be moved to the front of x (c.f. definition 7.2).
We now can show:

σ T ∗TS [x, y] h σ T ∗ [x, y] σ (OPT2 σ [x, y])

A x?yy 2 1

B x?yx(yx)∗yy 2 ∗ |σ| − 3
2

|σ|
2

C x?yx(yx)∗x 2 ∗ |σ| − 3
2

|σ| − 1
2

D xx 0 0

Table 7.2: Costs of TS for request sequence of the 4 types.

Table 7.2.2 shows the costs of TS and OPT2 for the 4 respective types. We now verify the
numbers for TS:
For x?yy, we first may have a request to x that costs nothing as x is in the front of the
list. The first request to y costs one and the element will not be moved to the front, as
the invariant still holds. The second request to y costs again one and the element will be
moved to the front.
For B, again the potential request to x is free and preserves the invariant. The first request
to y costs 1 and leaves the list unchanged. Then the second request to y costs 1 again and
moves y to the front. Each subsequent request for y or x in (xy)∗y costs one and swaps the
list, in the end the last request for y costs nothing, the list state is [y, x] and the internal state
(being the history) contains the prefix [y, y]. In total let k be the number of repetitions of
the star expression, then the cost for B is 2 ∗ k + 1. We can express k = (|σ| − 5) div 2 and
thus the cost to be 2 ∗ (|σ| − 3) div 2.
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7.2 Phase Partitioning Technique

A similar derivation gives a total cost of 2 ∗ (|σ| − 3) div 2 for type C.
The last type is easy, any request to x costs nothing, and the invariant is preserved.
The formal proof for each type is again as for the analysis of OPT2 a simulation of the
algorithm plus an induction on the star of the regular expressions. The complicated part
is to carry through the invariant involving the history of the request sequence.
Note that in contrast to Table 1.1 in [9, section 1.6.1] we are not able to state the respective
costs relative to the number of repetitions of yx, nevertheless it can be stated in terms of
the length of the request sequence. Albeit following their idea, we define the phase types
differently: They allow more than one heading x in type A, B and C; in contrast we only
allow zero or one occurrence but add type D. This captures the idea of splitting the request
sequence into phases, that end with two consecutive requests to the same element, more
precisely. This explains the differences of the results.
Finally, as the 4 types cover all request sequences of a phase (Lemma 7.9) we obtain the
following:

Lemma 7.11. For any request sequence qs in x?yy +x?yx(yx)∗yy +x?yx(yx)∗x +xx and the his-
tory h satisfying the invariant it holds:
T ∗TS [x, y] h qs ≤ 2 ∗ T ∗ [x, y] qs (OPT2 qs [x, y]) ∧
(∃ x ′ y ′.

s-TS [x, y] h qs |qs| = [x ′, y ′] ∧ (∃ hs. rev qs @ h = [x ′, x ′] @ hs))

7.2.3 Phase Partitioning

With the competitiveness results for the phases at hand we now turn to the whole request
sequence:

Lemma 7.12. T ∗TS [x, y] h σ ≤ 2 ∗ T ∗ [x, y] σ (OPT2 σ [x, y]) + 2

Proof. Suppose the initial list is [x, y], the current history is h and the invariant for TS holds.
As we already mentioned we partition the given request sequence σ into phases.
We proceed by well-founded induction on the length of σ and chop off the phases one by
one.
Thus we have two cases: either we have a phase as prefix of σ or σ is an incomplete phase
(c.f. Figure 7.10).

In the first case it is possible to find a prefix xs that ends in two consecutive requests to the
same element. Let ys denote the rest s.t. σ = xs @ ys. Let LTS ′ denote the list state of TS
after serving xs.

T ∗TS [x, y] h σ
= T ∗TS [x, y] h (xs @ ys)
= T ∗TS [x, y] h xs + T ∗TS LTS ′ (rev xs @ h) ys
≤ T ∗TS [x, y] h xs + 2 ∗ T ∗ LTS ′ ys (OPT2 ys LTS ′) + 2
≤ 2 ∗ T ∗ [x, y] xs (OPT2 xs [x, y]) + 2 ∗ T ∗ LTS ′ ys (OPT2 ys LTS ′) + 2
= 2 ∗ T ∗ [x, y] σ (OPT2 σ [x, y]) + 2
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7 TS: another 2-competitve Algorithm

We first split the serving of σ by TS at the end of the phase. Knowing from the second
part of Lemma 7.11 that after serving the phase the invariant holds again, we can apply
the induction hypothesis on the shorter request sequence ys. Then we use the first part of
Lemma 7.11. After that we have to put together the serving of σ by OPT2. This is valid as
we can show that OPT2 has the same list state (LTS ′) as TS after serving the prefix xs: after
the two consecutive requests to the same element this element is in front of OPT2’s list, as
it is for TS’s.

In the second case if it is not possible to find a phase as prefix, we either have the trivial case
of an empty request sequence or a request sequence with alternating x and y ((x +1)(yx)∗y
+(y +1)(xy)∗x). But we can complete σ to a proper phase by repeating the last requested
element: e.g. xyx gets padded to xyxx which is a valid type C phase.

T ∗TS [x, y] h σ
≤ T ∗TS [x, y] h (pad σ x y)
≤ 2 ∗ T ∗ [x, y] (pad σ x y) (OPT2 (pad σ x y) [x, y])
≤ 2 ∗ T ∗ [x, y] σ (OPT2 σ [x, y]) + 2

First we know that serving one more request costs at least as much as serving σ. Then
we can apply lemma 7.11 as before. Finally we know that OPT2 has at most cost 1 for the
padded request, which gets doubled and constitutes the constant term.

Now as we know that OPT2 is optimal and we can reintegrate our formulation of TS into
the framework we obtain the corollary:

Corollary 7.13. [[x 6= y; set qs ⊆ {x, y}]] =⇒ T ∗on rTS qs [x, y] ≤ 2 ∗ T ∗opt [x, y] qs + 2

section ”TS is 2-competitive”
Assuming that we also show that TS has the pairwise property we can use the list factoring
lemma 5.9 and conclude that TS is 2-competitive:

Lemma 7.14 ([9, Theorem 1.4]).
pairwise rTS =⇒ compet∗ rTS 2 {init | distinct init}
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8 Open Questions

This chapter summarizes what has been formalized in this thesis, what is still to be proven
and which results would be the next logical step to formalize. Furthermore open research
problems about the list update problem as well as connection to other interesting areas are
presented.

8.1 Open to formalize

fill the proof gaps

formalized complete proof
MTF X* X*
lower bound (deterministic) X* X*
BIT X X
List Factoring X
OPT2 X X
TS X (X)
COMB
lower bound (randomized)

Table 8.1: Overview of what has been formalized and proven in this thesis.

Table 8.1 shows what has been formalized and proven for the list update problem. Both
MTF and the lower bound for deterministic algorithms have already been formalized by
Nipkow [16] and were integrated into our framework. The lower bound is not described in
this thesis. The analysis of BIT is verified in this thesis. Also OPT2 is formally proven to be
optimal on lists of length 2. The list factoring technique is formalized but some proofs are
still incomplete. For TS 2-competitiveness is proven, only the proof of pairwise property
is left open. Proving the open goals would be an obvious direction for further work.

Formalize new results

Additionally, in [16] Nipkow formalized also the lower bounds for deterministic algo-
rithms, its integration into the framework is a next step. Proving the lower bounds for
randomized algorithm would indeed require way more work.
With the formalization of TS at hand, a similar development can be pursued for BIT: show-
ing BIT has the pairwise property, and then analyzing the 4 types of phases for BIT. Some
further work yields the result that COMB is 1.6-competitive.
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8 Open Questions

There is a great variety of families of algorithms for the list update problem that would be
interesting to study (including TIMESTAMP [2], SPLIT [13], COUNTER [21]).

Connection to Compression theory

An interesting application for the list update problem is compression. The open source
compression framework bzip2 uses a combination of the famous Burrows-Wheeler Trans-
formation, MTF and Huffman encodings [3]. In that regard any deterministic algorithm for
the list update problem can be used to form a compression scheme. Details will be omit-
ted here but c.f. [11] for more details. A thorough study of how the invertible Burrows-
Wheeler Transformation manages to increase the locality of reference – which is then ex-
ploited by the list update algorithm – would be an interesting topic of study.

Analysis of other online problems

The framework for competitive analysis was designed to be applied to any online problem.
Another direction of further work would be to analyse other online problems: such as
Paging, online Graph Coloring, Bin Packing, etc.

8.2 Open Research Questions

The main open research questions in the field include the gap between the lower bound
and the best competitive ratio for randomized algorithms of the list update problem.
It was long known that paid exchanges are necessary for the optimal offline algorithm. Re-
cently it has been shown that paid exchanges not only give an advantage constant in the
length of the request sequence but also a linear one [15]. Note that all online algorithms
presented in this thesis and studied in literature only use free exchanges. An important
question is how to integrate paid exchanges into online algorithms in a meaningful way;
or how to show that they bring no further improvement. Furthermore it has been shown
that online algorithms that satisfy the pairwise property have a lower bound of 1.6 [5]
which is already attained by COMB. Consequently, to make progress in the gap consider-
ing algorithm without the pairwise property is necessary.
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9 Conclusion

We formalized great parts of the first two chapters of Borodin and El-Yaniv’s Book “Online
computation and competitive analysis” [9]. This includes: a framework for the competitive
analysis of randomized online algorithms, its interpretation for the list update problem,
analysis of three popular algorithms (MTF, BIT and TS) and study of three techniques for
their analysis (potential function method, list factoring and phase partitioning).
The formalization effort was reasonable, building upon the theory HOL-Probability and
the already formalized analysis of MTF.
The framework could be used to analyse many other online algorithms, as well as the
theory developed for the list update problem could be extended in various directions.
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