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Abstract

This thesis aims to extend formal verification of algorithms to not only verify functional
correctness but also to analyze the quantitative properties of algorithms. Foremost, I
study the running time analysis of imperative programs.
In the first part I collect, review, and formalize three Hoare logics from the literature

that can be used to reason about the running time of algorithms. Chronologically,
the first one is based on Nielson’s Logic and Relational Hoare logic, the second one
follows ideas by Carbonenaux et al. and lifts predicates to potentials for a “quantitative
Hoare logic”, and the third one follows ideas by Atkey to use Separation Logic with
Time Credits. I formalize each of them, prove their soundness and correctness, and
implement Verification Condition Generators (VCG) for each. Then, I compare those
approaches and investigate their interrelations.
Stemming from ideas that arise from the first part, I extend the quantitative Hoare

logic to randomized programs, investigate what other quantities besides time can be
reasoned about with the same ideas, and present a formalized and abstracted version
of Quantitative Separation Logic due to Batz et al..
The second part shows how to use Separation Logic with Time Credits to implement

a framework for verifying the analysis of asymptotic time complexity of algorithms.
I present two iterations: first, I extend Imperative-HOL with a cost semantics. I
build up basic verification infrastructure and tooling that supports reasoning about
complexity bounds in one and two variables. Then, I present the analysis of several
nontrivial algorithms and data structures. This ranges from dynamic arrays, over red-
black trees to the union-find data structure and Fibonacci heaps; and from binary
search to Karatsuba’s algorithm and the linear-time selection algorithm. Second, I
extend an LLVM semantics in a similar manner, introducing multi-currency time credits
for a fine-grained analysis that allows one to reason about the consumption of specific
LLVM instructions. I also provide basic verification infrastructure and verified data
structures, but the verification of algorithms is shifted to a more abstract realm.
While the verification of low-level algorithms and basic data structures may depend

on the specifics of the semantics of a programming language, many algorithms’ ideas
can be captured on a more abstract level. Stepwise refinement allows the separation
of reasoning about algorithmic ideas from their implementation details. I show that
this idea also works for resource analysis and running time analysis specifically. I
extend Lammich’s Isabelle Refinement Framework to not only reason about functional
correctness, but also the running time, or resource consumption, of programs. To
this end, I present the NREST monad, which features a refinement calculus for upper
bounds on resource usage. I add the concept of resource currencies and implement
automation to assist verification. As a second step, I connect NREST with the concrete
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Abstract

semantics from the second part, allowing the synthesis of concrete implementations from
abstract algorithms that preserve and refine the running time bounds from the abstract
domain. Finally, I present case studies for Kruskal’s minimum spanning tree algorithm
and the introspection sort algorithm by Muller.

In the end, I reflect on my approach discussing whether simultaneous verification of
functional correctness and quantitative properties is feasible now.
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Zusammenfassung

Diese Dissertation wendet formale Verifikation auf die quantitative Analyse von Algo-
rithmen an. Vorranging wird die Laufzeitanalyse von imperativen Programmen unter-
sucht.
Im ersten Teil werden drei Hoare-Logiken für Laufzeitschranken aus der Literatur

gesammelt, verglichen und in dem Theorembeweiser Isabelle/HOL formalisiert: die
chronologisch Erste formalisiert eine Logik von Nielson, die Zweite, “quantitative Hoare-
Logik”, basiert auf der Potentialmethode Ideen Carbonneaux’ folgend, und die dritte
Logik nutzt Atkey’s Separationslogik mit Time Credits. Für jede der drei Logiken
werden Soundness und Completeness Theoreme, sowie ein Verification Condition Gen-
erator (VCG) verifiziert. Abschließend werden die Ansätze verglichen.
Basierend auf den gewonnen Erkenntnissen wird die “quantitative Hoare-Logik” auf

probabilistische Algorithmen angewandt und eine generalisierte Version der Quantita-
tiven Separationslogik von Batz et al. präsentiert. Außerdem werden weitere quantita-
tive Eigenschaften neben der Laufzeit untersucht.
Im zweiten Teil wird die Technik Separationslogik mit Time Credits angewandt um

praktische Werkzeuge für die Verifikation von asymptotischer Laufzeitkomplexität von
Algorithmen zu realisieren. Es werden zwei Iterationen präsentiert. Die Erste erweitert
Imperative-HOL um eine Kostensemantik. Zusätzlich werden grundlegende Verifika-
tionsinfrastruktur und Werkzeuge zur Verfügung gestellt, welche die verifizierte Analyse
von Komplexitätsschranken in einer und zwei Variablen unterstützt. Diese Methode
wird auf einige nicht triviale Fallbeispiele angewandt. Es werden verschiedene Daten-
strukturen untersucht: von dynamischen Arrays, über Rot-Schwarz-Bäume zu Union-
Find und Fibonacci-Heaps. Mithilfe des Werkzeugs werden Algorithmen von kleiner
bis mittlerer Größe verifiziert: von binärer Suche, über Karatsuba’s Algorithmus bis
zum linearzeit Median-of-Medians Algorithmus. Die zweite Iteration erweitert eine
LLVM Sematik analog. Zusätzlich werden Time Credits mit Währungen eingeführt,
welche eine feinere Analyse der Laufzeit ermöglicht die einzelne LLVM Instruktionen
zählt. Für diese Sprache werden auch elementare Werkzeuge bereitgestellt und ein-
fache Datenstrukturen verifiziert. Die Analyse von Algorithmen wird aber in einen
abstrakteren Teil ausgelagert: das Thema des dritten Teils dieser Dissertation.
Während die Verifikation systemnaher Algorithmen und elementarer Datenstruk-

turen von den Eigenheiten der Semantik der Programmiersprache abhängen in der sie
implementiert sind, können viele algorithmische Ideen auf einer abstrakteren Ebene
erfasst werden. Schrittweise Verfeinerung erlaubt es in Beweisen die Argumentation
über algorithmische Ideen von Implementierungdetails zu trennen. In dem dritten
Teil dieser Dissertation wird diese Technik auf die Analyse von Ressourcenverbrauch,
und im speziellen Laufzeit, ausgeweitet. Es wird das Isabelle Refinement Framework
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Zusammenfassung

von Lammich erweitert, um nicht nur die funktionale Korrektheit sondern auch die
Laufzeitkomplexität von Programmen zu beweisen. Dazu wird die NREST-Monade
präsentiert zusammen mit einem Verfeinerungskalkül für obere Schranken, das Konzept
von Ressourcenwährungen eingeführt und unterstützende Automatisierung implemen-
tiert. In einem zweiten Schritt wird die NREST-Monade mit den Semantiken aus dem
zweiten Teil verbunden, um die automatisierte Synthese konkreter Implementierungen
von abstrakten Algorithmen zu ermöglichen. Diese Synthese erhält die funktionale
Korrektheit sowie die Laufzeitschranken. Abschließend werden größere Fallstudien
präsentiert: Kruskal’s Algorithmus für minimale Spannbäume und Muller’s Introsort-
Algorithmus.

Zum Schluss, wird über den Ansatz und die Werkzeuge reflektiert und diskutiert
ob damit die gleichzeitige Verifikation von funktionaler Korrektheit und quantitativen
Eigenschaften in Theorembeweisern realisierbar ist.
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1 Introduction

1.1 Motivation

With the ever growing importance and size of software systems, the need for ensur-
ing their reliability is rising. Desirable properties that have been extensively studied
are termination, fail safety and functional correctness. Only gradually, guarantees of
performance and resource consumption are getting into the focus: stack and heap-size
bounds are important for reliability of safety-critical systems; worst-case execution time
bounds are used for the analysis of real time systems and to avoid side channel attacks.
Techniques and tools [16, 17, 116, 65, 67, 119] have been developed to automatically

derive worst-case resource bounds but are limited in several ways. When these auto-
matic tools fail, human interaction is necessary and the use of proof assistants is one
way of proceeding.
Proof assistants have been applied to deep theorems in mathematics [38, 43] or fun-

damental software components [71, 96] but hardly to quantitative algorithm analysis.
Recent advances (e. g. [21]) demonstrate that non-trivial results in the area are now
within reach. This dissertation aims to further follow this path of research by studying
abstract logics for the quantitative analysis of imperative algorithms and developing a
formal framework for carrying out this analysis within Isabelle/HOL.
In this thesis, I will tackle that challenge in three steps: first, I collect techniques

from the literature that allow for formal reasoning about the running time of imperative
algorithms, formalize them in a common setting, proof meta results about them and
compare them. Then I implement one of the techniques in Isabelle/HOL, forming a
framework for analyzing the asymptotic running time complexity and applying it to
medium-sized textbook algorithms and data structures. Finally, to allow verification
of larger algorithms, I present a more natural way of structuring algorithm analysis
by extending a stepwise refinement approach to also reason about the running time of
algorithms.

1.2 Outline

This thesis is organized in three parts: Part I is concerned with exploring abstract
techniques for reasoning about the running time of programs. In Part II, I describe
how to turn one of those techniques into a practical framework and how to verify
medium sized algorithms and data structures with it. In Part III, I show how stepwise
refinement can be extended to reasoning about resource consumption of programs and
how it can be used to structure larger algorithm verifications.
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1 Introduction

In the main chapter (Chapter 2) of Part I, I first present a review of three Hoare logics
for reasoning about the running time of programs. This formal treatment serves as a
basis for the rest of the thesis, where I present elaborations of two of those techniques.
On the one hand, the potential method (Section 2.3) gives rise to a compositional Hoare
logic for deterministic imperative programs. I will describe how this approach can be
extended to reasoning about probabilistic programs in Chapter 3 and to probabilistic
heap-manipulating programs in Chapter 4. On the other hand, we implement the idea
of extending Separation Logic with Time Credits (Section 2.4) in practical verification
frameworks in Part II and use it as a back end for the refinement approach in Part III.
In the second part, I first describe a concrete framework for reasoning about the

asymptotic complexity of imperative programs in Imperative-HOL-Time and present
several case studies verified with it (Chapter 5). Then, I present a second iteration that
allows fine-grained resource analysis of LLVM programs in Chapter 6 (LLVM-Time).
While in theory the techniques from Part II suffice to verify the analysis of arbitrar-

ily complex algorithms, we need methods to make larger developments manageable.
In Part III, I show how stepwise refinement can be extended to resource analysis in
order to reach this goal. In Chapter 7, I prepare the ground for the rest of this part:
first, by reviewing how algorithms are traditionally presented in standard textbooks
in order to distill out requirements for our tool; and, second, by presenting the main
components of the Isabelle Refinement Framework, which allows one to use stepwise
refinement for verifying functional correctness of algorithms. I will describe the ex-
tension of that framework to reasoning about resources in the following chapters. In
Chapter 8, I present the generalization of IRF’s nres monad and gently introduce two
extensions of it towards modeling resource consumption. In Chapter 9, I present how
to automatically turn algorithms in the abstract monad into concrete implementations
in the two languages introduced in Part II. Finally, I present case studies illustrating
the applicability of the refinement approach in Chapter 10.

1.3 Publications

Some of the work presented in this thesis has been published as part of four conference
papers.

Research Publications

• Hoare Logics for Time Bounds,
Maximilian P. L. Haslbeck and Tobias Nipkow,
International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS), 2018

• Verifying Asymptotic Time Complexity of Imperative Programs in Isabelle,
Bohua Zhan and Maximilian P. L. Haslbeck,
International Joint Conference on Automated Reasoning (IJCAR), 2018

2



1.3 Publications

• Refinement with Time - Refining the Run-time of Algorithms in Isabelle/HOL,
Maximilian P. L. Haslbeck and Peter Lammich,
Interactive Theorem Proving (ITP), 2019

• For a Few Dollars More — Verified Fine-Grained Algorithm Analysis Down to
LLVM,
Maximilian P. L. Haslbeck and Peter Lammich,
European Symposium on Programming (ESOP), 2021

The first paper, which appeared in TACAS’18, reviews three Hoare logics from the
literature for the analysis of the running time of programs and compares them. This
abstract reflection lays the ground for the more applied part of this thesis. The paper
forms the basis of Part I which is supplemented by two detours into the probabilistic and
the Separation Logic world. The second paper, which appeared in IJCAR’18, picks up
one of those Hoare logics — using Separation Logic and Time Credits — and presents a
practical framework for verifying asymptotic time complexity of imperative programs in
Imperative-HOL-Time. It forms the basis of Chapter 5, which is significantly expanded
and illustrated with more case studies.
The paper published in the proceedings of ITP’19 presents a novel combination of

refinement with time analysis. It uses Imperative-HOL-Time as a back end for a time-
bound preserving synthesis approach. The last paper is yet to appear at ESOP’21
and is a second iteration of that work: it generalizes the theory, introducing the novel
concept of resource currencies and establishes LLVM as a back end for the synthesis
phase. As both approaches follow the “top-down” approach of stepwise refinement,
this material is intertwined and the respective steps are separated into Chapters 6, 8, 9
and 10. In the present thesis the expositions in these chapters have been substantially
expanded compared to the original papers.
All the theory presented in this thesis has been verified using Isabelle/HOL. The

formalizations are distributed over the following developments.

Isabelle formalizations

[46] AFP entry Hoare Logics for Time Bounds,
https://www.isa-afp.org/entries/Hoare_Time.html

[49] Verification of expected running time calculus of pGCL programs (verERT),
https://github.com/maxhaslbeck/verERT

[48] Verification of quantitative separating connectives,
https://github.com/maxhaslbeck/QuantSepCon

[139] Repository Imperative-HOL-Time,
https://github.com/bzhan/Imperative_HOL_Time

[47] Repository Nondeterministic Result Monad with Time (NREST),
https://github.com/maxhaslbeck/NREST
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[51] Repository Sepref-Time,
https://www21.in.tum.de/~haslbema/Sepreftime/

[50] LLVM-Time,
https://www21.in.tum.de/~haslbema/llvm-time/

The formalization Hoare Logics for Time Bounds [46] in the Archive of Formal Proofs
(AFP) provides the formal theories described in Chapter 2.
The repository [49] contains the formalization of the ert calculus described in Chap-

ter 3, and the formalization of the quantitative separating connectives and the material
from Chapter 4 can be found in the repository [48].
The formalization of the framework for asymptotic analysis of imperative programs

in Imperative-HOL-Time described in Chapter 5 can be found in the repository [139].
The formalization of the first iteration of combining refinement with resources using

Imperative-HOL-Time as a back end is available here [51]. It depends on the for-
malization of Imperative-HOL-Time. The formalization of the second iteration that
features fine-grained resource analysis targeting LLVM resides in [50]. I pulled out the
formalization of the NREST monad in a separate repository [47].

1.4 How to read this thesis

Ò

A paragraph with a pencil indicates that the following section — or portions thereof
— has appeared previously in another publication (cf. Section 1.3). Unless stated
otherwise, in publications with a coauthor, I have contributed the majority of the
content.

While this thesis may appear at times caught up in formal details, I would like to
highlight the nuggets of wisdom1, i. e. major ideas and meta observations.

­
Paragraphs marked with a light bulb contain what I consider the main ideas of this
thesis. Like aphorisms, they might at first not be accessible without context, but
they might comprise the essential insights of this work. Enjoy contemplating them.

3
Paragraphs containing rather technical side remarks that can safely be skipped with-
out loosing the thread are marked with cogs.

In most of this thesis I am describing formalizations in Isabelle/HOL. They have been
simplified and streamlined for better presentation. Their actual Isabelle representation
can be found in the respective repositories (cf. Section 1.3).
Every chapter ends with a bullet-point summary capturing the main takeaway mes-

sages.

1Some anonymous ITP reviewer coined that term for me.
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Abstract Reasoning about Running
Time of Programs
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2 Three Hoare Logics for Time

Ò
The content of this chapter is joint work with Tobias Nipkow. The chapter is based
on the paper “Hoare Logics for Time Bounds” (Haslbeck and Nipkow [53]).

The overall goal of this thesis is to verify quantitative properties of imperative pro-
grams in a theorem prover. When only considering functional correctness of programs,
a standard approach is to use Hoare logic [55], and there are many frameworks that
are based on that.
It is just natural to try to extend Hoare logics that enable reasoning about running

time of algorithms. We have identified three such approaches in the literature. The
motivation to study those in more detail are twofold: first, we want to gain experience
in how to use those approaches. I need that in order to decide which approach to
take as a basis when forming a framework for the quantitative analysis of imperative
algorithms. In Part II and III we reuse what we learned from this abstract study.
Second, this meta study is not about the automatic analysis of running times but about
fundamental questions like soundness and completeness of logics and of verification
condition generators (VCGs). The need for such a study becomes apparent when
browsing the related literature (e. g. [2, 18, 21]): (formalized) soundness results are of
course provided, but completeness of logics and VCGs is missing.
Based on the simple imperative language IMP (Section 2.1), we formalize three logics

for time bounds from the literature (Section 2.2, 2.3 and 2.4); we show their soundness
and completeness w. r. t. IMP’s semantics, discuss specific weaknesses and strengths
and study their interrelations (Section 2.5).
We study multiple different Hoare logics because we are interested in different aspects

of the logics. First, foremost we want to study soundness and completeness of the logic
and also of the verification condition generators. A second aspect is modularity. We
would like to combine verified results about subprograms in order to show correctness
and running time for larger programs. Therefore we also study a Separation Logic for
running time analysis. Third, we study the difference between precise upper bounds
and order-of-magnitude upper bounds that abstract from multiplicative constants. In
the latter case we speak of “big-O style” logics, following terminology by Nielson [108].
The first logic we study is a big-O style logic due to Nielson [108] (Section 2.2). We

improve, formalize and verify this logic and extend it with a VCG whose soundness
and completeness we also verify.
In Section 2.3 we formalize a quantitative Hoare logic following ideas by Carbonneaux

et al. [16, 18] and extend their work as follows: we prove completeness of the logic and
design a sound and complete VCG. Additionally we extend the logic to a big-O style
logic.
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Following ideas of Atkey [2] and Charguéraud and Pottier [21] we formalize a logic
similar to Separation Logic (Section 2.4) for reasoning about concrete running times.
We formally prove soundness and completeness.
All proofs have been formalized in Isabelle/HOL [115, 114] and are available online

[46].

2.1 Basics
We consider the simple deterministic imperative language IMP. It is used in the text-
book “Concrete Semantics” [114] which also studies Hoare logics on IMP and mecha-
nizes the proof its soundness and completeness. We extend IMP with a cost semantics
and build our theories upon that.
IMP’s commands are built up from Skip, assignment, sequential composition, condi-

tional and While-loop.

com = Skip | Assign vname aexp | Seq com com
| If bexp com com | While bexp com

Program states are functions from variables (vname) to values. By default c is a
command and s a state. Evaluation of a Boolean or arithmetic expression a in state s
is denoted by JaKs.
We have defined a big-step semantics that counts the consumed time during execu-

tion: Skip, assignment and evaluation of Boolean expressions require one time unit.
The precise definition of the semantics is routine. We write (c, s) t=⇒ s′ to mean that
starting command c in state s terminates after time t in state s′.
Given a pair (c, s), ↓(c, s) means that the computation of c starting from s termi-

nates, ↓S(c, s) then denotes the final state, and ↓T (c, s) the execution time.
In the following three sections we study and extend three different Hoare logics: a

classical one based on [108], one using potentials [16] and one based on Separation
Logic with Time Credits [2].

2.2 Nielson
Nielson and Nielson [108] present a Hoare logic to prove the “order of magnitude of the
execution time” of a program (which we call “big-O style”). They reason about triples
of the form {P} c {e ⇓ Q} where P and Q are assertions and e is a time bound. The
intuition is the following: if the execution of command c is started in a state satisfying
P then it terminates in a state satisfying Q after O(e) time units, i. e. the execution
time has order of magnitude e. Note that e is evaluated in the state before executing
c.
Throughout this chapter we rely on what is called a shallow embedding of assertions

and time bounds: there is no concrete syntactic representation of assertions and time
bounds but they are merely functions in HOL, our ambient logic. They map states to
truth values and natural numbers.
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2.2 Nielson

A complication in reasoning about execution time comes from the fact that one needs
to combine time bounds that refer to different points in the execution, for example when
adding time bounds in a sequential composition.

|=1 {P} c1 {e1 ⇓ Q } ∧ |=1 {Q} c2 {e2 ⇓ R} 6=⇒ |=1 {P} c1 ; c2 {e1 + e2 ⇓ R}

The time bounds e1 and e2 are evaluated in the prestates of c1 and c2 respectively.
However, the time bound e1 + e2 in the Hoare triple of the consequence is evaluated
in the prestate of c1, but this is problematic as the application of c1 may have changed
the value of e2.

This difficulty can be overcome with logical variables that enable us to transport
time bounds from the prestate to the poststate of a command. We formalize logical
variables by modeling assertions as functions of two states, the state of the logical
variables (typically l) and the state of the program variables (typically s).

The validity of Nielson’s triples is formally defined as follows:

|=1 {P} c {e ⇓ Q} = (∃k. ∀l s. P l s =⇒ (∃t s′. (c, s) t=⇒ s′ ∧ Q l s′ ∧ t ≤ k · e s))

The “big-O-style” abstraction from multiplicative constants is baked into this definition.
The time bound e is the order of magnitude that bounds the running time of the
program.
The Hoare logic below needs to generate “fresh” logical variables. Thus we need

to express which logical variables are already used. This is called the support of an
assertion. Because assertions are merely functions, the support is defined semantically:

support Q = {x | ∃l1 l2 s. (∀y. y 6= x =⇒ l1 y = l2 y) ∧ Q l1 s 6= Q l2 s }

Our Hoare logic is shown in Figure 2.1. It is largely a formalization of the system
in [108, Table 10.4] but with two important changes: we have simplified rule While
(details below) and we have replaced the consequence rule by conseqK , an adaptation
of Kleymann’s stronger consequence rule [72]. The rules conseq and const are derived
from it. Note that the latter two rules suffice for a sound and complete Hoare logic,
but our proof of completeness of the VCG needs conseqK .
Now we discuss the rules in Figure 2.1. Rules Skip, Assign, If and conseq are straight-

forward. Note that 1 is the time bound λs. 1 and + is lifted to time bounds pointwise.
The notation s[a/x] is short for “s with x mapped to JaKs”.
Now consider rule Seq. Given {P} c1 {e1 ⇓ Q} and {Q} c2 {e2 ⇓ R} one may want

to conclude {P} c1 ; c2 {e1 + e2 ⇓ R}. As pointed out above, e1 + e2 does not lead to
the correct result, as c1 could have altered variables e2 depends on. In order to adapt
e2 for the changes that occur in c1, we use a shifted time bound e2

′, and leave as a
proof goal to show that the value of e2

′ in the prestate is an upper bound on e2 in the
poststate of c1. Rule Seq relates e2

′ and e2 through a fresh logical variable u that is
equated with the value of e2

′ in the prestate of c1. The time bound e in the conclusion
must be an upper bound of e1 + e2

′.
In the const rule, the time bound can be reduced by a constant factor. Note that we

split up Nielson’s conse rule into conseq and const.
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`1 {P} Skip {1 ⇓ P}
Skip

`1 {λl s. P l (s[a/x])} x := a {1 ⇓ P}
Assign

`1 {λl s. P l s ∧ JbKs} c1 {e ⇓ Q} `1 {λl s. P l s ∧ ¬JbKs} c2 {e ⇓ Q}
`1 {P} IF b THEN c1 ELSE c2 {e+ 1 ⇓ Q}

If

`1 {λl s. P l s ∧ e′2 s = l u} c1 {e1 ⇓ λl s. Q l s ∧ e2 s ≤ l u}
`1 {Q} c2 {e2 ⇓ R}

(∀l s. P l s =⇒ e1 s+ e′2 s ≤ e s) u /∈ support P u /∈ support Q
`1 {P} c1 ; c2 {e ⇓ R}

Seq

`1 {λl s. I l s ∧ JbKs ∧ e′ s = l u} c {e′′ ⇓ λl s. I l s ∧ e s ≤ l u}
(∀l s. I l s ∧ JbKs =⇒ e s ≥ 1 + e′ s+ e′′ s)

(∀l s. I l s ∧ ¬JbKs =⇒ e s ≥ 1) u /∈ support I
`1 {I} WHILE b DO c {e ⇓ λl s. I l s ∧ ¬JbKs}

While

∀l s. P ′ l s =⇒ P l s
`1 {P} c {e ⇓ Q}

∀l s′. Q l s′ =⇒ Q′ l s′

`1 {P ′} c {e′ ⇓ Q′}
conseq

∃k.∀l s. P l s =⇒ e s ≤ k · e′ s
`1 {P} c {e ⇓ Q}
`1 {P} c {e′ ⇓ Q}

const

∃k.∀l s. P ′ l s =⇒ (e s ≤ k · e′ s ∧ (∀s′.∃l′. P l′s ∧ (Q l′s′ =⇒ Q′ l s′)))
`1 {P} c {e ⇓ Q}
`1 {P ′} c {e′ ⇓ Q′}

conseqK

Figure 2.1: Hoare logic for reasoning about order of magnitude of execution time
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Our rule While is a simplification of the one in [108]. The latter is an extension with
time of the “standard” While-rule for total correctness where a variable decreases with
each loop iteration. However, once you have time, you no longer need that variable
and we removed it. The key constraint in rule While is e ≥ 1 + e′ + e′′. It can be
explained by unfolding the loop once. The time e to execute the whole loop must be
an upper bound for the time e′′ to execute the loop body plus the time e′ to execute
the remaining loop iteration. The additional one accounts for evaluation of the loop
guard b. The time e′ to execute the remaining loop iterations is obtained from e by
(intuitively) an application of rule Seq: in the first premise a fresh logical variable u is
used to pull e back over c, resulting in e′. The rest of rule While is standard.

Soundness Soundness of the calculus can be shown by induction on the derivation of
`1{P} c {e ⇓ Q}:

Theorem 1 (Soundness of `1). `1{P} c {e ⇓ Q} =⇒ |=1{P} c {e ⇓ Q}

Proof. By induction on the derivation of `1 {P} c {e ⇓ Q}: the cases Skip and Assign
are automatic. In the Seq and If case we choose the maximum of the constant factors
obtained from the Hoare triples of the subprograms as constant factor of the validity
of the entire command, the rest is straightforward. In the While case we get a constant
factor k from the loop body, and choose k + 1 as the multiplicative constant, then we
show the generalized goal

l x = n =⇒ I l s =⇒ ∃t p. (WHILE b DO c, s) ⇒ p ⇓ t
∧ p ≤ (k+1) ∗ e s ∧ I (l(x := 0)) t

by induction on the natural number n. The base case is automatic, the step case involves
some bookkeeping and adaptation of the logical environment, and the freshness of the
counting variable x in the logical environment. The conseq case, obtains a k1 from the
Hoare Triple in the premise, as well as a k2 from the side condition. Choosing the
product k1 ∗ k2, and some reasoning involving the fact that the big-step semantics is
deterministic proves the goal.

Completeness Our completeness proof follows the general pattern for Hoare logics:
define a weakest precondition operator wp and show that the triple {wp c Q} c {Q} is
derivable. In our setting wp is defined like this:

wp c Q = (λl s. ∃t s′. (c, s) t=⇒ s′ ∧ Q l s′)

and we show derivability of the following triple that also takes time into account:

Lemma 2. finite (support Q) =⇒ `1 {wp c Q} c {λs. ↓T (c, s) ⇓ Q}

As we need fresh logical variables for rules Seq and While, we assume that the set of
logical variables Q depends on is finite.
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Proof. by structural induction on c. Skip, Assign, and If are automatic or routine;
for the Seq case we choose a fresh variable x, specialize the first induction hypothesis
with Q = (λl s. wp c2 Q l s ∧ ↓T (c2, s) = l x) and together with the second induction
hypothesis we can apply the Seq rule, side conditions are solved automatically. For
the While case essentially we choose a fresh variable x and then use the invariant
wpw b c (l x) Q, which is the weakest precondition of the loop when unfolded a fixed
number of times, and the induction hypothesis for the loop body in the While rule,
side conditions are solved routinely.

It is instructive to observe that for this proof, only the Hoare rules Skip to conseq are
needed. Neither const nor conseqK are used. Lemma 2 expresses the intuition that it is
always possible to derive a triple with the precise execution time as a time bound. Only
as a last step an abstraction of multiplicative constants and over-approximation of the
time bound is necessary. This shows that for every valid triple one can first deduce a
correct upper bound for the running time, only to get rid of a multiplicative constant
in a final application of the const rule. In the end, Lemma 2 implies completeness:

Theorem 3 (Completeness of `1).

J finite (support Q); |=1 {P} c {e ⇓ Q} K =⇒ `1 {P} c {e ⇓ Q}

In particular, we can now apply the above observation about the shape of derivations
of valid triples to provable ones, by soundness: in any derivation one can pull out all
applications of const and combine them into a single one at the very root of the proof
tree. We will observe the very same principle when studying the quantitative Hoare
logic in Section 2.3.

Verification Condition Generator Showing validity of {P} c {e ⇓ Q} now boils down
to applying the correctly instantiated rules of the Hoare logic and proving their side
conditions. The former is a mechanical task, which is routinely automated by a verifica-
tion condition generator, while the latter is left to an automatic or interactive theorem
prover.
We design a VCG that collects the side conditions for an annotated program. While

for classical Hoare logic it suffices to annotate a loop with an invariant I, for reasoning
about execution time we introduce two more annotations for the following reason.
Now consider rule Seq in Figure 2.1. When applying the rule to a proof goal
`1 {P} c1 ; c2 {e ⇓ R} we need to instantiate the variables P, Q, e1, e2, and e2

′. As for
classical Hoare logic, Q is chosen to be the weakest preconditions of c2 w. r. t. R, which
can be calculated if the loops in c2 are annotated by invariants. (Analogously for P be-
ing the weakest precondition of c1 w. r. t. Q). Similarly, when annotating the loops in c1
and c2 with time bounds E, time bounds e1 and e2 can be constructed. Finally, e2

′ can
be determined if the evolution of e2 through c1 is known. For straight-line programs,
this can be deduced, only for loops a state transformer S has to be annotated. An
annotated loop then has the form {I, S,E} WHILE b DO C where I is the invariant
and S and E are as described above.

12



2.2 Nielson

pre Skip Q = Q post Skip s = s
pre (x := a) Q = (λls. Q l (s[a/x])) post (x := a) s = s[a/x]
pre (C1;C2) Q = pre C1 (pre C2 Q) post (C1;C2) s = post C2 (post C1 s)
pre (Conseq {P ′,_,_} C) Q = P ′ post (Conseq {_,_,_} C) = post C
pre (IF b THEN C1 ELSE C2) Q l s = post (IF b THEN C1 ELSE C2) s =
if JbKs then pre C1 Q l s else pre C2 Q l s if JbKs then post C1 s else post C2 s
pre ({I,_,_} WHILE b DO C) Q = I post ({_, S,_} WHILE b DO C) = S

time Skip s = 1
time (x := a) s = 1
time (C1;C2) s = time C1 s+ time C2 (post C1 s)
time (Conseq {_,_,_} C) = time C
time (IF b THEN C1 ELSE C2) s =
if JbKs then time C1 s else time C2 s
time ({_,_, E} WHILE b DO C) = E

Figure 2.2: Functions pre, post and time

For our completeness proof of the VCG we also need annotations that correspond to
applications of rule conseqK and record information that cannot be inferred automati-
cally. For that purpose we introduce a new annotated command Conseq {P ′, Q, e′} C
where P′, Q and e′ are as in rule conseqK .
We use capital letters, e. g. C to denote annotated commands and C is the unanno-

tated version of C stripped of all annotations.
We use three auxiliary functions pre, post and time. Their definitions are shown in

Figure 2.2.
The VCG reduces proving a triple {P} C {e ⇓ Q} to checking that the annotations

really are invariants, upper bounds and correct state transformers. The VCG traverses
C and collects all the verification conditions for the loops into a big conjunction. The
most interesting case is the loop itself:

vc ({I, S,E} WHILE b DO C) Q = vc C I ∧
(∀l s. (I l s ∧ JbKs =⇒ pre C I l s

∧ E s ≥ 1 + E(post C s) + time C s

∧ S s = S(post C s))
∧ (I l s ∧ ¬JbKs =⇒ Q l s ∧ E s ≥ 1 ∧ S s = s))

First, verification conditions are recursively generated from the loop body C and the
invariant I as desired post condition. The invariant and the loop guard must imply
preservation of the invariant, the recurrence inequation for the time bound and that
the state transformer S obeys the fixpoint equation for loops. When exiting the loop,
the post condition must hold, E has to pay for the last test of the loop guard, and S
needs to be the identity.

13



2 Three Hoare Logics for Time

The verification conditions for Conseq {P ′, Q, e′} C merely check the side condition
of rule conseqK .

vc (Conseq {P ′, Q, e′} C) Q′ = vc C Q ∧
∃k. ∀l s. P ′ l s =⇒ time C s ≤ k · e′ s

∧ ∀t. ∃l′. pre C Q l′ s ∧ (Q l′ t =⇒ Q′ l t)

The remaining equations for vc are straightforward:

vc Skip Q = True

vc (x := a) Q = True

vc (C1;C2) Q = (vc C1 (pre C2 Q) ∧ vc C2 Q)
vc (IF b THEN C1 ELSE C2) Q = (vc C1 Q ∧ vc C2 Q)

Theorem 4 (Soundness of vc). Let C and Q involve only finitely many logical vari-
ables. Then vc C Q together with ∃k. ∀l s. P l s =⇒ pre C Q l s ∧ time C s ≤ k · e s
imply `1 {P} C {e ⇓ Q}.

That is, for proving `1 {P} C {e ⇓ Q} one has to show the verification conditions,
that P implies the weakest precondition (as computed by pre), and that the running
time (as computed by time) is in the order of magnitude of e.

Now we come to the raison d’être of the stronger consequence rule conseqK : the
completeness proof of our VCG. The other proofs in this section only require the de-
rived rules conseq and const. Our completeness proof of the VCG builds annotated
programs that contain a Conseq construct for every Seq and While rule. The annota-
tions of Conseq enable us to adapt the logical state; without this adaptation we failed
to generate true verification conditions.
Theorem 5 (Completeness of vc). If `1 {P} c {e ⇓ Q} is true then there is a C such
that C = c, vc C Q is true and ∃k. ∀l s. P l s =⇒ pre C Q l s ∧ time C s ≤ k · e s.
That is, if a triple `1 {P} c {e ⇓ Q} is provable then c can be annotated such that

the verification conditions are true, P implies the weakest precondition (as computed
by pre) and the running time (as computed by time) is in the order of magnitude of e.

Annotating loops with a correct S is troublesome, as it captures the semantics of the
whole loop. Luckily S only needs to be correct for “interesting” variables, i.e. variables
that occur in time bounds that need to be pulled backward through the loop body.
Often these variables are not modified by a command. We implemented an optimized
VCG that keeps track of which variables are of interest and requires S to be correct
only on those. We also showed its soundness and completeness. Further details can be
found in the formalization.

2.3 Carbonneaux - Quantitative Hoare Logic
Now we turn to the second Hoare logic we formalized. The main idea we use from
Carbonneaux et al. [16] is to generalize predicates (state⇒ B) in Hoare triples to po-
tentials (state⇒ N∞). That is, Hoare triples are now of the form {Φ} c {Ψ} where Φ
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`2 {Φ + 1} Skip {Φ}
Skip

`2 {λs. 1 + Φ(s[a/x])} x := a {Φ}
Assign

`2 {Φ + ↑b} c1 {Ψ} `2 {Φ + ↑(¬b)}c2{Ψ}
`2 {Φ + 1} IF b THEN c1 ELSE c2 {Ψ}

If
`2 {Φ} c1 {Ψ}
`2 {Ψ} c2 {Π}
`2 {Φ} c1 ; c2 {Π}

Seq

`2 {I + ↑b} c {I + 1}
`2 {I + 1} WHILE b DO c {I + ↑(¬b)}

While
`2 {Φ} c {Ψ}

Φ′ ≥ Φ Ψ ≥ Ψ′

`2 {Φ′} c {Ψ′}
conseq

Figure 2.3: Quantitative Hoare logic

and Ψ are potentials. The resulting logic does not need logical variables. We prove
soundness and completeness of that logic and design a sound and complete VCG. Then
we extend the logic and VCG to big-O style reasoning.

­
The “zen of the potential method”, i. e. the step from qualitative predicates to quan-
titative (potential) functions, is central to this thesis and occurs in many places.

Validity of triples involving potentials is defined as follows and is a direct generaliza-
tion of validity for triples involving predicates:

|=2 {Φ} c {Ψ} = ∀s. Φ s < ∞ =⇒ (∃t s′. (c, s) t=⇒ s′ ∧ Ψ s′ < ∞
∧ Φ s ≥ t + Ψ s′)

One may interpret the refinement from B to N∞ as follows: infinite potentials are
“impossible” and thus correspond to False, while finite potentials correspond to True.
In that way “Φ s < ∞” corresponds to “Φ holds in state s”. Furthermore, we interpret
the difference of the prepotential Φ and postpotential Ψ as an upper bound on the actual
running time. Predicates can be lifted to potentials by mapping True to 0 and False to
∞. We use the ↑ symbol for that lifting: ↑P s = (if P s then 0 else ∞), and similarly
for Boolean expressions: ↑b s = (if JbKs then 0 else ∞).
Using this definition we obtain a compositional Sequence rule:

Lemma 6. |=2 {Φ} c1 {Ψ} ∧ |=2 {Ψ} c2 {Π} =⇒ |=2 {Φ} c1 ; c2 {Π}

Proof. To prove this rule it suffices to observe that, from the two Hoare triples in the
premises we obtain Φ s ≥ t1 + Ψ s′ and Ψ s′ ≥ t2 + Π s′′. Then, with monotonicity
and associativity of the plus operator it follows that Φ s ≥ (t1 + t2) + Π s′′.

The rules in Figure 2.3 define the Hoare logic `2 corresponding to |=2. Note that
Φ ≥ Ψ is short for ∀s. Φ s ≥ Ψ s.

Rules Skip, Assign and If are straightforward. The 1 time unit added to the pre-
potential pays for, respectively, Skip, assignment and the evaluation of the Boolean
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expression. The conseq rule also looks familiar, only that =⇒ has been replaced by its
counterpart on potentials: ≥. You can think of a bigger potential “implying” a smaller
one. Also remember that False corresponds to ∞.

For the While rule, assume one can derive that, having the potential I and a true
guard b before the execution of b implies a postpotential one more than the invariant
I (the plus one is needed for the upcoming evaluation of the guard, which incurs cost
1), then one can conclude that, starting the loop with potential I+1 (again the plus
one pays for the evaluation of the guard), the loop terminates with a potential equal to
I and the negation of the guard holds in the final state. Although this rule resembles
the While rule for partial correctness, the decreasing potential actually also ensures
termination.

Soundness Let us prove soundness of the set of Hoare Rules:

Theorem 7 (Soundness of `2). `2 {Φ} c {Ψ} =⇒ |=2 {Φ} c {Ψ}

Proof. Again by induction on the derivation of `2 {Φ} c {Ψ}, we must show that every
rule preserves validity. This is straightforward for Skip, Assign, If and conseq. The Seq
case is essentially Lemma 6.
The most interesting case is While: we assume the induction hypothesis (IH1)
|=2 {I + ↑ b} c {I + 1}. First, we prove for arbitrary s that if I s has a finite value
n ∈ N, there is some amount of time t and state s′ such that (WHILE b DO c, s) t=⇒ s′

and t + (I s′ + ↑(¬ b) s′) ≤ I s + 1. The proof proceeds by well founded induction on
the value n. There are two cases.
If the guard is False in s, we have s = s′ and t = 1; then we can directly use the

WhileFalse rule from the big-step semantics and the second conjunct follows trivially.
If the guard is True in s, we can establish the prepotential (I s + ↑b s < ∞) to use

the outer induction hypothesis (IH1) to obtain the state s′ and the time t that passed
while executing the loop body c once. In that case, we obtain the facts (a) (c, s) t=⇒ s′

and (A) t + I s′ + 1 ≤ I s. It is easy to see that I s′ < I s follows from (A). As Is = n
we can now find a value n′ ∈ N such that I s′ = n′ and it follows n′ < n. Thus we can
use the inner induction hypothesis for the smaller value n′ and obtain for the tail of the
loop: execution of the tail of the loop ends in state s′′ and consumes t′ time, we get (b)
(WHILE b DO c, s′) t′=⇒ s′′ and (B) t′ + (Is′′+ ↑ (¬b)s′′) ≤ Is′ + 1. It remains to verify
that (1 + t+ t′) + (I s′′ + ↑(¬ b) s′′) ≤ I s + 1, i. e. that we had enough potential in
the beginning to pay for the initial guard evaluation (1), the first unrolling of the body
c (t) and the rest of the loop (t′),as well as the potential after the whole execution of
the loop (I s′′):

(1 + t+ t′) + (I s′′+ ↑ (¬b)s′′) ≤ (1 + t) + I s′ + 1 (B)
≤ I s+ 1 (A)
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From (a) and (b) we finally can conclude (WHILE b DO c, s) t+t′==⇒ s′′ and finish off
the inner induction. We have now established this lemma:
∀s. I s = n =⇒ ∃t s′. (WHILE b DO c, s) ⇒ t ⇓ s′

∧ t + (I s′ + ↑(¬b) s) ≤ I s + 1
To finish off the While case, we use that lemma. We can assume I s + 1 < ∞,

which implies the premise and the conclusion matches the current goal. This finishes
the proof.

Completeness For proving completeness, we generalize the weakest precondition to
the weakest prepotential:

wp c Ψ s = (if ↓ (c, s) then ↓T (c, s) + Ψ (↓S (c, s)) else ∞)
The weakest prepotential maps each state s, from which c will terminate in some

state s′, to the time needed for this execution plus the potential Ψ s′ afterwards. A
state, which results in a non terminating execution is mapped to ∞.
Verifying that wp c Q indeed is the weakest prepotential involves only unfolding the

definitions and some case distinctions:

Lemma 8. |=2 {Φ} c {Ψ} ←→ Φ ≥ wp c Ψ

Analogous to the classical Hoare logic, as well as to the Nielson Hoare logic we
studied in the last section, the weakest prepotential wp pulls a postpotential through
a command to obtain the corresponding prepotential. We can now formulate nice
recursion equations for the different commands:

Lemma 9.

wp Skip = Ψ + 1
wp (x := a) Ψ = Ψ[a/x] + 1
wp (c1 ; c2) Ψ = wp c1 (wp c2 Ψ)
wp (If b c1 c2) Ψ = (λs. if [b]s then wp c1 Ψ s else wp c2 Ψ s) + 1
wp (While b c) Ψ = (λs. (if [b]s then wp c (wp (While b c) Ψ) s else Ψ s)) + 1

Proof. All of them can be proven with the definition of wp, the determinism of the
IMP language and some case distinctions.

In fact, wp is also a (weakest) prepotential w. r. t. provability:

Lemma 10. `2 {wp c Ψ} c {Ψ}

Proof. We proceed by induction on the command c. Given the equations from Lemma 9,
all cases but the While case are almost automatic. In the While case we choose the
right hand side of the equality in the While case of wp as an “invariant” and specialize
the induction hypothesis with wp (WHILE b c) Ψ, two applications of the consequence
rule employing and Lemma 9 finishes the proof.
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As usual, completeness follows easily from this lemma:

Theorem 11 (Completeness of `2). |=2 {Φ} c {Ψ} =⇒ `2 {Φ} c {Ψ}

Verification Condition Generator The simpler Seq rule (compared to `1) leads to
a more compact VCG. Loops are simply annotated with invariants, which now are
potentials. No Conseq annotations are required.
Function pre C Ψ determines the weakest prepotential of an annotated program C

and postpotential Ψ. Its definition is by recursion on annotated commands and refines
our earlier pre on predicates.
The VCG recursively traverses the command and collects the verification conditions

at the loops (we omit the other cases of vc):
vc ({I} WHILE b DO C) Ψ = I + ↑b ≥ pre C (I + 1)

∧ I + ↑(¬b) ≥ Ψ ∧ vc C (I + 1)
The two first conjuncts express invariant preservation and that the invariant “implies”
the postcondition when exiting the loop. Soundness of the VCG is established by
induction on the command.

Lemma 12 (Soundness of vc). If we can show the verification conditions vc C Ψ and
that we have at least as much potential as the needed prepotential (Φ ≥ pre C Ψ) then
we can derive `2 {Φ} C {Ψ}.

Completeness of the VCG can be paraphrased like this: if we can derive the Hoare
Triple `2 {Φ} c {Ψ}, we can find an annotation for c such that the verification condi-
tions are true and Φ “implies” the prepotential.

Lemma 13 (Completeness of vc).
`2 {Φ} c {Ψ} =⇒ ∃C. C = c ∧ vc C Q ∧ Φ ≥ pre C Ψ

Constant factors As for the Nielson system we can extend the quantitative Hoare
logic to reason about the order of magnitude of execution time. We generalize our
notion of validity from |=2 to |=2′ :

|=2′ {Φ} c {Ψ} = ∃k > 0. ∀s. Φ s <∞ =⇒ ∃t s′.
{

(c, s)⇒ t ⇓ s′ ∧Ψ s′ <∞ ∧
k · Φ s ≥ t+ k ·Ψ s′

For intuition, assume Ψ is zero: then the triple is valid if and only if the running time
t is bounded by k times the prepotential Φ. This amounts to O-notation.
Correspondingly, we extend the set of Hoare rules `2 in Figure 2.3 to `2′ by adding

the following rule:

`2′ {λs. k · Φ s} c {λs. k ·Ψ s} k > 0
`2′ {Φ} c {Ψ}

const

For re-establishing soundness we can adapt the proof of Theorem 7 by catering for
constants and adding one more case for rule const.
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Theorem 14 (Soundness of `2′ ). `2′ {Φ} c {Ψ} =⇒ |=2′ {Φ} c {Ψ}

For the completeness proof, nothing changes. We reuse the same wp and the proof
of `2′ {wp c Ψ} c {Ψ} is identical to that of Lemma 10 because we extended the Hoare
rules, but not the command language. In particular, this means that the new const
rule is not used in this proof. The same principle as in Section 2.2 applies: the const
rule is only used once at the end when showing completeness from `2′ {wp c Ψ} c {Ψ}:

Theorem 15 (Completeness of `2′). |=2′ {Φ} c {Ψ} =⇒ `2′ {Φ} c {Ψ}

VCG with constants For the VCG we add one more annotated command Const {k}
C (where k ∈ N, k > 0). It signals the application of a const rule. We reuse the old
definitions of pre and vc but add new equations for Const:

vc (Const {k} C) Ψ s = (vc C (λs. k · Ψ s) ∧ k>0)
pre (Const {k} C) Ψ s = ediv (pre C (λs. k · Ψ s) s) k

The definition of vc (Const {k} C) Ψ expresses that the execution of C must leave a
potential of k · Ψ instead of just Ψ. The definition of pre (Const {k} C) Ψ expresses
that we pull back a potential of k · Ψ but that in the end we renormalize the prepotential
by dividing (function ediv) by k. More precisely, ediv is integer division which rounds
up for non integral results and is lifted to N∞.
The soundness and completeness proofs must only be adapted marginally, only some

algebraic lemmas about ediv are needed.

Wrap Up To summarize this section: we have shown how to generalize predicates to
potentials, thus obtaining a compositional Hoare logic. We have extended the Hoare
logic to big-O style reasoning and have adapted the calculus and proofs. We also have
established sound and complete VCGs for both logics.
One drawback of the quantitative Hoare logic is that it is not modular. Imagine two

independent programs c1 and c2 that are run one after the other. When reasoning about
a subprogram c1 we need to specify a postpotential that is then used for the following
program c2. If we change c2, resulting in a changed time consumption, also the analysis
for c1 has do be redone. What we actually would like to do, is to reason about c1 and
c2 locally and then combine them in a final step. Separation Logic addresses this issue.

2.4 Atkey - Separation Logic with Time Credits

Our last logic follows the idea by Atkey [2] to use Separation Logic in order to reason
about the resource consumption of programs.
The principle of “local reasoning” is addressed by separation logic for disjoint heap

areas; Atkey [2] uses Separation Logic with Time Credits to reason about the amortized
execution time of (imperative) programs.
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In this section, we follow his ideas and design a Hoare logic based on Separation
Logic. As IMP does not have a heap to reason about, but we want to compare the
logic to the two logics we already described, we treat the state of a program as a kind
of heap: a partial state ps is a map from variable names to values, dom ps is the domain
of ps, we call ps1 and ps2 disjoint (ps1 # ps2) if their domains are, and we can add two
partial states to form their disjoint union (ps1 + ps2).
We adapt evaluation of arithmetic and Boolean expressions, as well as the big-step

semantics (now denoted by ⇒p) to partial states. If all necessary variables are in the
domain of the partial state ps, these new constructs coincide with their counterparts
on (full) states. The new big-step semantics rule for assignment for example has an
additional premise. All other rules are similar.

vars a ∪ {x} ⊆ dom ps

(x := a, ps) 1=⇒p ps(x 7→ JaKps)
Assign

The new semantics admit a frame rule: we can always add disjoint partial states,
without affecting the computation.

Lemma 16.
(c, ps1) t=⇒p ps

′
1 ps1#ps2

(c, ps1 + ps2) t=⇒p ps
′
1 + ps2

In that way we treat the set of variables as resources, on which Separation Logic can
work. Additionally, as Atkey proposes, we add time credits as resources: we consider
configurations (ps, n) which are pairs of partial states and natural numbers. Natural
numbers, viewed as resources, are always disjoint and can be added; thus they form
a separation algebra [14]. A pair of separation algebras is again a separation algebra.
For predicates on configurations we thus have the separating conjunction ?

(P ? Q)(ps, n) = ∃ps1 n1 ps2 n2.

{
ps = ps1 + ps2 ∧ n = n1 + n2 ∧ ps1#ps2 ∧
P (ps1, n1) ∧Q(ps2, n2)

meaning that we can split up the configuration into two disjoint configurations; one
satisfying P and the other satisfying Q. Our formalization builds on an existing Is-
abelle/HOL theory of separation algebras by Klein et al. [69].
The validity of a Hoare triple is defined in the following way:

|=3 {P} c {Q} = ∀ps n. P (ps, n) =⇒ ∃ps′ n′ t.
{

(c, ps) t=⇒p ps
′ ∧

n = n′ + t ∧Q(ps′, n′)

We can now state the Hoare rules for this logic, see Figure 2.4. Note that $n denotes the
configuration of an empty partial state and n time credits, (b ↪→ B) ps is true, if and
only if all variables in b are in the domain of ps and b evaluates to B in ps. Updating
the partial state ps with value v for x is denoted by ps(x 7→ v).
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`3 {$1} Skip {$0}
Skip

`3 {(λ(ps, t). {x} ∪ vars a ⊆ dom ps ∧Q (ps(x 7→ JaKps), t)) ? $1} x := a {Q}
Assign

`3 {λ(ps, n). P (ps, n) ∧ (b ↪→ True) ps} c1 {Q}
`3 {λ(ps, n). P (ps, n) ∧ (b ↪→ False) ps} c2 {Q}

`3 {(λ(ps, n). P (ps, n) ∧ vars b ⊆ dom ps) ? $1} IF b THEN c1 ELSE c2 {Q}
If

`3 {P} c {Q}
`3 {P ? F} c {Q ? F}

Frame
`3 {P} c1 {Q} `3 {Q} c2 {R}

`3 {P} c1 ; c2 {R}
Seq

`3 {λ(ps, n). I(ps, n) ∧ (b ↪→ True) ps} c {I ? $1}
`3 {(λ(ps, n). I(ps, n) ∧ vars b ⊆ dom ps) ? $1}

WHILE b DO c
{λ(ps, n). I(ps, n) ∧ (b ↪→ False) ps}

While

∀ps n. P ′(ps, n) =⇒ P (ps, n)
`3 {P} c {Q}

∀ps n. Q(ps, n) =⇒ Q′(ps, n)
`3 {P ′} c {Q′}

conseq

Figure 2.4: Hoare logic with Separation Logic for reasoning about execution time
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Soundness Proving soundness and completeness follows the same lines as for the
quantitative Hoare logic, only complicated by the reasoning about partial states.

Theorem 17 (Soundness of `3). `3 {P} c {Q} =⇒ |=3 {P} c {Q}

Completeness This logic’s weakest precondition is again defined as the right-hand
side of the implication in the definition of validity:

wp c Q (ps, n) = ∃ps′ n′ t. (c, s) t=⇒p ps′ ∧ n = n′ + t ∧ Q (ps′, n′)

For completeness we first show `3 {wp c Q} c {Q} by induction on the command c,
and then use the definition of validity and wp to finish the proof.

Theorem 18 (Completeness of `3). |=3 {P} c {Q} =⇒ `3 {P} c {Q}

Big-O style Similar to last subsection’s system we extend the Hoare logic based on
Separation Logic to big-O style reasoning. We again generalize our notion of validity
(now |=3′) and add a similar const rule to obtain the Hoare logic `3′ . Proving soundness
and completeness of this new Hoare logic follows the same lines as in the subsection
before. Similarly, we come up with a simple VCG: somewhat unorthodoxly for Sepa-
ration Logic, we use a backwards style, as well as we do not provide annotations for
abstraction from multiplicative constants, as one final abstraction at the outer most
position suffices to ensure completeness.
The approach inspired by Nielson to incorporate abstraction from multiplicative

constants directly into the Hoare logic in order to reason about the order of magnitude
of the running time of programs shows weaknesses and seems to complicate matters.
Our theoretical results show that it is always possible to reason about the exact running
time and abstract away multiplicative constants in a last step.

2.5 Interrelations
In this section, we discuss the interrelations between the Hoare logics described in the
last section.
First we can compare the expressivity of the logics. Nielson logic |=1 and the quan-

titative Hoare logic |=2′ , both big-O style logics, are equivalent in the following sense:

Lemma 19. |=1 {bΦcB} c {λs. bΦ s−Q(↓S(c, s))cN ⇓ bΨcB} =⇒ |=2′ {Φ} c {Ψ} where
bΦcB s = Φ s < ∞ and b.cN is the coercion from N∞ to N, assuming the argument is
finite.

Validity of a triple in the quantitative Hoare logic can be reduced to validity of a
transformed triple in Nielson’s logic. In the other direction this is only possible for
assertions P and Q that do not depend on the state of their logical variables:

Lemma 20. |=2′ {⇑P + e} c {⇑Q} =⇒ |=1 {P} c {e ⇓ Q} where ⇑P s = (∀l.↑P l s)
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The quantitative logics support amortized resource analysis. On the face of it, Niel-
son’s logic does not, but Lemma 19 tells us that in theory it actually does. However,
automatic tools for resource analysis are mainly based on the potential method, for
example [61, 17].
Furthermore, as the third system based on Separation Logic talks about partial

states, in general it cannot be simulated by any of the other systems. This can only be
done for assertions that act on complete states:

Lemma 21. |=2′ {bP c} c {bQc} =⇒ |=3′ {P} c {Q}, when P is only true for com-
plete partial states, with bP cs = infn∈N{P (bsc, n)} and bsc is the partial state defined
everywhere and returning the same results as the total state s.

On the other hand any triple in the quantitative Hoare logic |=2′ can be embedded
into the Separation Logic |=3′ :

Lemma 22. |=3′ {bP c} c {bQc} =⇒ |=2′ {P} c {Q}, where bP c(ps, n) = (∀s. n ≥
P bpscs) and bpscs is the extension of the partial state ps by the state s to a total state.

2.5.1 Example
Let c be the IMP program that computes the discrete square root by bisection:

l ::= 0 ;; r::= x + 1;; m ::= 0 ;;
(WHILE l + 1 < r DO

m ::= (l + r) / 2;;
(IF m * m < x THEN l ::= m ELSE r ::= m);;
m ::= 0)

With the simplification that the intervals between l and r are always powers of two,
we can easily show the running time to be in the order of magnitude of 1 + log x. Note
that we can get rid of multiplicative constants, but not additive ones!
For showing `1 {λl s. (∃k.1 + s ′′x′′ = 2k)} c {λs. log(s ′′x′′) + 1 ⇓ λl s. T rue) we

provide the following annotations for the while loop: I1 = λl s. s ′′l′′ ≥ 0∧ (∃k.s ′′r′′−
s ′′l′′ = 2k), E1 = λs. 1+5 · log(s ′′r′′−s ′′l′′)and S1 = λs. s; then we use our optimized
VCG and prove the remaining proof obligations.
For showing `2′ {(λs. ↑ (∃k.1 + s ′′x′′ = 2k) + (log(s ′′x′′) + 1)} c {λ_.0), we

annotate the while loop with the potential I2′ = λs. ↑ (s ′′l′′ ≥ 0∧ (∃k.s ′′r′′ − s ′′l′′ =
2k)) + 5 · log(s ′′r′′ − s ′′l′′).
Let us now compare the VCGs. Our VCG for Nielson’s logic requires the annotation

of loops with invariants I, running time bounds E and the state transformers S. In
contrast, the annotations required for the VCG for the quantitative Hoare logic are
uniformly potentials. In the above example, one can see that this annotated potential
I2′ exactly contains the same information as both I1 and E1 in the Nielson approach.
The additional 1+ in E1 is needed, as E1 describes the running time of the whole loop,
where I2′ describes the running time from after evaluating the loop guard. Only more
practical experience can tell if it is better to work with separate I, E and S or with a
combined invariant potential.
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In addition our annotated commands for Nielson’s system may require annotations
of the form Conseq {P ′, Q, e′}, whereas for the quantitative Hoare logic we managed
to reduce this to Const {k} annotations. It would be desirable to reduce the Conseq
annotations similarly.

2.6 Related Work

Hanne Riis Nielson [107, 106] was the first to study Hoare logics for running time
analysis of programs. She proved soundness and completeness of her systems (on
paper) which are based on a deep embedding of her assertion language. We base our
formalization on the system given in [108] where assertions are just predicates, i. e.
functions. However, our inference system differs from hers in several respects and our
mechanized proofs in Isabelle/HOL are completely independent. Moreover we provide
a VCG and prove it sound and complete.
Possibly the first example of a resource analysis logic based on potentials is due to

Hofmann and Jost [60]. The idea of generalizing predicates to potentials in order to
form a “quantitative Hoare logic” we borrowed from [16]: Carbonneaux et al. design a
quantitative logic in order to reason about stack-space usage of C programs. They also
formally show soundness of their logic in Coq. They employ their logic for reasoning
about other resource bounds and use it as the underlying logic for an automatic tool
for resource bound analysis [18, 17]. In his dissertation [15] Carbonneaux complements
his tool-focused work with a theoretical treatment of an “Invariant Logic” with a com-
pleteness result w. r. t. to a small step semantics. The relation to our logics of Section
2.3 should be studied in more detail.
Atkey [2] proposed to use Separation Logic with Time Credits to reason about the

amortized running time of programs; he formalized his logic and its soundness in Coq.
Similar ideas were used by Hoffmann et al. [59] to prove lock-freedom of concurrent
programs, and by Charguéraud and Pottier [21] to verify the amortized running time
of the Union-Find data structure in Coq. Guéneau, Charguéraud and Pottier [41]
extended their framework to also obtain O results for the running time of programs
and apply it to a state-of-the-art algorithm [42, 40]. None of these works include verified
VCGs. In the Part II and III of this thesis I will describe our implementations [138,
45, 44] of that technique in Isabelle/HOL.
There is also related work that extends to probabilistic programs. Kaminski et

al. [66] reason about the expected running time of probabilistic programs and show
that their approach corresponds to Nielson’s logic when restricted to deterministic
algorithms. Ngo et al. [105] extend the idea of working with potentials to reasoning
about the expected running time of probabilistic programs. I will take up that work
and present a formalization in Isabelle/HOL in Chapter 3. Wang et al. [129] present
the first system for automated amortized resource analysis of probabilistic functional
programs.
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2.7 Discussion

For formal treatment of program logics [110] is a good entry point. Basic concepts
as well as formalizations of Hoare logics that lay the ground for our work can be found
in [114].

2.7 Discussion

In this chapter we have studied three Hoare logics for reasoning about the running time
of programs in a simple imperative language. We have formalized and verified their
meta theory in Isabelle/HOL.
To focus on the time aspect we considered the simplistic imperative programming

language IMP that, in particular, is deterministic and does not allow for (recursive)
procedures. Extending the language for those concepts (following [110]) and studying
time bounds in that context should be easy. The formalizations of Carbonneaux’s
Invariant Logics in Coq [15] does already cover procedures. Extending the language
with probabilistic choice (following [118, 66]) is much more interesting and is covered
in Chapter 3.
Studying other resources (like stack-space consumption [15]) would be interesting

future work. Especially, in the light of Section 4.3 it would be interesting to revisit the
work of this chapter and generalize it to arbitrary resource bounds. Initial experiments
for reasoning about lower bounds on the running time for the quantitative Hoare logic
were very promising. Studying that also for the other logics would be interesting. The
concept of time receipts [103] or similarly negative integral time credits [40] could be
used in the context with Separation Logic.
Baking-in the big-O style seems to complicate the theory and does not simplify the

reasoning. With the structure of our completeness proofs we give a formal justification
for the intuition that one can always reason with concrete constants and do a final
asymptotic analysis at the end. When forming a practical framework in Chapter 5
we will follow that design principle. While Guéneau [40] develops techniques and Coq
tactics to push the asymptotic reasoning into the algorithm analysis, we explore a
different technique to avoid handling concrete constants and improve structuring our
formalizations: stepwise refinement and resource currencies (Part III).
The quantitative Hoare logic seems to be a suitable foundation for automatic pro-

gram analysis that is “bottom-up” in the sense that one starts with some concrete
implementation, and asks for an estimate of the running time. A VCG similar to ours
can be used to extract constraints on time bounds and invariants. Assuming a certain
shape of those expressions, they can then be automatically solved with the help of
off-the-shelve LP solvers (cf. [17]). Separation Logic with Time Credits allows for local
reasoning and seems to be the more suitable logic for verifying the algorithm analysis
in an interactive setting [21, 138, 40, 44]. One could integrate the automatic tools to
assist the manual synthesis of time bounds, following our finding that the formalisms
can be turned into one another. Those tools need not be formally verified, but — like
for termination [75] — their results could be simply reconstructed and certified in the
proof assistant.
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2.8 Summary
• We presented three Hoare logics for reasoning about the running time of impera-
tive programs. Unsurprisingly, they all three have basically the same expressivity.

• The “zen of the potential method” and the idea to use differences of potentials
gives rise to a compositional Hoare logic that is considerably easier to use as the
chronologically earlier Logic by Nielson [108]. The logic seems to be well suitable
for automatic tools.

• The logic obtained by extending Separation Logic with Time Credits additionally
allows for local reasoning and thus seems to be well suited for interactive theorem
proving.

• Baking-in the big-O style seems to complicate the theory and does not simplify
the reasoning. With the structure of our completeness proofs we give a formal
justification for the intuition that one can always reason with concrete constants
and do a final asymptotic analysis at the end.
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3 Expected Running Time of Probabilistic
Programs

In this chapter I take a detour from the main topic of this thesis and consider how we
can apply the Hoare logics we reviewed in the last chapter to formally reason about
the running time of probabilistic programs.
Kaminski et al. [66] present an approach to establish bounds on the expected running

time of probabilistic guarded command language (pGCL) programs. They provide an
operational semantics in terms of Markov Decision Processes (MDPs) and prove the
equivalence with their semantics. Hölzl [62] uses the well-developed theory of MDPs in
Isabelle/HOL [63] to formalize that operational semantics, the expected running time
calculus and the equivalence proof. Hölzl also formalizes two well-known examples
using this approach working directly on the MDP semantics: a simple random walk
and the Coupon Collector. I will summarize that development in Section 3.1.
For a program c the expected running time transformer ert c f σ gives the expected

running time of c started in initial state σ under the assumption that f captures the
running time of the computation following c. This has some very apparent similarity
to the weakest prepotential wp from Section 2.3. Ngo, Carbonneaux and Hoffmann
[105] first unaware of Kaminski et al.’s work [66] extend their quantitative Hoare logic
to the expected running time of probabilistic programs by being so bold to simply add
probabilistic choice to the calculus. It was surprisingly easy to extend our formaliza-
tion of the quantitative Hoare logic to probabilistic programs. Instead of IMP I use
pGCL, essentially add one more inference rule, prove soundness and completeness of
the resulting calculus, and add a VCG. In contrast to Ngo et al., I do not consider
procedures, nor do I try to automatically solve the verification conditions. Instead, I
add a completeness result for the logic and the VCG. I describe that development in
Section 3.2.
Interestingly, Kaminski et al. [66] build a connection to Nielson’s Hoare logic (cf.

Section 2.2) and show that their notion of ert is a conservative extension when restrict-
ing pGCL to deterministic programs. The fact that they also use Nielson’s Logic as a
reference point for Hoare logics for time bounds is reassuring that we chose the relevant
logics from the literature in our meta study in Chapter 2.
While there is a well-developed theory for the ert calculus, reasoning about the

expected running time of programs is still a laborious task. Batz et al. [7] provide a
novel proof rule for a special kind of loops. It is for instance applicable for the inner
loop of the Coupon Collector example. I formalize that rule, verify a more succinct
proof, and a generalization of it, and apply it to the Coupon Collector problem in
Section 3.3.
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Because most material of this chapter is not novel but rather a combination of known
results pulled together into a formalization in Isabelle/HOL, it was not published any-
where else yet. However, as there are many connections to the material of Chapter 2,
I think it fits well into this thesis. Also, this summary might be useful as a basis for
further verified quantitative analysis of probabilistic programs.

The formalization described in this chapter can be found online [49].

3.1 pGCL and the Expected Running Time Transformer

Ò
This section gives a succinct summary of the relevant parts of the expected running
time calculus by Kaminski [66] and its formalization in Isabelle/HOL by Hölzl [62].

The probabilistic guarded command language (pGCL) can be seen as an extension
to IMP (Section 2.1) adding two new concepts: First, assignments may involve prob-
abilistic choice, i. e. the effect of an assignment is a probability distribution over post
states. We use Isabelle’s probability mass functions (pmf), which are essentially discrete
probability distributions with finite support. Second, we allow nondeterministic choice
between two branches, i. e. both branches are executed and then one of the results
is chosen. While the theory is more general, for a streamlined presentation we fix the
type of program states to be functions from variables to values (as we do in Chapter 2).
Formally, we define the type pgcl for the deep embedding of pGCL:

pgcl = Skip | Assign vname (state → val pmf) | Seq pgcl pgcl | Par pgcl pgcl
| If (state → bool) pgcl pgcl | While (state → bool) pgcl

An assignment Assign x u changes the variable x to a value following the probability
distribution u incurring cost 1. If u is a Dirac distribution, i. e. assigning probabil-
ity 1 to exactly one value, the assignment is deterministic. The command Par c1 c2
branches nondeterministically between c1 and c2. The command Skip has no effect and
incurs cost 1; command Seq is sequential composition. Commands If and While are
straightforward and incur cost 1 for evaluating the guards.

Example 3.1.1. We formalize the simple one-dimensional random walk in pGCL: we
flip a coin and depending on the result make a step to the left or right.

random_walk = x ::= returnpmf 10;;
WHILE 0 < x DO
x ::= mappmf (λTrue ⇒ x + 1 | False ⇒ x − 1) (bernoullipmf 0.5)

Note that returnpmf x is the Dirac distribution that assigns element x probability
1, and mappmf f applies the function f to each value of a probability distribution.
Variable x represents the current position and is initialized to 10. While we stay in the
positive half of the integers we flip a fair coin (p = 0.5) and make a step to the left
or to the right accordingly. If the program reaches zero it terminates. Probabilistic
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branching (with probability p) can be encoded with a probabilistic assignment (coin
flip with probability p) followed by a Boolean branching.1
Surprisingly, but well-known, the random walk reaches each point on the non-negative

part with probability 1. Also surprising, while it terminates almost surely (with prob-
ability 1) the expected running time to get from 10 to 0 (termination) is infinite.

Example 3.1.2. As a second example we consider the Coupon Collector Problem.
The idea is to compute the expected time until we collect N different coupons from a
uniform, independent and infinite source of coupons.

geomN,c = WHILE b = 0 DO
b := mappmf (λTrue ⇒ 0 | False ⇒ 1) (bernouillipmf (c / N))

CCN = c ::= returnpmf 0;;
b ::= returnpmf 0;;
WHILE c < N DO

geomN,c ;;
b ::= returnpmf 0;;
c ::= returnpmf (c+1)

While we still search for a coupon, we draw coupons until we find one we do not already
have, then register the trove and restart the quest for the rest of the coupons. The
expected running time of the inner loop has a geometric distribution, the outer loop
will have expected running time Θ(N logN). Note that this example is a simplification
of the Coupon Collector Problem. Hölzl proves the equivalence of this version to the
original version in [63].

The denotational semantics for the running time is given as an expectation trans-
former that is very similar to the weakest prepotential wp of the quantitative Hoare
logic (cf. Lemma 9). For the probabilistic choice, we have to take the expectation over
the distribution. For the demonic nondeterministic choice, we use the supremum of the
two branches: here it is the bigger expected running time, as we look for the tightest
upper bounds. TheWhile rule is phrased with a least fixed point, instead of its unfolded
version.

ert :: pgcl → (state → ennreal) → (state → ennreal)
ert Skip f = 1 + f
ert (Assign v u) f = 1 + (λs.

∫
x f (s(v := x))d(u s))

ert (Seq c1 c2) f = ert c1 (ert c2 f)
ert (Par c1 c2) f = ert c1 f t ert_c2 f
ert (If g c1 c2) f = 1 + (λx. if g x then ert c1 f else ert_c2 f)
ert (While g c) f = lfp (λW x. 1 + (if g x then ert c W x else f x))

The expectation transformer ert c maps a postexpectation to a preexpectation. An
expectation of type state → ennreal maps a state to an extended non-negative real

1In contrast to modeling probabilistic branching directly — like Batz et al. [7] do — our encoding of
probabilistic branching incurs cost 2.
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denoting the expected running time (ERT) for that starting state. Note that the ERT
can also be infinite. The notion of expecations is due to McIver and Morgan [102]. Here,
the term 1 is the expectation (λs. 1); the operators t and + are lifted from ennreal to
expectations pointwise.
In particular, the rule for sequential composition stays a simple recursive definition.

By setting f = 0 we obtain the expected running time ert c 0 for a program c.
We can now prove some validating theorems about the expectation transformer ert.

For example we obtain that ert is monotone w. r. t. continuations:

Theorem 23. f ≤ g =⇒ ert c f ≤ ert c g

Following that, Hölzl [62] defines the operational small-step semantics by introducing
a MDP constructed from a pGCL program. This is formalized by the MDP’s transition
function K and a cost function that collects the costs along a trace. The transition
function K :: (pgcl × state) → (pgcl × state) pmf set maps a configuration, i. e. a pair
of a program and a state, to a set of distributions of configurations, We write Ert f c s
for the maximal expectation of the sum of cost over all states in all possible traces for
program c started in state s with continuation f :: state → ennreal. Intuitively, it is
the expected cost of the MDP for program c started from state s with continuation f.
This expected cost is provably equivalent to the expected running time obtained from
the ert calculus:

Theorem 24. (Theorem 1 in [62], Theorem 2 in [66], Theorem 6.1 in [105])

Ert f c s = ert c f s

Once, the ert calculus is backed by a formal semantics, we can turn to the case studies
and determine their expected running times.

Example 3.1.3. For the simple random walk Hölzl uses the ert calculus to obtain an
expression for the expected running time that involves a fixed point. Then he uses
traditional methods to prove the result2: ert random_walk 0 s = ∞.

Example 3.1.4. If there are already c coupons collected, the inner loop has expected
running time 3 + 2 ∗ (N / (N − c)). It increases with c but always stays finite. The
overall running time then is:

2 + N ∗ 4 + 2 ∗ N ∗ (
∑
i<N−1 1/(i+ 1))

The claims are proved by “fixed point transformations”3. We will later see a more
automatic approach.

2The theory is around 300 LOC.
3The theory has 240 LOC, with around 40 concerning the inner loop. It also contains the refinement
proof of the two equivalent formulations of the Coupon Collector (cf. Figure 4 in [62]).
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3.2 Probabilistic Quantitative Hoare Logic

`P {Φ} c1 {Ψ} `P {Φ} c2 {Ψ}
`P {Φ} Par c1 c2 {Ψ}

Par
Φ s ≥ 1 +

∫
x

Ψ (s(v := x))d(u s)

`P {Φ} v ::= u {Ψ}
Assign

Figure 3.1: New inference rules for the probabilistic quantitative Hoare logic

3.2 Probabilistic Quantitative Hoare Logic
We now extend the potential method from the quantitative Hoare logic from Section 2.3
to the expected potential method. Like in the deterministic case we work with triples
{Φ} c {Ψ} now with potentials Φ,Ψ :: state → ennreal to ensure compositional rea-
soning.
We follow the intuition that the expected running time transformer ert generalizes

the weakest prepotential wp from the deterministic quantitative Hoare logic. There
Lemma 8 states that a triple is valid, if the weakest prepotential of a command c of a
postpotential is at most the given prepotential Φ: wp c Ψ ≤ Φ.
We define validity of triples in the probabilistic quantitative Hoare logic in a similar

way:

|=P {Φ} c {Ψ} ←→ Φ ≥ ert c Ψ

A triple is valid, if the prepotential can pay for the expected running time of c plus the
continuation Ψ. The continuation is evaluated in the state at the end of the computation
c and thus can be seen as the postpotential. Note that our logic is designed to obtain
upper bounds on the expected running time of probabilistic programs.
With the ert rule for sequential composition in mind we immediately see that the

telescoping argument works also here: if we know that Φ ≥ ert c1 Ψ and Ψ ≥ ert c2 Π
we can conclude with monotonicity of ert that Φ ≥ ert c1 (ert c2 Π) = ert (c1 ;; c2) Π.
Thus the sequential composition rule for triples holds (rule Seq in Figure 2.3).
Surprisingly, we can reuse most of the rules from the deterministic quantitative Hoare

logic (cf. Figure 2.3): we only have to add a rule for nondeterministic choice (Par) and
modify the assignment rule that now involves probabilistic choice (cf. Figure 3.1). For
nondeterministic choice each branch has to adhere to the pre and postpotential. For
the assignment rule, for any state s the prepotential has to pay 1 for the assignment
and the expected postpotential for the updated state over the probability distribution
u s. If u is a Dirac distribution, the assignment rule simplifies into the deterministic
assignment rule.
When proving soundness of the inference rules, most of the proofs are straightfor-

ward. In the deterministic case, the proof for loops works by an induction on the value
of the potential, which decreases with the computation. In the probabilistic case, there
is nothing that decreases, only a recurrence relation that needs to be fulfilled. There,
reasoning over fixed points solves the problem.4 Then we obtain soundness of the calcu-
lus. For completeness we first prove `P {ert c Ψ} c {Ψ}, which is basically automatic

4The proof in the appendix C.2 of [105] provided the right pointers to complete the formal proof.
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and only needs manual proof for the loop construct. Completeness is a corollary from
that, and we finally obtain:

Theorem 25. (Soundness and completeness of `P )

`P {Φ} c {Ψ} ←→ |=P {Φ} c {Ψ}

If we restrict ourselves to pGCL programs without nondeterministic choice and prob-
abilistic assignments, we obtain a language isomorphic to IMP. For those programs, the
operational semantics on MDPs collapses into a deterministic transition system with a
reward function.5 The set of rules of the probabilistic quantitative Hoare logic then is a
conservative extension of the rules of the quantitative Hoare logic. From the discussion
at the end of Chapter 2 we know that the quantitative Hoare logic is as expressive as
Nielson’s logic. Together this implies that the Hoare logic of this chapter is a conser-
vative extension of Nielson’s Logic. Which is also a result of Kaminski et al. [66].6
With the setup from Chapter 2 it is straightforward to come up with a VCG. Only

loops need to be annotated with an invariant potential, the definitions for vc and pre
can be taken from the deterministic quantitative Hoare logic with minor modifications.
Then we can also prove that the VCG is sound and complete.

Example 3.2.1. Consider a skewed random walk rdwalk2, where we go away from zero
with probability 0.25 and toward zero with probability 0.75. The expected running time
of that random walk is actually finite.
We can use the verification condition generator on an annotated version of rdwalk2,

where we leave the invariant as a free variable I. Then the verification conditions collect
the inequalities on I. In our case it is only one:

I (s x) ≥ 1 + 1 + ((I (s x + 1)) ∗ (1 / 4) + (I (s x − 1)) ∗ (3 / 4))

The inequality stems from the “invariant preservation” through the loop body. One
time unit is spent for evaluating the loop guard, and the other one is spent on the coin
flip in the assignment. Then follow the weighted “recursive cases”.
Solving such conditions (e. g. with I s = 4 ∗ s + 1) can be delegated to automatic

tools. When we plug in a valid solution and prove the verification conditions, we obtain
the desired triple (s x ≥ 0 =⇒ {λs. 4 ∗ s x + 1} rdwalk2 {0}) which entails a bound
on the expected running time: s x ≥ 0 =⇒ ert rd_walk 0 s ≤ 4 ∗ s x + 1.

Outsourcing the solving of those constraints is actually what Ngo et al. [105] do:
similar to their earlier work on deterministic programs [18, 17] they collect the con-
ditions on the potentials used in the program and then fix the shape of the potential
functions. Their potential functions are linear combinations of elementary base poten-
tial functions. Finding the coefficients in the potential functions can be reduced to
off-the-shelf LP solving. The LP solver need not be verified, as plugging its solution

5It would be interesting to obtain an operational small step semantics of IMP by establishing this
connection formally.

6We leave the formalization of that idea as future work (https://github.com/maxhaslbeck/verERT/
issues/2).
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3.3 A Proof Rule for f-i.i.d. Loops

into the program and then proving the verification conditions inside the proof assistant
verifies the result.

Example 3.2.2. Another example is a Geometric series:

geo = WHILE x = 0 DO
x ::= mappmf (λb. if b then 1 else 0) (bernoullipmf 0.5)

From this we can extract the following recurrence relation:

P 0 ≥ 2 + (P 1) / 2 + (P 0) / 2

Which can be solved with I s = (if s x = 0 then 5 else 1). Note that geo is a special
case of the inner loop of Example 3.1.2 with c/N = 0.5. We will see in the next section
that we also can automatically find its expected running time without solving for the
invariant by hand.

3.3 A Proof Rule for f-i.i.d. Loops
We have seen that we can reduce finding the ERT of a probabilistic program to fin-
ing solutions of systems of inequalities on potentials. While the extraction of those
inequalities can be conveniently automated, solving those constraints is still hard. The
problem is obviously the looping constructs, which result in recurrence relations. For
certain loops that rule out undesired parts of the data flow across loop iterations Batz
et al. [7] provide a proof rule that does not involve finding an invariant. They call this
class of probabilistic loops f-i.i.d. loops.
Batz et al. identify a syntactic fragment of pGCL that only allows such loops and

provide a formal translation from Bayesian networks (BNs) with observations into that
fragment. The ERT of a program obtained from a BN by that translation corresponds
to the expected sampling time of that BN. Using the new proof rule allows automatic
determination of that expected sampling time.
In the following we will introduce the concept of f-i.i.d. loops, the new proof rule

with a generalization and apply it to the inner loop of the Coupon Collector example.

Weakest preexpectation Before we define the class of f-i.i.d. loops, we need to in-
troduce the weakest preexpectation transformer wp for reasoning about expected out-
comes of executing probabilistic programs. That notion is originally due to Kozen [73].
McIver and Morgan [102] added nondeterministic choice and coined the terminology in
use. We have already seen expectations, they are essentially functions that map states
to extended non-negative reals ennreals, or R∞≥0.

The weakest preexpectation transformer wp of a program c maps a postexpectation f
to a preexpectation wp c f, such that wp c f σ is the expected value of f after executing
c on initial state σ. It is defined recursively on all pGCL programs:

wp :: pgcl → (state → ennreal) → (state → ennreal)
wp Skip f = f
wp (Assign v u) f = (λs.

∫
x f (s(v := x))d(u s))
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wp (Seq c1 c2) f = wp c1 (wp c2 f)
wp (Par c1 c2) f = wp c1 f u wp_c2 f
wp (If g c1 c2) f = (λx. if g x then ert c1 f else ert_c2 f)
wp (While g c) f = lfp (λW x. (if g x then ert c W x else f x))

The infimum operator u is lifted from ennreal to expectations pointwise. It is used in
the nondeterministic choice to model demonic nondeterminism. This results in lower
bounds on the expectation: in case of nondeterministic choice we take the smaller ex-
pectation of the two branches. Choosing the supremum operator instead leads to upper
bounds on the expectation, analogously we define the angelic weakest preexpectation
transformer awp with only the rule for Par modified to:

awp (Par c1 c2) f = awp c1 f t awp_c2 f

The other rules are straightforward, e. g. Skip has no effect on the state and thus no
effect on the postexpectation. The only difference to ert is that we do not add the
cost 1. Similarly, in contrast to ert we add no costs in the assignment, branching and
looping construct.
We can also define aert using the infimum instead of the supremum in for the Par

construct and obtain lower bounds on the expected running time in case of nondeter-
ministic choice. We call programs that do not involve nondeterministic choice, i. e. do
not contain the construct Par, fully probabilistic. For fully probabilistic pGCL programs
wp and awp are equal, for general programs we have wp c f ≤ awp c f.

Intuitively, both wp and ert pull an postexpectation through a program, while ert
adds costs along the way. For wp, it does not matter whether one pulls through two
postexpectations and adds them up afterwards, or one pulls through the sum in one go.
Furthermore, from the zero postexpectation — mapping each state to 0 — one obtains
the prepotential zero. The same is not true for ert: ert c 0 is not necessarily 0, rather
it is the expected running time of c. Nor can we split up ert c (f + g) into a sum of
two erts because the costs would be added up twice. But we can decompose a general
ert c f with continuation f into the part that calculates the running time ert c 0 and
the part that pulls through the continuation wp c f. The former two properties are
called healtiness conditions [102], the latter is called the decomposition of ert.

Lemma 26 (Healthiness condition of wp [102]). For all pGCL programs c, expectations
f1, f2 and a ∈ R∞≥0 the following holds:

wp c (a ∗ f1 + f2) = a ∗ wp c f1 + wp c f2
wp c 0 = 0

The same rules also hold for awp. Also, note that wp c 1 = 1 does not always hold
and pGCL programs cannot crash. Consequently, the fact wp c 1 = 1 expresses that c
terminates with probability 1.

Lemma 27 (Decomposition of ert (Lemma A.15 in [118])). For all fully probabilistic
pGCL programs c, expectations f,

ert c f = ert c 0 + wp c f
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For notation, we introduce the Iverson brackets, which embed predicates into ex-
pectations: The expectation [ϕ] is 1 if ϕ is True and 0 otherwise.7 With that we can
rephrase the wp rules for If and While:

wp (If g c1 c2) f = [g] ∗ wp c1 f + [¬g] ∗ wp c2 f
wp (While g c) f = lfp (λW. [g] ∗ ert c W + [¬g] ∗ f)

f-i.i.d. Loops I will now introduce a proof rule that allows to determine the ERTs of
independent and identically distributed loops (i.i.d. loops for short). Such loops have a
loop body that computes the same distribution of states for each loop iteration. The
loop in Example 3.1.1 is not of that sort because the distribution of values of x changes
over several loop iterations. In contrast, the inner loop geomN,c of the Coupon Collector
Problem (Example 3.1.2) is i.i.d.: In every iteration the loop leaves all variables but b
unchanged, and b is set to 0 or 1 with probability p = c / N and 1 − p respectively.
I will use that program as a running example in this section. The new proof rule will
allow us to automatically determine the ERT of this loop, i. e. the average amount of
time required until a new coupon is discovered.
Let us establish a syntactical notion of the i.i.d. property. It relies on the property

of expectations to not be affected by a pGCL program. The term Mod c is modified
to be the set of variables that occur on the left-hand side of an assignment in c. It
is a simple over-approximation of the variables that are modified by c. Furthermore,
the term Vars f denotes the variables an expectation f depends on. As expectations f
are not deeply embedded but mere functions, we define Vars semantically. Now, f is
unaffected by c if Vars f ∩ Mod c = ∅, denoted by f 6e c.
If g 6e c, the expectation g can be pulled through the program c unaffected. That

is, g can be treated like a constant w. r. t. the transformer wp and be pulled through it
like the factor a in Lemma 26. For our running example, let us denote the loop body
of geomN,c by loopbody. Then, the expectation f = wp loopbody ([b = 0]) is unaffected
by the loop body of geomN,c. Note that [b = 0] is affected by loopbody, but f is not.
Consequently, we have wp loopbody f = f ∗ wp loopbody 1 = f. The last equality holds,
as the loopbody always terminates. In general, we obtain the following property:

Lemma 28 (Scaling by unaffected expectations (Lemma 1 in [7])). For a fully proba-
bilistic pGCL program c and expectations f, g:

g 6e c =⇒ wp c (g ∗ f) = g ∗ wp c f.

The intuitive notion of i.i.d. loops can be loosened to some extend. The loop body
does not need to compute the exact same distribution of states. It only needs to leave
the probability that the guard is true after one iteration of the loop (wp c [ϕ]) as well
as the expected value of the postpotential f after one iteration in case we leave the loop
(wp c ([¬ϕ] ∗ f)) are unaffected by the loop body. This is collected in the following
definition.

7It is similar to the embedding from predicates to potentials, and we will see other instances of such
embeddings in Chapter 4.
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Definition 1 (f -independent and identically distributed loops (Definition 5 in [7])).
For a pGCL program c, a predicate ϕ and an expectation f, we call the loop While ϕ c
f-independent and identically distributed (f-i.i.d. for short), if:

wp c [ϕ] 6e c ∧ wp c ([¬ϕ]∗f) 6e c

Example 3.3.1. Our running example program geomN,c is f-i.i.d. for all expectations
f. We have can easily prove,

wp loopbody [b = 0] = 0.5 6e loopbody
g := wp loopbody ([b 6= 0] ∗ f) = 0.5 ∗ f (s(b:=1)) 6e loopbody

The first expectation is constant and thus unaffected. For the second expectation, the
loop body only modifies variable b (Mod loopbody = {b}) but in the preexpectation b
is overwritten with 1, thus it is not changing g (i. e. b /∈ Vars g).

Now we can state and prove the proof rule for the ERT of an f-i.i.d. loop While ϕ c.

Theorem 29 (Proof Rule for ERTs of f-i.i.d. Loops (Theorem 4 in [7])). Let c be
a fully probabilistic pGCL program, ϕ a predicate and f an expectation such that the
following conditions hold:

1. While ϕ c is f-i.i.d.

2. the loop body terminates almost-surely (wp c 1 = 1)

3. every iteration runs in the same expected time (ert c 0 6e c)

Then for the ERT of the loop While ϕ c w. r. t. continuation f it holds that

ert (While ϕ c) f = 1 + [ϕ]∗(1+ert c ([¬ϕ]∗f))
1−wp c [ϕ] + [¬ϕ] ∗ f

Proof. Batz et al. give a quite technical proof involving orbits of the loops. Borrowing
ideas from Hölzl’s semantic proof of the inner loop of the Coupon Collector problem, I
have found a more abstract proof.

The heart of the argument is that for the least fixed point of a linear expression on
extended non-negative reals we can give a closed form using a geometric series:

b < 1 =⇒ lfp (λr. a + b ∗ r ) = a / (1 − b)

In the final expression we get the middle term with that technique. The first and last
summand stem from the cost from the first evaluation of the guard and the continuation
in case when the loop guard is false.
Massaging the least fixed point from the ert form into the form needed to apply the

above method involves a parallel induction on the least fixed points and the decompo-
sition of ert (Lemma 27).

Example 3.3.2. We can now apply this proof rule to our running example. Let
program coco initialize the state with b = 0 and c = C and then execute geomN,c.
Then, we get the final result:
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N > 1 ∧ C < N =⇒ ert coco 0 s = 3 + (2 ∗ N / (N − C))

Which is the same result as we found earlier (with C / N = 0.5, in Example 3.2.2),
only with the cost 2 more for the two additional assignments in the beginning.

Wrap-up To conclude this chapter we want to comment on extensions we did and
future work we envision. For the first iteration of the proof of Theorem 29 we followed
the proofs by Batz et al. [7] quite closely, but could simplify the proof considerably by
taking ideas of Hölzl’s verification of the Coupon Collector.
Once the abstracted proof was established, we thought about extending it to also al-

low nondeterministic choice. We could prove a rules similar to Lemma 27 and Lemma 28
for awp with inequalities instead of the equalities. Finally we could give the same proof
rule for awp as Theorem 29 only with an inequality instead of the equality and an extra
added assumption.8
I think that proof assistants and specifically the probability theory in Isabelle/HOL

are mature enough to verify state-of-the-art results in the area of analysis of proba-
bilistic programs without too much pain. I want to point out that the proofs in the
appendices of the papers on the ert calculus [66, 7] — and also on Quantitative Sep-
aration Logic [8] which we will see in the next chapter — are very detailed and I am
impressed by the work getting the details right without the help of a proof assistant.
Turning those informal proofs into formal Isabelle proofs was still laborious and can be
considered boring frog9 work distracting from more interesting bird work. But I argue
that in this case the advantages of easing the review process and the proof assistant
helping when abstracting and generalizing established proofs justify the extra work of
verifying it.
We mentioned, that Batz et al. [7] use pGCL and the derived proof rule to automat-

ically determine the sample rate for Bayesian networks. It would be interesting future
work to formalize that formalism and the translation to pGCL.

3.4 Summary

• The ert calculus can be used to reason about the expected running time of pGCL
programs. The probability theory in Isabelle/HOL is mature enough to verify that
calculus and provide a proof for the equivalence w. r. t. an operational semantics
in terms of Markov Decision Processes.

• The quantitative Hoare logic can be extended to probabilistic programs. I prove
soundness and completeness of the logic as well as of its VCG.

• A proof rule for a special kind of loops can be used to automatically determining
the expected running time of a fragment of pGCL programs. Reasoning with

8The extra assumption asserts that if a postexpectation is unaffected by the loop body, also its
preexpectation for one loop unrolling is unaffected by the loop body.

9Term coined by Dyson [30].
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fixed points simplifies the correctness proof of that rule and it can be extended
to pGCL programs with nondeterministic choice.
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4 Quantitative Separation Logic &
Quantales

In Chapter 2 we have seen the quantitative Hoare logic and its drawback of not being
modular. Separation Logic enables modular reasoning providing means to reason about
disjoint parts of the heap and thus enabling the frame rule. If we set the concept of
time credits aside for now, we can ask whether we can extend the quantitative Hoare
logic by the concept of partial heaps and separating conjunction.
Batz et al. [8] answer that question positively. They present a Quantitative Sep-

aration Logic to reason about the expected running time of programs of the heap-
manipulating probabilistic guarded command language (denoted hpGCL). This extends
the probabilistic quantitative Hoare logic I have covered in Section 3.3.
To me, their most interesting contribution is the idea how to lift the separating

conjunction and the magic wand from Boolean assertions (Σ → bool) to quantitative
potentials (Σ → ennreal). After having formalized their Quantitative Separation Logic
in Isabelle/HOL — following their paper and joint discussions — for expectations of
type Σ → ennreal, I observed that the measuring type ennreal can be generalized.
With the help of the proof assistant Isabelle/HOL it was straightforward to collect the
properties such a type γ needs to fulfill. But it needed an expert in algebra to point
out to me the structure in question being quantales. This discovery opened up the
connection to a broad field of new related work to me. Note that the measuring types
bool, [0, 1], ennreal and enat with a suitable orderings and compose operations are
instances of that structure and give rise to the standard Separation Logic, Separation
Logic over probabilities, Separation Logic over expectations and Separation Logic over
potentials.
In this chapter I will first introduce the quantitative separating connectives and

the formalization thereof (Section 4.1). Then, I quickly summarize its application to
the Quantitative Separation Logic (QSL) and its formalization (Section 4.2). Note
that while Batz et al. [8] extend the weakest preexpectation calculus in their paper,
I use a similar but different instance here that allows to extend the ert calculus from
last section.1 Finally, I collect literature and observations we found about the role of
quantales in that matters, and conjecture some connections to other fields of program
language semantics (Section 4.3).

1It is the instance Matheja describes as future work in his PhD thesis [100, Chapter 9].
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4.1 Quantitative Separating Connectives

Ò
In this section I describe my formalization of material from Section 3.2 and 3.3 of
“Quantitative Separation Logic” by Batz et al. [8]. While the ideas are the same, I
apply it to a different domain.

We have already seen some introduction to Separation Logic in Section 2.4. In this
Section I will apply the “zen of the potential method” to Separation Logic, by lifting
predicates to potentials. As the running example let us consider potentials that map
partial states (now denoted by M) to extended non-negative real (ennreal). We will
later see, that this can be relaxed to functions that map elements from a separation
algebra to elements of a quantale.
We have already seen how we can embed predicates into potentials. In this chapter,

we will denote that embedding as [P] = (λh. if P h then 0 else ∞). As ∞ corre-
sponds to False when evaluating a predicate, we interpret satisfying a potential ϕ as
measuring some finite quantity, i. e. ϕ h < ∞. Standard conjunction (∧) is modeled by
pointwise addition. This is a conservative extension, as for any two predicates P and
Q we have [P ∧ Q] = [P] + [Q] = λh. [P] h + [Q] h. If for a partial state h one of the
predicates is false the expression has value ∞; only if both are true the expression has
value 0.
What is the intended meaning of the potential? In this section it should be the

running time, or the expected running time potential of some portion of the state. If
we join or “add up” two portions, the potential should be added.
The ordering on predicates is routinely defined as P ≤ Q ←→ (P =⇒ Q), which

stems from a pointwise lifting and the fact that False is the bottom element of the
Boolean lattice. For potentials, we also lift the natural ordering on ennreal with ∞ as
the top element. So, for showing backwards compatibility, we have to flip the ordering.
Then we can prove: [P] ≥ [Q] ←→ P ≤ Q. Only if P is true and Q is false, the right-
hand side of the equivalence is false, but then also the left-hand-side is false (as [P] = 0
and [Q] = ∞). In the rest of this section, I will talk a lot about suprema and infima.
When abstracting the theory to arbitrary types with an ordering, we have to keep
in mind that we actually use ennreal with the flipped ordering, and need to flip the
ordering, as well as suprema and infima.

Quantitative Separating Conjunction Let us recall the definition of separating con-
junction in standard Separation Logic:

(P ? Q) h ←→ ∃h1 h2. h = h1 + h2 ∧ P h1 ∧ Q h2

In words, partial state h satisfies P ? Q iff there exists a partition of h into two partial
states h1 and h2 such that h1 satisfies P and h2 satisfies Q.

The key insight is how to generalize the existential quantifier. Intuitively, the quan-
tified predicate ∃x. P x “minimizes the falsehood of P x” with the best possible choice
of v: if there is at least one instance that makes P true, the quantified predicate is true.
The best possible potential, is the one furthest away from “False”. In our case it is
ennreal’s bottom element 0. So, the existential quantifier is generalized by an infimum
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operator. In the Quantitative Separation Logic (QSL), instead of the falsehood, we
minimize a quantity, i. e. the distance from the infinite potential: Out of all partitions
h = h1 + h2 we choose the one that minimizes the sum P h1 + Q h2. Thus, we define
the quantitative separating conjunction as follows:

Definition 2 (Quantitative Separating Conjunction).

(ϕ ? ψ) h = Infh1,h2 { ϕ h1 + ψ h2 | h = h1 + h2 }

To check whether this definition makes sense, we observe that when we restrict
potentials to embedded predicates we obtain the classical operator: For predicates P
and Q, we have ([P] ? [Q]) h ∈ {0,∞} and moreover ([P] ? [Q]) h = 1 holds in QSL if
and only if (P ? Q) h = True in SL.

Quantitative Separating Implication For classic Separation Logic, the separating im-
plication for predicates P and Q is defined as

(P −? Q) h ←→ ∀h′. (h′# h ∧ P h′) =⇒ Q (h + h′)

So h satisfies P −? Q iff the following holds: Whenever we can find heap h′disjoint from
h such that h′ satisfies P, then h + h′must satisfy Q. Put differently: we measure the
truth of Q in extended heaps h + h′, where all admissible extensions h′must satisfy P.

To connect potentials ϕ and ψ in a similar fashion, intuitively, ϕ −? ψ intends to
measure ψ in extended heaps, subject to the fact that extensions “satisfy” ϕ (i. e.
ϕ h < ∞).

As for the universal quantifier, the key insight is now to generalize it with a supre-
mum: The quantified predicate ∀x. P x “maximizes the falsehood of P x” by requiring
only one false instance to make the whole quantified predicate false. In QSL we require
the result nearest to the infinite potential, so this time we maximize a quantity: out of
all heap extensions h′ that “satisfy” a given expectation ϕ, we choose an extension that
maximizes the quantity ψ (h + h′). We define the quantitative separating implication
by a supremum:

Definition 3 (Quantitative Separating Implication).

(ϕ −? ψ) h = Suph′ { ψ (h + h′) − ϕ h′ | h′# h ∧ (ϕ h′ < ∞ ∨ ψ (h + h′) < ∞)
∧ (ϕ h′ > 0 ∨ ψ (h + h′) > 0) }

Here, the operator − is just subtraction on extended non-negative real numbers. The
constraints on ϕ and ψ are needed to avoid the corner case ∞−∞, and the corner
case 0 − 0 can also be excluded as it matches the supremum of the empty set. If no
suitable extension h′ can be found, we take the supremum over the empty set, which
results in the bottom element of ennreal: 0.
On the type ennreal we have the corner cases defined as expected: if r 6= ∞ we have
∞ − r = ∞ and r − ∞ = 0.

As a sanity check, we study whether the definition allows for backwards compatibility.
First, we have [P] −? [Q] ∈ {0,∞}. If we take the supremum of the empty set and
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the result is 0. Otherwise we remember that any embedded predicate can only have
potential 0 or∞. Then we find a h′with either [P] h′ = 0 and [Q] (h + h′) = ∞ (then its
value is∞ − 0 = ∞) or [P] h′ = ∞ and [Q] (h + h′) = 0 (then its value is 0 − ∞ = 0).

Second, we also have ([P] −? [Q]) h = 0 ←→ (P −? Q) h = True.
I omit the definition of quantitative versions of septraction and separating coimpli-

cation (for classical Separation Logic cf. Figure 1 in [6]), but believe that they can be
defined similarly.

Properties of quantitative separating connectives Before we review the main prop-
erties of the quantitative separating connectives, let us define the neutral assertion,
i. e. the empty partial state: [emp] h = (if dom h = ∅ then 0 else ∞). It will serve
as the neutral assertion and together with the quantitative separating conjunction is a
commutative monoid.

Theorem 30. (partialheap → ennreal, ?, [emp]) is a commutative monoid, i. e. for all
potentials ϕ, ψ, π the following holds:

1. Associativity: ϕ ? (ψ ? π) = (ϕ ? ψ) ? π

2. Neutrality of [emp]: ϕ ? [emp] = [emp] ? ϕ = ϕ

3. Commutativity: ϕ ? ψ = ψ ? ϕ

Another important property that is preserved from the classic Separation Logic, is
that ? is monotonic, and −? is anti-monotonic in the first component and monotonic
in the second component:

Theorem 31 (Monotonicity of ? and −?).

1. ϕ ≤ ϕ′ and ψ ≤ ψ′ implies ϕ ? ψ ≤ ϕ′ ? ψ′

2. ϕ′ ≤ ϕ and ψ ≤ ψ′ implies ϕ −? ψ ≤ ϕ′ −? ψ′

The most striking property of this section is that quantitative ? and −? are adjoint
operators:

Theorem 32 (Adjointness of ? and −?). π ≤ ϕ ? ψ ←→ ψ −? π ≤ ϕ

A direct corollary is the following:

Corollary 33 (Quantitative Modus Ponens). ψ ≤ ϕ ? (ϕ −? ψ)

­
As already mentioned earlier, the key insight of this section is how to generalize the
universal and existential quantification from predicates to potentials. It seems trivial
after remarking it. I consider it another incarnation of the potential method.
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Notes on the Formalization The verification of this theory was surprisingly smooth
in Isabelle/HOL. I think it is because not much background theory is needed and the
underlying algebraic structure allows abstract reasoning.
In the first iteration I directly verified the material from [8] with the help of the

authors. There, I used the domain (ennreal, ≤, ∗, 1). Conveniently, the definition
of multiplication and division for ennreal for the corner cases 0 and ∞ matched the
ones needed. Using a type γ which forms a separation algebra [69] gives rise to the
commutative monoid (γ → ennreal, ?, [emp]).
After completing the first iteration, I wondered which properties are needed for the

underlying type and operations. I generalized the theory and collected the necessary
properties of the domain in order to allow the definition of quantitative separating
connectives that form a separation algebra and fulfill the adjointness property (Theo-
rem 32). I parameterized the theory with a type and operations + and −.
With the established general theory it is easy to study other domains: e. g. the

Boolean case which results in the standard Separation Logic connectives, and the do-
main for potentials (ennreal, ≥, +, 0) which I presented in this section. For the latter,
again the corner cases of + and − for ennreal are as needed.

I will comment on the generalization to quantales in Section 4.3. Before that, I will
describe what we can use this assertion language for.

4.2 Quantitative Separation Logic (QSL)

Ò
In this section I describe my formalization of material from Section 4 of “Quantitative
Separation Logic” [8] by Batz et al.. Again I apply it to ert instead of wp, but follow
their ideas and structuring of the presentation.

With the quantitative separating connectives set up, we now want to modularly rea-
son about the expected running time of probabilistic programs with pointer structures.
For that we will extend pGCL with commands that manipulate the heap, adjust the
ert transformer, the quantitative Hoare logic and prove a frame rule for it.
Note that, the resulting language (short hpGCL) is both an extension of pGCL and

also morally of IMP. Thus by excluding the probabilistic and nondeterministic choice,
we obtain a calculus that extends the quantitative Hoare logic from Section 2.3 but
comes with the possibility for modular reasoning using the frame rule.

The heap-manipulating probabilistic guarded command language Figure 4.1 shows
the definition of hpGCL as a deeply embedded type hpgcl. Additionally to the con-
structs in pGCL, we add four commands that are concerned with the heap: the com-
mand New v e reserves a field on the heap, stores the value of the expression e in the
current state to that field, and sets the variable v to its address. Note that for simplicity
values and addresses have the same type (here we choose integers). With the command
Free e one can calculate an address from an expression and deallocate the heap portion
at that address. The command Lookup v e calculates the expression e, looks up the
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hpgcl = Skip
| Assign vname (stack → val pmf)
| Seq hpgcl hpgcl
| Par hpgcl hpgcl
| If (stack → bool) hpgcl hpgcl
| While (stack → bool) hpgcl
| New vname (state → val)
| Free (stack → addrs)
| Lookup vname (state → val)
| Update (stack → addrs) (stack → val)

Figure 4.1: The deeply-embedded hpGCL language.

value at that address and writes it to the variable v. Finally, the command Update e e′,
writes the value of the expression e′ to the address e.

The program state (s, h) of a hpGCL program consists of a stack and a heap. The
former is just the state we know from pGCL and IMP. It is a function from variable
names to values. The heap is a partial function from heap addresses to values. Thus
heaps form a separation algebra. Note that all expressions in hpGCL are evaluated
only with the stack. To calculate with values from the heap, they first need to be
fetched via a Lookup into a local variable on the stack and then can be processed.
We lift assertions to program states adding the stack: they are functions from a pair

of stack and heap to extended non-negative reals ((stack × heap) → ennreal). We also
lift the quantitative connectives and use the same notation, as in the rest of this section
we always will talk about assertions on program states.

(A ? B) (s,h) = (λh1. A (s,h1)) ? (λh2. B (s,h2))
(A −? B) (s,h) = (λh1. A (s,h1)) −? (λh2. B (s,h2))

Also we introduce basic assertions: the empty heap [emp], the lifted predicate heap
assertion [ϕ], and the points-to assertion [e 7→ v] describing a portion of the heap with
the value v at the address e evaluates to in the current stack. The assertion [e 7→ _]
only restricts that there is exactly one field on the heap at the specified address, but
the value is unknown.
Recall the ert rule for Skip for pGCL (Section 3.1): ert Skip f = 1 + f. This would

be a valid rule for hpGCL also: we add one to the expected running time of the con-
tinuation f. But we actually can express the addition of the potential 1 also differently.
We define the potential assertion $ c (s, h) = (if h = 0 then c else ∞). Then, as the
empty heap is always orthogonal to any other heap, and the quantitative separating
conjunction minimizes the value we have: 1 + f = $1 ? f. Note that we still work on
heaps only. We did not add time credits to the separation algebra. Rather, the lifting
from predicates to potentials allows to “give value” to some empty portion of the heap.
We now briefly go over the rules for ert in Figure 4.2. The first six rules are the same

as for pGCL, only we can use the potential assertion $1 to write them more succinctly.
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ert :: hpgcl → ((stack × heap) → ennreal) → ((stack × heap) → ennreal)
ert Skip f = $1 ? f
ert (Assign v u) f = $1 ? (λ(s, h).

∫
x f (s(v := x), h)d(u s))

ert (Seq c1 c2) f = ert c1 (ert c2 f)
ert (Par c1 c2) f = ert c1 f t ert c2 f
ert (If g c1 c2) f = $1 ? (λ(s, h). if g s then ert c1 f (s, h) else ert c2 f (s, h))
ert (While g c) f = lfp (λW (s, h). 1 + (if g s then ert c W (s, h) else f (s, h)))

ert (New v e) f = $1 ? Supa∈Z ([a 7→ e] −? (λ(s, h). f (s(v:=a),h)))
ert (Free e) f = $1 ? [e 7→ _] ? f
ert (Lookup v e) f = $1? (λ(s, h). Infx∈Z(([e 7→ x] −? (λ(s, h). f(s(v:=x), h))

? [e 7→ x]) (s, h)))
ert (Update e e′) f = $1 ? [e 7→ _] ? ([e 7→ e′] −? f)

Figure 4.2: The rules of the ert calculus for hpGCL.

The latter four need more explanation. Those rules basically follow the same ideas
as the wp rules in Section 4.2 of Batz et al. [8]. We will only explain the rule for
memory allocation, more details on the intuition of the other rules can be found in the
mentioned resource.

Memory allocation The memory allocation statement New v e exhibits unbounded
nondeterministic behavior. Operationally, the statement starts from some initial state
(s, h). Then the memory manager allocates a single field at a fresh address a and
writes the evaluated expression e s to that memory cell. After allocating the cell, its
address is stored in variable v, and we obtain a final state (s′, h′). Since a is chosen
nondeterministically, we cannot give any a-priori guarantees on a except for a 6∈ dom h.
Notice that we assume in our memory model there are at any point infinitely many free
addresses available for allocation — this command will never cause a memory fault.
We now search for the expected running time of New v e with respect to a continua-

tion f. We need to find an expectation ert (New v e) f that evaluated in the initial state
coincides with the quantity f evaluated in the final state. To construct that expectation,
we evaluate f in the initial state and rectify the differences to measuring f in the post
state. The first difference is, that in the initial state the memory cell at address a is not
yet allocated. We can rectify this by demanding an extension to the heap that fulfills
the postassertion f. To express that, we can use the quantitative separating implication:
[a 7→ e] −? f. Notice that the heap h′ with a single memory cell holding e s at address
a is the only valid extension that satisfies [a 7→ e], in this case the supremum in the
quantitative separating implication only is taken over that h′. The continuation will
actually be evaluated with the variable v set to the address a, we can rectify this change
of the stack by a syntactic replacement: [a 7→ e] −? (λ(s,h). f (s(v:=a), h)). Now, the
newly allocated address was chosen nondeterministically. As we chose ert to express
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upper bounds on the expected running time w. r. t. demonic nondeterminism, we have
to take the “worst-case” which is here a supremum over the results for all the possi-
ble addresses Supa∈Z ([a 7→ e] −? (λ(s,h). f (s(v:=a), h))). Finally, we have to add the
costs for the command and we obtain

ert (New v e) f = $1 ? Supa∈Z ([a 7→ e] −? (λ(s, h). f (s(v:=a), h)))

.

Properties of ert As for the ert function for pGCL we already saw earlier, we have
similar properties for the ert on hpGCL. Because of the unbounded nondeterminism
in the memory allocation command, ert is not continuous anymore. But it is still
monotone. See Section 4.3 in [8] for a discussion.

Quantitative Frame Rule The main motivation for Separation Logic is to allow mod-
ular development, in particular the frame rule allows for local reasoning. We have
already seen it in Section 2.4. Essentially, it states that a part of the heap that is not
explicitly modified by a program is unaffected by that program. It suffices to reason
locally about the parts of the heap the program actually touches, and it is possible to
add disjoint untouched portions of the heap later. The frame rule reads as follows:

{ϕ} c {ψ}
{ϕ ? η} c {ψ ? η}

if Mod c ∩ V ars η = ∅.

Here, Mod c is the set of variables that are updated by the program c, i. e. all variables
appearing on a left-hand side of an assignment. Moreover, Vars η is the set of variables
that occur in η (cf. Section 3.3). The rule intuitively reads: if a program c started on a
portion of the heap satisfying ϕ terminates with out an error in a partial heap satisfying
ψ we can safely add a disjoint portion of the heap to the pre and postcondition (referred
to as the frame η). The side condition rules out that c changes variables on the stack
that η depends on.
Note that we have two kinds of separation here. First, the separating conjunction

makes sure that the heap portions the assertions talk about are disjoint, otherwise the
precondition would be false and the Hoare triple trivially true. And, in order to thread
through the frame η we have to make sure that it does not change its truth value.
We already made sure that the heap does not change (with the separating conjunction
guaranteeing disjointness of the heap portions), but the program might alter variables
on the stack that would then alter the truth value of the frame. Thus we need to add
the side condition.2
As for the probabilistic quantitative Hoare logic, we can use the ert calculus to define

Hoare Triples in hpGCL:
2Note that in Section 2.4 we did not have that additional side condition, as we only had a stack,
and no heap, and the separation algebra acted on the stack, ensuring disjoint sets of variables, and
additionally that a Hoare triple that accesses or writes a variable without the ownership of that
variables can not be proven correct.
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|=H {ϕ} c {ψ} ←→ ϕ ≥ ert c ψ

The triple is valid if the prepotential is an upper bound on the expected running time
of c with continuation ψ. As hpGCL is a conservative extension of pGCL all the Hoare
inference rules mentioned in Section 3.2 are still valid. Adding the appropriate rules
for the four new commands is straightforward, and we now turn to proving the frame
rule.
After unfolding the definitions the goal boils down to the following theorem.3

Theorem 34 (Quantitative Frame Rule). For every hpGCL-program c and expecta-
tions ϕ, ε with Mod c ∩ Vars ε = ∅, we have ert c (ϕ ? ε) ≤ ert c ϕ ? ε

Proof. We can prove this theorem by structural induction on the program c. What
we have to do for all the cases is essentially to pull the infimum operator from the
separating conjunction that is buried below the ert on the left-hand side towards the
outside. Then we obtain the right-hand side of the inequality. This works, as all the
operations in ert (integral, addition) are continuous, only for the four new commands
we need to pull the infimum through some supremum or reorder two infima, which is
both admissible as we only require an inequality. For loops, we can not rely on standard
fixpoint induction over countable iterations as ert is not continuous. But as it still is
monotone, we can employ transfinite induction.4

Note that the converse direction of the inequality does not hold. That is also the
case in the wp instance studied by Batz et al. [8].

Soundness of the ert calculus In this thesis I do not provide a soundness proof of
that calculus w. r. t. an operational semantics, but I comment on a first attempt and
the pen-and-paper proof by Batz et al..
A first approach would be to extend the existing proof for pGCL we have seen

in Section 3.1. But it is not clear to me how to extend the proof to unbounded
nondeterminism. For a first approach I tried to extend the normal pGCL seman-
tics with a nondeterministic choice of some infinite set. Fixing that soundness proof
boils down to weakening a finiteness assumption (cf. Lemma E_inf_lfp in Theory
“Markov_Decision_Process” in Markov_Models−AFP ). Hölzl states that “it is not
clear how to remove it or even weaken it” when talking about that Lemma 27 in [63].
On the other hand, Batz et al. provide a soundness proof for their wp calculus w. r. t.

to an operational semantics on MDPs with a reward function and a scheduler to model
nondeterminism. Formalizing that operational semantics and the equivalence proof is
interesting future work.

3 Batz et al. [8] sketch a similar derivation for wp in Section 4.7
4I use the induction rule lfp_lockstep_induct from theory Lib in Platzer’s [120]. Thanks to the Isabelle
search tool for helping me find that very theorem.
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Conservative Extension The ert calculus of this chapter is a conservative extension to
the ert calculus without the heap (cf. Section 3.1). This can be seen straightforwardly:
if we discard the last four commands we obtain the same ert rules.
If we further drop the nondeterministic and probabilistic choice we obtain the quan-

titative Hoare logic from Section 2.3.

Notes on the formalization Modeling hpGCL in Isabelle/HOL is straightforward,
given the work on pGCL from earlier verifications. The primitive pure assertions on
the heap model are lifted routinely, and the quantitative separating connectives result
from the formalization described in Section 4.1.
I consider the formal proof of the quantitative frame rule (Theorem 34) as the main

contribution of this section. For the While case a specific induction rule was needed
that does not require ert to be continuous, but works with ert only being monotone.
The proof should be easily portable to other domains (Boolean, and ([0; 1], ≤, ∗, 1)).
Before applying the ert calculus for hpGCL to applications, soundness must be estab-

lished. The unbounded nondeterminism seems to prevent an extension of the existing
soundness proof for pGCL. Instead, a different model of the operational semantics needs
to be formalized and soundness of ert can be established relative to it.

4.3 Quantales

In the last sections we have seen how Separation Logic can be lifted following the “zen
of the potential method” and gives rise to a program logic for expected running time of
heap-manipulating probabilistic programs. While the main ideas stem from the paper
“Quantitative Separation Logic” by Batz et al. [8], I presented a different version of
QSL that fits better into the scope of this thesis. However, both versions are instances
of the same general theory. I discovered that general theory after formalizing the ma-
terial of Batz et al. and then using the proof assistant to abstract from the concrete
instance. Walter Guttmann pointed out to me the structure of the underlying algebraic
object as quantales.

­
In my opinion, a big strength of proof assistants is that after formalizing some theory
one can easily experiment with generalizing it. Collecting necessary properties of
structures or preconditions of proofs is assisted by the tool.

In the first part of the remainder of this section I will sketch the general theory of
quantitative separating connectives parameterized by a quantale. Then I discuss pos-
sible instances and their use. The discovery of the concept of quantales, opened up a
whole new world of related work. I collect and summarize relevant literature and con-
jecture some connections to other fields. This review is kept short, as it mostly consists
of conjectures and ideas for future work, but no proper contributions or formalized
results.
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4.3.1 The Generalized Quantitative Separating Connectives

Now that we established the quantitative separating connectives in Section 4.1 we can
ask ourselves what kind of structures are needed for that kind of theory. Intuitively,
extended non-negative real numbers (ennreal) are too specific and we need to identify
which kind of structure we need in order to obtain QSLs. One could now go through
Section 4.1 and abstract all types and operations and collect what properties are needed
for them in order to get the proofs through. That is exactly what I did after verifying
the QSL version featured in [8].
Let me reconstruct that process, and collect the necessary properties needed. We

started to model assertions (M → Q) as functions from a separation algebra (M) to
a measuring type Q. First we come up with an embedding ([·]) of Boolean assertions
(M → B) into quantitative assertions. For that we demand Q to have a complete lattice
structure with an ordering ≤ and top (>) and bottom (⊥) elements.5 In the embedding
the bottom element corresponds to False and the top element to True, giving rise to
(P ≤ Q) ←→ [P] ≤ [Q].

The measuring type (Q) additionally needs to provide a composition operation
⊕ :: Q × Q → Q and a neutral element (0). The first property about that opera-
tion is to show that its lifting to assertions is a conservative extension of the standard
conjunction (∧), i. e. [P ∧ Q] = [P] ⊕ [Q] . That already suggests that (Q, ⊕, 0) needs
to form a commutative monoid.
As a next step we define the general quantitative separating conjunction (?). We

need an supremum operator defined on Q,6 the composition operation ⊕ on Q and
the disjointness and sum operations on M. With Q being a complete lattice and M
being a separation algebra we have all the necessary operations. For the quantitative
separating implication (−?) we additionally need an adjoint for the operation ⊕. We
denote that operation with −.
We can now prove that the generalized connectives are conservative extensions to the

standard operators of Separation Logic. Monotonicity of ⊕ w. r. t. the ordering on Q
can be lifted to monotonicity of ? on assertions M → Q. In order to prove associativity
of ? we need the fact, that we can distribute the operation ⊕ over the supremum.
Essentially that is the distributive property required for (Q, ≤, ⊕) to be a quantale:

c ⊕ Sup A = Supx∈A (c ⊕ x)

As we already required ⊕ to be commutative, we also obtain the commuted distributive
property. Furthermore, we required (Q, ⊕, 0) to be a commutative monoid and we can
lift the neutral element to functions to obtain 0 :: M → Q. With that we can now
also show that (M → Q, ?, 0) is a commutative monoid. Here, I also need to note
that if the neutral element is the top element — which is the case for the instance in
Section 4.2, the Boolean instance, and the instance for probabilities — we have some
more convenient properties.

5In the instance in Section 4.2 the ordering was flipped, so > = 0 and ⊥ =∞.
6In general we use the supremum. Note that because we had to flip the ordering in our running
example instance, we use the infimum operator for the definition of ?.
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To sum it up, the structure we need for (Q, ≤, ⊕) is a commutative quantale. The
main property we want to prove between ? and −? is adjointness:

π ≤ ϕ ? ψ ←→ ψ −? π ≤ ϕ

Many other important properties are direct corollaries of that theorem. Proving it boils
down to requiring the (guarded) adjointness property of ⊕ and 	:

⊥ < C ∨ ⊥ < B ∧ C < > ∨ B < > =⇒ (A ≤ B 	 C) ←→ (A ⊕ C ≤ B)

Actually, once we have that (Q, ≤, ⊕) is a commutative quantale, the existence of an
operation that fulfills the adjointness property is guaranteed. Then the − operation has
to coincide with that operation on all the cases except the ones ruled out by the guard
in the above property. In order to allow more flexibility, I came up with locales that
require the adjoint operation − and the guarded adjointness property. When provided
with a commutative quantale (Q, ≤, ⊕), one can directly obtain the adjoint operator
and instantiate the locale.
In the following I go through all the instances that are known to me and which I

have actually implemented and formalized in Isabelle/HOL.

Boolean Quantale We have already seen, that the quantitative separating connectives
generalize the standard Separation Logic operators. When setting Q := B, ≤ := =⇒
and ⊕ := ∧ we obtain the standard Separation Logic over the separation algebraM: the
embedding [·] is the identity function, Supremum is the existential quantifier, Infimum
the all quantifier, the adjoint operation is a − b ←→ (b =⇒ a), and consequently the
instantiated quantitative separating conjunction and implication are equivalent to their
standard counterparts. For example, the adjointness property reads:

(a =⇒ (c =⇒ b)) ←→ ((a ∧ c) =⇒ b)

We can use that instance, together with a program logic with resources (e. g. variable
names are resources as in Section 2.4, or the heap is a resource, or we can even add
time credits, or other resources) we can come up with a weakest precondition calculus
wp and use the established assertion language. The total correctness triple {ϕ} c {ψ}
then expresses that program c started from a state that satisfies ϕ terminates in a final
state that fulfills ψ.

Quantale for Numbers The second instance for the general theory is the one chosen
for our running example in this chapter: we set Q := ennreal, ≤ := ≥, ⊕ := + and
the rest is already known. This structure is called Lawvere’s quantale [95].
Extending that with an expected running time calculus for some (probabilistic) pro-

gramming language with resources then yields a quantitative Hoare logic over assertions
from a Quantitative Separation Logic. The judgment {ϕ} c {0} then expresses that
program c has expected running time no more than ϕ.

Note that, if we restrict ourselves to Q = enat we can develop the same theory, as
(+) and its adjunct (−) are closed for enat, and apply it to IMP.
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Quantale for Probabilities and Expectations The instance originally used in Batz
et al. [8] is tailored to expectations. We obtain their instances when using assertions
into extended non-negative real numbers (their E) or numbers in the unit interval (their
E≤1), together with multiplication and the standard ordering on reals. While the latter
instance fits into the general framework of quantales, the former instance feels more ad
hoc and some alterations are needed in order to fit it into that structure. In particular,
for proving conservativity of QSL as an assertion language some non-canonical changes
are necessary.7
They go on and define a weakest preexpectation calculus (cf. wp from Section 3.3)

on hpGCL and use that to reason about programs. What kind of questions can they
answer with that approach?
First, by determining wp c [Φ] for a program c and an embedded Boolean assertion

Φ one can evaluate for a starting state s a lower bound on the probability that Φ
holds after the execution of c from state s. For example, they calculate the probability
that a certain array configuration is reached after calling a procedure that is supposed
to randomly shuffle an array. Or they calculate a lower bound for the probability
that a faulty garbage collector — that iterates over a tree of elements, and “forgets”
to free an element with some probability p > 0 — leaves an empty heap after the
operation (wp c [emp]). It turns out that the probability only makes sense if one
started with a proper tree and the probability that the program did never “forget”:
[tree(x)] ? (1− p)size. Where tree(x) is a Boolean assertion describing a binary tree at
address x and size is an assertion mapping a part of the heap to its size.
Second, not only preprobabilities for postpredicates (they live in E≤1) can be de-

termined. Also proper preexpectations for a given postexpectation (expectations in
E) are possible. Here is an example, what can be done with it: Consider the asser-
tion len(x, 0) for an address x that maps a partial heap containing a linked list to the
length of the list, and to ∞ otherwise. The program c repeatedly flips a coin (that
gives Heads with probability p) and prepends an element to a list until it gets Heads
as a result. Asking for wp c (len(x, 0)) gives the expected length of the list evaluated
in the prestate. For p = 0.5 on average the list length will increase by one: we have
wp c (len(x, 0)) = len(x, 0) + 1.

Similar to the quantitative frame rule we proved for the expected running time cal-
culus (Theorem 34) they prove a rule for their wp calculus. In the faulty garbage
collector example, they apply the rule when using the “Hoare triple” for the recursive
delete operation, which only works on a part of the heap, in the body of the delete
operation.
In Chapter 2 we have seen that we can either use the lifting from predicates to

potentials, or the usage of time credits to enable reasoning about the running time of
programs. We have now seen that the first idea can also be used to lift Separation Logic
from Boolean assertions to assertions that essentially are probabilities. It is particularly
interesting what would happen if one adds time credits to the wp calculus that uses
QSL for probabilities. Maybe then {[$m] ? ϕ} c {[ψ] ?>>} expresses that ϕ is a lower

7For more details see the end of Section 3.2 in [8].
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bound on the probability that c terminates in a state satisfying ψ consuming at most
m time steps.
As I only discovered quite late that the theory can be phrased generally for quantales,

I only then discovered that there is already a formalization of quantales: Struth [125]
formalizes quantales as a type class in Isabelle/HOL. It is future work to connect the
formalization of quantitative separating connectives to it. Furthermore, this discovery
opened up a whole new area of research up for me. I will comment on that in the
following section.

4.3.2 Quantales Everywhere

As already said, the discovery of quantales being the underlying structure that enables
quantitative separating connectives to make sense, lead me to a new area of research.
In this section I describe only the tiny fraction of that work, that is immediately related
and still within scope of this thesis. Exploring more of that material and spelling out
the “zen of the potential method” in that realm may involve some very interesting
research. But that road was not taken within this thesis project. Now let me explain
the connection and give a quick exploration into the field.
In 2011, Dang et al. [25] present an algebraic approach to Separation Logic. They

show that the structure of Separation Logic is a commutative quantale. To phrase
that in our terms, they show that the structure (heap → B, ≤, ?, emp) is a commu-
tative quantale. Then they observe that the separating implication (−?) corresponds
to the residual of the quantale (Lemma 5.4 in [25]) and many laws about −? can be
proved from the standard theory of residuals. Also many other identities and rules of
classical Separation Logic can be automatically proved in the realm of quantales, as
these propositions can be reformulated algebraically in first-order form. They carry
on abstracting many related properties and phrasing them in terms of quantales (e. g.
classes of assertions, frame rule) but the main idea of that paper for me is to show
that standard Separation Logic assertions (heap → B) form a commutative quantale.
In order to distinguish between different “levels” of quantales I call this an assertion
quantale.

In 2015, Dongol, Gomes and Struth [28] go some steps further. They use functions
f :: M → Q from a partial monoid M into a quantale Q, and call them power series. To
avoid confusion I will call that quantale Q at the base of the power series the measure-
ment quantale and its operation addition denoted by +.8 The addition operation from
the Quantale can be lifted pointwise to power series and multiplication is convolution:

(f ⊗ g) x = Supx=y+z f y ⊕ g z

Here + acts on M , ⊕ acts on Q and ⊗ acts on QM = (M → Q). This very much
looks exactly like the definition of separating conjunction from quantitative Separa-
tion Logic (cf. Definition 2). They carry on showing that a quantale and a partial
monoid (which is essentially a separation algebra if it also is commutative) give rise to

8This matches the intuition build up with our running example, where Q = ennreal and the operation
is addition of numbers.
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an assertion quantale (QM , ≤, ⊗, 1). But then they only instantiate the measurement
quantale as the Boolean semiring and interpret power series as characteristic function
(i. e. predicates). Pairing the resource monoid with a stack, they use this mechanism
to define Separation Logic. They refer to Dang et al. [25] for the definition of magic
wand wand as (upper) adjoint and note that the quantale setting gives lots of theorems
for free. Essentially, they already came up with the abstraction to use general mea-
surement quantales and deduce many useful theorems for the assertion quantale and
its connectives.
But in the rest of their paper they only use Q = B. Also later work by Dongol,

Hayes and Struth [29] that explores the unifying concept of convolution only considers
generalizations and many examples for M.9
Dongol, Gomes and Struth [28] further consider the predicate transformer quantale

that does not only work on states but also incorporates program behavior. Gomes
[37] further develops that algebraic approach and presents infrastructure for program
verification formalized in Isabelle/HOL.
What at least is remarkable, is that to the best of my knowledge for the quantale Q

only the Boolean semiring was used. I think that the focus on that case was due to the
applications that arise from them in program verification. With the potential method,
and also the reasoning about probabilistic programs, I might have identified two ap-
plications with other instances of quantales Q. I suspect that there are connections
to category theory and there exist further domains that might fit into this framework,
e. g. fuzzy logic, quantum states, and quantum Hoare logic [97].
It would certainly be interesting future work to explore those applications and what

properties one would get if they are phrased in the general algebraic framework that
has already been identified.
Because this is not the main topic of this thesis, I do not follow that road any further.

Instead, in the rest of this thesis I will use the approach to use Separation Logic with
Time Credits — as described in Section 2.4 — and I will present a practical verification
framework to reason about the running time of imperative programs in Isabelle/HOL
in the next chapter.

4.4 Limitations and Future Work

Before turning to a practical verification framework to reason about the running time
of deterministic imperative programs in Isabelle/HOL, let me present some limitations
and ideas for future work.
While QSL is expressible enough to reason about the expected running time of prob-

abilistic programs, there is not yet enough reasoning infrastructure to tackle serious
case studies. I did not provide any verified example for QSL. The examples I consid-
ered either are trivial and do not convey any new knowledge, or they are very hard
and need considerable amount of work. In particular, a good test piece would be the

9From private communication with one of the authors I know that they do consider other domains
for Q in a forthcoming article, and are considering applying their work to quantitative examples.
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verification of randomized meldable heaps in hpGCL. That data structure was first
verified in QSL by Hannah Arndt [1]. An improved version of her proof can be found
in Matheja’s PhD thesis [100, §8.5].

Lifting common techniques in Separation Logic and implementing them for QSL
would be one way to go. Another idea is to use existing infrastructure for deterministic
heap-manipulating programs to prove Hoare triples correct for the fragment of hpGCL
without probabilistic choice. Many randomized algorithms might take a random choice
in the beginning and execute a deterministic algorithm following that choice, or at least
uses some subprocedure that does not involve random choice. The average case time
complexity of deterministic algorithms can be modeled by adding a random choice of
the input following a given distribution in the beginning of the algorithm. Coming
up with tools for this integration might be straightforward, finding and conducting
meaningful case studies is certainly within reach.
Studying what parts of the algebraic approach for program correctness tools [37] can

be lifted to the quantitative analysis of programs is certainly exciting future work. It
might be fruitful to study other parts of this thesis in the light of quantales: for example
the generic wp framework (Section 6.1.3) and the NREST monad (Chapter 8).

4.5 Summary
• We have seen that Separation Logic can be lifted from Boolean assertions to
quantitative assertions and sensible quantitative separating connectives can be
defined.

• The resulting Quantitative Separation Logic can be used as an assertion language
for heap-manipulating probabilistic programs (hpGCL) and we can reason about
the expected running time of such programs.

• Finally we have seen, that the Quantitative Separation Logic has the general con-
cept of quantales underlying. We explore related work on quantales and program
verification and conjecture some ideas for future work.
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Part II

Verifying Asymptotic Time
Complexity of Imperative Programs

55





In Chapter 2 I identified Atkey’s approach to use Separation Logic with Time Cred-
its to reason about the running time of imperative programs to be the most promising
approach for interactive theorem proving. In this middle or second part of this thesis I
present two incarnations of that idea and add verification tools in order to make verifi-
cation of the functional correctness and running time analysis of algorithms practical.
First, I present the shallowly-embedded programming language Imperative-HOL-

Time with a cost model, develop a compositional methodology to verify the running
time of algorithms in that language and provide automatic tools to support the individ-
ual verification tasks (Chapter 5). From a monadic program in Imperative-HOL-Time
we can extract code for hybrid programming languages such as OCaml or SML, which
allow imperative features such as references and mutable arrays. To illustrate the ap-
plicability I show several case studies of small to medium size algorithms and data
structures.
Then, I present a second verification framework by Lammich that is built up quite

modularly and can be instantiated by any program logics that provides a Separation
Logic and a weakest precondition predicate. We instantiate it with a shallowly em-
bedded LLVM semantics [81] that comes with a fine-grained cost model (Chapter 6):
it counts how many operations of each LLVM instruction are used in a computation.
In order to support this in Separation Logic I introduce time credits with currencies.
From the verified LLVM programs I can extract LLVM text that can be compiled by
the LLVM compiler to efficient executable code. I provide verified implementations of
basic data structures and operations.
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Ò
The content of this chapter is joint work with Bohua Zhan. This chapter is based
on the paper “Verifying Asymptotic Time Complexity of Imperative Programs in
Isabelle” (Zhan and Haslbeck [138]).

I identified that Separation Logic with Time Credits seems to be the method to use
when it comes to verifying the running time analysis of imperative programs in an
interactive theorem prover. In this chapter I take that idea and implement a verifica-
tion framework that allows the simultaneous verification of functional correctness and
running time of Imperative-HOL-Time programs.
To achieve that goal we have collected ideas and verification projects from several

sources and compose them into a usable verification environment.
First of all, we have used the idea of Atkey to use Separation Logic and Time Credits,

which was used by Charguéraud and Pottier [21] to verify an involved data structure
in Coq. To realize that in Isabelle/HOL, we have extended Imperative-HOL [13] with
a cost semantics (Section 5.1), and its Separation Logic [90, 137] with time credits.
We follow the insight, that the program logic should work on concrete costs, whereas

abstracting to the asymptotic complexity should happen at the end of an analysis.
Guéneau et al. [41] propose a way how to integrate asymptotic complexity bounds into
specifications and present a methodology that supports a natural reasoning style. In
Section 5.2 I spell out that approach by showing how we compose modular specifications
and presenting a methodology on how to tackle the analysis of imperative programs.
We divide the work into three clearly-separated parts: the proof of functional correct-
ness, reasoning about Separation Logic and the analysis of asymptotic behavior of the
running time functions. While the first part is very algorithm specific, the latter two
can be supported by automatic tools.
Our automation setup for reasoning about Separation Logic with Time Credits is

described in Section 5.3. We adapt and extend automation by Zhan [137] and Lammich
[84, §2.5] for Imperative-HOL with support for time credits.
For the complexity analysis, we build upon the formalization of Landau symbols

by Eberl [31]. To automatically analyze divide-and-conquer algorithms we can use
a stronger form of the Master theorem verified by Eberl [32]. Building upon those
two developments we provide a proof tactic to automatically determine the asymptotic
behavior of running time functions in one or two variables (Section 5.4).
Finally, I demonstrate the broad applicability of our framework with several case

studies (Section 5.5). For some of the algorithms we reuse existing work on functional
algorithms [33, 109, 134, 137] and integrate it into our framework, for others we develop
the verifications completely on our own. This includes case studies involving advanced
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techniques for running time analysis such as the use of the Akra–Bazzi theorem (for
mergesort, median of medians selection, and Karatsuba’s algorithm) and amortized
analysis (for dynamic arrays, skew heaps, and splay trees). I also provide an example
(Knapsack problem) illustrating asymptotic complexity on two variables.

5.1 A Cost Model for Imperative-HOL

Ò
This section is based on Section 3.1 of the paper “Refinement with Time — Refining
the Run-Time of Algorithms in Isabelle/HOL” (Haslbeck and Lammich [45]).

Imperative-HOL with time [138] incorporates Atkey’s [2] idea to include time credits
in Separation Logic into the Imperative-HOL [13] framework. In essence, it enables
reasoning about imperative programs and their running time in Isabelle/HOL. While
all the details can be found in Section 2.1 of [138], I will give an abstract explanation
here that suffices for our purposes.
A procedure in the monad takes a heap as input and can either fail or return a tuple

consisting of a return value, a new heap and a natural number, specifying the number
of computation steps used. The type of a procedure with result type α is given by:

α Heap = Heap (heap → (α × heap × nat) option)

The bind operator as well as fixpoint iteration, while and other combinators are defined
in a straightforward manner. The term (h, c) ⇒ (r, h′, t) expresses that procedure c
started on heap h does not fail and takes time t to produce result r and heap h′.

While heaps themselves do not form a separation algebra, there is an abstraction
function abs that maps a pair of heap and time credits to an abstract heap.1 Abstract
heaps together with suitable definitions of disjointness and heap addition form a sep-
aration algebra. An assertion P , i. e. a mapping from an abstract heap to bool, being
true for a heap h and time credits n is denoted by abs(h, n) |= P . There are basic
assertions for an abstract heap containing an array without time credits (a 7→a xs),
references without time credits (r 7→r v) and time credits ($n).
Recall that, the separating conjunction P ? Q expresses that the heap and time cred-

its can be partitioned into two disjoint parts satisfying assertions P and Q respectively.
As noted before, the strength of Separation Logic is that this disjointness enables mod-
ular reasoning, which also carries over to reasoning about time credits.
Hoare triples are defined in the following way:

1 <P> c <λr. Q r> =
2 (∀h n. abs (h,n) |= P −→ (∃h′ t r. (c,h) ⇒ (r, h′, t)
3 ∧ abs (h′, n − t) |= Q r ? true ∧ t ≤ n) )

where the assertion true is true for any heap, thus enabling garbage collection of heap
elements and time credits.2 The Hoare triple<P> c <λr. Q r> denotes that procedure

1I will comment on that simplification in Section 5.7.
2In general, we call this “garbage collection assertion” the affine top >> [20]. It determines what
portions of the heap can be safely discarded. In the case of Imperative-HOL-Time we have>> = true.
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c started from a heap satisfying P terminates with a return value r in a resulting heap
that satisfies Q r ? true. In particular it states that the starting heap holds enough
time credits n in order to pay for the cost t of executing the procedure c (see line 3).
The cost model assigns most basic commands (e. g. accessing or updating a reference,

getting the length of an array) to consume one unit of computation time. Commands
that operate on an entire array take n + 1 units of computation, where n is the length
of the array. Examples for basic commands are:

<a 7→a xs ? $1 ? ↑(i < |xs|)> Array.upd i x a <λr. a 7→a xs[i:=x] ? ↑(r = a)>
<$(n + 1)> Array.new n x <λr. r 7→a replicate n x>

where ↑P is a pure assertion, which is valid for an empty heap if P holds globally,
xs[i:=x] denotes a list xs updated at position i with value x, and replicate n x denotes
a list of n elements x.
Observe, that a Hoare triple of the form <P ? $n> c <Q> implies that the proce-

dure c costs at most n time credits. We very often state Hoare triples in this form, and
so only prove upper bounds on the computation time of the program.

5.2 Methodology
In this section, I describe our strategy for organizing the verification of an imperative
program together with its time complexity analysis. The strategy is designed to achieve
the following goals:

• The proof of functional correctness of the algorithm should be separate from the
analysis of memory layout and time credits using Separation Logic.

• The analysis of time complexity should be separate from proof of correctness.

• The time complexity analysis should work with asymptotic bounds Θ most of the
time, rather than with explicit constants.

• Compositionality: verification of an algorithm should result in a small number
of theorems, which can be used in the verification of a larger algorithm. The
statement of these theorems should not depend on implementation details.

We first explain how we specify Imperative-HOL-Time programs to allow for a modular
development process. Then we explain how to structure proving specifications: We
first consider the general case and then describe the additional layer of organization for
proofs involving amortized analysis.

5.2.1 Specifications
A specification of a program that is exhibited to a user consists of two facts: First,
a Hoare triple stating the functional correctness and validity of a concrete running
time bound; and second, a fact expressing that the running time bound has a certain
complexity class.
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Example 5.2.1. Consider the program atakeimpl n p. We specify it to take an array
at address p and initialize an additional array that holds the first n elements of a, while
only using linear time in the length of the array. Let us denote its running time bound
by ataketime, then we have the following lemmas in the specification:

<p 7→a as ? $(ataketime |as|)> atake n p <λr. r 7→a take n as ? p 7→a as>
ataketime ∈ Θ(n)

Here take n as for a functional list as is the list containing the first n elements of as.

Note that we use a Θ-bound here. This is because we need the stricter information
for the application of Akra-Bazzi (cf. Section 5.4). But this is not a restriction, as we
are only interested in upper bounds on the running time, and any O-bound can easily
be turned into a Θ-bound by over-approximating it (for f ∈ O(g) and f ′ := max f g it
holds f ′ ∈ Θ(g) and f ≤ f ′).
Observe that the proof engineer has to specify how the input is measured, i. e. what

quantity is applied to the running time function. Here the length of the abstract list
|as| gives the size of the input. An alternative is to make the running time function
depend on the abstract parameters (e. g. here ataketime :: α list → nat). Then, in the
second theorem, the Θ needs to specify the filter, i. e. how the input list should be
measured. While this might give rise to a cleaner theory for composing running time
functions, we did not follow that road for simplicity.

Guéneau et al. [41] chose to package up functional correctness together with the
complexity claims into one predicate specO hiding the running time bound behind an
existential quantifier. We separate the theorems and give the bound a name. However,
the users of that specification should — as they never have to look into the definition
of the program — never have to look into the definition of the running time bound but
only work with the fact about its asymptotic behavior.

5.2.2 General Case
Let us consider the general case first. For a procedure with name f, we define three
Isabelle functions:

ffun: The functional version of the procedure.

fimpl: The imperative version of the procedure.

ftime: The running time function of the procedure.

The definition of ftime should be stated in terms of running time bounds of procedures
called by fimpl, in a way parallel to the definition of fimpl. If fimpl is defined by recursion,
ftime should also be defined by recursion in the corresponding manner.
The theorems to be proved are:

1. The functional program ffun satisfies the desired correctness property.

2. A Hoare triple stating that fimpl implements ffun and runs within ftime.
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merge_sortimpl X = do {
n → Array.len X;
if n ≤ 1 then return ()
else do {
A → atake (n div 2) X;
B → adrop (n div 2) X;
merge_sortimpl A;
merge_sortimpl B;
merge_listimpl (n div 2)

(n − n div 2) A B X
}
}

merge_sortfun xs =
(let n = length xs in
(if n ≤ 1 then xs
else
let as = take (n div 2) xs;

bs = drop (n div 2) xs;
as′ = merge_sortfun as;
bs′ = merge_sortfun bs;
r = merge_listfun as′ bs′

in r
)

)

Figure 5.1: An Imperative-HOL-Time implementation of mergesort and its corresponding
functional version of the algorithm.

3. The running time ftime satisfies the desired asymptotic behavior.

4. Combining 1 and 2, a Hoare triple stating that fimpl satisfies the desired correct-
ness property, and runs within ftime.

Here, the proof of Theorem 2 is expected to be routine, since the three definitions
follow the same structure. Theorem 3 should involve only analysis of asymptotic be-
havior of functions, while Theorem 1 should involve only reasoning with functional data
structures. In the end, Theorems 3 and 4 present an interface for external use, whose
statements do not depend on details of the implementation or of the proofs.
We illustrate this strategy on the final step of the verification of merge sort. The def-

initions of the imperative and functional programs are shown side by side in Figure 5.1.
Note that the former is working with a functional list, while the latter is working with
an imperative array on the heap.

The running time function of the procedure is defined as follows:

n ≤ 1 =⇒ merge_sorttime n = 2
n > 1 =⇒ merge_sorttime n = 2 + ataketime n

+ adroptime n + merge_sorttime (n div 2)
+ merge_sorttime (n − n div 2) + merge_listtime n

The theorems to be proved are as follows. First, correctness of the functional algo-
rithm merge_sortfun:

merge_sortfun xs = sort xs

Second, a Hoare triple asserting the agreement of the three definitions:

<p 7→a xs ? $ (merge_sorttime |xs|)>
merge_sortimpl p
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<λ_. p 7→a merge_sortfun xs>

Third, the asymptotic time complexity of merge_sorttime:

merge_sorttime ∈ Θ(λn. n logn)

Finally, Theorems 1 and 2 are combined to prove the final Hoare triple for external
use, with merge_sortfun xs replaced by sort xs.

5.2.3 Amortized analysis

In an amortized analysis, we fix some type of data structure and consider a set of
primitive operations on it. For simplicity, we assume each operation has exactly one
input and output data structure (extension to the general case is straightforward). A
potential function Φ is defined on instances of the data structure and represents time
credits that can be used for future operations. Each procedure f is associated its
running time ft and an advertised running time fat. They are required to satisfy the
following inequality: let a be the input data structure of f and let b be its output data
structure, then3

fat + Φ(a) ≥ ft + Φ(b). (5.1)

The proof of inequality 5.1 usually involves arithmetic, and sometimes the correctness
of the functional algorithm. For skew heaps and splay trees, the analogous results are
already proved in [109]. Only slight modifications are necessary to bring them into the
right form for our use.
The organization of an amortized analysis in our framework is as follows. We define

two assertions: the raw assertion rawassn t a stating that the address a points to an
imperative data structure refining t, and the amortized assertion, defined as

amorassn t a = rawassn t a ? $ (Φ(t)),

where P is the potential function.
For each primitive operation implemented by f, we define ffun, fimpl, and ftime as

before, where ftime is the actual running time. We further define a function fatime to
be the proposed advertised running time. The theorems to be proved are as follows
(compare to the list in Section 5.2.2):

1. The functional program ffun satisfies the desired correctness property.

2. A Hoare triple using the amortized assertion stating that fimpl implements ffun
and runs within fatime, which is a consequence of the following:
2a. A Hoare triple using the raw assertion stating that fimpl implements ffun and

runs within ftime.
2b. The inequality between amortized and actual running time.

3In many presentations, the amortized running time fat is simply defined to be ft + Φ(b) − Φ(a).
Our approach is more flexible in allowing fat to be defined by a simple formula and isolating the
complexity to the proof of (5.1).
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3. The amortized running time fatime satisfies the desired asymptotic behavior.

4. Combining 1 and 2, a Hoare triple stating that fimpl satisfies the desired correct-
ness property and runs within fatime.

In the case of data structures (and unlike merge sort), it is useful to state Theorem
4 in terms of yet another, abstract assertion which hides the concrete reference to the
data structure. This follows the technique described in [137, Section 5.3]. Theorems 3
and 4 are the final results for external use.
We now illustrate this strategy using splay trees as an example. The raw assertion

is called btree. The basic operation in a splay tree is the “splay” operation, from
which insertion and lookup can be easily defined. For this operation, the functions
splay, splayimpl, and splaytime are defined by recursion in a structurally similar manner.
Theorem 2a takes the form:

<btreeassn t a ? $ (splaytime x t)> splayimpl x a <btreeassn (splay x t)>

Let Φsplay_tree be the potential function on splay trees. Then the amortized assertion
is defined as:

splay_treeassn t a = btreeassn t a ? $ (Φsplay_tree t)

The advertised running time for splay has a relatively simple expression:

splayatime n = 15 ∗ (d3 ∗ log 2 ne + 2)

The difficult part is showing the inequality relating actual and advertised running time
(Theorem 2b):

bst t =⇒ splayatime (size1 t) + Φsplay_tree t
≥ splaytime x t + Φsplay_tree (splay x t),

here size1 t is the of the tree t plus one. This claim follows from the corresponding
lemma in [109]. Note the requirement that t is a binary search tree. Combining 2a and
2b, we get Theorem 2:

bst t =⇒
<splay_treeassn t a ? $ (splayatime (size1 t))>
splayimpl x a
<splay_treeassn (splay x t)>

The asymptotic bound on the advertised running time (Theorem 3) is:

splayatime ∈ Θ(λx. log x)

The functional correctness of splay (Theorem 1) states that it maintains sorting of the
binary search tree and its set of elements:

bst t =⇒ bst (splay a t),
set_tree (splay a t) = set_tree t

Here set_tree t maps tree t to the set of values stored in it. The following abstract
assertion hides the concrete tree behind an existential quantifier:
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splay_tree_setassn S a = (∃At. splay_treeassn t a ? ↑(bst t) ? ↑(set_tree t = S))

Here, the operator ∃A is the existential quantifier lifted to assertions. The final Hoare
triple takes the form (|S| denotes the cardinality of S):

<splay_tree_setassn S a ? $ (splayatime (|S| + 1))>
splayimpl x a
<λr. splay_tree_setassn S r>

Now that we have seen how to organize the verification of an imperative program,
we turn to how we can mechanize the proofs.

5.3 Reasoning Framework

In this section, I describe automation to handle proofs of the kind of Theorem 2. I
will discuss automation for reasoning about Separation Logic with Time Credits. Our
extension of Lammich’s [84, §2.5] automatic method “sep_auto” for Separation Logic
will be covered at the end of this section. First, I present an extension of the setup
discussed in [137] for reasoning about ordinary Separation Logic. Here, I focus on the
additional setup concerning time credits.
The proof of a Hoare triple for program proceeds by symbolically executing that

program while maintaining a symbolic heap. In the beginning that heap is the pre-
condition of the Hoare triple to be proven. Any basic step in the proof is as follows:
suppose the current heap satisfies the assertion P ? $T and the next command has the
Hoare triple

<P ′ ? $T ′ ? ↑ b> c <Q>

where b is the pure part of the precondition, apply the Hoare triple to derive the
successful execution of c, and some assertion on the next heap. In ordinary Separation
Logic (without $T and $T ′), this involves matching P ′ with parts of P , proving the
pure assertions b, and then applying the frame rule. In the current case, we additionally
need to show that T ′ ≤ T , so $T can be rewritten as $T = $(T ′ + T ′′) = $T ′ ? $T ′′.

In general, proving this inequality can involve arbitrarily complex arguments. How-
ever, due to the close correspondence in the definitions of ftime and fimpl, the actual
tasks usually lie in a simple case, and we tailor the automation to focus on this case.
First, we normalize both T and T ′ into polynomial form:

T = c1p1 + · · ·+ cmpm, T ′ = d1q1 + · · ·+ dnqn, (5.2)

where each ci and dj are constants, and each pi and qj are non-constant terms or 1.
Next, for each term djqj in T ′, we try to find some term cipi in T such that pi equals
qj according to the known equalities, and dj ≤ ci. If such a term is found, we subtract
djpi from T . This procedure is performed on T in sequence (so d2q2 is searched on
the remainder of T after subtracting d1q1, etc.). If the procedure succeeds with T ′′

remaining, then we have T = T ′ + T ′′.
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The above procedure suffices in most cases. For example, given the parallel defini-
tions of merge_sortimpl and merge_sorttime in Section 5.2.2, it is able to show that
merge_sortimpl runs in time merge_sorttime. However, in some special cases, more
is needed. The extra reasoning often takes the following form: if s is a term in the
normalized form of T , and s ≥ t holds for some t (an inequality that must be derived
during the proof), then the term s can be replaced by t in T .
In general, we permit the user to provide hints of the form

@have s ≥t t,

where the operator · ≥t · is equivalent to · ≥ ·, used only to remind auto2 [137] that the
fact is for modification of time credit only. Given this instruction, auto2 attempts to
prove s ≥ t, and when it succeeds, it replaces the assertion hi |= P ? $T on the current
heap with hi |= P ? $T ′ ? true, where the new time credit T ′ is the normalized form of
T − s + t. This technique is needed in case studies such as binary search and median
of medians selection (see the explanation for the latter in Section 5.5).
Besides auto2 there exists another tactic for handling Separation Logic and proving

Hoare triples in Imperative-HOL: Lammich [84, §2.5] provides sep_auto — a strong au-
tomation for vanilla Imperative-HOL — which we extend by the above mentioned time
frame inference routine to also handle programs in the time-aware case. Essentially it
first collects all time credits in P and P′. Then it applies the normal frame inference
algorithm on the parts that do not involve time credits. This matching typically in-
stantiates all free variables in P′. The matching of time credits then is implemented by
the component of auto2 described above.
By fixing the form of specifications (as described in Section 5.2.1) they can be used as

an interface. It does not matter how we established the Hoare triples of some program c
— be it auto2, sep_auto or any other method — we can always register those facts with
the respective automation in order to make it available for future calls of the tactics for
programs that use c as a subroutine. This is made possible by strictly restricting the
form of those rules. The same applies to claims of asymptotic complexity, for which we
will describe automation in the next section.

5.4 Reasoning About Asymptotic Time Complexity

Working with asymptotic complexity informally can be particularly error-prone, espe-
cially when several variables are involved. Some examples of fallacious reasoning are
given in [41, Section 2]. In an interactive theorem proving environment, such problems
can be avoided, since all notions are defined precisely, and all steps of reasoning must
be formally justified. In the following we will first present how asymptotic analysis is
formalized in Isabelle. Then quickly sketch Eberl’s formalization of a generalization of
the Master Theorem which we use to handle recurrences that stem from divide-and-
conquer algorithms. Finally, we present our automatic setup to solve proofs of the kind
of Theorem 3 of our methodology.
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5.4.1 Landau Symbols

For the definition of the big-O notation, or more generally Landau symbols, we use the
formalization by Eberl [31], where they are defined in a general form in terms of filters,
and therefore work also in the case of multiple variables.
In our work, we are primarily interested in functions of type nat → real (for the single

variable case) and nat × nat → real (for the two-variable case). Given a function g of
one of these types, the Landau symbols O(g),Ω(g) and Θ(g) are sets of functions of
the same type. In the single variable case, using the standard filter (at_top for limit at
positive infinity), the definitions are as follows:

f ∈ O(g)←→ ∃c > 0. ∃N. ∀n ≥ N. |f(n)| ≤ c · |g(n)|
f ∈ Ω(g)←→ ∃c > 0. ∃N. ∀n ≥ N. |f(n)| ≥ c · |g(n)|
f ∈ Θ(g)←→ f ∈ O(g) ∧ f ∈ Ω(g)

In the two-variable case, we will use the product filter at_top ×F at_top throughout.
Expanding the definitions, the meaning of the Landau symbols are as expected:

f ∈ O2(g)←→ ∃c > 0. ∃N. ∀n,m ≥ N. |f(n,m)| ≤ c · |g(n,m)|
f ∈ Ω2(g)←→ ∃c > 0. ∃N. ∀n,m ≥ N. |f(n,m)| ≥ c · |g(n,m)|
f ∈ Θ2(g)←→ f ∈ O2(g) ∧ f ∈ Ω2(g)

5.4.2 Akra–Bazzi Theorem

A well-known technique for analyzing the asymptotic time complexity of divide-and-
conquer algorithms is the Master Theorem (see for example [24, Chapter 4]). The
Akra–Bazzi theorem is a generalization of the Master Theorem to a wider range of
recurrences. Eberl [32] formalized the Akra–Bazzi theorem in Isabelle/HOL, and also
wrote tactics for applying this theorem in a semi-automatic manner. Notably, the
automation is able to deal with taking ceiling and floor in recursive calls, an essential
ingredient for actual applications but often ignored in informal presentations of the
Master theorem.
In this section, we state a slightly simpler version of the result that is sufficient for

our applications. Let f : N → R be a non-negative function defined recursively as
follows:

f(x) = g(x) +
k∑
i=1

ai · f(hi(x)) for all x ≥ x0 (5.3)

where x0 ∈ N, g(x) ≥ 0 for all x ≥ x0, ai ≥ 0 and each hi(x) ∈ N is either dbi · xe or
bbi · xc with 0 < bi < 1, and x0 is large enough that hi(x) < x for all x ≥ x0.
The parameters ai and bi determine a single characteristic value p, defined as the

solution to the equation
k∑
i=1

ai · bpi = 1 (5.4)
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Depending on the relation between the asymptotic behavior of g and Θ(xp), there
are three main cases of the Akra–Bazzi theorem:

Bottom-heavy: if g ∈ O(xq) for q < p and f(x) > 0 for sufficiently large x, then
f ∈ Θ(xp).

Balanced: if g ∈ Θ(xp lna x) with a ≥ 0, then f ∈ Θ(xp lna+1 x).

Top-heavy: if g ∈ Θ(xq) for q > p, then f ∈ Θ(xq).

All three cases are demonstrated in our examples (in Karatsuba’s algorithm, merge
sort, and median of medians selection, respectively).

5.4.3 Automating Complexity Analysis

We now present our automation setup for the analysis of asymptotic behavior of running
time functions. Eberl [31] already provides automation for Landau symbols in the single
variable case. In addition to incorporating it into our framework, we add facilities for
dealing with function composition and the two-variable case.
Because side conditions for the Akra–Bazzi theorem are in the Θ form, we mainly

deal with Θ and Θ2, stating the exact asymptotic behaviors of running time functions.
However, since running time functions themselves are very often only upper bounds
of the actual running times, we are essentially still proving big-O bounds on running
times of programs.
In our case, the general problem is as follows: given the definition of ftime(n) in terms

of some gtime(s(n)) (running time of procedures called by fimpl), simple terms like 4n
or 1, or recursive calls to ftime, determine the asymptotic behavior of ftime.
To begin with, we maintain a table of the asymptotic behavior of previously defined

running time functions. The attribute asym_bound adds a new theorem to this table.
This table can be looked-up by the name of the procedure.
We restrict ourselves to asymptotic bounds of the form

polylog(a, b) = (λn. na(logn)b),

where a and b are natural numbers. In the two-variable case, we work with asymptotic
bounds of the form

polylog2(a, b, c, d) = (λ(m,n). polylog(a, b)(m) · polylog(c, d)(n)).

This suffices for our present purposes and can be extended in the future. Note that
this restriction does not mean our framework cannot handle other complexity classes,
only that they will require more manual proofs (or further setup of automation).

Non-recursive case When the running time function is non-recursive, the analysis
proceeds by determining the asymptotic behavior in a bottom-up manner.

To handle terms of the form gtime(s(n)) where s is linear, we use the following com-
position rule: if u ∈ Θ(polylog(a, b)), and v ∈ Θ(λn. n), then u ◦ v ∈ Θ(polylog(a, b)).
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Composition in general is quite subtle: the analogous rule does not hold if u is the
exponential function.4
The asymptotic behavior of a sum is determined by the absorption rule: if g1 ∈ O(g2),

then Θ(g1 + g2) = Θ(g2). Here, we make use of existing automation in [31] for deciding
inclusion of big-O classes of polylog functions. The rule for products is straightforward.
The combination of these three rules can solve many examples automatically. E.g.

this (artificial) example: if f1 ∈ Θ(λn. n) and f2 ∈ Θ(λn. logn), then

(λn. f1(n+ 1) + n · f2(2n) + 3n · f2(n div 3)) ∈ Θ(λn. n logn).

Analogous results are proved in the two-variable case (note that unlike in the sin-
gle variable case, not all pairs of polylog2 functions are comparable. e.g. O(m2n +
mn2)). For example, the following can be automatically solved: if additionally f3 ∈
Θ(λ(m,n). mn) and f4 ∈ Θ(λ(m,n). m+ n), then

(λ(m,n). f1(n) + f2(m) +mn+ f3(m div 3, n+ 1)) ∈ Θ(λ(m,n). mn).
(λ(m,n). 1 + f1(n) + f2(m) + f4(m+ 1, n+ 1)) ∈ Θ(λ(m,n). m+ n).

Recursive case There are two main classes of results for analysis of recursively-defined
running time functions: the Akra–Bazzi theorem and results about linear recurrences.
For both classes of results, applying the theorem reduces the analysis of a recursive
running time function to the analysis of a non-recursive function, which can be solved
using automation described in the previous part.

The Akra–Bazzi theorem is discussed in Section 5.4.2. Theorems about linear re-
currences allow us to reason about for-loops written as recursions. They include the
following: in the single variable case, if f is defined by recursion as

f(0) = c, f(n+ 1) = f(n) + g(n),

where g ∈ Θ(λn. n), then f ∈ Θ(λn. n2).
In the two-variable case, if f satisfies

f(0,m) ≤ C, f(n+ 1,m) = f(n,m) + g(m)

where g ∈ Θ(λn. n), then f ∈ Θ2(λ(n,m). nm).

Example 5.4.1. As an example, consider the problem of showing Θ(λn. n logn) com-
plexity of merge_sorttime, defined in Section 5.2.2. This applies the balanced case of
the Akra–Bazzi theorem. Using this theorem, the goal is reduced to:

(λn. 2 + ataketime n + adroptime n + merge_listtime n) ∈ Θ(λn. n)

(the non-recursive calls run in linear time). This can be shown automatically using
the method described in the previous section, given that ataketime, adroptime, and
merge_listtime have already been shown to be linear.

4https://math.stackexchange.com/questions/761006/big-o-and-function-composition
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5.5 Case Studies

In this section, I first present the main case studies verified using our framework in
the original paper [138]. They focus on showing the applicability of our approach and
the coverage of our automation. After that, I briefly sketch two larger developments
conducted by students under my supervision using the framework: Löwenberg [98]
ported the running time analysis proof of the union-find data structure by Charguéraud
and Pottier [21] from Coq to Isabelle/HOL. Furthermore, there are two verifications
projects [126, 39] that work towards the verification of Fibonacci heaps [24].

5.5.1 Gallery of Use Cases

Our first set of examples can be divided into three classes: divide-and-conquer algo-
rithms (using the Akra–Bazzi theorem), algorithms that are essentially for-loops (using
linear recurrences), and amortized analysis.
For all the case studies in this section we mainly used auto2 for proving Hoare Triples

involving Separation Logic with Time Credits. We measure the complexity of a proof
by counting the number of steps in the proof: each lemma statement counts as one step
and each hint provided by the user as an additional step. In the table below, #Hoare
counts the number of steps for proving the Hoare triples (Theorems 2 and 4). #Time
counts the number of steps for reasoning about running time functions (Theorem 3).
We also list the ratio (Ratio) between the sum of #Hoare and #Time to the number of
lines of the imperative program (#Imp). This ratio measures the overhead for verifying
the imperative program with running time analysis. In particular this does not include
verifying the correctness of the functional program (Theorem 1). In addition we list
the total lines of code for each case study.

#Imp #Time #Hoare Ratio LOC
Binary search 11 10 14 2.18 82
Merge sort 38 11 12 0.61 121
Karatsuba 58 18 28 0.79 250
Select 51 41 31 1.41 447
Insertion sort 15 3 4 0.47 42
Knapsack 27 9 8 0.63 113
Dynamic array 55 19 37 1.02 424
Skew heap 25 38 21 2.36 257
Splay tree 120 51 37 0.73 447
Red-black tree 270 51 44 0.35 891

Using our automation the average overhead ratio is slightly over 1. On a dual-core
laptop with 2GHz each, processing all the examples takes around ten minutes. The
development of the case studies, together with the framework itself, took about 4 person
months.
Next we give details for some of the case studies.
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Karatsuba’s algorithm The functional version of Karatsuba’s algorithm for multiply-
ing two polynomials is verified in [27]. To simplify matters, we further restrict us to
the case where the two polynomials are of the same degree.

The recursive equation is given by:

T (n) = 2 · T (dn/2e) + T (bn/2c) + g(n). (5.5)

Here g(n) is the sum of the running times corresponding to non-recursive calls, which
can be automatically shown to be linear in n. Then the Akra–Bazzi method gives the
solution T (n) ∈ Θ(nlog23) (bottom-heavy case).

Median of medians selection Median of medians for quickselect is a worst-case linear-
time algorithm for selecting the i-th largest element of an unsorted array [24, Section
9.3]. In the first step of the algorithm, it chooses an approximate median p by dividing
the array into groups of 5 elements, finding the median of each group, and finding the
median of the medians by a recursive call. In the second step, p is used as a pivot
to partition the array, and depending on i and the size of the partitions, a recursive
call may be made to either the section x < p or the section x > p. This algorithm is
particularly interesting because its running time satisfies a special recursive formula:

T (n) ≤ T (dn/5e) + T (d7n/10e) + g(n), (5.6)

where g(n) is linear in n. The Akra–Bazzi theorem shows that T is linear (top-heavy
case).
Eberl verified the correctness of the functional algorithm [33]. There is one special

difficulty in verifying the imperative algorithm: the length of the array in the second
recursive call is not known in advance, only that it is bounded by d7n/10e. Hence, we
need to prove monotonicity of T , as well as provide the hint T (d7n/10e) ≥t T (l) (where
l is the length of the array in the recursive call) during the proof.

Knapsack The dynamic programming algorithm solving the Knapsack problem is
used to test our ability to handle asymptotic complexity with two variables. The time
complexity of the algorithm is Θ2(nW ), where n is the number of items, and W is
the capacity of the sack. Correctness of the functional algorithm was proved by Simon
Wimmer.

Skew heap and splay tree For these two examples, the bulk of the analysis (func-
tional correctness and justification of amortized runnig time) is done by Nipkow [109].
Our work is primarily to define the imperative version of the algorithm and verify-
ing its agreement with the functional version. Some work is also needed to transform
the results in [109] into the appropriate form, in particular rounding the real-valued
potentials and running time functions into natural numbers required in our framework.
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Red-black tree Zhan formalized red-black trees in Imperative-HOL and proved their
functional correctness [137, §6.2]. We can plainly reuse the imperative code as well
as the verification of the functional abstraction. In contrast to counting the number
of “steps” for the whole verification (as in [137, §6]) we count the steps for reasoning
about time (#Time) and Hoare triples (#Hoare) but not the functional correctness.
The overhead of adding the reasoning about running time was minimal. Most of the
proofs were automatic and we essentially only had to massage an upper bound on the
maximum depth of the red-black tree into the right form. This data structure was
used as a set implementation in the breadth-first search component of the case study
verifying the Edmonds–Karp algorithm for network flow [45].

Dynamic array Dynamic Arrays [24, Section 17.4] are one of the simpler amortized
data structures. We have verified the version that doubles the size of the array whenever
it is full (without automatically shrinking the array). In the following I will describe the
amortized analysis of dynamic arrays in Imperative-HOL-Time in more detail. Later
(in Section 10.2), I will show how a similar verification can be executed on a higher
level of abstraction and I will use the machinery from Chapter 9 to synthesize an
implementation for dynamic arrays.

Example 5.5.1. In this example I describe how we can prove dynamic arrays in
Imperative-HOL-Time. This illustrates how amortized data structures can be veri-
fied using the framework.
An abstract dynamic list is represented by a pair of a carrier list bs and a fill level n.

The corresponding abstract list as is the list bs restricted to the first n elements:

dyn_abs (bs, n) as ←→ as = take n bs ∧ n < |bs|

We define a function push_arrayfun on abstract dynamic lists that doubles the length
of the list if it is full and then appends an element. We prove its functional correctness:

dyn_abs (bs, n) as =⇒ dyn_abs (push_arrayfun x (bs, n)) (as · [x])

Recall that p 7→a xs denotes a heap containing an array at address p with content xs.
Based on this, one can define an assertion

dyn_array_rawassn (bs, n) (p, m) = (p 7→a bs ? ↑(m = n))

relating an abstract dynamic list with a concrete dynamic array represented by a pair
of address p and fill level m.

For the functional push_arrayfun we define a corresponding procedure push_arrayimpl
which appends an element to the back of a dynamic array, doubling the length if it is
exceeded. We can now show the following raw Hoare triple, with worst-case running
time linear in the fill level of the dynamic array, as we might have to double the array.
The explicit numbers in the running time stem from the concrete implementation of
push_arrayimpl and the cost model of time-aware Imperative-HOL.

n ≤ |bs| =⇒
<dyn_array_rawassn (bs, n) p ? $(5 ∗ n + 9)>
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push_arrayimpl x p
<λp′. dyn_array_rawassn (push_arrayfun x (bs, n)) p′>

We now incorporate the potential (Φ(bs, n) = 10 ∗ n − 5 ∗ |bs|) and the invariant
n ≤ |bs| into an assertion for a compound data structure dyn_array and prove the
following Hoare triple with amortized constant running time:

dyn_arrayassn (bs, n) p = dyn_array_rawassn (bs, n) p
? $(Φ (bs, n)) ? ↑(n ≤ |bs|)

<dyn_arrayassn (bs, n) p ? $19>
push_arrayimpl x p

<λp′. dyn_arrayassn (push_arrayfun x (bs, n)) p′>

Note that for showing the latter amortized Hoare triple it does not suffice to employ
the raw Hoare triple, rather push_array must be unfolded again.
As a final step we compose the refinements of abstract lists to abstract dynamic lists

(dyn_abs) and further to dynamic arrays (dyn_arrayassn) and obtain the dynaassn:

dynaassn as p = (∃Abs n. dyn_arrayassn (bs, n) p ? ↑(dyn_abs (bs, n) as))

where the list and fill level of the abstract dynamic array are hidden behind an existen-
tial quantifier. An assertion like dyna_assnassn that relates a memory location with a
logical representation of the data structure is called a representation predicate.
Then we obtain the final Hoare triple of the procedure:

<dynaassn as p ? $19> push_arrayimpl x p <λp′. dynaassn (as · [x]) p′>

The Hoare triple serves as an interface to be used in the verification of larger pro-
grams. Note, that the user of this Hoare triple just sees a constant time operation and
the amortization is conveniently hidden using the time credits in the representation
predicate.
The reasoning about dynamic arrays is quite independent from how the underlying

array is implemented, or rather which program semantics we use. In Section 10.2, I
will show how we can abstractly model dynamic arrays and their amortized running
time complexity, while still being able to synthesize a concrete implementation from it.

5.5.2 Verification of the Correctness and Amortized Complexity of an
Efficient Union-Find Implementation

Charguéraud and Pottier [21] verified the O(α(n)) amortized running time of an ef-
ficient implementation of the union-find data structure with union-by-rank and path
compression in Coq. Here, the function α is the very slowly growing inverse Acker-
mann function. Löwenberg [98] ported that work to Isabelle/HOL and proved the same
result for an implementation in Imperative-HOL-Time. He based his work on an ear-
lier implementation by Lammich, for which I [45] proved the worst-case execution time
O(logn). In the process he uncovered a running time bug. The original implementation
in Imperative-HOL did not perform path compression on union.
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Here, I state the final Hoare triples for the operations init, compare and union of the
union find data structure:

< $ uf_inittime n> uf_initimpl n <λr. is_ufassn r {(v, v) | v ≤ n}}>
uf_inittime ∈ Θ(n)

<is_ufassn u R $ uf_cmptime |Dom R|>
uf_cmpimpl u i j

<λr. is_ufassn u R ? ↑(r ←→ (i, j) ∈ R)>
uf_cmptime ∈ Θ(α(n))

<is_ufassn u R $ uf_uniontime |Dom R|>
uf_unionimpl u i j

<λr. is_ufassn r (per_union R i j)>
uf_uniontime ∈ Θ(α(n))

Here, per_union R i j is the relation obtained when the equivalence classes of the
elements i and j in the partial equivalence relation R are joined, and is_ufassn r R is
the representation predicate for a union-find data structure representing relation R at
address r. Note that this assertion contains time credits for amortization.
In Section 10.1 I will use the union-find data structure in Kruskal’s algorithm.

5.5.3 Verification of Fibonacci Heaps

A Fibonacci heap is a data structure for priority queue operations that in particular
supports an amortized Θ(1) decrease-key operation, and thus is crucial for optimal
asymptotic running time of important algorithms, such as Dijkstra’s shortest path
algorithm. Verifying functional correctness and the running time analysis of Fibonacci
heaps seems to be at the limit of current techniques. I will quickly describe two projects
in Imperative-HOL and Imperative-HOL-Time that worked towards that goal, and
a verification of an extension of Separation Logic that I believe can simplify future
verification attempts. To the best of my knowledge there is no verification of Fibonacci
heaps in a theorem prover besides that.
First, Stüwe [98] explored the limits of inductive definitions of data structures in Sep-

aration Logic and our ad hoc refinement methodology. He modeled Fibonacci heaps
without parent pointers as a functional data structure, verified all priority queue oper-
ations but decrease-key and delete, and provided imperative refinements in Imperative-
HOL-Time. This project includes both the functional correctness proof and the running
time analysis. Note that the delete-min operation is already quite involved and has
amortized running time Θ(logn). However, this approach seems to not work for the
verification of the decrease-key and delete operation. Their running time relies on ad-
ditional pointers into the tree structure and parent pointers for every node. Those can
not be modeled with an inductive predicate in Separation Logic easily.
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Griebel [39] specifically focused on verifying the functional correctness of the decrease-
key operation.5 He models a Fibonacci heap as an unstructured monolithic data struc-
ture in Separation Logic and describes its structure with a mathematical graph. Unfor-
tunately this inhibits the local reasoning Separation Logic normally allows. Regardless,
he succeeds in proving functional correctness for the decrease-key operation.
The Flow framework by Krishna et al. [76] is an extension of Separation Logic that

allows to cut out an arbitrary portion of the heap and reinserting a modified portion of
the heap as long as it fulfills some interface. I believe that this technique can be used
to conveniently model the cutting of trees from the Fibonacci heap and allows local
reasoning instead of reasoning on the graph of the whole data structure. Pöttinger [121]
verified the theory of the Flow framework in Isabelle/HOL which now can be used to
verify overlaid data structures like Fibonacci heaps.
Adding the running time analysis for decrease-key and combining the two verification

projects to obtain a verification of all operations for Fibonacci heaps in Imperative-
HOL-Time is obvious future work.

5.6 Related Work
We compare our work with recent advances in verification of running time analysis
of programs, starting from those based on interactive theorem provers to the more
automatic methods.
The most closely-related is the impressive work by Guéneau et al. [41, 42, 40] for

asymptotic time complexity analysis in Coq. We now take a closer look at the similar-
ities and differences:

• Guéneau et al. give a structured overview of different problems that arise when
working informally with asymptotic complexity in several variables, then solve
this problem by rigorously defining asymptotic domination (which is essentially
f ∈ O(g)) with filters and develop automation for reasoning about it. We follow
the same idea by building on existing formalization of Landau symbols with filters
in Isabelle [31], then extend automation to also handle the two-variable case.

• While they package up the functional correctness together with the complexity
claims into one predicate specO, we choose to have two separate theorems (the
Hoare triple and the asymptotic bound).

• While their automation assists in synthesizing recurrence equations from pro-
grams, they leave their solution to the human. In contrast, we write the recurrence
relation by hand, which can be highly non-obvious (e.g. in the case of median
of medians selection), but focus on solving the recurrences for the asymptotic
bounds automatically (e.g. using the Akra–Bazzi theorem).

• Their main examples include binary search, the Bellman–Ford algorithm, union-
find [22] and the incremental cycle detection algorithm [42]. While the latter

5The delete operation can be directly implemented with decrease-key.
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one is certainly the largest and most involved algorithm verified with Separation
Logic and Time Credits, none of those examples requires applications of the
Master theorem or the Akra–Bazzi method. We present several other advanced
examples, including applications of the Akra–Bazzi method, and those involving
amortized analysis.

• In [42] Guéneau et al. present integer time credits and how they can be used to
simply the reasoning setup.

Mevel et al. [103] present the dual to time credits: time receipts. They can be used
to prove lower bounds on the running time and the absence of integer overflows. It is
not entirely clear to me how time receipts relate to negative integer time credits.
Wang et al. [130] present TiML, a functional programming language which can be

annotated by invariants and specifically also with time complexity annotations in types.
The type checker extracts verification conditions from these programs, which are han-
dled by an SMT solver. They also make the observation that annotational burden can
be lowered by not providing a closed form for a time bound, but only specifying its
asymptotic behavior. For recursive functions, the generated VCs include a recurrence
(e.g. T (n − 1) + 4n ≤ T (n)) and one is left to show that there exists a solution for T
which is additionally in some asymptotic bound, e.g. O(n2). By employing a recur-
rence solver based on heuristic pattern matching they make use of the Master Theorem
in order to discharge such VCs. In that manner they are able to verify the asymptotic
complexity of merge sort. Additionally they can handle amortized complexity, giving
Dynamic Arrays and Functional Queues as examples. Several parts of their work rely
on non-verified components, including the use of SMT solvers and the pattern match-
ing for recurrence relations. In contrast, our work is verified throughout by Isabelle’s
kernel.
On the other end of the scale we want to mention Automatic Amortized Resource

Analysis (AARA). Possibly the first example of a resource analysis logic based on
potentials is due to Hofmann and Jost [60]. They pioneer the use of potentials coded
into the type system in order to automatically extract bounds in the running time of
functional programs. Hoffmann et al. successfully developed this idea further [57, 58,
116, 65, 119]. Carbonneaux et al. [18, 17] extend this work to imperative programs and
automatically solve extracted inequalities by efficient off-the-shelf LP-solvers. While
the potentials involved are restricted to a specific shape, the analysis performs well and
at the same time generates Coq proof objects certifying their resulting bounds. Kavvos
[67] present a method that automatically extracts recurrences from recursive functional
programs, which represent the running time in terms of the size of the input. They do
not handle amortization.

5.7 Recap, Limitations, and Future Work
In this chapter, I have presented a framework for verifying asymptotic time complexity
of imperative programs. This is done by extending Imperative-HOL and its Separation
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Logic with Time Credits. Through the case studies, I have demonstrated the ability
of our framework to handle complex examples, including those involving advanced
techniques of time complexity analysis, such as the Akra–Bazzi theorem and amortized
analysis. I also showed that verification of amortized analysis of functional programs
[109] can be converted to verification of imperative programs with little additional
effort. The framework is mature enough that students with prior Isabelle knowledge
can use it to perform interesting case studies with it. However, the framework has some
weaknesses and limitations. In the following I will comment on them and suggest ideas
for future work.

When presenting the definition of Hoare triples in Section 5.1 I have used an ab-
straction abs that maps heaps to abstract heaps which form a separation algebra. I
have to admit that this was a simplification for the sake of readability, that is not
present in the actual formalization. The first iteration of Lammich’s as well as Zhan’s
Separation Logic for Imperative-HOL [85, 137] actually do not exploit the fact that
the heap can be mapped to an abstract heap which forms a separation algebra. Doing
so would allow to use the theory on separation algebras by Klein et al. [69] and, thus,
to define the Separation Logic from algebraic principles. Instead, they both prove the
basic reasoning rules for the concrete instance using a concrete heap representation. As
the Separation Logic with Time Credits of Imperative-HOL-Time extends Zhan’s work
[137], we did the same here. The cleaner approach, however, is to use the abstraction
abs into a separation algebra. Lammich developed a generic wp framework and ap-
plied it to his shallowly embedded LLVM semantics [81]. I will present that framework
in Section 6.1 and I will show how it is extended with time credits. With the ab-
straction abs one can instantiate that generic framework also for Imperative-HOL (and
Imperative-HOL-Time), and obtain an assertion language and Hoare triples as well as
generic verification infrastructure. Unfortunately, this will not directly be compatible
with the original formalizations, while they morally are isomorphic. As the difference
is only at the intermediate level between concrete heaps and assertions, only minimal
changes need to be applied until the interface — in form of properties of the separating
connectives and the basic Hoare rules — is established. Thus, we have an engineering
problem here. I think, the cleaner solution should be used in future developments, but
older developments need to be ported in order to have all the algorithm formalized in
the same framework.

A major limitation of the framework is its simplistic cost model that essentially only
counts operations that are concerned with arrays and references. Because Imperative-
HOL-Time is shallowly embedded, costly operations can be put into a functional im-
plementation and then integrated with the return operator into the monadic setting.
Also, the code generator will not complain about that during code extraction. Hence,
strictly speaking, it does not suffice to only look at the proven Hoare triples but also
the programs have to be inspected to ensure that the correct operations are counted.
Restricting the language to a flattened form can be asserted by an automatic tool.
The second iteration — the shallow LLVM semantics with cost model (Chapter 6) —
provides such a tool: the LLVM code generator will only accept programs in monadi-
fied form using a set of allowed basic operations. Furthermore, in contrast to the cost
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model of Imperative-HOL-Time for LLVM we will count the number of calls of LLVM
instructions separately in order to allow for a more fine-grained analysis. Charguéraud
and Pottier [21, Section 2.7] discuss different levels at which the time complexity of a
program can be measured.
The time credits we use are of type nat. Using extended natural numbers instead

has the advantage that Hoare triples from vanilla Imperative-HOL could be integrated.
Adding infinitely many time credits ( $∞) in the precondition would express that the
program terminates but the running time bound is unknown. That is exactly what
Imperative-HOL Hoare triples mean. The running time analysis can be provided sep-
arately — by proving < $T ? P> c <λ_. true> — and be combined afterwards. It
would be interesting how to automatically obtain rough running time bounds from
existing formalizations which already provide termination proofs. Using integer time
credits [42] avoids performing frame inference of time credits at every step. Instead, it
only needs to be performed once at the end when proving that the final symbolic heap
entails the post condition. Equipping Imperative-HOL-Time with integer time credits
would simplify that component of the proofs. Maybe a similar result could be achieved
when using separating coimplication as described by Bannister et al. [6, Section 6] for
handling time credits.
Wimmer et al. [134] present a framework for the automatic verified memoization

of recursive functions. For a recursive function f their tool is able to construct an
imperative version (in Imperative-HOL) which avoids recalculating results by storing
them in a lookup table. Dynamic programming algorithms can be conveniently verified
with that approach. With an amortized analysis that adds potential containing time
credits for each cell of the lookup table that has not yet been calculated, one could
determine the total running time of a calculation from the costs of one cell given that
all recursive results already are present in the lookup table. Extending their work to
automatically construct a program in Imperative-HOL-Time along with a synthesized
running time bound would be an interesting piece of work. Here, I briefly sketch how
amortization would play into it. The assertion for the lookup table should contain time
credits for the results that have not yet been calculated.

amor_lookuptableassn M A p = lookuptableassn M p ? $ (
∑
a∈A−dom M . cost a)

where lookuptableassn M p is a data structure representing a partial mapM from param-
eters to results of the memoized function called with those parameters (i. e. potentially
mapping a to f a), A being a superset of the interesting instances of parameters (e. g. the
parameters of recursive calls of a computation of f x for a certain x), and cost a being
the cost of determining f a given the results of all recursive calls are already available.
A computation of the value of f a with such an assertion in the precondition amounts
to looking up whether the result is already in the lookup table and returning it if it
is, or recursively calculating the result and storing it in the lookup table afterward. In
both cases the running time is the advertised cost of lookup in the data structure, that
might be Θ(1) for an array. The accounting of the total cost is moved into initializing
the amortized lookup table. By providing a tight set A the analysis can be optimized.
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Both top-down (just calculating f a), or bottom-up (first calculating f a for all a ∈ A
and then f a) can be modeled that way.

Our automation for asymptotic analysis works fine in our applications but is limited
in several ways. As that component can not only be applied in our context (we will
also use the component in Part III) it might be worthwhile to develop it further. First
of all, we only support the one and two variable case, but I believe that there are only
technical obstacles to extending it to a general multivariate case. Second, we only allow
polynomials and logarithms (polylog) as basic functions for the asymptotic bounds. In
particular, we can not automatically support α. It requires more engineering to extend
our approach to more basic functions and even make it dynamically extendable. Finally,
the automation could be extended to take advantage of the general theory of Landau
symbols using filters.
Code extracted from Imperative-HOL algorithms typically is one order of magnitude

slower (e. g. [84, §6]) compared to standard implementations in purely imperative lan-
guages like C++ or LLVM. Lammich [81] provides a shallow embedding of LLVM in
Isabelle/HOL and is able to extract LLVM code whose performance is comparable with
unverified reference implementations. We extend it with time credits in Chapter 6.
We only cover upper bounds on the running time. Studying lower bounds, as well as

other resources such as heap space or stack space consumption are interesting topics.

5.8 Summary
• We have extended Imperative-HOL with a cost semantics, and presented a practi-
cal framework for simultaneous verification of functional correctness and running
time analysis of programs in that formalism.

• I have presented a methodology that allows for modular development of programs
using specifications as interfaces. Furthermore, I show how to separate the proof
development into three clearly-separated parts: reasoning about the correctness
of the functional abstraction, reasoning about Separation Logic with Time Credits
and reasoning about asymptotic behavior of the running time bound.

• Imperative-HOL-Time provides automatic setup for the latter two parts. First,
existing automation for Imperative-HOL is adapted to additionally reason about
time credits. Second, a proof tactic supports determining the asymptotic com-
plexity of time bounds.

• We provide many case studies in which we showcase the applicability of our
automation.

• In the end we mention limitations of our approach and give directions for future
work.
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Cost Model

Ò

This chapter is mostly describing work by Peter Lammich and it is a supplemented
summary of Section 3 of “For a Few Dollars More — Verified Fine-Grained Algo-
rithm Analysis Down to LLVM” (Haslbeck and Lammich [44]). The idea of using
time credits with currencies is my main contribution to this chapter and we collab-
orated on working out the extension of the generic wp setup for cost semantics; all
the preparatory work [81] and the technical implementation of the extension of the
Separation Logic of LLVM with time credits was done by Peter.
As the LLVM semantics described in this chapter is necessary for understanding
Chapter 9, I include this chapter to keep my thesis self-contained.

In the last chapter we have seen Imperative-HOL being extended with a cost se-
mantics, and a framework for the verified analysis of running time of programs in that
language. A drawback of Imperative-HOL is that its code export facilities only target
hybrid languages such as OCaml or SML. While they do support imperative features,
their extracted code of a verified algorithm still is slower than reference implementa-
tions in purely imperative programming languages. In order to obtain more competitive
algorithms Lammich [81] presents an LLVM semantics with some basic reasoning in-
frastructure and a connection to the Isabelle Refinement Framework through the Sepref
tool. That work is only concerned with proving functional correctness and termination
of those programs. I will present an extension to that work in Part III of this thesis to
also enable reasoning about resource consumption of programs. To lay the ground for
that work, I present a cost model for Lammich’s LLVM semantics and basic reasoning
infrastructure for it in this chapter.
For Imperative-HOL-Time I criticized that every operation costs one unit, and one

thus cannot distinguish between them. The LLVM semantics allows only valid LLVM
instructions as basic operations. Instead of counting how many instructions are used,
we chose a more fine-grained accounting and are counting how many of each instruction
are used during a program execution. In order to integrate that into Separation Logic,
I came up with the novel concept of time credits with currencies (Section 6.1.2).
The step from Imperative-HOL to LLVM does not only mean more efficient extracted

code. The many lessons learned from Imperative-HOL also allowed for a more modular
design of the verification infrastructure. I will describe the layers of abstraction that
are mostly independent of the concrete program semantics. Most of the infrastructure
can be reused when instantiated for some concrete program semantics.
At this point the reader has seen at least two examples of the weakest precondition

calculus and Separation Logic with time credits (Section 2.4 and Chapter 5). So I
think it is save to first show the abstract framework and then the concrete instance
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for LLVM. In Section 6.1 I will describe the original framework by Lammich, and
how time credits can smoothly be integrated. In Section 6.2 I present an overview of
the shallowly embedded LLVM semantics with a cost semantics, and how the basic
reasoning infrastructure is instantiated.

6.1 Basic Reasoning Infrastructure

In this section, I describe the basic reasoning infrastructure, which is mostly inde-
pendent from the LLVM semantics. Rather, the LLVM semantics and its reasoning
infrastructure is an instance of this general framework. In Section 6.2, we will then
apply it for LLVM.

6.1.1 Basic Monad

At the basis of the formalization is a monad that provides the notions of non-termination,
failure, state, and execution costs.

α mres = NTERM | FAIL | SUCC α cost state
α M = state → α mres

Here, cost is a type for execution costs, which forms a monoid with operation + and
neutral element 0, and state is an arbitrary type.
The type α M describes a program that, when executed on a state, either does not

terminate (NTERM), fails (FAIL), or returns a result of type α, its execution costs,
and a new state (SUCC).
It is straightforward to define the monad operations return and bind, as well as

a recursion combinator rec over M. Thanks to the shallow embedding, we can also
use Isabelle HOL’s if-then-else to get a complete set of basic operations. As an ex-
ample, consider the definition of the bind operation, in the case that both arguments
successfully compute a result:

Assume m s = SUCC x c1 s1 and f x s1 = SUCC r c2 s2
then we have bind m f s = SUCC r (c1+c2) s2

That is, the result x and state s1 after the first operation m is passed into the second
operation f, and the result and state after the bind is what emerges from f. The cost
for the bind is the sum of the costs for both operations.
The basic monad operations do not cost anything. To account for execution costs,

we define an explicit operation consume c s = SUCC () c s. This is motivated by our
approach to first formalize the functional semantics of LLVM, and only then add execu-
tion costs on top. This allows for a separation of concerns: we can phrase the functional
semantics of an instruction as a monadic expression, independently from the execution
costs of this instruction.
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6.1.2 Time Credits with Currencies
Our reasoning infrastructure is based on Separation Logic with Time Credits [2, 22, 42].
We follow the algebraic approach of Calcagno et al. [14], using an earlier extension [81]
of Klein et al. [69].

A separation algebra over type α consists of the neutral element 0 :: α, a disjointness
predicate # :: α × α → bool, and a binary combination operation + :: α × α → α.
To guide intuition, an element h of type α is called a heap and describes the content
of a full heap over a subset of the addresses. The expression h1 # h2 states that the
addresses covered by h1 and h2 are disjoint, and, for disjoint h1 and h2, h1+h2 describes
the combined heap content of h1 and h2. Note that + is only defined for disjoint
operands. Formally, (α, +, 0) is a commutative monoid, and a heap h is disjoint from
the combination h1+h2, if and only if it is disjoint from both parts:1

h # h1+h2 ⇐⇒ h # h1 ∧ h # h2 (if h1 # h2)

A separation algebra on α induces a Separation Logic on predicates over α, with the
following connectives:

↑Φ a = Φ ∧ a=0 @ = ↑True (∃Ax. P x) a = (∃x. P x a)
(P ? Q) a = ∃a1 a2. a1 # a2 ∧ a = a1 + a2 ∧ P a1 ∧ Q a2
P ` Q iff ∀a. P a =⇒ Q a

Intuitively, the assertion ↑Φ holds for an empty heap if Φ holds, @ describes the empty
heap, and ∃A is the existential quantifier lifted to assertions. The separating conjunction
P ? Q describes a heap comprised from two disjoint parts, one described by P and the
other described byQ, and entailment P ` Q states thatQ holds for every heap described
by P.

Separation algebras naturally extend over product and function types, i. e., for sep-
aration algebras α, β, and any type γ, also α × β and γ → α are separation algebras,
where the operations are lifted pointwise.
Note that (enat, 0, #, +) forms a separation algebra, with a # b being defined to

always hold. Thus, also ecost = string → enat, and α × ecost are separation alge-
bras, where α is a separating algebra. In particular, in Section 6.2.3 we will use
amemory × ecost with amemory being the original separation algebra that was already
used in [81] to describe the memory of LLVM.
We define the function $s n of type ecost to be the resource function that uses

n :: enat coins of the currency s :: string, and write $s as shortcut for $s 1.

Example 6.1.1. With that notation we can succinctly write cost expressions that
contain different amounts of different coins: e. g. t = $lookup 2 + $add + $div. Here,
term t has type ecost and addition is lifted pointwise to functions.

For the type α × ecost we naturally get a Separation Logic with Time Credits. The
time credit assertion $ is defined as $ c = (λa. a = (0, c)), i. e., it describes an empty

1This axiom is slightly stronger than the one used by Calcagno et al., but makes reasoning more
intuitive, and holds for all models considered.
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memory and precisely the time c. Here, the time credit c is a function from currencies
to amounts. This allows for a fine-grained accounting of different instruction types.
Thus, the assertion $ $s n describes an empty heap and n time credits of currency s.
Complementary, the original primitive assertions over α are lifted to describe zero time
credits.

6.1.3 Weakest Precondition and Hoare Triples

The original formalization of LLVM [81] comes already with a generic VCG infras-
tructure. It is parameterized by a concrete state (cstate), which describes the actual
memory model, and the abstract state (astate), which forms a separation algebra. The
two are connected by an abstraction function abs :: cstate → astate. Moreover, we
require a weakest precondition predicate wp c Q s, which describes that command c,
when executed on concrete state s, terminates with a result r and (concrete) state s′
such that Q r s′ holds. Note that the type of wp :: γ → (α → cstate) → cstate → bool
is very abstract and not yet specialized to the type of programs α M, but we will later
instantiate it with that. We require wp to distribute over conjunctions, i. e.,

wp c Q1 s ∧ wp c Q2 s =⇒ wp c (λr s′. Q1 r s′ ∧ Q2 r s′) s

Finally, let >> be an affine top [20], i. e., an assertion with @ ` >> and >> ? >> = >>,
which captures resources that can be safely discarded. Based on these, we define the
Hoare triple {P} c {Q} to hold iff:

∀F s. (P ? F) (abs s) =⇒ wp c (λr s′. (Q r ? >> ? F) (abs s′)) s

Intuitively, {P} c {Q} holds if, for all states that contain a part described by P, com-
mand c terminates with result r and a state where that part is replaced by a part
described by Q r ? >>, and the rest of the state has not changed. Here, Q r is the
postcondition of the Hoare triple, and >> describes resources that may be left over and
can be discarded. The technique to quantify over the rest of the heap F in the defi-
nition of the Hoare triple is called the “baked-in frame rule” and proved successful in
mechanized proofs [20, §10.2].

­

Note, that the framework needs the distribution of conjunction over wp. Monotonicity
of wp is a corollary. It very much looks like the distributivity property of quantales.
It would be interesting to examine this further and see whether the wp framework
can be generalized to quantitative reasoning.

The generic VCG infrastructure now provides us with a syntax driven VCG with a
simple frame inference heuristics.
The framework is generic enough to allow the instantiation with Imperative-HOL,

Imperative-HOL-Time, the shallow LLVM semantics, and — the topic of the next
section — LLVM with time. We expect that also other program semantics can be
integrated, e. g. the semantics for IMP from Section 2.4.
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6.2 LLVM Semantics
Now that I have described the generic VCG infrastructure, I will present the shallowly
embedded LLVM semantics, and how to instantiate the generic VCG infrastructure
with it. First I describe the LLVM semantics, then I add a cost model and then I show
how to prove basic operations correct.

6.2.1 Shallowly Embedded LLVM Semantics
The formalization of the LLVM semantics is organized in layers. At the bottom, there is
a memory model that stores deeply embedded values, and comes with basic operations
for allocation/deallocation, loading, storing, and pointer manipulation. In addition, the
basic arithmetic operations are defined on deeply embedded integers. These operations
are phrased in the basic monad, but consume no costs. This way, we could take
them unchanged from the original LLVM formalization without cost [81]. For example,
the low-level load operation has the signature raw_load :: raw_ptr → val M. Here,
raw_ptr is the pointer type of our memory model, consisting of a block address and an
offset, and val is our value type, which can be an integer, a pointer, or a pair of values.

On top of the basic layer, we define operations that correspond to the actual LLVM
instructions. Here, we map from deeply embedded values to shallowly embedded values,
and add the execution costs.
For example, the semantics of LLVM’s load instruction is defined as follows:
l l_load :: α ptr → α M
ll_load p = do {

consume $load;
r ← raw_load (the_raw_ptr p);
checked_from_val r
}

It consumes the cost2 for the operation, and then forwards to the raw_load operation of
the lower layer, where the_raw_ptr and checked_from_val convert between the shallow
and deep embedding of values.
Like in the original formalization3, an LLVM program is represented by a set of

monomorphic constant definitions of the shape def, defined as follows:
def = proc_name var∗ ≡ block
block = var ← cmd; block | return var
cmd = ll_<opcode> arg∗ | l l_call proc_name arg∗ | l lc_if arg block block

| l lc_while block block
arg = var | number | null | init

The code generator checks that the set of definitions is complete and adheres to the
required shape. It then translates them into LLVM code, which merely amounts to

2See Section 6.2.2 for an explanation of our cost model.
3Actually, the only change to the original formalization is the introduction of the l l_call instruction,
to make the costs of a function call visible.
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pretty printing and translating the structured control flow by if and while4 statements
to the unstructured control flow of LLVM. A powerful preprocessor can convert a more
general class of terms to the restricted shape required by the code generator. This
conversion is done inside the logic, i.e., the processed program is proved to be equal to
the original. Preprocessing steps include monomorphization of polymorphic constants,
extraction of fixed-point combinators to recursive function definitions, and conversion of
tuple constructors and destructors to LLVM’s insertvalue and extractvalue instructions.
In summary, the layered architecture of the LLVM formalization allowed for a smooth

integration of the cost aspect, reusing most of the existing formalization nearly un-
changed.

6.2.2 Cost Model

As a cost model for running time, we chose to count how often each instruction is
executed. That is, we set cost = string → nat, where the string encodes the name of
an instruction. It is straightforward to define 0 and + such that (cost, +, 0) forms a
monoid. It is thus a valid cost model for our basic monad.
Charguéraud and Pottier [22, §2.7] discuss the adequacy of abstract cost models in a

functional setting. In their classification, our abstraction is on Level 2. For a discussion
of how realistic our cost model of counting LLVM instructions is, I refer to Section 3.3
in [44]. I will only point out our main design choices here.
The control flow for calling procedures and conditional branching incurs costs of

currencies we call call and if respectively. By only accepting LLVM programs of the
form mentioned above (with l l_call and l lc_if) the code generator makes sure that
each control flow construct is paid for by a consume of the respective currency.

The insertvalue and extractvalue instructions, which are used to construct and de-
struct tuple values, have no associated costs. The main reason for this design is to
enable transparent use of tupled values, e. g., to encode the state of a while loop. We
expect LLVM to translate the members of the tuple to separate registers anyway, such
that no real costs are associated with tupling/untupling.
We define the malloc instruction to take cost proportional to the number of allocated

elements. Note that LLVM itself does not provide memory management, and our code
generator forwards memory management instructions to the libc implementation of
the target platform. We use the calloc function here, which is supposed to initialize
the allocated memory with zeros. While the exact costs of that are implementation-
dependent, they certainly will depend on the size of the allocated block.

4Primitive while loops are not strictly required, as they can always be replaced by tail recursion.
Indeed, our code generator can be configured to not accept while loops, and our preprocessor
can automatically convert while loops to tail-recursive functions. However, the efficiency of the
generated code then relies on LLVM’s optimization pass to detect the tail recursion and transform
it to a loop again.
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6.2.3 Using the Weakest Precondition Framework
To instantiate the generic framework from Section 6.1.3 to our LLVM cost model, first
we set

cstate = memory × ecost

where memory is the memory type from the original LLVM formalization. The weakest
precondition is defined by

wp :: α M → (α → cstate → bool) → cstate → bool
wp m Q (s,cc) = (∃r c s′. m s = SUCC r c s′ ∧ c ≤ cc ∧ Q r (s′, cc − c)).

Intuitively, the costs cc stored in the state are the credit available to the program. The
weakest precondition holds if the program runs with real costs c that are within the
available credit, and Q holds for the result r, the new memory s′, and the new credit,
cc − c which is the old credit reduced by the actually required costs. We can prove
that our wp distributes over conjunctions.

Note that actual costs have type string → nat,5 i. e., are always finite, while the cred-
its have type ecost = string → enat, i. e., there can be infinite credits. When setting the
credit to be infinite for all instruction types, we get the classical weakest precondition
that requires termination, but enforces no time limit.
Our concrete state type, in particular the memory, does not form a separation alge-

bra, as the natural memory model of LLVM has no natural notion of partial memories.
Thus, we define an abstraction function that maps a concrete state to an abstract state
astate, which forms a separation algebra:

astate = amemory × ecost abs (m, c) = (absm m, c)

Again, amemory and absm is the abstract state and abstraction function from the
original LLVM formalization. The costs already form a separation algebra, so we do
not abstract them further.
We set >> to describe the empty memory and any amount of time credits. This

matches the intuition that a program must free all its memory, but may run faster
than estimated, i. e., leave over some time credits.
Now we can instantiate the generic reasoning infrastructure.

6.2.4 Primitive Setup
Once we have defined the basic reasoning infrastructure, we have to prove Hoare triples
for the basic LLVM instructions and control flow combinators. As we have added the
cost aspect only at the top level of our semantics, we can reuse most of the material
from the original LLVM formalization without time. Technically, we instantiate the
reasoning infrastructure with a weakest precondition predicate wpn, which only holds
for programs that consume no costs. We define:

wpn m Q s = wp m (FST ◦ Q) (s, 0)
5We fixed that in the beginning of Section 6.2.2.
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Here, the operator FST P = λ(s, c). P s ∧ c = 0 lifts assertions from the Separation
Logic without time credits.
The resulting reasoning infrastructure is identical with the one of the original for-

malization, most of which could be reused. Only for the topmost level, i. e., for those
functions that correspond to the functional semantics of the actual LLVM instructions,
we lift the Hoare triples over wpn to Hoare triples over wp:

{P} c {Q}wpn = {FST P} c {FST ◦ Q}

Example 6.2.1. Recall the low-level raw_load and the high-level l l_load instruction
from Section 6.2.1. The raw_load instruction consumes no costs, and our original
LLVM formalization provides the following Hoare triple:

{raw_pto x p} raw_load p {λr. ↑(r=x) ? raw_pto x p}wpn
This can be transferred to a Hoare triple over wp:

{FST (raw_pto x p)} raw_load p {λr. ↑(r=x) ? FST (raw_pto x p)}

which is then used to prove the Hoare triple for the program l l_load

{ $ $load ? pto x p} l l_load p {λr. ↑(r=x) ? pto x p}

where pto x p = FST (raw_pto (to_val x) (the_raw_ptr p)).

6.2.5 Free for Free
Note that in our semantics, both memory allocation and memory deallocation consume
costs of currenciesmalloc and free respectively. However, the automatic data refinement
tool we are going to design (see Section 9.2.3) has to automatically insert destructors,
which free memory. A destructor d that destroys an object described by assertion A is
characterized in the following way:

destructor A d = (∀a c. {A a c} d c {@})

In particular, all costs required for destruction must already be contained in the asser-
tion A. In practice, this means that we pay for the destruction of an object upon its
allocation. Thus, we prove the following Hoare triples for allocation and deallocation:

{ $ $malloc n ? $ $free ? ↑(n > 0)}
l l_malloc α n
{λp. range {0..<n} (λ_. init) p ? malloc_tag n p}

{range {0..<n} blk ? malloc_tag n p} l l_free p {@}

Intuitively, to allocate a block of size n, one has to pay n units of malloc and 1 unit of
free. To free a block, no explicit costs have to be paid. Note that the credits for the
free are stored in the malloc_tag assertion, along with the block ownership from the
memory model:

malloc_tag n p = FST (raw_malloc_tag n (the_raw_ptr p)) ? $ $free
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6.3 Summary

In essence, we use amortization to pay for the deallocation of a data structure already
during allocation. This is seamlessly supported because we can use time credits in our
Separation Logic assertions.

Example 6.2.2. Consider an LLVM array containing a list of elements that can be
represented as LLVM values (type α). The assertion for an array consists of two parts.
The first part holds the content of the array. It is described by a base pointer (p), a
map, and its domain — the set of offsets that are owned by the array. The second part
holds the ownership of the whole block, represented by the malloc_tag.

arrayassn xs p = range {0..<|xs|} (λi. xs ! i) p ? malloc_tag |xs| p

Now, allocation array_new essentially is l l_malloc with the following Hoare triple:

{ $ $malloc n ? $ $free ? ↑(n > 0)}
l l_malloc α n
{λp. arrayassn (replicate n init) p}

Here, the type α is assumed to have a dedicated element init.
The program l l_free is a destructor for arrays: destructor ll_free. Once the data

structure is initiated, it can be destroyed safely at any point. The cost for freeing the
element can be paid for by the time credits that are reserved for that purpose in the
assertion arrayassn.

6.2.6 More Infrastructure

Using the VCG and the Hoare triples for the LLVM instructions, we can now define
and prove correct various data structures and algorithms.

While this works smoothly for simple data structures like arrays, it does not scale to
more complex developments.
Instead of building up more involved VCG infrastructure like we did in Chapter 5

for Imperative-HOL-Time, we only provide simple data structures on this basic layer.
Then, we push most reasoning to a more abstract level which we will introduce in
Part III of this thesis.

6.3 Summary

• I showed how time credits can be augmented with resource currencies in order to
measure different quantities at the same time. This is used to count the number
of calls for each LLVM instruction in a program execution.

• The general weakest precondition setup can — in theory — be instantiated for
program semantics that provide a wp predicate, a garbage collection assertion (>>)
and an abstraction of the memory model into a separation algebra (via abstraction
abs). The setup provides basic verification infrastructure, with a frame inference
algorithm and a verification condition generator.
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• We do not provide sophisticated infrastructure to support time frame inference
(like in Section 5.4.3) but defer that reasoning to the refinement approach de-
scribed in the following part.
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Part III

Refining Resources
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In the previous part we have seen how to simultaneously verify functional correctness
and time complexity of imperative algorithms and data structures. The usual approach
is an ad hoc refinement: first a purely functional implementation of an algorithm is
proved correct in Isabelle/HOL, then it is refined to an imperative implementation that
also fulfills some timing constraints. While this approach is viable for medium-sized
algorithms (e. g. Guenéau’s incremental cycle detection algorithm [42]) I believe that for
larger developments it is necessary to modularize and separate reasoning on different
levels of abstraction. In this part, I present a solution to that problem by extending
stepwise refinement towards reasoning about resource consumption of programs.
Stepwise refinement allows to specify algorithms and their components, reason about

algorithmic ideas on an abstract level, and add implementation details step by step.
In this part, I show that stepwise refinement can not only structure reasoning about
functional correct but also reasoning about the resource consumption of programs. This
is joint work with Peter Lammich. We have used the Isabelle Refinement Framework
(IRF) [77] and the tools in its eco-system as a blueprint and extended them for our
purposes.
The standard IRF has been used to verify a whole array of algorithms and data

structures. I will summarize its principal ideas, tools, and applications in Chapter 7.
Furthermore, I will discuss related work both for the IRF and for other monadic ap-
proaches to reason about the running time of algorithm. Before that, I will present a
review of the exposition of an algorithm analysis in an algorithm textbook in order to
extract features of a natural presentation of algorithmic ideas.

Computation with resource usage is abstractly modeled in the nondeterministic result
monad with resources (NREST6). Because it builds upon the IRF’s nres monad, I will
first present a summary of its relevant concepts. I will motivate the main design choices,
present the model of computation and its refinement calculus, explore its theory, and
present reasoning infrastructure (Chapter 8). I will show how the verification was
structured with locales (Section 8.3) in the first iteration, and how resource currencies
and currency refinement can be used to structure verification in a more natural way
(Section 8.4).
The goal is to use the abstract modeling to verify concrete programs with their re-

source consumption. I present a method to synthesize concrete implementations from
abstract NREST programs. As we have seen in Part II, any program semantics fea-
turing Separation Logic can be modularly supplemented with a cost semantics. Simi-
larly, we identify common features to be provided by a back end to support synthesis
from NREST and implement synthesis for both Imperative-HOL-Time and LLVM-Time
(Chapter 9).
Finally, I will present applications (Chapter 10): Kruskal’s algorithm for minimum

spanning trees, an abstract analysis of the amortized dynamic array data structure,
and the introsort algorithm. The first of the three was verified using the first iteration
of our framework and comes with a synthesized implementation in Imperative-HOL-

6The acronym stands for Nondeterministic RESult monad with Time for historical reasons but can
be used for other resources.
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Time. The latter two were verified with the framework with resource currencies and
result in competitive LLVM programs with verified running time bounds.
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7 The Blueprint: Algorithm Analysis and
Isabelle Refinement Framework

The prevalent approach in software verification seems to be what I describe as “bottom-
up”: an imperative implementation is developed that it is verified to fulfill its speci-
fication. However, the direction of development of verified algorithm implementations
seems to be counter-intuitive. First, the programmers have certain abstract algorith-
mic ideas in mind, then they realize them as concrete implementations. After that,
proof engineers reverse that process again in order to prove the correctness of imple-
mentations by introducing levels of abstraction and reasoning about them. One clear
drawback is the cyclic nature of this process. Insights from failing proof attempts for
the concrete implementation may require modifications in the implementation. Those
may in turn break existing proofs and require more work on those.
In this chapter I argue that a more natural approach to software verification is a

“top-down” approach that features stepwise refinement: first we provide a specification
of some operation, then present the algorithmic idea and reason that it fulfills the
given specification. After that we elaborate the algorithm and add implementation
details by stepwise refinement in order to obtain a deterministic algorithm that still
fulfills the top-level specification. As a last step we automatically synthesize a concrete
implementation from the deterministic algorithm. That synthesis also emits a proof of
correctness and a verified resource bound.
Obtaining efficient implementations with verified functional correctness and quanti-

tative properties is not the only goal here. I also want to establish a framework for
effective reasoning about abstract algorithms and their quantitative properties.
The exposition of algorithmic ideas in textbooks (like CLRS [24]), papers or discus-

sions often has the form of “pseudocode” : a particular form of communicating compu-
tational ideas which lies between a vague description in plain English and a verbose
display of program code. Choosing the right level of abstraction is vital to effectively
convey those ideas and demonstrate their correctness. A side product of the refinement
approach is that algorithms can be presented and formally analyzed at different levels
of abstraction.
To me, the refinement approach serves two purposes. First, it allows to express

algorithmic ideas and their correctness through formal algorithm sketches. Second,
it provides a methodology to obtain executable implementations from such algorithm
sketches. When only functional correctness is concerned, the “top-down” refinement
approach is realized by the Isabelle Refinement Framework. The content of the third
part of this thesis is to describe how that framework can be extended for reasoning
about resource consumption. To prepare the ground for this extension, I provide an
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MST-Kruskal(G,w)

1 A = ∅
2 for each vertex v ∈ G.V
3 Make-Set(v)
4 sort the edges of G.E into nondecreasing order by weight w
5 for each edge (u, v) ∈ G.E, taken in nondecreasing order by weight
6 if Find-Set(u) 6= Find-Set(v)
7 A = A ∪ {(u, v)}
8 Union(u, v)
9 return A

Figure 7.1: The pseudocode of Kruskal’s algorithm in the textbook by Cormen et al. [24].

overview of the Isabelle Refinement Framework and review its components that are
relevant for this thesis in Section 7.2. I also discuss work related to the IRF and
other approaches to model resource consumption in a monadic setting. Before that, I
reflect on the pen-and-paper way of proving the correctness of algorithms, the role of
asymptotic analysis and what features a formal treatment in a proof assistant needs to
have.

7.1 Presentation of Algorithmic Ideas

Ultimately, formal proofs should be both readable for humans and computers. In order
to design the verification of the analysis of imperative programs as natural as possible,
we first need to study how algorithmic ideas are naturally conducted. While I would
like to see a structured linguistic analysis of that matter, I could not find any relevant
literature. Instead, in this section I will anecdotally present the exposition of one
algorithm and the description of its analysis in a textbook. I will extract some features
a natural approach needs to exhibit. In Section 10.4 I will examine the framework
presented in the rest of this thesis w. r. t. these features.

Consider the description of Kruskal’s algorithm in the textbook by Cormen et al.
[24, Section 23.2].1 They start by pointing out that the algorithm is an elaboration of
a more general algorithm (Generic-MST) and use terminology established for that
algorithm (e. g. safe edge). Then, they state how to specialize the general algorithm and
use a mathematical theorem proved earlier (i. e. that light edges are safe) to argue for its
correctness. After establishing correctness they provide intuition on how to efficiently
implement the specialization (i. e. how to identify light edges using a disjoint-sets data
structure) and present pseudocode for it (Figure 7.1).
The pseudocode is “designed to be readable by anyone who has done a little pro-

gramming” [24, Preface]. It consists of control flow commands (for, if), mathematical
1It might be instructive for the reader to take the time and have a look at that section before reading
on.
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notation (A = ∅), procedure calls of operations of abstract data types (e. g. Make-Set
of a disjoint-sets data structure) and operations described in plain English. Note that
this algorithm exhibits nondeterminism: The order of looping over the vertices (in
line 2) and edges (in line 5), as well as the treatment of ties while sorting are not fixed.
Both aspects are not relevant for the correctness of the algorithm and thus are safely
ignored. But keep in mind that nondeterminism is important for modeling algorithm
sketches at the right level of abstraction.
By referring to the pseudocode Cormen et al. argue that it indeed implements the

idea of Kruskal’s algorithm. Also, for reasoning about the running time complexity
they go through the code line by line, replacing the costs of abstract operations by
those of well-known implementations (here union-find for disjoint-sets and O(E logE)
for sorting) and using asymptotic complexity for abstraction. For example: “The for
loop of lines 5-8 performs O(E) Find-Set and Union operations on the disjoint-set
forest.” Together with the results on the data structure union-find (established earlier
in [24, §21]) they conclude that “the disjoint-set operations take O(E α(V )) time” and
“the total running time of Kruskal’s algorithm is O(E logE)”. Here, note that the use
of asymptotic complexity serves two different purposes.
First, the bookkeeping of concrete implementation-dependent constants is too te-

dious. Giving an asymptotic bound simplifies that by hiding those constants. In the
example, it is even impossible to determine exactly how often Find-Set and Union
are called. Stating the asymptotic behavior (O(E)) is a way of abstracting that quan-
tity, and in the end we will only be interested in the asymptotic running time of the
whole algorithm anyways. But notice that the upper bounding at this point does not
necessarily have to involve asymptotics, i. e. it works also without the number of edges
E going to infinity. I argue that asymptotic analysis is not the only way for hiding
constants that otherwise would distract us from the main argument. Instead, the proof
assistant can handle the bookkeeping of constants. Intuitively, different quantities are
counted at different levels of abstraction: the number of loop iterations, the number
of calls of Union, the number of array lookups, or the number of load instructions.
We will introduce the concept of resource currencies (Section 8.4) to model this intu-
ition. This will put additional structure into the reasoning. Furthermore, asymptotic
complexity allows giving a succinct and robust specification of an operation. In Sec-
tion 5.2 we have seen that hiding details of implementations and running time bounds
results in useful interfaces, which typically do not change for small modifications in the
implementation.
The second purpose of asymptotic complexity is to make algorithm analyzes com-

parable. Asymptotic complexity classes of problems and their algorithms are invariant
for many platforms and machine models. This allows to intuitively port an analysis
of some algorithm on a specific platform to another, maintaining the complexity class.
Consequently, complexity results for algorithms can easily be reused in more complex
algorithms without explicitly arguing how the computational models are compatible
with each other. While this is straightforward in informal proofs, it is tedious if con-
ducted with a mechanized proof. I think for this purpose asymptotic complexity is still
the right tool. Like in Chapter 5 our approach is, however, to conduct the running time
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analysis with concrete constants as far as possible,2 and to use the proof assistant to
conveniently hide details. This avoids common pitfalls when working with asymptotic
complexity, especially when several variables are involved (cf. [41, Section 2]) At the
very end of the analysis we extract a running time bound, analyze its asymptotic be-
havior and compare it to other results.. Guéneau [40, §4.3] has an excellent discussion
of the role of O-notation in formal complexity proofs.

3

We observed that stating specifications including asymptotic complexity only makes
sense above a certain level of abstraction. Once we synthesize programs for a specific
machine architecture that fixes a word length and only has finite memory requir-
ing time bounds with certain asymptotic behavior makes no sense: all running time
bounds essentially are constant, with a very big constant. To the best of my knowl-
edge there is no better solution then to thread through the constants by bookkeeping,
and then rate the algorithms by their leading terms and constant factors. Assert-
ing the asymptotic complexity claims at the abstraction level before fixing a finite
machine model still indicates the complexity class of the algorithmic idea and thus
of the implementation. The problem only arises when requiring a specification of
an implementation to have a certain running time complexity. That will always be
meaningless, because one can always prove a constant running time bound. It is not
clear to me how to address this issue in the correct manner.

Let me recapitulate how the presented algorithm analysis was structured, phrase it in
stepwise-refinement terminology and suggest how the informal sketch can be turned into
a formal proof. First, a general algorithm (using the concept of safe edges) for which
we already have a correctness proof was instantiated with a more concrete concept
(light edges) yielding a first refined algorithm. Then, a second algorithm is explicitly
given as pseudocode (Figure 7.1) using operations whose specifications are implied or
briefly explained by mathematical notation or prose. The refinement relation between
the second and first iteration is left implicit. Instead, the pseudocode is illustrated
operationally with an example execution. During that and the derivation of the time
complexity of Kruskal’s algorithm, another implicit refinement takes place: an imag-
inary third algorithm is outlined which settles all the nondeterministic choices (e. g.
order of traversal of vertices, ties during sorting) and replaces the used subroutines by
imaginary implementations (e. g. sorting). It is left implicit that this imaginary algo-
rithm refines the pseudocode, but it is of that algorithm we are actually determining
the time consumption. Many of these refinement steps are omitted as they are straight-
forward and distract from the core argument, but they are necessary when turning the
sketch into a formal proof.
On a higher level of abstraction what is happening here is that a computational

problem (finding a minimum spanning tree) is reduced to a combination of problems
(sorting, disjoint sets operations) for which we already have solutions. Once this re-
duction is explained and the reader is convinced, it is left as an exercise to spell out
the straightforward details of combining the solutions of the subproblems. Ideally, a
formal proof would reflect exactly that pattern.

2When analyzing an recurrence relation with the Akra–Bazzi method, we only obtain the result for
the membership of some complexity class. We do not get a closed form solution in that case.
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It is worth noting what kind of role the pseudocode in Figure 7.1 plays. In the
imaginary refinement chain one only has to prove local properties that depend on
one level up and down the chain: for functional correctness one has to show that
the specification that stems from the computational problem is met, given that the
subproblems are solvable. For the running time analysis, one has to count how often
the respective subproblems are called, multiply them by their specified cost, add them
up, and prove that they are bounded by the costs of the more abstract program.
Especially for high level algorithms that only combine other algorithms this simple
analysis technique suffices. Only for more involved running time analyzes we need
techniques like linear recurrences or the Master Theorem.
In Section 10.1, I present the verification of Kruskal’s minimum spanning tree algo-

rithm as a case study. However, instead of following the route taken by CLRS in the
example of this section, Kruskal’s algorithm is shown to be an instance of the general
greedy algorithm for finding a minimum weight basis in a matroid. Regardless, the
same technique of specializing a general algorithm and refining it stepwise applies.
Let me summarize the main features a formal exposition of the analysis of algorithms

needs to exhibit. First of all there needs to be a formalism to express algorithm sketches.
This formalism should allow one to use precise mathematical expressions and at the
same time to leave open implementation details. Those details may be postponed or
just left to the reader. There should be a way of expressing qualitative properties
about the result of the algorithm and quantitative properties about the execution of
the algorithm. It should be possible to relate algorithm sketches at different levels of
abstraction. Algorithm sketches should have a semantic and operational meaning. It
should be possible to display the execution of an algorithm sketch in order to illustrate
the operational meaning of the algorithm. It is desirable that the formalism is readable
and executable by a human and a machine. Also the proofs for showing correctness
and quantitative properties of algorithm sketches should be readable by both humans
and machines.
I believe that the overall approach of presenting algorithm analyzes like in textbooks

can be reproduced in a proof assistant. Stepwise refinement allows to represent al-
gorithms on different levels of abstraction and establish refinement relations between
them. It facilitates to separate concerns and split the mathematical correctness proof
from implementation details.
In the next section I will review the main parts of the Isabelle Refinement Framework,

a framework that allows algorithm analysis for functional correctness.

7.2 The Isabelle Refinement Framework

The Isabelle Refinement Framework (IRF) essentially implements the idea of top-down
development of verified algorithms with stepwise refinement in Isabelle/HOL. At the
top of the refinement chain is an abstract specification of some operation, which can
be refined into several iterations of monadic programs. Eventually, if such a monadic
program fulfills certain wellformedness properties, a synthesis component can automat-
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ically generate an implementation in one of several back end semantics. From those
implementations a code generator can export program text in different programming
languages. The program text in turn can then be compiled by general-purpose compil-
ers to obtain executable machine code.
Note that the trusted code base, i. e. the unverified pieces of software used, starts

with the code generator. Everything above that level happens within the logic of
Isabelle/HOL and thus is verified. While there are current efforts on extending the
scope of trust, I focus on what happens above that line.
The formalism used to phrase specifications and monadic programs is called the

nondeterministic result monad (nres). While this monad and the mentioned vertical
structure is basically unchanged since the first iteration [94], the other components
have evolved considerably. We will see details of that monad in Section 8.1. In the
following I will give a chronological overview of the evolution of those components and
of applications realized with them.
Lammich [83] pioneered a framework for refinement of monadic programs and in-

troduced the nres monad. The framework already provided facilities for specification
refinements and data refinement in the form of verification condition generators. The
first case study was the verification of Hopcroft’s algorithm for automata minimisation
[94]. The refinement from monadic programs to executable functional programs in the
logic of Isabelle/HOL was proven without tool support. However, the Isabelle Collec-
tions Framework (ICF) [89] readily provided executable functional data structures that
could be used to refine abstract data structures like sets and finite maps. The Isabelle
code generator was used to obtain program text in SML, OCaml, Haskell and Scala.
To automate the refinement of data structures from monadic programs to HOL func-

tions, Lammich designed the synthesis component Autoref [77]. That tool was used
to verify a series of efficient algorithms [87, 91, 64], which culminated in the first fully
verified LTL model checker [35]. It was later extended by partial order reduction [11].
The journal paper by Lammich and Lochbihler [88] contains the latest description of
the Autoref tool. It is still used today (e. g. [12, 10]) to obtain efficient code from
verified algorithms in Isabelle/HOL.
As many efficient algorithms use imperative data structures, the next step was to

design an imperative back end for the IRF. The Sepref tool [85, 84] refines monadic
programs into Imperative-HOL [13], which is equipped with a Separation Logic [90].
The Isabelle code generator setup for Imperative-HOL generates program text in func-
tional programming languages that support references and mutable arrays. Many case
studies show the maturity of the framework: from verification of classical impera-
tive algorithms and data structures [93, 82, 135, 54, 52, 92], over algorithms for the
SAT problem [86, 78, 36, 9, 79], to an timed automata model checker [136]. Using a
functional-imperative hybrid language as a back end is particularly suitable, as one can
choose to refine performance-critical data structures imperatively but also can keep fea-
tures of functional languages when it is more convenient. While using Imperative-HOL
as a back end gained some additional performance, the extracted code is typically less
efficient than reference implementations in purely imperative languages.
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As a next step towards efficient verified algorithms, Lammich [81] presents a shallowly
embedded LLVM semantics (Isabelle-LLVM ) and modifies Sepref to synthesize Isabelle-
LLVM implementations from monadic programs. A code generator turns Isabelle-
LLVM programs into LLVM intermediate representation, which can be compiled by
LLVM to executable code. First case studies for simple algorithms on arrays sug-
gest a speed up of at least 1.5 in contrast to implementations extracted in SML [81].
Recently, Lammich [80] conducted a larger case study and verified the introsort and
pdqsort algorithms. The extracted verified algorithms perform on par with the respec-
tive implementations from the standard library.
While the recent development of the IRF focused on the efficiency of extracted al-

gorithms, the formalism for representing abstract algorithm stayed unchanged. I will
show how the IRF can be extended to not only give functional correctness results for
the implementations but also guarantees on the resource consumption by extending the
nres monad. Essentially, I will describe how to apply the potential method on it, adapt
the tools of the IRF accordingly and apply running time analysis to some case studies.

7.3 Related Work

In the last section I already mentioned many resources that describe or use components
of the IRF. For related work to the Autoref framework I refer to [88, §8], and Lammich
[84, §7.2] mentions related work for Sepref. I want to discuss related work to refinement,
the nondeterminism monad nres and reasoning about resource consumption in a monad.

While data refinement dates back to Hoare [56], Back [3] first proposed a refinement
calculus for imperative programs. There are textbooks [4, 26] that give a good overview
over the field.
Schwenke and Mahony [124] combine monads with refinement and Klein et al. [23,

70] describe the nondeterminism monad used in the seL4 project. It also comes with a
refinement calculus.
Weegen et al. [132] present a shallow monadic embedding of programs and a monad

transformer that piggybacks a monoid, e. g. simply counting the number of steps of a
program, onto an existing monad by pairing. They define a tree nondeterminism monad
that essentially maintains a distribution of results and use the monad transformer to
get a “nondeterministically profiled” monad. With that they verify the average-case
complexity of quicksort in Coq. As presented in Chapter 3 Hölzl [62] uses the Giry
monad to reason about the expected running time of programs. Eberl et al. [34] uses
it to verify randomized quicksort, the average case analysis of deterministic quicksort
and quantitative properties of other randomized data structures.
The use of a simple monad counting the number of steps of a program allows for

a lightweight model of execution time. Here are two recent works that employ that
technique. McCathy et al. [101] study the running time for functional programs, veri-
fying e. g. mergesort, red-black trees and Braun trees in Coq. Nipkow [111] verifies the
amortized complexity of root-balanced trees.
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Rajani et al. [123] present a unifying type-theory for higher-order amortized cost
analysis, which involves a cost monad. Rajani [122] applies type-theoretic approach to
Information Flow Control and generalizes the theory to allow any commutative monoid
in the cost monad.
Besides our work that I will describe in the next chapter, I am not aware of any work

involving a nondeterminism monad that tracks time or resource bounds and comes with
a refinement calculus.

7.4 Organization of the Rest of Part III
In the rest of the third part of this thesis I present two iterations of the combination of
stepwise refinement with resource bounds. The first iteration [45] extends IRF’s nres
monad to reason about resources, measures consumption with a natural number and
synthesizes programs in Imperative-HOL-Time (cf. Chapter 5). The second iteration
[44] additionally uses resource currencies and targets LLVM-Time (cf. Chapter 6).
Because both iterations affect the whole stack of the IRF, and their ideas build upon
each other, I will present the material intertwined, from top to bottom, and in increasing
elaboration.
In Chapter 8, I will first summarize the relevant concepts of nres. Then I will present

a generalization of that monad together with three instances: the classical monad, the
monad that measures resources with a number, and the monad with resource currencies.
I will show how the main techniques for the classical nres monad can be adapted to
treat the first and then the second iteration.
Then, in Chapter 9 I will show how the Sepref tool for synthesizing implementations

can be extended. This involves showing the necessary changes for the first, followed by
the second iteration.
Finally, I will present case studies for both iterations (Chapter 10) and close with a

discussion of the approach and related work.

7.5 Summary
• I presented the exposition of an algorithm and its informal analysis from a text-
book and extracted some features a natural treatment of algorithm analysis
should exhibit.

• The Isabelle Refinement Framework (IRF) allows stepwise refinement of algo-
rithms in Isabelle/HOL. It features the nres monad to express nondeterminis-
tic computation and provides back ends for Isabelle/HOL functions (Autoref),
Imperative-HOL and LLVM (Sepref). From those back ends executable programs
can be extracted by code generators.
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8 NREST

Ò

The content of this chapter is joint work with Peter Lammich. This chapter is based
on a combination of material from “Refinement with Time - Refining the Run-Time
of Algorithms in Isabelle/HOL” (Haslbeck and Lammich [45]) and “For a Few Dollars
More – Verified Fine-Grained Algorithm Analysis Down to LLVM” (Haslbeck and
Lammich [44]) supplemented with more explanations and examples.

In this chapter I will give a gentle introduction in the nondeterministic result monad
with resource bounds, which is a generalization of the nres monad of the Isabelle
Refinement Framework. I will first introduce the nres monad [94], give illustrative
examples and present its reasoning infrastructure. Then I will present two iterations
of generalizations of nres that allow for reasoning about resource bounds. The first
one measures resources in one number, and the second introduces the novel concept of
resource currencies and currency refinement.

8.1 Modelling Nondeterministic Computation

For modeling nondeterministic computation we consider the following two aspects:
First, as a running example, consider we want to sum over all the elements of a

finite set of numbers S. A natural algorithm would just pick one number at a time
from the set and add it to some accumulator. At any point during the execution of
this algorithm, it does not matter which number is chosen next, as long as we only
choose numbers from the set and do not choose a number twice by removing it from
the set. We want to specify the program by its designated property, but not with a
specific result. For example, for the set S={1, 2, 3} the set of possible results might
be {(1, {2, 3}), (2, {1, 3}), (3, {1, 2})}, where the first component of each result is
the chosen element and the second is the rest of the set. Later we might implement
the algorithm deterministically by always choosing the minimal element, i. e. in the
example it chooses (1, {2, 3}). We then say the deterministic implementation refines
the general algorithm. To sum it up, a computation should be modeled as a set of
possible results.
Second, we want to model recursive computations and define recursion by a standard

fixed-point construction over a flat lattice. The lattice must have a dedicated element
for nontermination, which we call fail. Furthermore, later we will see that this element
also signals failing assertions.
We now formalize the above intuition:

α nres = fail | res (α set)
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A computation is either fail, or res X, where X is a set of possible results.

­
Note that this shallow embedding makes no formal distinction between syntax and
semantics. Nevertheless, we refer to an entity of type nres, as program to emphasize
the syntactic aspect, and as computation to emphasize the semantic aspect.

We define the refinement ordering by lifting the subset ordering and setting fail as
the top element. The refinement ordering corresponds to the intuition of refinement:
m ≤ m′ reads as m refines m′, i. e., all possible results of m are also possible results of
m′. To fix terminology, one can alternatively say “m implements m′”, “m′ is refined by
m”, or “m′ is refined to m”. The latter emphasizes, that m specifically was created in
order to refine m′. Rarely, we say that m and m′ are in a refinement relation. The
order of the refinement should be clear from the context.

Example 8.1.1. For a simple example, consider a computation that removes an el-
ement of the set {1, 2, 3}. That computation is expressed in nres in the following
way:

m′ = res {(1, {2, 3}), (2, {1, 3}), (3, {1, 2})}
The computation m′ can serve as a specification and can be refined by more concrete
computations. For example, computation m = res {(1, {2, 3})} only produces one of
the possible results. Thus m refines m′.

To conveniently model actual computations, we define some combinators. We define
spec P to be the computation of any result r that satisfies P r: spec P = res {r. P r}.
Furthermore, we define return x = res {x} to compute the single result x.
The combinator bind m f models the sequential composition of computation m and

f , where f may depend on the result of m:
bind :: α nres → (α → β nres) → β nres
bind fail f = fail
bind (res X) f = Supx∈X f x

If the first computation m fails, then also the sequential composition fails. Otherwise,
we consider all possible results x of m and invoke f x. The supremum essentially is the
union of the set of possible results of f for all the different intermediate results of m.
However, it makes the whole expression fail if one of the reachable f x fails.
For writing larger programs conveniently we use monadic do-notation. We will post-

pone the proof of the monad laws [127] for now. For sequential composition we will write
do { x ← m; f x } for bind m f and do { m; f } for bind m (λ_. f). Larger do-blocks
are joined.

Example 8.1.2. Using the combinators just introduced we can express a program that
removes an element from a set and adds it to an accumulator. We pull out the respective
operations following the mañana principle [19] of stepwise refinement: “When – during
implementation of a method – you wish you had a certain support method, write your
code as if you had it. Implement it later.” In our case, we state a specification, use it,
and provide a refinement later.
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1 choose′spec S = spec (λ(s, S′). s 6∈ S′ ∧ S′ ∪ {s} = S)
2 addspec a s = return (a + s)
3
4 add_elem′ (a, S) = do {
5 (s, S′) ← choose′spec S;
6 a′← addspec a s;
7 return (a′, S′)
8 }

Then (42, {2, 3}) is a possible result of program add_elem′ for a=41 and S={1, 2, 3}.
We can express that by stating

return (42, {2, 3}) ≤ add_elem′ (41, {1, 2, 3})

Observe what happens when the set S is empty. At first, one would intuitively expect
that the program should fail in that case. Instead, in line 5 the computation does
not have any result, i. e. choose′spec ∅ = res ∅. This is propagated by the (implicit)
bind operators in line 6. The expression simplifies to the supremum over the empty
set and the result of that is again the bottom element of the ordering, i. e. ⊥ = res ∅.
Consequently, we have add_elem′ (a, ∅) = res ∅, which expresses that the computation
does not have any result. Note that the computation without any result refines any
computation: res ∅ ≤ m.

The failing computation fail, however, is at the other end of the refinement ordering.
It is refined by any program: m ≤ fail.

Typically, we use stepwise refinement to split up the refinement of a program into a
chain of refinements m ≤ m′ ≤ . . . ≤ mspec. We call the refinement lemmas that have
a specification on the right-hand side correctness lemmas. On the lower end of that
chain often there is a deterministic program m = return x, i. e. an NREST program
with exactly one result x. On the top end of the chain there is a specification. After
proving the individual refinements, we can combine them by transitivity to a single
lemma for m. In consequence, we obtain a correctness lemma for m that states that
the result x satisfies the specification. The advantage of that approach is that in each
individual refinement step one can focus on a specific aspect of the computation.
If we encounter > = fail or ⊥ = res ∅ in the refinement chain we have lost preci-

sion. Either the concrete program on the lower end has no result, or the specification
fails and we have lost all information about the program.
Instead of silently getting programs with no results, we want to signal violated prop-

erties and use assertions for that purpose. Assertions fail if their condition is not met,
and return unit otherwise:

assert P = if P then return () else fail

They are also used to express preconditions of a program. A Hoare-triple for program
m, with precondition P, postcondition Q is written as a refinement condition:

m ≤ do { assert P; spec Q }
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Note that the above refinement condition is equivalent to: P =⇒ m ≤ spec Q. That
is, one can pull the assertion of a specification into the premises. This is the way to
express preconditions in specifications.

Example 8.1.3. To continue the example above, we now guard choose′spec with an
assertion and use it in a safe implementation for add_elem:

choosespec S = do {
assert (S 6= ∅);
choose′spec S

}

add_elem (a, S) = do {
(s, S′) ← choosespec S;
a′← addspec a s;
return (a′, S′);
}

Furthermore, we can now give a specification for the running example of summing
the numbers of a set.

sum_setspec S = do { assert (finite S); spec (λr. r = (
∑
s∈S s)) }

Here, we demand that the set we want to sum over is finite.

We use Isabelle/HOL’s if-then-else to model branching and define a recursion combi-
nator rec :: ((α → α nres) → α → α nres) → α → α nres via a fixed-point construc-
tion [74], to get a complete set of basic combinators. Then, we can define a derived
combinator for a while loop:

while :: (α → bool) → (α → α nres) → α → α nres
while b c s = rec (λR s. if b s then do { assert (b s); s ← (c s); R s }

else return s) s

Example 8.1.4. Now we can finally write down the algorithmic idea of the running
example:

sum_set S = do {
s ← return (0, S);
(a′, S′) ← while (λ(a, S). S 6= ∅) (λ(a, S). add_elem (a, S)) s;
return a′
}

The program starts with the parameter set S, draws an element from the set and adds
it to the accumulator until the set is empty, and finally returns the accumulator. Here,
the tuple (a, S) of accumulator and set of remaining numbers constitute the state that
is changed during the execution of the while loop. It has to be threaded through the
loop explicitly.
We now would like to prove that the program terminates and fulfills its specification.
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sum_set S ≤ sum_setspec S

Before we turn to how to prove such refinement lemmas, let me introduce the last
concept of modeling: data refinement.

8.1.1 Data Refinement
A typical use case of refinement is to implement an abstract data type by a concrete
data type. In our running example, we could implement finite sets of numbers by
distinct lists. Towards an executable implementation, instead of abstractly summing
over the set of numbers we could iterate over the list and add up the elements.
We define a refinement relation Rsetlist between distinct lists and finite sets. A concrete

computation m that yields distinct lists then refines an abstract computation m′ that
yields sets if every possible concrete result is related to a possible abstract result.
Formally, m ≤ ⇓DR m′, where the subscript D stands for data refinement. The operator
⇓D is defined, for arguments R and m′, by the following two rules.

⇓DR (res X) = res (Supx∈X {c . (c, a) ∈ R}) ⇓DR fail = fail

Here, we use the supremum to aggregate all abstract results that are related to a
concrete result. It essentially is the union over the set of concrete results that are
abstracted by all the results of the abstract computation.

Example 8.1.5. For an abstract program m = res { {3, 1, 2} } we will straightfor-
wardly have the concretized program ⇓D Rsetlist m = res {[1, 2, 3], [2, 3, 1], . . . }. The
refinement relation Rsetlist is formally defined in the following way:

(xs, S) ∈ Rsetlist ←→ (set xs = S ∧ distinct xs)

where set xs is the set of elements in the list xs, and the predicate distinct characterizes
lists that have no duplicates. Note that to build this relation we used an abstraction
function (set) and an invariant (distinct). Refinement relations often take that form
and we have Rsetlist = br set distinct with br α I = {(c, a). I c ∧ a = α c}. However,
not every set corresponds to a list in this relation, nor does every list implement a set.
Infinite sets, like {i | odd i}, do not have a corresponding list, and the list [0, 0] is not
distinct and thus does not implement a set.

The refinement relation Rsetlist describes how the container data structure is refined.
Additionally, the data contained in the set could be refined. For simplicity, we do
not consider this here and refer to [88, §4.2.1] for a principled approach to combine
refinement relations of data and data structures.
Instead, we simply refine the contained numbers by themselves. This is achieved by

using the identity relation Id, which is denoted by Rnatnat for natural numbers. We write
(n, n′) ∈ Rnatnat to express that n refines the the natural number n′, which is equivalent
to n = n′. Data refinement with relation Id has no effect: ⇓DId m = m.

Example 8.1.6. Using data refinement we can now refine our running example to use
lists instead of sets. In Figure 8.1 we have the abstract programs working on sets on
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1 take_first xs = do {
2 assert (xs 6= []);
3 return (hd xs, tl xs)
4 }
5
6 add_one2 (b, xs) = do {
7 (x, xs′) ← take_first xs;
8 b′← addspec b x;
9 return (b′, xs′)

10 }
11
12 sum_set2 xs = do {
13 t ← return (0, xs);
14 (b′, xs′) ← while (λ(b, xs). xs 6= [])
15 (λ(b, xs). add_one2 (b, xs))
16 t;
17 return b′
18 }

(a)

1choosespec S = do {
2assert (S 6= ∅);
3spec (λ(s, S′). s 6∈ S′ ∧ S′ ∪ {s} = S)
4}
5
6add_one (a, S) = do {
7(s, S′) ← choosespec S;
8a′← addspec a s;
9return (a′, S′)
10}
11
12sum_set S = do {
13s ← return (0, S);
14(a′, S′) ← while (λ(a, S). S 6= ∅)
15(λ(a, S). add_one (a, S))
16s;
17return a′
18}

(b)

Figure 8.1: Two algorithms whose components are in refinements

the right, and their refinements working on lists on the left. In line 3 of the latter, the
expressions hd xs and tl xs return the first element and respectively all but the first
element of the list xs.

Let list xs implement set S, i. e. (xs, S) ∈ Rsetlist. Then, we would like to establish the
following refinements:

take_first xs ≤ ⇓D(Rnatnat × Rsetlist) (choosespec S)
one_add2 (a, xs) ≤ ⇓D(Rnatnat × Rsetlist) (one_add (a, S))
sum_set2 xs ≤ ⇓DRnatnat (sum_set S)

where the operator · × · is the product on relations.
In Section 8.1.3, I will present an approach to prove specification refinements, which

have a specification on the right-hand side, like the first of the three propositions above.
The latter two refinements are between two programs that have the same structure. I
will show how to handle them in a structured and automated way in Section 8.1.6.

8.1.2 Notation for Refinement

Like in the last example, we will often see propositions of the form

(x, x′) ∈ R =⇒ m x ≤ ⇓DS (m′ x)
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It states that m refines m′ w. r. t. relation R for the arguments and S for the result.
Some of those propositions may include additional preconditions. To write them more
conveniently, we use the following notation1:

(m, m′) ∈ [λx x′. pre x x′] R → S
= ∀x x′. pre x x′ =⇒ (x, x′) ∈ R =⇒ m x ≤ ⇓DS (m′ x′)

If the precondition is always true, we just write (m, m′) ∈ R → S. For the sake of
readability, we will identify curried and uncurried function and write

(m, m′) ∈ R1 → . . . → Rn → S

for programs with n arguments that are refined by R1, . . . , Rn.
The above form of those propositions is called the parametric form. It brings to mind

relational parametricity by Wadler [128].

Example 8.1.7. Using this notation we can rephrase the refinements of our example
in the following way:

(take_first, choosespec) ∈ Rsetlist → (Rnatnat × Rsetlist)
(one_add2, one_add) ∈ Rnatnat → Rsetlist → (Rnatnat × Rsetlist)
(sum_set2, sum_set) ∈ Rsetlist → Rnatnat

The last one reads: if the parameters are related by Rsetlist then the result of sum_set2
refines the result of sum_set w. r. t. relation Rnatnat.
Also the correctness lemma from Example 8.1.4 can be phrased in the more conve-

nient notation. We have to add the trivial data refinements Id and Rnatnat.

(sum_set, sum_setspec) ∈ Id → Rnatnat

Before we turn to proving those refinements, let us put them together and obtain
the correctness for sum_set2. The data refinement lemma for sum_set2 above can be
combined with the correctness lemma for sum_set. We first combine the theorems
concretely and then see how refinements in the parametric form can be combined in
general.
By transitivity and monotonicity of data refinement we obtain:

(xs, S) ∈ Rsetlist =⇒ sum_set2 xs ≤ ⇓DId (sum_setspec S)

Now, we can unfold sum_setspec and Rsetlist, replace S with set xs and thus remove the
precondition finite (set xs), which we get from sum_setspec. Finally, we massage the
lemma into the following form.

J distinct xs ∧ sorted xs K =⇒ sum_set2 xs ≤ return (
∑
x∈set xs x)

It is remarkable that the set S can be discarded from the final lemma. More interest-
ingly, if we have a close look at the program sum_set2, we see, that it actually also
sums all elements from the list even if it is not distinct. That means we have chosen
the abstraction with a set — which determines at least the distinctness property —

1This notation was first described in [82, §2.2].
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too coarse to capture all program behavior of sum_set2.

­
We have to keep in mind that the choice of the specification at the top end as well
as all the data abstractions along the refinement chain restrict what properties we
can show for the program at the bottom end.

At this point we have a deterministic program together with a proof for termination
and a correctness lemma. We could now use the back ends described in Section 7.2 to
extract executable program code.

In general, we would like to compose two refinements in parametric form. Consider
three programs m3, m2 and m1 with refinement lemmas we can prove:

J (m3, m2) ∈ R2 → S2; (m2, m1) ∈ R1 → S1 K
=⇒ (m3, m1) ∈ (R2 O R1)→ (S2 O S1)

Here, R2 O R1 is the composition of relations. The identity relation is the neutral
element for that operation: Id O R = R O Id = R.

Example 8.1.8. In our example combining the refinement lemmas for sum_set2 and
sum_set we obtain:

(sum_set2, sum_setspec) ∈ (Rsetlist O Id) → (Rnatnat O Rnatnat)

It simplifies to the same correctness lemma for sum_set2 as before.

This completes the exposition on how to model computation in nres, set up the
refinement chain, and collapse it into a final correctness lemma. Now we turn to how
we actually can prove the refinement lemmas.

8.1.3 Specification Refinement

A recurring pattern are refinement lemmas with a specification on the right-hand side.
Those lemmas are called correctness lemmas or specification refinements. In this section
I present a technique for proving those. We want to prove that a compound program m
refines some specification that is guarded with a precondition and may involve a data
refinement:

m ≤ ⇓D R (do { assert P; spec Q })

We can always first pull the precondition to the premises, and push the data refinement
into the specification. The following two rules formalize that intuition.

(P =⇒ m ≤ ⇓D R (spec Q)) =⇒ m ≤ ⇓D R do { assert P; spec Q }
(m ≤ spec (λc. ∃a. (c,a) ∈ R ∧ Q a) ) =⇒ m ≤ ⇓D R (spec Q)

Because the general from can be transformed in that way, in the following we assume
to work on lemmas of the form m ≤ spec Q. We can come up with refinement rules
for the basic combinators:
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Q x =⇒ return x ≤ spec Q
P ∧ (P =⇒ Q ()) =⇒ assert P ≤ spec Q
(∀x. P x =⇒ Q x) =⇒ spec P ≤ spec Q

The latter rule together with transitivity of the refinement ordering gives us a conse-
quence rule:

m ≤ spec P =⇒ (∀x. P x =⇒ Q x) =⇒ m ≤ spec Q

It can be used if we already have a specification refinement lemma for some program
m, and want to weaken the post condition P to Q.

In order to combine programs, we need a rule for sequential composition. We can
prove the following rule for the bind operator:

m ≤ spec (λx. f x ≤ spec Q) =⇒ bind m f ≤ spec Q

It reads: the compound program refines specification Q if the computation m does not
fail and only produces results x, which run on f fulfill specification Q. This allows for
a weakest precondition calculus, and the rule for bind resembles the well-known bind
rule for weakest preconditions.

Example 8.1.9. Now we can tackle the refinement lemma of take_first and choosespec.
Remember we can assume that xs refines S. Then, the goal is:

(xs, S) ∈ Rsetlist =⇒ take_first xs ≤ ⇓D(Id × Rsetlist) (choosespec S)

Let us follow that proof step by step. First, we unfold the definitions of the specifi-
cation, pull the precondition into the premises, and push the data refinement into the
specification. We obtain the following goal:

(xs, S) ∈ Rsetlist =⇒ S 6= ∅
=⇒ take_first xs ≤ spec (λ(x, xs). ∃(s, S′). ((x, xs), (s,S′)) ∈ (Id × Rsetlist)

∧ s 6∈ S′ ∧ S′ ∪ {s} = S)

Let us write spec Qcs for the right-hand side of the current goal, and forget the premises
for now. Next, we unfold the definition of the program take_first and apply the rules
from above. As the outer most operator is bind we use its rule and obtain the goal:

assert (xs 6= []) ≤ spec (λ_. return (hd xs, tl xs) ≤ spec Qcs)

After applying the rule for assert and the rule for return we are left with two goals,
which do not contain any monadic programs:

(xs, S)∈Rsetlist =⇒ S 6= ∅ =⇒ xs 6= []
(xs, S)∈Rsetlist =⇒ S 6= ∅ =⇒ xs 6= [] =⇒ Qcs (hd xs, tl xs)

Proving those goals is in the realm of standard Isabelle/HOL tactics. Either by pro-
viding hand-crafted lemmas for Rsetlist, or simply unfolding its definition and hammering
through.

In that way, we can automatically reduce specification refinements of monadic pro-
grams to showing verification conditions. The tool used for that purpose is called
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refine_vcg. It contains the simplification rules and the introduction rules for all the
combinators. Typically, it suffices to unfold the specification and the program in ques-
tion. Then, the bind rule always pulls the first command to the front, for which an
introduction rule must exist. If that first command c in the current goal c ≤ spec Q
is not one of the standard combinators, the tool requires a rule of the following form
S =⇒ c ≤ spec P. Then the consequence rule can be used and the goal is transformed
into S ∧ (∀x. P x =⇒ Q x).
Until now we only considered straight-line programs. Let us see how to prove a

specification refinement for a program that involves a while loop. Consider sum_set
from Figure 8.1b. We want to prove the lemma sum_set S ≤ sum_setspec S.
For the combinator while we will not be able to prove the refinement automatically.

A standard approach is to indicate an invariant I that is preserved throughout the
execution of the loop and to specify a well-founded relation on the states of the loop
iterations to ensure termination. The following rule for the while combinator allows
that:

1 J wf R; I s;
2 ∀s. I s =⇒ b s =⇒ c s ≤ spec (λs′. I s′ ∧ (s′, s) ∈ R);
3 ∀s. I s =⇒ ¬ b s =⇒ Q s K
4 =⇒ while b c s ≤ spec Q

In order to prove that a while loop terminates and fulfills a specification we can provide
an invariant and a well-founded relation and prove the following four premises. First,
the relation R needs to be well-founded. Second, the invariant has to hold initially.
Third, the invariant must be preserved by the loop body, and the state needs to be
strictly decreasing along the well-founded relation R. Finally, the invariant needs to
imply the postcondition when exiting the loop.

Example 8.1.10. Let us execute refine_vcg for the goal sum_set S ≤ sum_setspec S.
The definition of program sum_set is in Figure 8.1b, and the specification sum_setspec
is defined in Example 8.1.3.
Routinely, we first unfold the specification and obtain the precondition finite S as

a premise. Then we unfold the program and apply the standard rules for bind and
return until the while combinator is the top-most symbol. At that point the goal
looks as follows:

while (λ(a, S). S 6= ∅)
(λ(a, S). add_one (a, S)) (0, S)

≤ spec (λ(a′, S′). return a′ ≤ spec (λr. r =
∑
s∈S s))

The well-founded relation R is defined such that it makes sure that the cardinality of
the set S decreases. The invariant is I (a′, S′) ←→ S′ ⊆ S ∧ a′ +

∑
s∈S′ s =

∑
s∈S s.

Applying the above rule, we have to prove the four goals that stem from the while rule.
The goals in line 1 make sure that R is well-founded — we ignore it in this presentation
— and that the invariant holds initially. The second line involves proving that the loop
body does the right thing, i. e. it preserves the invariant and follows the well-founded
relation. After unfolding the definition of add_one the tactic refine_vcg routinely
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converts the goal into a verification condition not involving monadic programs. The
final goal stemming from line 3 expresses that the invariant implies the postcondition
in case the computation exits the loop. After applying refine_vcg one we obtain the
final goal:

I (a′, S′) =⇒ S′ = ∅ =⇒ a′ =
∑
s∈S s

This lemma can be proven by unfolding the invariant I and applying Isabelle/HOL’s
automatic tactics.
Provided with the invariant and the well-founded relation that ensures termination,

the tactic refine_vcg automatically traverses the program and reduces the specification
refinement to goals that are free from monadic programs. Those can then be solved
with standard Isabelle/HOL tactics or interactive proof.

The tactic refine_vcg can solve refinement lemmas of a very restricted form. In
the following we will introduce pointwise reasoning which helps to automatically prove
general refinements between monadic programs.

8.1.4 Pointwise Reasoning

To prove equality and refinement of nres programs we introduce pointwise reasoning.2
As nres programs are in essence sets of results, for showing a refinement res X ≤ res Y
we need to show the set inclusion X ⊆ Y. This is in turn equivalent to the pointwise
first-order goal ∀x ∈ X. x ∈ Y.
First, we define the predicate nofail to characterize non-failing computations, and

inres m x to signal that x is a valid result of m:

nofail m = (m 6= fail)

inres fail x = True
inres (res X) x = (x ∈ X)

An alternative way of writing this is inres m x ←→ (return x ≤ m).
Those definitions help us to prove equalities and refinements of programs by reducing

them to proof obligations which typically can be discharged by automatic first-order
provers:

(nofail m =⇒ nofail m′) ∧ (∀x. inres m x =⇒ inres m′ x) =⇒ m ≤ m′

It spells out the intuition we already had about the refinement ordering: m refines m′,
when it only fails if m′ also does, and if every result of m is also an result of m′.
As the ordering is antisymmetric, we can also reduce equivalences to pointwise proof

obligations. Two computations are equal if they either both fail or have the same
results:

2That is not a new idea: setup for pointwise reasoning was already implemented by Lammich for nres.
We describe it here, because it was never explained in any publication, and we will build reasoning
infrastructure for the resource types described in the next sections upon those ideas.
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(nofail m = nofail m′) ∧ (∀x. inres m x = inres m′ x) =⇒ m = m′

We typically compare programs that are composed with the combinators introduced
earlier. We can prove simplification lemmas for inres for different combinators:

inres (res X) x = x ∈ X
inres (return x) y = (x=y)
inres (spec P) x = P x
inres (assert P) () = P
inres (if P then m1 else m2) x = (if P then inres m1 x else inres m2 x)

Specifically, for the supremum operator we get the following simplification rule, which
still is first-order:

inres (Sup S) x = (∃m∈S. inres m x)

That is, x is a valid result of an aggregation of several computations S, if there is
a computation m in that set which produces x. In the case where S is empty, the
supremum gets res ∅. Consequently, the left-hand side is false, as is the right-hand
side. We use the supremum in the definition of bind as well as in the definition of data
refinement. The inres rule for supremum is used in the proofs for the inres rules for
those two concepts.
With the rules above established, we can prove the rule for bind automatically:

inres (bind m f) y = (nofail m =⇒ (∃x. inres m x ∧ inres (f x) y))

It is instructive to follow that proof in detail. For the case that m does not fail, i. e.
m = res X, let us simplify both sides with the rules from above:

inres (bind (res X) f) y = inres (Supx∈X f x) y
= (∃m∈{f x | x ∈ X}. inres m y)
= (∃x∈X. inres (f x) y)
= (∃x. x ∈ X ∧ inres (f x) y))

(nofail (res X) =⇒ (∃x. inres (res X) x ∧ inres (f x) y))
= (∃x. inres (res X) x ∧ inres (f x) y))
= (∃x. inres (res X) x ∧ inres (f x) y))
= (∃x. x ∈ X ∧ inres (f x) y))

Many lemmas involving nofail, inres and arbitrary programs composed of the above
combinators can be solved by the pointwise approach. First the simplification rules
are applied to get rid of the monadic programs, then strong first-order automation is
applied to prove the lemmas automatically. It would be interesting to characterize the
subset of refinements that can be solved that way. At least they suffice for proving the
monad laws and monotonicity lemmas.
Before we turn to those let us phrase pointwise reasoning rules for data refinement:

nofail (⇓DR m) = nofail m
inres (⇓DR m) x = (nofail m =⇒ (∃x′. (x, x′) ∈ R ∧ inres m x′))

114



8.1 Modelling Nondeterministic Computation

A concretized program ⇓DR m fails exactly if the abstract program m fails, and x is the
result of a ⇓DR m program, if there is a result x′ of the abstract program that abstracts
the concrete result x.

In general, with pointwise reasoning we can convert a refinement proof obligation
into a first-order formula, which can be solved using standard Isabelle/HOL tools.
In practice, this works well for refinements that do not involve recursion or looping
constructs.

Monad Laws With the pointwise reasoning setup at hand, we can automatically prove
the monad laws [127]:

bind (return x) f = f x
bind m (λx. return x) = m
bind (bind m f) g = bind m (λx. bind (f x) g)

The combinator return is a left and right-identity for bind, and bind is associative.
This now gives us the formal justification to use do-notation for writing down monadic
programs in a declarative style (cf. Figure 8.1).

8.1.5 Monotonicity Reasoning
In order to prove refinement between two programs that have the same structure we
can use monotonicity reasoning.

Example 8.1.11. Consider the programs in Figure 8.1 and the refinements we would
like to establish for Example 8.1.7. We have already seen how we can prove the speci-
fication refinement (take_first, choosespec) ∈ Rsetlist → (Rnatnat × Rsetlist).

Now we want to prove the refinement between add_one2 and add_one, and sum_set2
and sum_set. We observe that both pairs of programs have the same structure. Only
some data and some operations are refined.

In order to refine a compound program, we would like to first, refine its components,
and then combine the refinements of the parts to obtain a refinement of the compound
program. To that end, we need some monotonicity rules for the combinators we use.
In particular for sequential composition we can prove the following rule using the

pointwise reasoning:

1 J m ≤ ⇓DR′m′;
2 ∀x x′. (x, x′) ∈ R′ ∧ nofail m′ ∧ inres m′ x′ =⇒ f x ≤ ⇓DR (f ′ x′) K
3 =⇒ bind m f ≤ ⇓DR (bind m′ f ′)

That is, if we can refine program m′ with data refinement relation R′ (line 1) and for all
its concrete results we have a refinement for f ′ with refinement relation R (line 2), we
also have a refinement for the compound computation with data refinement relation R
(line 3). The inres precondition in the second premise is used to transport information
about the intermediate variable x from the execution of m.
For return we have the following rule:
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(x, y) ∈ R =⇒ return x ≤ ⇓DR (return y)

As observed before, we have ⇓DId m = m and thus m ≤ ⇓DId m is correct.

Example 8.1.12. Let us execute this process for the refinement of add_one. This will
be quite verbose, but bear with me: I think it is insightful to see this process at least
once in full detail.
We want to prove the following refinement lemma:

one_add2 (b, xs) ≤ ⇓D(Id × Rsetlist) one_add (a, S)

Remember that we have the preconditions (b, a) ∈ Rnatnat and (xs, S) ∈ Rsetlist. For the
components of the programs we have the following two rules:

(xs, S)∈Rsetlist =⇒ take_first xs ≤ ⇓D(Id × Rsetlist) (choosespec S)
(x, x′) ∈ Id ∧ (y, y′) ∈ Id =⇒ addspec x y ≤ ⇓DId (addspec x′ y′)}.

We apply the monotonicity approach for the refinement lemma. First, we apply the
monotonicity rule for bind. The first goal will be take_first xs ≤ ⇓D?R (choosespec S),
where ?R is not known. But looking into our store of refinement rules, we only have the
one for take_first mentioned above. We can match R with (Rnatnat × Rsetlist) and prove
the goal using the rule. Note that for applying that rule we did not have to prove that
the precondition in choosespec S, i. e. S 6= ∅. Instead, we get the precondition from the
abstract program “for free”. It must be proven further up the refinement chain and can
be safely assumed here. This leaves us with the second goal:

J ((x, xs′), (s, S′)) ∈ (Rnatnat × Rsetlist);
nofail (choosespec S); inres (choosespec S) (s, S′) K
=⇒ do { b′ ← addspec b x; return (b′, xs′) }

≤ ⇓D(Rnatnat × Rsetlist) (do { a′ ← addspec a s; return (a′, S′) })

Here, note that we have to retrieve the information how the intermediate results s
and S′ are connected to the input set S from the premises inres (choosespec S) x′ and
nofail (choosespec S). For that, we need to unfold the definition of the specification and
then simplify with the simplification rules for inres. In the end we obtain the necessary
information S 6= ∅ ∧ s 6∈ S′ ∧ S′ ∪ {s} = S. The goal simplifies to:

J ((x, xs′), (s, S′)) ∈ (Rnatnat × Rsetlist);
S 6= ∅; s 6∈ S′; S′ ∪ {s} = S K

=⇒ do { b′ ← addspec b x; return (b′, xs′) }
≤ ⇓D(Rnatnat × Rsetlist) (do { a′ ← addspec a s; return (a′, S′) })

Now we apply the bind rule again, use the rule for addspec, and obtain:

J ((x, xs′), (s, S′)) ∈ (Rnatnat × Rsetlist); (b′, a′) ∈ Rnatnat;
S 6= ∅; s 6∈ S′; S′ ∪ {s} = S;
nofail (addspec a s); inres (addspec a s) a′ K

=⇒ return (b′, xs′) ≤ ⇓D(Rnatnat × Rsetlist) (return (a′, S′))

In a final step we again retrieve the information from the inres term, and use the
monotonicity rule for return. The final goal is:
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J ((x, xs′), (s, S′)) ∈ (Rnatnat × Rsetlist); (b′, a′) ∈ Rnatnat;
S 6= ∅; s 6∈ S′; S′ ∪ {s} = S; a′ = a + s K

=⇒ ((b′, xs′), (a′, S′)) ∈ (Rnatnat × Rsetlist)
The goal again does not contain any monadic programs and can be discharged with
standard tactics. Observe that actually the information from the inres is not really
needed in this example. This is the case because none of the used refinement lemmas
for the components had a precondition. In general, this is not the case.
We have now established the proof for the refinement lemma:
J (b, a) ∈ Rnatnat; (xs, S) ∈ Rsetlist K

=⇒ one_add2 (b, xs) ≤ ⇓D(Rnatnat × Rsetlist) one_add (a, S)
Because this notation is quite verbose, we can use the notation introduced earlier and
write:

(one_add2, one_add) ∈ Rnatnat → Rsetlist → (Rnatnat × Rsetlist)
It expresses that if the parameters are data refined with refinement relation Rsetlist and
Rsetlist respectively, then the result of one_add2 refines the result of one_add via the re-
finement relation Rnatnat × Rsetlist. This is exactly the goal we mentioned in Example 8.1.7.

We can also prove similar lemmas for other higher order combinators, like rec:
J (x, x′) ∈ R;
∀x x′. J (x, x′) ∈ R K =⇒ b x = b′ x′;
∀x x′. J (x, x′) ∈ R; b x; b′ x′ K =⇒ f x ≤ ⇓DR (f′ x′) K
=⇒ while b f x ≤ ⇓DR (while b′ f′ x′)

To prove that a concrete while loop refines an abstract one with a data refinement R,
we have to show three things. First, the initial states must be in the data refinement
relation. Second, if the abstract and concrete states are related with R the guards
coincide. And finally, if the loop is entered and the parameters are related by R, the
results of the loop body are related by the refinement relation R.

Example 8.1.13. It is instructive to also look at the refinement proof for sum_list and
sum_set. We want to prove: (sum_list, sum_set) ∈ Rsetlist → Rnatnat. We again observe
that the structure is the same, so we can start applying the monotonicity rule for bind
and use the standard monotonicity rule for return. We obtain the goal where the while
operator is the top most combinator:

J (t, s) ∈ (Id × Rsetlist);
nofail (return (0, S)); inres (return (0, S)) s K
=⇒ while (λ(b, xs). xs 6= []) (λ(b, xs). add_one2 (b, xs)) t

≤ ⇓D(Id × Rsetlist) (while (λ(b, xs). S 6= ∅) (λ(a, S). add_one (a, S)) s)
After applying the rule we need to show its three premises hold. The refinement
relation holds initially. Then, if xs and S are related they both are empty at the same
time and thus the guards coincide. Finally, for the loop body, we essentially have to
show (add_one2, add_one) ∈ Rsetlist → Rsetlist) → (Rsetlist × Rsetlist), which we already did
in Exercise 8.1.12. This finishes the proof.
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8.1.6 Lockstep Refinement

We often refine a compound program by refining some of its components. We have just
seen two examples. Now I present the general form.

Let A and C be two structurally equal programs (i. e., they have the same struc-
ture of combinators if, rec, bind, etc.), and let Ai and Ci be the pairs of cor-
responding basic components, for i ∈ {1,. . . ,n}. Provided with refinement lemmas
(Ci, Ai) ∈ [Φi] R′i → Ri for each of those pairs,3 an automatic procedure walks through
the program and establishes a refinement (C, A) ∈ R0 → Rn. Note that the data re-
finements Ri can be different for each component i, and R0 relates the parameters of
A and C. This process generates verification conditions for ensuring the preconditions
Φi, which can be discharged automatically or via interactive proof. To combine the
refinement lemmas of the components, we employ the monotonicity lemmas for the
combinators, as described above. The tactic refine_rcg automates that process.

In our example, the refinement lemmas for the components had no preconditions,
because they were encoded as assertions in the abstract programs. This simplifies the
automatic process, but shifts proof burden to the refinements of the components.

8.1.7 How to Structure Verifications Through Refinement

How can the stepwise refinement approach be used to structure an algorithm verifica-
tion? A typical approach to verify some operation prog is to start by stating a speci-
fication progspec = do { assert P; spec Q } with a precondition P and postcondition
Q. Then, one can come up with an abstract algorithm prog1 that should implement
that specification. That algorithm consists of control flow structures (like conditional
branches, while loops, recursion combinator, bind, and return) and other operations
(e. g. A1) that either are specifications themselves or already come with a refinement
lemma w. r. t. some specification (Aspec). The first lemma to show is prog1 ≤ progspec.
Lemmas of that form are called specification refinements. They can be discharged with
the verification condition generator refine_vcg as described in Section 8.1.3. This kind
of proof involves proving the correctness of some algorithmic idea at the right level of
abstraction such that implementation details do not distract from the main argument.
Typically the subprograms Ai specify only the necessary information for the cor-

rectness argument of prog1. Implementation details irrelevant for the correctness proof
should be left out. For example, a subprogram might specify to return a non-empty
subset of some given set, but does not specify how many or which elements to return,
or what implementation for sets to use.

Once the correctness of the algorithmic idea is established, one carries on refining the
components. For example, we would like to choose the size of the set for A1 and come
up with a refinement A2 that returns a singleton subset. Establishing the refinement
A2 ≤ A1 can be tackled with the same methods. Assume we proved that fact for all
the sub operations in prog1. By replacing the abstract operations with the concrete

3The refinement relations R′
i and Ri relate the parameters and respectively the result of those com-

ponents.
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ones, we obtain another program prog2 with the same structure. Now we can use the
automation refine_rcg for lockstep refinement together with the refinement lemmas for
the components to obtain the refinement prog2 ≤ prog1.

We can carry on with that approach, also using data refinement, for example, choos-
ing the implementation of red-black trees (with refinement relation Rsetrbtree)for the set
data structure (prog3 ≤ ⇓DRsetrbtree prog2) yielding a new program prog3 and proving the
refinement lemma with the verification condition generator for lockstep refinement.
In the end, we can use transitivity of the refinement relation to collapse the refinement

chain and obtain the result that the third iteration of the algorithm refines the initial
specification: prog3 ≤ ⇓DRrbtree progspec

8.1.8 Recap

I have presented IRF’s nondeterministic result monad nres. We have seen how it can
be used to abstractly model computation and use a stepwise refinement approach to
prove termination and functional correctness. I have introduced the main mechanisms
to reason about nres programs. This lays the ground for the extension to also reasoning
about the resource consumption of such programs. In the rest of this part I will show
how the IRF can be extended that way. In the rest of this chapter I will present the
extension of nres that allows reasoning about resource consumption.

8.2 The General NREST Monad

In this section I will introduce the general NREST monad. It subsumes two iterations
of the NREST monad and the original one. I will first state the motivation and which
design principle we would like to express. Then, I will show how the concepts and the
automatic tactics from nres can be extended to reason about resources, and will equip
this with some examples.
We want to extend nres and keep the modeling of nondeterministic computation,

which proved efficient for the stepwise refinement approach. Furthermore, we need the
dedicated element fail to model nontermination and failing assertions. We add one
more design feature.

We also want to model bounds on the resource cost of computation. For nonde-
terministic computation a result can be reached over several computation paths. We
aggregate the respective resource cost of a result into one value by using the supremum
over the cost of all paths that reach that result. We discuss alternatives at the end
of this chapter. This design choice leads to a natural refinement ordering: a program
refines another program if it computes a subset of results that consume less resources.
We now formalize the above intuition:

(α, γ) NREST = fail | res (α → γ option)

A computation is either fail, or res M, whereM is now a partial function from possible
results to resources.
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The NREST-monad is a conservative extension of the nres monad. If we set γ to the
type unit that only contains the element () we obtain the type (α, unit) NREST. We
call this type NREST-bool. As unit option is isomorphic to bool, the partial function
α → γ option is isomorphic to the type α set. Finally, NREST-bool is isomorphic to
nres. In the following you can always think in that instance in order to guide your
intuition and connect it to the concepts known from the previous section. We will also
phrase some of the above examples in NREST-bool to introduce the notation. We now
will lift the known combinators and introduce new ones that involve resources.
We can lift any ordering on γ to the refinement ordering on NREST, by first lifting

the ordering to option with None as the bottom element, then pointwise to functions
and finally to (α, γ) NREST, setting fail as the top element. The refinement ordering
corresponds to the intuition of refinement: m ≤ m′ reads as m refines m′, i. e., m has
less possible results than m′, computed with less resources.

Example 8.2.1. For a simple example, let us revisit Example 8.1.1 from nres and
see how we would model it in NREST-bool. Consider a computation that removes an
element of the set {1, 2, 3}. That computation is expressed in the following way:

m′ = res [(1, {2, 3}) 7→ (), (2, {1, 3}) 7→ (), (3, {1, 2}) 7→ ()]

In general [x1 7→ y1, . . . , xn 7→ yn] has type α → β option and denotes a partial func-
tion that maps xi :: α to yi :: β. The element () is the only inhabitant of the type unit.
The computation m′ essentially represents a set of possible results. It again can serve as
a specification and can be refined by more concrete computations. For example, com-
putation m = res [ (1, {2, 3}) 7→ ()] only produces one of the possible results. Thus
m refines m′. This is not very thrilling until now, but bear with me. The examples
of NREST-bool should introduce you to the right notation, but you can already think
about other instances that measure resources with a number for example.

In general, we require the resources γ to have a complete lattice structure, such that
we can form suprema over the (possibly infinitely many) paths that lead to the same
result. Moreover, when sequentially composing computations, we need to add up the
resources. This naturally leads to a monoid structure (γ, +, 0), where 0, intuitively,
stands for no resources. We call a type γ resource type, if it forms a complete lattice
and has a monoid structure.
In order to conveniently model actual computations, we define some combinators

for NREST. We define spec P T to be the computation of any result r that satisfies
P r using T r resources: spec P T = res (λr. if P r then Some (T r) else None).
By abuse of notation, we write spec x T for spec (λx. r = x) (λ_. T ). Furthermore,
we define return x = res [x 7→ 0] to compute the single result x without using any
resources.
Now we will add a combinator that actually uses resources. The elapse m t combi-

nator adds the (constant) resources t to all results of m:

elapse :: (α, γ) NREST → γ → (α, γ) NREST
elapse fail t = fail
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elapse (res M) t = res (λx. case M x of None ⇒ None
| Some t′ ⇒ Some (t + t′))

If the computation m fails, also elapse m t fails. Otherwise, the partial function gets
t added to the resource cost of every possible result.

The combinator bind m f models the sequential composition of computation m and
f , where f may depend on the result of m. It extends the original combinator by
propagating the costs of the first computation.

bind :: (α, γ) NREST → (α → (β, γ) NREST) → (β, γ) NREST
bind fail f = fail
bind (res M) f = Sup {elapse (f x) t |x t. M x = Some t }

If the first computation m fails, then also the sequential composition fails. Otherwise,
we consider all possible results x with resources t of m, invoke f x, and add the cost
t for computing x to the results of f x. The supremum aggregates the cases where f
yields the same result, via different intermediate results of m. It also makes the whole
expression fail if one of the reachable f x fails.
For writing larger programs conveniently, we use monadic do-notation as for nres.

We will later show the monad laws for the instances we will use.
Assertions are used and defined as before: they fail if their condition is not met, and

return unit otherwise.

assert P = if P then return () else fail

We now add resource consumption to our specifications. A Hoare-triple for program m,
with precondition P, postcondition Q and resource usage t is written as a refinement
condition:

m ≤ do { assert P; spec Q (λ_. t) }

Example 8.2.2. Specifications follow that pattern. The comparison of two list ele-
ments at a cost of t can be specified by:

idxs_cmpspec t xs i j = do {
assert (i < |xs| ∧ j < |xs|);
spec (xs!i < xs!j) (t (xs, i, j))
}

where xs ! i is the ith element of list xs. Instead of fixing the cost for specifications, we
pass them as parameter t. This allows us to refine different instances of abstract data
types (here lists) by different concrete data structures with different costs.

Example 8.2.3. The specification for adding up the elements of a set S can now be
expressed in NREST:

sum_setspec T S = do { assert (finite S); spec (
∑
s∈S s) (T S) }

Note that the resource bound T :: β → α → γ in general may depend on the parame-
ters (β) and the result (α) of the specified computation.
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We use Isabelle’s if-then-else to model branching and define a recursion combinator
rec :: ((α → (α, γ) NREST) → α → (α, γ) NREST) → α → (α, γ) NREST via a
fixed-point construction [74], to get a complete set of basic combinators. The while
combinator can be derived as for inres but has a different type.

while :: (α → bool) → (α → (α, γ) NREST) → α → (α, γ) nres
while b c s = rec (λR s. if b s then do { assert (b s); s ← (c s); R s }

else return s) s

Example 8.2.4. Let us revisit the sum_set example from before and see how we can
integrate resource consumption in it. In Figure 8.2 you can see the programs adapted to
NREST. The overall structure stays the same, we can use do-notation to conveniently
write down programs, and the combinators assert and while are used as before.

However, every specification (line 1 and 6) is parameterized with a resource cost,
e. g. Tc and Ta. For programs that combine subprograms we can then express their
resource consumption dependent on those. For a non-empty set S one could prove

add_one Tc Ta (a, S) ≤ spec (λ_. True) (Tc S + Ta)
In the naive approach, those cost functions need to be threaded through all programs
that use the specifications. Because this makes writing programs quite verbose, we
explored two approaches to simplify this.
In the first iteration (Section 8.3), we observed that a program like sum_set always

lives in an environment where certain basic operations are “assumed”. That is, those
operations are only specified but not yet provided with an implementation. In the
example those basic operations are choosespec and addspec. They come each with a
resource cost. Instead of writing them out, we assume them as free variables in a logical
context and compound resource bounds will depend on those variables. This context
then represents the “environment”. To later use the environment one has to instantiate
the free variables with concrete bounds and one obtains bounds on compound programs
by inserting them.
One could argue that given those environments one does not need the refinement

calculus on the NREST monad at all. Instead, one can do ad hoc refinement with the
context mechanism. Programs that are not yet implemented are just assumed as free
variables together with some properties about them. Then, compound programs use
those subprograms and establish correctness with the help of those properties. In order
to use the compound program in the end, one needs to provide implementations for
the the assumed subprograms.
In a second iteration (Section 8.4), we use resource currencies to avoid explicitly

using logical contexts. Instead, specifications (like addspec) typically cost one coin of a
certain currency (e. g. named add). Compound programs then have costs comprised
by several coins of different currencies. When refining a specification, one typically
provides a compound program that refines the specification by using a combination
of several subprograms. The cost of that compound program is in terms of the coins
needed for those subprograms. In that process the abstract coin needs to be exchanged
into the cost of the compound program. We call that process currency refinement, as
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1 choosespec Tc S = do {
2 assert (S 6= ∅);
3 spec (λ(s, S′). s 6∈ S′ ∧ S′ ∪ {s} = S) (λ_. Tc S)
4 }
5
6 addspec Ta a s = spec (a + s) (λ_. Ta)
7
8 add_one Tc Ta (a, S) = do {
9 (s, S′) ← choosespec Tc S;

10 a′← addspec Ta a s;
11 return (a′, S′)
12 }
13
14 sum_set Tc Ta S = do {
15 s ← return (0, S);
16 (a′, S′) ← while (λ(a, S). S 6= ∅)
17 (λ(a, S). add_one Tc Ta (a, S))
18 s;
19 return a′
20 }

Figure 8.2: The sum_set example with resources.

typically a single coin of some program is exchanged into several coins of “smaller”
subprograms. Those coins are “refined” in that sense. This way feels kind of natural,
and there we also have some kind of “environment” in the form of the currency system
used for each program. By using this approach it is not necessary to explicitly use
those logical contexts and the full power of stepwise refinement can be unleashed.

Example 8.2.5. Let us have a look at another example. Say we have specifications
for lookup and compare and want to implement the specification idxs_cmpspec.

lookupspec t xs i = do { assert (i < |xs|); spec (xs ! i) (λ_. t) }
cmpspec t a b = spec (a < b) (λ_. t)

Here, the term xs ! i denotes the ith element of list xs. We can now come up with the
following refinement for idxs_cmpspec from Example 8.2.2:

idxs_cmp xs i j = do {
xsi ← lookupspec () xs i ;
xsj ← lookupspec () xs j ;
cmpspec () xsi xsj
}

In the nres monad, we would now prove idxs_cmp xs i j ≤ idxs_cmpspec (λ_. ()) xs i j
by applying the verification condition generator refine_vcg and solving the trivial ver-
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ification conditions automatically. In the next section I will describe how refine_vcg
can be adapted to work for NREST.

The main components of NREST are the same as for nres, just with a different type.
I will briefly show how they can be adapted in the general case, and will provide the
adapted reasoning infrastructure in the next two sections.

Data Refinement Because NREST is defined on partial functions to the resource
type, instead of sets, we have to adapt the definition of data refinement.

⇓DR (res M) = res (λc. Sup {M a | a. (c, a) ∈ R}) ⇓DR fail = fail

We can also use the same notation for data refinements:

(m, m′) ∈ [pre] R → S

expresses that if precondition pre on the abstract parameters holds, program m refines
m′w. r. t. relation R for the arguments and S for the result.

Specification Refinement We will comment on the automation for specification re-
finement in the next section. We will have to generalize the weakest precondition
calculus (Section 8.3.4), but once that is established the automation works analogously.

Lockstep Refinement Refinement of structurally equal programs works analogously
for NREST as for nres. We have to prove monotonicity lemmas for all the combinators.
For example we have the following monotonicity rule for elapse:

m ≤ ⇓DR m′ =⇒ t ≤ t′ =⇒ elapse m t ≤ ⇓DR (elapse m′ t′)

Lock step refinement with refine_rcg works exactly the same as for nres. Only when
introducing resource currencies and currency refinement for NREST-ecost, we will have
to adapt the mechanism. This will be explained in Section 8.4.3.

Pointwise Reasoning For NREST we can define nofail and inres in a similar way as
for nres.

nofail m = (m 6= fail)

inres :: (α, γ) NREST → α → bool
inres fail x = True
inres (res M) x = (M x 6= None)

The predicate inres for NREST has the same property as for nres:

inres m x ←→ return x ≤ m

As refinement on NREST does not only mean refinement of results but also resources,
we will have to extend the pointwise reasoning approach in order to prove arbitrary
NREST refinements (cf. Section 8.3.2).
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We have already mentioned that NREST collapses into nres if set γ=unit. Next,
I will introduce instances of NREST that actually reason about resources. First, the
resource type of extended natural numbers measures resource consumption with one
single number (Section 8.3). We do not only want to model computation but also
prove refinement and correctness lemmas. I will present how the reasoning infrastruc-
ture of nres can be generalized to NREST. Finally, we use resource functions whose
domain is a set of currencies to measure resource consumption in a fine-grained manner
(Section 8.4). Further ideas for resource types will be discussed in Section 8.5.

8.3 Measuring Resources with a Number

Now let us add non-trivial resources to the refinement. In the first iteration of this
work [45] concerning refinement with resources, the resource type was fixed to extended
natural numbers (enat = N ∪ {∞}), measuring the resource consumption with a single
number. We will refer to this instance by NREST-enat.

We will first give an example to illustrate the expressivity of the formalism, and then
delve into how to extend the techniques from the previous section.

Example 8.3.1. Let us equip the programs from Example 8.2.5 with resource costs
and fix cost parameters tlookup and tcmp:

idxs_cmp xs i j = do {
xsi ← lookupspec tlookup xs i;
xsj ← lookupspec tlookup xs j;
cmpspec tcmp xsi xsj
}

The cost for idxs_cmp can be deduced as a function in the costs of the compound
computation. Remember that in NREST-enat we use a logical context that fixes cost
parameters. In that context, we define operations like idxs_cmp and we drop those
implicit parameters for presentation purposes.

Example 8.3.2. For another example we specify the operation of appending an ele-
ment to a list:

push_listspec T x xs = res [xs · [x] 7→ T xs]

Here, the term xs · ys denotes appending of two lists. The operation push_list is
specified with a parameter T that represents the running time of the operation, here
parameterized with the input list xs. For an implementor, this leaves open the possi-
bility to provide an implementation whose time consumption depends on xs, e. g. on
its length. We see later in Example 9.1.1 how we can refine this abstract specification
with a concrete implementation.
We can refine the data in that example using dynamic lists instead of lists like in

Example 5.5.1. We build the following refinement relation and can show a correctness
lemma for push_arrayfun:
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1 kruskal = do {
2 l ← obtain_sorted_edge_list;
3
4
5 (djs0, fl0) ← initState;
6 (djs′, fl′) ← nfold l (λ(a, w, b) (djs, fl). do {
7 assert (a ∈ Dom djs
8 ∧ b ∈ Dom djs);
9 b ← res [¬djs_cmp djs a b 7→ tit];

10 if b then do {
11 assert ((a, w, b) /∈ set fl);
12 add_edge djs a b fl
13 } else
14 return (djs, fl)
15 }) (djs0, fl0);
16 return fl′
17 }

(a) A further refinement for Kruskal’s algo-
rithm, where an additional disjoint sets data
structure is passed around.

1mwb_greedy = do {
2l ← spec (λL. sorted_wrt w L
3∧ distinct L ∧ set L = E)
4(λ_. tsc);
5B0 ← res [∅ 7→ teb];
6B′← nfold l (λe B. do {
7assert (e /∈ B ∧ indep B
8∧ e ∈ c ∧ B ⊆ E);
9b ← res [indep (B ∪ {e}) 7→ tit];
10if b then do {
11
12res [B ∪ {e} 7→ ti]
13} else
14return B
15}) B0;
16return B′
17}

(b) The greedy algorithm to construct a
minimum weight basis of a matroid
in the NREST monad.

Figure 8.3

Rlistdynlist = br (λ(bs, n). take n bs) (λ(bs, n). n < |bs|)
(λ(xs, n) x. res [push_arrayfun (xs, n) x 7→ T xs], push_listspec T)
∈ Id → Rlistdynlist → Rlistdynlist

Example 8.3.3. As a running example for this section, we consider the formaliza-
tion of Kruskal’s algorithm. To illustrate the expressive power of NREST we present
the abstract algorithm in Figure 8.3b: the greedy algorithm to construct a minimum
weight basis for a matroid. Note that, details of matroids will be introduced later
(Section 10.1) and are irrelevant here. It suffices to think of a minimum weight basis
being a generalization of minimum spanning trees. This abstract algorithm will later
be instantiated for the cycle matroid, which yields the skeleton of Kruskal’s algorithm.
Already on this abstract level we can structure the algorithm and prove the functional
correctness of the algorithmic idea, as well as its running time parameterized over the
running times of the abstract operations it performs.
In line two the algorithm obtains a list of the elements of the carrier set E (later

this will be the set of edges of an undirected graph) sorted w. r. t. some weight function
w. Starting from an empty independent set, we iteratively add elements if they leave
the set B independent (i. e. create no cycle in the graph case). Here, we use the nfold
combinator to iterate over the list l. It has the following type:
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β list → (β → α → (α, enat) NREST) → α → (α, enat) NREST
For all operations that may cost time, we reserve some time parameter of type nat:
here tsc, teb, tit and ti stand for sorted carrier list time, empty basis time, independence
test time and insertion time.

Besides the time parameters, the algorithm has further implicit arguments: The
carrier set c describes all possible elements of the matroid, the weight function w assigns
each of those elements a weight, and the set E is a subset of carrier set c that describes
the possible elements in the problem instance.
We can give the specification for this algorithm, and state the refinement theorem:
mwb_greedy ≤ spec min_weight_basis (λ_. tsc + teb + |E| ∗ (tit + ti))

where the predicate min_weight_basis characterizes subsets of E that form a minimum
weight basis of the current problem instance. After building up theory for NREST with
resources, we will see how to prove such a refinement in a mechanized way. That is the
subject of the next section.

Example 8.3.4. I now illustrate an effect that stems from our decision to aggregate
the resource usage of different computation paths that lead to the same result. Consider
the admittedly artificial program

res (λn::nat. Some n); return 0
It first chooses an arbitrary natural number n with cost n and then returns the result
0. That is, there are arbitrarily many paths that lead to the result 0, consuming
arbitrarily many costs. The supremum of this is ∞, such that the above program is
equal to elapse (return 0) ∞. Note that none of the computation paths actually
attains the aggregated resource usage. We will come back to this effect in the next
section and later in Section 9.2.4.

We now want to establish the monad laws and monotonicity lemmas similarly to
nres.
For building convenient infrastructure to reason about basic equalities and refine-

ments we now extend the pointwise reasoning to also cope with resources. For checking
the refinement m ≤ m′ it does not suffice to check that any result in m is also a result of
m′, we also need to check that m uses at most as much resources as m′. In the following
we will show that a straightforward extension of the pointwise reasoning setup does
not work in general. Nevertheless, we can remedy this with a light modification for the
special case enat.

8.3.1 Pointwise Reasoning - Naive Approach
Say we define a new predicate that expresses that a computation m can compute a
result x with resource usage t :: enat:

inres′τ :: (α, enat) NREST → α → enat
inres′τ fail x t = False
inres′τ (res M) x t = (case M x of None ⇒ False | Some r ⇒ t ≤ r)
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The predicate is False if the computation fails, the computation does not compute the
result x or it reserves less costs then t.
For the usual combinators we can prove similar rules for inres′τ to the ones for inres.

Only for the supremum we run into a problem for the first time. We would like to
establish

inres′τ (Sup S) x t = (∃m∈S. nofail m ∧ inres′τ m x t).

But there is one case when the equality does not hold: if an infinite cost t = ∞ is
attained by the result x for program Sup S but all computations in S have finite resource
consumption for x. Then, there does not exist any m in S that can compute x with
consumption t = ∞. This case can occur if S is an infinite set, as we have just seen in
Example 8.3.4.

8.3.2 Pointwise Reasoning - Special Case

Alternatively, we rule out the infinite case by defining inresτ such that the resource
consumption must be finite, i. e. x is a natural number:

inresτ :: (α, enat) NREST → α → nat
inresτ fail x t = False
inresτ (res M) x t = (case M x of None ⇒ False | Some r ⇒ enat t ≤ r)

Note that we need the coercion in enat t ≤ r, as r is possibly infinite and t is a finite
number. Observe, that this refines inres: we can obtain it via the following equality.

inres m x = ∃t::nat. inresτ m x t

Now we actually can prove inresτ (Sup S) x t = (∃m∈S. nofail m ∧ inresτ m x t)
because we can follow the argument from above. Only, the failing case t=∞ is ruled
out. At the same time we can still reduce refinement lemmas to pointwise form:

(nofail m =⇒ nofail m′) ∧ (∀x t. inresτ m x t =⇒ inresτ m′ x t) =⇒ m ≤ m′

A program m refines a program m′ when for any result x if m can compute the result
with t resources, then also m′ can. The extraordinary fact is that it suffices to know
that implication for finite t, which makes it enough to define inresτ on natural numbers.

Proof. To prove the lemma we can work off the easy cases and need to show for any
result x of m, that program m′ consumes at least as much resources. Let x be such a
result and tx and tx′ be the resource costs of m and m′ for it. We need to show tx ≤ tx′.
If m consumes a finite amount (tx < ∞) we can use the second premise and are done.
If m consumes tx = ∞ many resources for result x, we need to prove that also m′ does,
i. e. tx′ = ∞. We can do this by showing that tx′ is at least as large as any arbitrarily
chosen natural number τ . Let us fix that τ . Then, we can use the second premise, as
we know that the antecedent is true for any finite t. Unfolding the definition of inresτ
shows that tx′ needs to be at least τ and ultimately needs to be ∞.
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8.3 Measuring Resources with a Number

I think it is remarkable that this technique works. We need to keep in mind that
this construction only works for an infinite domain without a top element augmented
with a limit top element. Unfortunately, we cannot expect to use that construction for
arbitrary resource types γ, but it works for our purposes.

8.3.3 Monad Laws, Data Refinement, and Lockstep Refinement

With the adjusted pointwise reasoning infrastructure in place, the monad laws of
NREST-enat are proven automatically.
Data refinement is orthogonal to introducing the counting of resource consumption,

as it only acts on the domain of the maps, not on their values. The monotonicity
lemmas for all combinators can be lifted, augmented with data refinement and proven
correct with the pointwise reasoning setup. I repeat the rule for bind again here for
programs m and m′ of type (_, enat) NREST.

J m ≤ ⇓DR′m′;
(∀x x′. (x, x′) ∈ R′ ∧ inres m x ∧ inres m′ x′ =⇒ f x ≤ ⇓DR (f ′ x′)) K
=⇒ bind m f ≤ ⇓DR (bind m′ f ′)

Note that for the rule we use inres in the precondition of the second premise. It is
useful and often necessary to recover facts about the intermediate results x and x′. For
example, if m = return b is the guard of a branching it can be recovered with the rule
inres (return b) x =⇒ x = b. Recovering facts about the costs of m for x has not
been necessary in our use cases. That is why we use the more abstract inres instead of
inresτ for the rule. The rule for bind looks exactly the same as for nres. It only has a
different type.
In consequence, also lockstep refinement works unaltered: the refinement condition

generator traverses two structurally equal programs, equipped with refinements of the
basic operations and combines them with the monotonicity lemmas just mentioned.

Example 8.3.5. Consider the two programs in Figure 8.3. The concrete program
kruskal is a specialized minimum weight basis algorithm for the cycle matroid, where
the elements of the matroid are edges in an undirected graph, represented by a tuple
(a,w, b) of its end nodes a and b and weight w. Programs obtain_sorted_edge_list and
add_edge are compound programs. We want to show the following refinement relation:

kruskal ≤ ⇓D Rgraphlist mwb_greedy

where Rgraphlist relates a set of abstract edges in the graph with a list of edge tuples rep-
resenting them. The relation Redgetuple relates abstract edges with edge tuples. The above
lemma can be proved by lockstep refinement using the refine_rcg component. In that
process several intermediate refinement relations are used, e. g. ((djs, fl), B) ∈ Redgesetdjs

which relates the abstract edge set B to the list of edges fl and its corresponding
disjoint-sets forest djs. The main part of this refinement proof is to show that test-
ing independence when we add an edge (a,w, b) (i. e. checking cycle-freedom) can be
implemented by comparing the equivalence classes of a and b.

129



8 NREST

Note that add_edge has to do two things: update the disjoint-sets forest and add
the edge tuple to the list. We specify this program abstractly, and reserve time tiu and
til for the two actions. In the refinement proof we need to prove that tiu + til ≤ ti.
Similarly, the sum of the costs in obtain_sorted_edge_list must be smaller than tsc.
The VCG for refinement refine_vcg simulates the two programs side by side, using

the monotonicity lemmas to split the problem into smaller parts, and showing the
refinements of those smaller parts. I omit the formal statement of the monotonicity
rule for nfold. Similarly to the rule for while, the results of two nfold programs are
in a refinement relation if the start state is in a refinement relation and the loop body
preserve that.
One verification condition that is emitted by refine_rcg is the following.

J ((djs, fl), B) ∈ Redgesetdjs ; ((a, w, b), e) ∈ Redgetuple K
=⇒ add_edge djs a b fl ≤ ⇓CRgraphlist (res [B ∪ {e} 7→ ti])}

where djs_graphrel is motivated as above. It involves proving that add_edge refines
the insertion of the edge e into B, while maintaining the disjoint-sets data structure djs
and incurring no more than ti cost.

In order to introduce a more succinct notation for such refinement lemmas, we have
set up similar notation for NREST as we have seen for nres at the end of Example 8.1.12.
The above refinement can be written as:

(λ((djs, fl), (a,w,b)). add_edge djs a b fl, λ(B, e). res [B ∪ {e} 7→ ti])
∈ Redgesetdjs → Redgetuple → Rgraphlist

It expresses, that if the parameters are in a refinement relation, the results of add_edge
and the specification are in a refinement relation. Keep in mind, that this lemma lives
in the context where the time parameters have been fixed.

8.3.4 Specification Refinement in NREST-enat

For proving refinement lemmas of the form m ≤ res Φ in NREST-enat we again need
to find rules for all the combinators. Here, the type of Φ is α → enat option. In order
to come up with meaningful rules for these combinators we first need to generalize the
goal.
Instead of asking only whether a program satisfies the specification, we also ask “how

much” it satisfies the specification. That is, we ask for the difference of the resources
specified and actually used, denoted by gwp m Φ. The generalized weakest precondition
gwp has type (α, enat) NREST → (α → enat option) → α → enat option. It brings
the weakest prepotential (Section 2.3) and the weakest preexpectations (Section 3) to
mind.
For gwp we have the following equality:

m ≤ res Φ ⇔ Some 0 ≤ gwp m Φ

To get some intuition let us fix the resource to be time. Then, gwp m Φ is the latest
feasible time at which we can start m to still match the deadline Φ. If there is no
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feasible starting time (gwp m Φ = None), m does not fulfill the specification Φ. If it
has some value t, this is the latest feasible starting time of all computation paths in m
to reach the deadline Φ.

Before we give the definition of gwp, let us explore what we can do with it. We can
prove the following equality for the bind operator:

gwp (bind m f) Φ = gwp m (λy. gwp (f y) Φ)

Intuitively it says: The latest starting time for the compound computation bind m f
to satisfy Φ is the latest starting time for m in order to meet the latest starting time
such that f y meets the specification Φ.

To determine gwp m Φ, we need to consider the differences between the specified
and the actual resource consumption time for every result of m and take the most
conservative one:

gwp m Φ = Infr minus Φ m r

Operation minus :: (α → enat option) → (α,enat) NREST → α → enat option for-
malizes “taking the difference”. We have the following cases:

• m fails: then m may never be executed and thus there is no valid latest starting
time, i. e. minus Φ m r = None.

• m = res M and M r = None: as M will never produce the result r it can be
ignored, i. e. the result is the top element: Some ∞.

• m = res M andM r = Some t and Φ r = None: r is specified to not be obtained,
but when starting m we obtain r. Thus, there is no valid starting time for m:
minus Φ m r = None.

• m = res M and M r = Some t and Φ r = Some t′: if more time is needed than
specified (t > t′), there is no valid latest starting time and we return None,
otherwise the difference is returned (Some (t′ − t)).

We can get some more intuition when unfolding gwp in the above equality:

m ≤ res Φ
⇐⇒ Some 0 ≤ gwp m Φ = Infr minus Φ m r
⇐⇒ ∀r. Some 0 ≤ minus Φ m r

The infimum is just a compact version of saying that the difference of Q and m on any
result r is non-negative.4 By abusing notation and following the intuition of minus one
can restate the last line as “∀r. m r ≤ Q r”. In essence it says, that cmeets specification
Q if and only if for any r the time that it takes to calculate r for m is at most the time
that Q reserved for that result.

Instead of solving problems of the form m ≤ res Q, we solve problems of the more
general form Some t ≤ gwp c Q. This general form allows us to state syntax-directed

4As we have seen in Chapter 4, infimum on Booleans is the forall quantifier.
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rules in a uniform way, which would not be possible without the definition of gwp.
Compare the bind rule in the last section.
From the equality for gwp on bind we can derive an introduction rule for bind:

Some t ≤ gwp m (λy. gwp (f y) Q) =⇒ Some t ≤ gwp (bind m f) Q

For the other combinators we have:

(∀r ∈ M. Some (t + M r) ≤ Q r) =⇒ Some t ≤ gwp (res M) Q
Some t ≤ Q x =⇒ Some t ≤ gwp (return x) Q
(∀x. P x =⇒ Some (t + t′ x) ≤ Q x) =⇒ Some t ≤ gwp (spec P t′) Q
Some (t + t′) ≤ gwp M Q =⇒ Some t ≤ gwp (elapse M t′) Q

Example 8.3.6. Let us prove the refinement for idxs_cmp from Example 8.3.1:
We now can prove the following refinement lemma using the verification condition

generator.

2 ∗ tlookup + tcmp ≤ T =⇒ idxs_cmp xs i j ≤ idxs_cmpspec T xs i j

One verification condition will check whether the specification allots enough resources
for the algorithm. It can be discharged by the premise.

Operation nfold has the following type and the following gwp rule:

nfold :: β list → (β → α → (α, enat) NREST) → α → (α, enat) NREST

1 J I [] l0 s0;
2 (∀x l1 l2 s. l0 = l1 · [x] · l2 ∧ I l1 ([x] · l2) s
3 =⇒ Some 0 ≤ gwp (f x s) (emb (I (l1 · [x]) l2) tbody));
4 (∀s. I l0 [] s =⇒ Some (t + tbody ∗ |l0|) ≤ Q s) K
5 =⇒ Some t ≤ gwp (nfold l0 f s0) Q

Here, emb P t = (λx. if P x then Some t else None), nfold is defined in a straight-
forward manner and the invariant I is a predicate that takes as its first argument the
list of already processed elements, then the list of elements still to be processed and
finally a state s. Here the amount tbody is a constant resource cost for any call of the
loop body. For showing that nfold l0 f s0 meets its specification Q with slack resource t,
one has to show the three premises. First, the invariant I has to hold initially (line 1).
Then, the body preserves the invariant and takes at most tbody time steps (line 2-3).
Finally, the invariant in the end implies the desired specification (line 4). As we fold
over a finite list, a termination argument is not required.
With the above rules and analogous rules for assert and the combinators if and

case, we construct a syntax-directed verification condition generator that exhaustively
applies those rules.

Example 8.3.7. After annotating the loop in the program mwb_greedy (Figure 8.3b)
with bodytime = tit + ti and a suitable invariant I = λl1 l2 T. Imwb (T, set l2) (where
Imwb(T,E) implies min_weight_basis T for the whole carrier set E), we run the VCG
on the refinement theorem of Example 8.3.3 and obtain eleven verification conditions.
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One of those is the invariant preservation of the first branch of the if-expression, i. e.
when adding an element e:

sorted_wrt w l ∧ distinct l ∧ set l = E ∧ l = l1 · [e] · l2 ∧ indep (T ∪ {e})
∧ Imwb(T, set ([e] · l2)) =⇒ Imwb(T ∪ {e}, set l2)

This verification condition is one of the central ones in the correctness proof and can
be discharged with an interactive proof.

8.3.5 Splitting Resources from Functional Correctness

We can disregard resource usage and only focus on refinement of functional correctness,
and then add resource usage analysis later. This is useful to separate the concerns of
functional correctness and resource usage proof. I will describe a practical example
in a case study later (Section 10.3.5). I only present an alternative way to prove the
refinement between idxs_cmp and idxs_cmpspec in Example 8.3.6 here:

Example 8.3.8. For functional correctness, we use the specification idxs_cmpspec (∞)
and a program idxs_cmp∞ similar to idxs_cmp but with all the costs replaced by
∞. Proving the refinement idxs_cmp∞ xs i j ≤ idxs_cmpspec xs i j (∞) only requires
showing verification conditions that correspond to functional properties and termina-
tion.5 In particular, assertions and annotated invariants in the concrete program have
to be proved. Proof obligations on resource usage, however, collapse into the triv-
ial t ≤ ∞. For the same reason, we get idxs_cmp xs i j ≤ idxs_cmp∞ xs i j from a
lockstep refinement, and by transitivity obtain

idxs_cmp xs i j ≤ idxs_cmpspec ∞ xs i j

Next, we prove idxs_cmp xs i j ≤n spec (λ_.True) (2 ∗ tlookup + tcmp). Here, the re-
finement relationm ≤n m′ ≡ nofail m =⇒ m ≤ m′assumes that the concrete program
does not fail. This has the effect that, during the refinement proof, assertions and an-
notated invariants in the concrete program can be assumed to hold rather than need
to be proven. As a result, we can focus on the resource usage proof.
Finally, the two refinements can be combined to obtain

idxs_cmp xs i j ≤ idxs_cmpspec xs i j (2 ∗ tlookup + tcmp)

To prove refinements m ≤n res Φ, we prove m ≤ res Φ with the additional premise
nofail m. Alternatively, we can reduce the goal to show Some 0 ≤ gwpn m Φ, where
gwpn m Φ = (if nofail m then gwp m Φ else Some >). Similarly to the rules for
gwp, we can state the syntax-directed rules for all the combinators also for gwpn and
prove them using the respective rules for gwp. Feeding the verification condition gener-
ator with those rules and the introduction rule Some 0 ≤ gwpn m Φ =⇒ m ≤n res Φ
obtains an automatic prove procedure for those goals.

5In essence, the same verification conditions as in the analogous refinement lemma in the Boolean
NREST have to be proved.
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8.3.6 Organize Refinements with Locales

When writing down algorithms in NREST-enat (e. g. Kruskal in Figure 8.3a), we need
to specify the resource consumption of all the basic operations. We do not want to fix
those costs in advance. On the one hand, because we may not yet know the exact costs
or may want to change it in the future, such that a modular interface is preferable. On
the other hand, we may want to reuse algorithms in different instances with different
data structures which have different resource costs.

In the first iteration our solution is to keep those cost expressions as parameters. In
Isabelle/HOL we realize that by forming a locale for any set of abstract operations.
Then, every abstract operation Xspec fixes the resource usage with a parameter Xtime.
Here is an example:

Example 8.3.9. The program idxs_cmp from Example 8.3.6 uses two basic operations:
the lookup and the the compare operation. The program idxs_cmp can be defined in
a locale that has the two parameters tcmp and tlookup.

When we want to use the program idxs_cmp in another context that refines the
used data structures, we have to instantiate those parameters. That is, we have to
give values for those parameters. We may later want to implement the list by an array
with cost 2 for lookup and fix the elements of the list to be natural numbers with a
compare operation that incurs cost 1. We can instantiate the locale with tcmp = 2 and
tlookup = 1 and automatically obtain a refinement lemma:

idxs_cmp xs i j ≤ idxs_cmpspec (λ_. 5) xs i j

In order to later refine idxs_cmp we have to refine its basic operations with imple-
mentations that at most use 2 and 1 resource respectively.

The numbers we insert here are the concrete costs that correspond to the costs in
the concrete semantics of the program we want to synthesize later. If we choose too
small values here, it does not render the algorithm analysis unsound, but it will make it
impossible to synthesize concrete implementations from it. We will see that mechanism
in Section 9.1.5 when we synthesize programs in Imperative-HOL-Time from NREST-
enat programs.
Already in the nres monad, contexts were used to structure the refinement and make

arguments implicit instead of carrying them around for each definition of an algorithm.
Using locales and stepwise refinement makes the verification of larger algorithm devel-
opments involving resource analysis feasible. I will mention more details when I present
the complete verification of Kruskal’s algorithm in Section 10.1.

While this approach works efficiently, it is not satisfying in the sense that it does
not feel natural. In Section 7.1, we argued that we naturally would say things like
“this algorithm uses a Union subroutine at this point” and would carry on analyzing
how often the subroutine will be called in that algorithm. One would even analyze the
asymptotic complexity of how often the subroutine is called dependent on the size of
the input. Only later, one would refine how the subroutine Union was implemented
and how much it costs.
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In the next section I will introduce resource currencies that allow to measure the
resource usage of a program not only by one number, but by the amount of several
currencies. One currency could be a “Union coin” $union. By allowing to refine coins
with currency refinement, details on what a specific coin really costs can be added later.
Those coins are like money, in that they only represent a means of exchange. The final
value is the costs in the concrete semantics it is ultimately exchanged for. The next
section explains it.

8.4 Fine-Grained Resources
We have now seen NREST with resource type being unit and enat. In this section I will
introduce resource currencies that allow to measure resource usage in distinct coins.
In particular, the ability to exchange coins into coins of different currencies allows to
refine the resource usage stepwise without the tedious usage of locales and placeholder
variables.
Recall that we call γ a resource type if it has a complete lattice and a monoid

structure. If γ is a resource type, so is η → γ, as those structures can be lifted pointwise.
Intuitively, such resources consist of coins of different resource currencies η, the amount
of coins being measured by γ.

Example 8.4.1. In the following we use the resource type ecost = string → enat. The
string describes the name of a currency, whose amount is measured by an extended
natural number. Arbitrary resource usage is modeled by the value ∞. I will refer to
this instance as NREST-ecost.
Note that, while the resource type string→enat guides intuition, most of the theory

works for general resource types of the form η → γ or even just γ.
Recall the function $s n to be the resource function that uses n :: enat coins of the

currency s :: string, and write $s as shortcut for $s 1.
A program that sorts a list in O(n2) can be specified by:

sortspec xs = spec (λxs′. sorted xs′ ∧ mset xs′ = mset xs) ($q |xs|2 + $c)

That is, a list xs can result in any sorted list xs′ with the same elements, and the com-
putation takes (at most) quadratically many q coins in the list length, and one c coin,
independently of the list length. Intuitively, the q and c coins represent the constant
factors of an algorithm that implements that specification and are later elaborated by
exchanging them into several coins of more fine-grained currencies, corresponding to
the concrete operations in the algorithm, e. g., comparisons and memory accesses. Ab-
stract currencies like q and c only “have value” if they can be exchanged to meaningful
other currencies and finally pay for the resource costs of a concrete implementation.

Example 8.4.2. Let us consider another example. How would we model the running
example idxs_cmpspec using currencies (Example 8.2.2)? We specify the comparison of
two list elements at a price of one idxs_cmp coin with the following term:

idxs_cmpspec ($idxs_cmp) xs i j
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We do not need to form a context with a parameter for the operation cost but can use
the currency refinement mechanism to later refine those costs.

For reasoning effectively about programs with resource type ecost, we need to build
up the same infrastructure as for the simpler cases. We will present that theory in the
following, introduce currency refinement and complicates the lockstep refinement case.

8.4.1 Pointwise Reasoning
We now want to lift the pointwise reasoning from earlier to the usage of currencies.
Intuitively, showing refinement for one currency should be as hard as showing re-

finement for several currencies. We just can check the refinement for all the currencies
separately, i. e. perform another pointwise reasoning.
We follow that intuition and project computations to one currency. The program

Π c m has the same results as m, but only talks about the resource c.
Π :: string → (α, ecost) NREST → (α, enat) NREST
Π c fail = fail
Π c (res M) = res (λx. case M x of None ⇒ None | Some T ⇒ Some (T c))

We can decide a refinement of a program in NREST-ecost by reducing it to normal
resources:

m ≤ m′←→ (∀c. Π c m ≤ Π c m′)
To reduce basic refinement lemmas to be solvable by first-order provers, we first apply
the above lemma and then the introduction rule for using pointwise reasoning. This
yields a goal involving terms like inresτ (Π c m) x t where t is of type nat.

In order to solve those goals, we need simplification rules, that pull the combinators
in m through the projection. We prove lemmas for all the basic combinators:

nofail (Π c m) = nofail m
Π c (return x) = return x
Π c (Sup A) = Sup {Π c m | m ∈ A}
Π c (elapse m T) = elapse (Π c m) (T c)
Π c (bind m f) = bind (Π c m) (λx. Π c (f x))

Especially the lemma for the supremum is important. For it to hold, it is necessary
that projection is continuous, which indeed is the case.
Example 8.4.3. Let us prove the first monad law for f :: β → (α, ecost) NREST. The
goal is

bind (return x) f = f x
In order to reduce the goal from NREST-ecost to NREST-enat it can be rewritten to
∀c. Π c (bind (return x) f) = Π c (f x)

Then, it can be simplified to
∀c. bind (return x) (λx. Π c (f x)) = Π c (f x)

Finally, the goal is solved by using the first monad law for type β → (α, enat) NREST.
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Monad laws, Monotonicity Lemmas and Data Refinement With the pointwise rea-
soning in place for ecost, the monad laws and monotonicity lemmas including data
refinement can be proved automatically. We can use and prove the original monotonic-
ity rule for bind that uses inres as a premise to pull information about the intermediate
results x.

8.4.2 Currency Refinement

The new feature that is possible through using currencies is to be able to exchange
them. Consider we want to refine Example 8.2.2 into a program that first accesses the
elements and then compares them.

Example 8.4.4. We refine idxs_cmpspec ($idxs_cmp) from Example 8.4.2 by executing
two list lookups and a compare operation. We provide a specification for the list lookup
and a program idxs_cmp.

list_getspec T xs i = do { assert (i < |xs|); spec (xs ! i) T }

idxs_cmp xs i j = do {
assert (i < |xs| ∧ j < |xs|);
xsi ← list_getspec $lookup xs i;
xsj ← list_getspec $lookup xs j;
return (xsi <$cmp

xsj)
}

where return (a <T b) returns the result a < b incurring cost T. We will use similar
notation for other binary operators.
Note that idxs_cmp and idxs_cmpspec use different, incompatible currency systems.

To compare them, we need to exchange coins: one idxs_cmp coin will be traded for
two lookup coins and one less coin.

To make that happen we introduce the currency refinement ⇓CE m. Here, the ex-
change rate E :: ηa → ηc → γ specifies for each abstract currency ca :: ηa how many
of the coins of the concrete currency cc :: ηc are needed. Note that, in general, one ab-
stract coin may be exchanged into multiple coins of different currencies. For a resource
type γ that provides a multiplication operation (∗) we define the operator ⇓C with the
following two rules:

⇓CE (res M) = res (λ r. case M r of None ⇒ None |
Some t ⇒ Some (λcc.

∑
ca

t ca ∗ E ca cc))
⇓CE fail = fail

The refined computation has the same results as the original. To get the amount of a
concrete coin cc for some result r with resource function t, we sum over all abstract coins
ca, the amount of abstract coins needed in the original computation (t ca) weighted by
the exchange rate (E ca cc).
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Example 8.4.5. Let m x y = res [(x + y) / 2 7→ $ avg] be a deterministic program
that calculates the average of two numbers at the cost of one avg coin. We want to
implement the operations in two steps: first taking the sum, then dividing by two.
Let E be the exchange rate that spends one add and one div coin for each avg coin:
E = ↑↓[avg:= $ add + $ div]. Here, + is lifted to functions in a pointwise manner and
↑↓[c0:=t0, . . . , cn:=tn] denotes a function that maps the elements ci to ti and all other
elements to 0.
When applying the exchange rate E to m, we expect the cost for the result to be

$ add + $ div. We can calculate what we intuitively expect:

⇓CE m = res [(x + y) / 2 7→ (λcc.
∑
ca

( $ avg) ca ∗ E ca cc)]
= res [(x + y) / 2 7→ (λcc.

∑
ca

(if ca = avg then 1 else 0) ∗ E ca cc)]
= res [(x + y) / 2 7→ (λcc.

∑
ca

(if ca = avg then E avg cc else 0))]
= res [(x + y) / 2 7→ (λcc. E avg cc)]
= res [(x + y) / 2 7→ (λcc. ( $ add + $ div) cc)]
= res [(x + y) / 2 7→ $ add + $ div]

For the summation in the definition of currency refinement to make sense, there must
be only finitely many abstract coins ca with t ca ∗ E ca cc 6= 0. This can be ensured
by restricting the resource functions t of the computation to use finitely many different
coins, or by restricting the exchange rate E accordingly. The latter can be checked
syntactically in practice.

Example 8.4.6. For refining the specification idxs_cmpspec we can use the exchange
rate E1 = ↑↓[idxs_cmp:= $lookup 2 + $less], which does the correct exchange for cur-
rency idxs_cmp and is zero everywhere else. We can now prove:

idxs_cmp xs i j ≤ ⇓CE1 (idxs_cmpspec $idxs_cmp xs i j)

For convenience, we introduce currency refinement into the parametric notation. The
above refinement can be written as:

(idxs_cmp, idxs_cmpspec $idxs_cmp) ∈ {E1} Id → Id → Id → Id

In this particular case, one could alternatively pull the currency refinement into the
specification and apply the exchange rate E1 to the coin idxs_cmp.

In order to execute two exchanges E1 and E2 one after the other, we introduce the
composition E1 ◦C E2 on exchange rates. In that way two currency refinements can be
combined into one:

⇓CE2 (⇓CE1 m) = ⇓C(E1 ◦C E2) m

8.4.3 Lockstep Refinement Revisited
During lockstep refinement we decompose the two structurally equal programs with
the monotonicity rules, collect the refinement conditions, and — this is new now —
have to ensure the correct exchange rate.
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Note that, while the data refinements Ri can be different for each component i, the
exchange rate E must be the same for all components. Currently, before a refinement
step, we have to manually align the exchange rates for every component refinement
lemma, which usually involves writing down and proving a specialized version of the
lemma. Let us illustrate this process with an example.

Example 8.4.7. Say we want to refine idxs_cmp from the running example. We
choose to refine the list_getspec with an array lookup, and the compare operation is
refined by a specific compare program, with the following two refinement lemmas:

list_getspec ($ptr_offset + $load) xs i ≤ ⇓CEalu (list_getspec $listget xs i))
return (a <$uword_less b) ≤ ⇓CEuwl (return (a <$cmp

b))

Here, Ealu = ↑↓[list_get:=$ptr_offset + $load] and Euwl = ↑↓[cmp:=$uword_less]. Let us
denote the program with the same structure as idxs_cmp but using the refined sub-
programs by idxs_cmparr.

In the naive approach that is implemented now, we need to lift the two refinements
to not work with Ealu and Euwl respectively, but with the exchange rate that executes
both exchanges simultaneously:

Ea&u = ↑↓[list_get:=$ptr_offset + $load, cmp:=$uword_less]

This involves writing down the above refinement lemmas again and then proving them.
Proving them is easy in the case of specifications, because often specifications only use
one coin of one currency, but for more complicated programs that is already problem-
atic. Once we found the right exchange rate and adapted the refinement lemmas of the
parts, we can automatically prove the refinement of the compound program.

idxs_cmparr xs i j ≤ ⇓C Ea&u (idxs_cmp xs i j)

A more elaborate way collects constraints on the exchange rate and solves them
afterward to obtain a unified exchange rate (like Ea&u).
For that we can use the fact that the currency refinement using the supremum of

two exchange rates yields a bigger computation. We can incorporate that fact into the
monotonicity rule for bind:

J m ≤ ⇓CE1 m′; (∀x. f x ≤ ⇓CE2 (f′ x)); E = sup E1 E2 K
=⇒ bind m f ≤ ⇓CE (bind m′ f′)

Using that fact, we can execute the lockstep refinement normally, then obtaining the
following final refinement lemma:

idxs_cmparr xs i j ≤ ⇓CEsyn (idxs_cmp xs i j)

where Esyn = (sup (sup Ealu Ealu) Euwl). In a next step the synthesized exchange rate
Esyn can be flattened and simplified to obtain Ea&u. That process would be automatic
and needs less user interaction. Care has to be taken when simplifying those exchange
rates, because in general exchange rates might refine the same currencies. Then, one
has to take the maximum per currency.
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This works as long as there are refinements including currency refinement for all
the subprograms. Often it is the case that only some of the operations in a program
get refined, but others just stay the same. Say we have some operation A that stays
the same, i. e. we would use the trivial A ≤ A as the refinement lemma. But we
rather need a currency refinement lemma like A ≤ ⇓CE A with a suitable exchange
rate E. Choosing the identity exchange rate Eid = (λc. $ c 1), which maps every coin
of currency c to one coin of currency c, makes ⇓CEid get the identity function and the
refinement lemma trivial to prove. Unfortunately, this would overlap with some other
exchange rate, e. g. sup Ealu Eid will not be Eid(list_get:=$ptr_offset + $load). Instead,
it will simplify to Eid(list_get:=$ptr_offset + $load + $list_get), which has the superfluous
list_get coin.

That means, choosing Eid is too coarse and we need to find a more restricted ver-
sion for the currency refinement lemma that does not necessarily overlap with other
exchanges. We need to choose this exchange rate E such that it exchanges all the cur-
rencies that occur in A idempotently and such that it sets all the other currencies to 0.
For that to happen, we need to calculate what currencies are used in A. Calculating
that amounts to a fixpoint computation, in case A contains some instance of the rec
combinator. While this should be doable, we have not yet implemented a solution for
that problem.
Nonetheless, while the current approach of finding exchange rates involves manual

work, it still is feasible. Careful design of the refinement steps avoiding too many
calculations of combined exchange rates works well.

8.4.4 Refining Specifications with Exchange Rates

To refine specifications, nothing really changes in contrast to NREST-enat. We can
prove the exact same gwp rules by reducing them from NREST-ecost to NREST-
enat by projection. Some lemmas refining specifications often contain a currency
refinement: m ≤ ⇓CE (spec Q T). For those cases we define ↓CE to execute an ex-
change rate E not on an NREST program but on a resource expression, and we get
⇓CE (spec Q T) = spec Q (λx. ↓CE (T x)). Then, we can prove the above goal by
routinely proving the inequality Some 0 ≤ gwp m (emb Q (λx. ↓CE (T x))). Recall
that, emb Q T = (λx. if Q x then Some (T x) else None).

8.4.5 Stepwise Refinement with Currencies

Let us compare the structuring with resource currencies with the approach with locales.
Consider the following example.

Example 8.4.8. In Example 8.3.9 in NREST-enat we analyzed idxs_cmp by insert-
ing the final costs of the compare and lookup operation and then have obtained the
following final result:

idxs_cmp xs i j ≤ idxs_cmpspec (λ_. 5) xs i j
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In this chapter we have used a more fine-grained analysis and do not exchange all
operation costs into a uniform currency. We combine the two refinement steps we
already proved (Example 8.4.7 and 8.4.6) with transitivity of the refinement relation
and monotonicity of currency refinement. Then we pull the exchange rate into the
specification and simplify the term:

idxs_cmparr xs i j ≤ ⇓C Ea&u (idxs_cmp xs i j)
≤ ⇓C Ea&u (⇓CE1 (idxs_cmpspec ($idxs_cmp) xs i j))
= ⇓C (E1 ◦C Ea&u) (idxs_cmpspec ($idxs_cmp) xs i j)
= idxs_cmpspec (↓C (E1 ◦C Ea&u) $idxs_cmp) xs i j
= idxs_cmpspec ($ptr_offset 2 + $load 2 + $uword_less) xs i j

By combining the results in the end, we get the result that the idxs_cmparr refines the
specification and we obtain a fine-grained upper bound on the resource consumption.
We can write it in the parametric notation:

(idxs_cmparr, idxs_cmpspec ($ptr_offset 2 + $load 2 + $uword_less))
∈ Id → Id → Id → Id

On that level we could now sum over all the currencies to obtain a combined upper
bound on all operations. Then, we can apply asymptotic analysis on that expression or
on the individual currencies and obtain that idxs_cmparr has running time complexity
Θ(1).

When we reconsider the discussion about how to structure refinement in the classical
approach (Section 8.1.7) we can now add the approach of using resource currencies.
When defining a specification progspec, a new currency is invented (called prog) and it
is assumed that each call of that program incurs one coin of it. Similarly, for all the
subprograms that are used in the first iteration prog1. When proving the first refinement
we would have to come up with an exchange rate E1 to prove prog1 ≤ ⇓CE1 progspec.
With that correctness lemma, we have proved two properties about prog1. Regarding
functional correctness, it refines the specification. Regarding resource consumption, we
have established an upper bound in the form of a resource expression in the currencies
of its subprograms (E1 $ prog). This is very much like the role of the pseudocode in
the observation in Section 7.1 (cf. Figure 7.1): we can argue for the correctness of the
algorithm sketch and give its running time dependent on its parts.
We can now carry on along the refinement chain, refining the components and com-

bining the concrete subprograms into a more concrete refinement prog2. Then, we can
obtain a refinement lemma for that concrete program by monotonicity, with the addi-
tional caveat to merge exchanges rates during that process. In the end, the refinement
chain can be collapsed like in the above example to obtain a final correctness theorem.
It is not yet clear to me which approach — NREST-enat with locales or NREST-

ecost with resource currencies — is more usable. There is also a third possibility
to use NREST-ecost without currency refinement but instead using locales like for
NREST-enat. In theory, NREST-ecost supersedes NREST-enat: set η = unit instead
of η = string. Practically, both approaches seem to be equally expressive, as instead of
using currencies we could just fix constants for them and talk about weighted sums all
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the time. Then, projecting to a certain currency amounts to setting its constant to 1
and the constants of all the other currencies to 0. The currency refinement mechanism,
however, feels more natural, as it allows to speak about resource costs at different levels
of abstraction. In Chapter 9, we will see that NREST-ecost integrates nicely with the
fine-grained cost analysis of LLVM-Time. That would not be possible for NREST-enat.

8.5 Discussion of Alternatives and Other Resources

In this section I discuss alternative definitions of the NREST monad and list some ideas
for other resource types γ that might be worth studying.

8.5.1 Alternatives to NREST

In the beginning of this chapter we stated our motivations and design goals for NREST.
Besides choosing partial function that map results to an resource element, there are
alternatives. In the following, I want to explain why we took our decision the way we
did:

A result set and a resource An alternative would be to define an NREST program
being a set of results together with a resource usage:

(α, γ) NREST1 = fail | res (α set × γ)

Here the problem is that this is way too coarse. Say we have a two stage process
that starts with a set of two natural numbers. In each step the program would choose
nondeterministically a number and would do work that uses resources linear in that
number. Say we start with a set {1, 2} then the result after the first step would be
res ({ {1}, {2} }, 2), as there are two possibilities which element was removed from
the set, and the upper bound on the both outcomes would be 2. After the second step
the result must be res ({ ∅ }, 4), as in both cases the remaining element is removed,
but again the upper bound on the running time of that second step is 2, which yields
a total running time of 4, which is not tight. In essence, one sees that one can not use
nondeterminism effectively when assigning all results the same resource usage.

A set of pairs Another alternative is that one regards the resource usage just as
part of the result. Then instead of the result being of type α, we intuitively want to
choose type α × γ. Observe that (α × γ) set is isomorphic to α → γ set. For later
presentation it makes sense to choose the latter. So we define the following alternative
to NREST:

(α, γ) NREST2 = fail | res (α → γ set)

On the one hand, this definition certainly allows to model the above situation ade-
quately. Depending on which number out of {1, 2} was chosen we can specify a different
resource consumption and in the end model a tight running time of 3.
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On the other hand, the refinement relation cannot just be the natural subset relation,
because we would like to have {(x, 3), (x, 4)} ≤ {(x, 4)}, in order to allow refinement
with programs with less resource consumption. So before using the subset relation we
have to “bake-in” the upper bounding by taking the lower closure and lifting it to the
function:

lower_closure S′ = {s | s′ ∈ S′ ∧ s ≤ s′}
res M ≤ res M ′ ←→ (∀x. M x ⊆ lower_closure (M ′ x))

So a program m = res M refines a program m′ = res M ′ if for all results x the set of
possible resource costs is bounded by some possible resource bound for element x inM ′.
When we first considered the design choice on how to model NREST, we dropped that
approach because it simply did not feel natural and the alternative approach with maps
to single γ elements worked out more smoothly: The refinement ordering in NREST
is a simple lifting which directly results in a complete lattice structure and allows for
a generalized weakest precondition (gwp). In the following I present some results of an
effort trying to use the “set of pairs” approach.
First, we note that the ordering defined with the lower_closure is not antisymmetric,

and thus NREST2 does not have a complete lattice structure. An example would be
a = res [()7→{(1, 1), (0, 1)}] and b = res [ () 7→ {(1, 1), (1, 0)}]: both a ≤ b and b ≤ a
hold but a = b does not. In order to fix this problem we introduce a quotient type
γ dclosed for downwards closed sets over γ, where we identify all elements of γ set that
are equivalent under application of lower_closure. With that we define a new variant
for NREST:

(α, γ) NREST3 = fail | res (α → γ dclosed)

For this we can define a sensible refinement ordering that gives rise to a complete
lattice structure on NREST. Note here, that the definition of the supremum on NREST
does not stem from the resource type γ being a complete lattice, but because the set
underlying the type γ dclosed gives rise to the complete lattice on subsets. Thus, we
can even drop the requirement that γ is a complete lattice and only require it to be an
order.
We do not need to use enat instead of nat to obtain a complete lattice. In particular

we needed the element ∞ to model the supremum over infinitely many finite numbers
(cf. Example 8.3.4). In the current setting nat dclosed already allows for infinite sets
and their downwards closure. Also, that an result cannot be reached, which was earlier
modeled by the partial map or more technically by None, is modeled easily now: simply
by using the element in α dclosed that corresponds to the the empty set.
For a resource type γ that provides a neutral element 0 and addition + with a monoid

structure, we further can define the monadic operators return, bind and elapse as
expected. For the application of + in bind, it must be lifted from γ to γ dclosed, which
is straightforward.
The pointwise reasoning setup can be adapted and even simplified considerably. We

define inresτ :: (α, γ) NREST3 → α → γ → bool uniformly for all γ even for liftings
to functions. We can prove all the simplification rules correct and finally prove that
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NREST3 fulfills the monad laws. Note that γ needs to fulfill some properties for + and
the ordering ≤. We have collected those properties but have not yet tried to minimize
them or further investigate them.

Instead, we tried to adapt the next concept needed for the framework and failed
in doing so. In order to prove specification refinements we would like to adapt the
generalized weakest precondition gwp (cf. Section 8.3.4) to NREST3. Remember, we
want to prove refinements of the form m ≤ res M. Intuitively, the idea is to find the
margin between the computation m and the deadline M. To determine that margin in
NREST we used a difference operator (cf. Section 8.3.4). It is not clear how to define
that difference operator if there are more than one extreme points in the deadline.
For example, let the resource cost be measured in two currencies, denoted as pairs.

Then, consider the element of type (nat × nat) dclosed that corresponds to the set
of resources { (2, 0), (0, 2) }. It may represent the deadline Mx for some element
x. Similarly, let mx be the downwards closed set for {(1, 0), (0, 1)} representing the
resource cost of m for element x. In order to obtain gwp we would need to take the
difference between those two downwards closed sets. It is not clear to me how to define
that in a sensible way. One could enforce the existence of exactly one greatest element
in the downwards closed sets by a side condition, and pull that through the calculus.
Or even use the subtype of γ dclosed that has only one extreme element. It would be
interesting how that approach would relate to NREST.
In NREST, however, we are forced to aggregate the cost into one element. We

would obtain (2, 2) and (1, 1) respectively. In that case, the difference operator is
well-defined, and we would obtain (2, 2) − (1, 1) = (1, 1) to be the margin. I have to
note that the overapproximation of { (2, 0), (0, 2) } to (2, 2) does cause a problem,
which we will treat in Section 9.2.4. But that problem does not occur during the usage
of stepwise refinement. It only surfaces at the very end of the refinement chain, and
can be handled by considering a special case. Luckily, only that special case, i. e. the
resource bound only having one extreme point, occurs in our case studies. Furthermore,
I expect that further case studies that stem from the analysis of standard algorithms
will also fall into that special case.
It seems that measuring the resource consumption in NREST with one greatest

element instead of a set of elements does give up some precision. However, it simplifies
the calculus and avoids proving side conditions in every step of reasoning. Only at the
last step one has to ensure a special case, which seems to be the natural one. Experience
shows that this approach works fine. But there are still some open questions.

8.5.2 Other resources

Here, I want to briefly name ideas for other resources types that would fit into the
NREST monad.

• Consider γ = bool: I think with that type one could signal, that some event has
not yet happened during a nondeterministic computation. Let False ≤ True, then
False might represents that one can ensure that something did not yet occur, and
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True says, that something might have happened or rather one does not know.
The same domain could be used to model Information Flow Control (IFC). The
NREST monad maintains a confidentiality label (True for public, and False for
private) for each result. Those labels get combined during sequential composition.
Rajani [122, Part II] discusses an application of a type-theory for higher-order
amortized analysis to IFC that seems to be related.

• For any resource type γ one could study the same type with the flipped order.
Already for γ = bool, that would change the semantics to False representing “ar-
bitrary” resource cost and True representing that something did occur. For enat
and ecost flipping the order would mean to consider lower bounds. Still the “most
conservative” cost is aggregated, i. e. the infimum over all paths or all abstrac-
tions. Through a bind one still would add up the lower bounds, to get a new
lower bound.

• Combining resources can not only be done with lifting to functions. Also lifting
to pairs is feasible. So one could realize intervals on the running time or other
resources by maintaining a pair of the original resource and the resource with
flipped order.

• Another idea is (α, string set) NREST, that is any computation has some output
string, Supremum is just union, addition is just concatenation lifted to sets. The
minus operation could be prefixes, i. e. if the specification Q asks for {abc} and
the program m gives {c, bc} then the minus could be {a, ab}.

• I tried to come up with a domain for maximum heap or stack size by using a
pair (m, c) denoting the maximum and current usage. I succeeded in forming an
complete lattice and a monoid structure on that domain. But I could not prove
that the plus operation distributes with the supremum. It would be interesting
to considered other non-monotone domains.

• The unit interval [0,1] with multiplication is a complete lattice and a monoid
with neutral element 1. Compare this to Chapter 4 and the discussion about
quantales.

8.6 Summary
• The IRF provides the nres monad to model nondeterministic computation. It
allows stepwise program refinement, as well as data refinement. Reasoning infras-
tructure is provided with the pointwise reasoning technique, the refine_vcg tactic
for specification refinement, and the refine_rcg tactic for lockstep refinement. The
parametric form allows for succinct notation of refinement lemmas.

• The nondeterminism monad with resources (NREST) models nondeterministic
computation with resource consumption. It has at least three meaningful in-
stances: with γ = unit we obtain NREST-bool which is isomorphic to the classical
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nres monad modeling nondeterministic result; with γ = enat (NREST-enat) we
can model nondeterministic result with worst case running time; with γ = ecost
(NREST-ecost) we can also model the consumption of different resources at the
same time with so called resource currencies.

• All three instances come with the possibility for data refinement, automation for
lockstep refinement and specification refinement.

• The generalized weakest precondition gwp generalizes the Boolean version and
allows stating syntax-directed rules that constitute a verification condition gen-
erator.

• The introduction of resource currencies allows for fine-grained resource analysis
and allows stepwise refinement of resource usage without using contexts.

• NREST can be used to formulate abstract algorithmic ideas, effectively reason
about them and further refine those algorithms by adding implementation details
later.
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9 Synthesis of Implementations

As a next step let us consider how to automatically synthesize programs from abstract
algorithms in the NREST monad. In Part II I have presented two semantics of pro-
gramming languages with a cost model. In this chapter I will show how we can hook up
the abstract NREST-monad with both Imperative-HOL-Time and LLVM-Time, and
automatically generate implementations that preserve correctness and resource usage
claims from the abstract algorithms. This is again joint work with Peter Lammich [45,
44].
The Sepref tool [85] serves as a blueprint for the synthesis. It refines nres to vanilla

Imperative-HOL. I will present two adaptations: The first iteration hooks up NREST-
enat with Imperative-HOL-Time (Section 9.1), the second one hooks up NREST-ecost
with LLVM-Time (Section 9.2). While adapting the tool required many but rather
straightforward modifications, the underlying theory contains some interesting ideas
and insights. The core of the tool is the translation phase, where the concrete program is
synthesized. In the presentation of the two Sepref instances with resource consumption
I focus on that phase as the other phases can be adapted in a straightforward manner.
For the description of the other phases I refer to [92, §4.2].

9.1 NREST-enat with Imperative-HOL-Time

Ò
Portions of this section appear in the paper “Refinement with Time - Refining the
Run-Time of Algorithms in Isabelle/HOL” (Haslbeck and Lammich [45]).

Before we delve into the synthesis phase, reconsider some specifics of the Imperative-
HOL-Time semantics from Chapter 5. Let us have a look at the definition of a Hoare
triple:

1 <P> c <λr. Q r> = (∀h n. abs (h, n) |= P
2 =⇒ (∃h′ t r. (c, h) ⇒ (r, h′, t)
3 ∧ abs (h′, n − t) |= Q r ? true
4 ∧ t ≤ n))

Here, abs abstracts a pair of an Imperative-HOL-Time heap and time credits into
an element of a separation algebra. The assertion true is true for any heap, thus
enables garbage collection of both time credits and heap elements. The Hoare triple
<P> c <λr. Q r> denotes that procedure c started from a heap satisfying P terminates
with a return value r in a resulting heap that satisfies Q r ? true. In particular it states
that the starting heap holds enough time credits n in order to pay for the cost t of
executing the procedure c (see line 4).
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Note that the time cost t and the amount of time credits n are natural numbers
and not extended natural numbers as the costs in the NREST-enat monad. The term
(c, h) ⇒ (r, h′, t) expresses that program c started from heap h takes t steps to produce
result r and final heap h′.
I will now present the synthesis predicate that connects the two monads. Then, I

show how to prove synthesis rules for basic operations and organize a library of such. I
will show how the synthesis process composes synthesis rules to synthesize compound
algorithms, and how to extract final Hoare triples from those compound synthesis
predicates. Finally, I illustrate the process with an example verification of dynamic
arrays and I show how they can be used.

9.1.1 Synthesis Predicate

The “Heap-monad to Non-determinism Refinement” predicate hnr Γ m† Γ′ A m intu-
itively expresses that the concrete program m† computes a concrete result that relates,
via the refinement assertion A, to a result in the abstract program m, using at most
the resources specified by m for that result. A refinement assertion describes how an
abstract variable is refined by a concrete value on the heap. It can also contain time
credits. The assertions Γ and Γ′ constitute the heaps before and after the computation
and typically are a separating conjunction of refinement assertions for the respective
parameters of m† and m. Formally, we define:

1 hnr :: assn → α Heap → assn → (β → α → assn) → (β, enat) NREST → bool
2 hnr Γ c Γ′ A m =
3 nofail m =⇒
4 (∀h n. abs(h, n) |= Γ =⇒
5 (∃h′ t r. (c, h) ⇒ (r, h′, t)
6 ∧ (∃ta ra. abs (h′, (n + ta)−t) |= Γ′ ? A ra r ? true
7 ∧ elapse (return ra) (enat ta) ≤ m
8 ∧ t ≤ n + ta)))

If the abstract program m does not fail, procedure c started from a heap satisfying Γ
produces a heap satisfying Γ′ and a result r which relates to an abstract result ra via
refinement assertion A. The abstract result ra is a valid result of m and has at least ta
time units reserved for it. Together with the time credits on the heap n, this pays for
the execution cost t (line 8).
In particular, the execution cost t is paid for by the time units ta specified by the

abstract program and by time credits n that are hidden in the data structures on
the heap. One can see that amortized data structures seamlessly integrate into the
framework: only amortized running time costs are visible to the abstract algorithm,
while the actual running time and potential is hidden in the implementation.
Note that the advertised cost ta is a natural number. If the abstract program m

reserves infinitely resources for a result ra that abstract the result of c, there will
always be a suitable value for ta as the running time t of c is known to be finite.
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Furthermore, the heap assertion true in the post-heap allows to garbage-collect ar-
bitrary portions of the heap: this includes excess time credits as well as arbitrary data
structures from the heap.

Example 9.1.1. Let us look at an example and appreciate the role of amortization.
We already have seen the verification of dynamic arrays with operation push_array
in Example 5.5.1, also we have seen the definition of push_listspec in Example 8.3.2 I
repeat both here. First, the Hoare triple for push_array is:

<dynaassn xs p ? idassn x x† ? $19>
push_arrayimpl x† p

<λp′. inv dynaassn xs p ? inv (idassn x x†) ? dynaassn (xs · [x]) p′>

I have added the assertion idassn x x† that describes the empty heap and the pure
fact x = x†. For further structuring of Hoare triples the pre-heap should contain a
refinement assertion relating the abstract and concrete version of each parameter of
the operation. Additionally some time credits are needed for the advertised costs.
The post-heap should contain a refinement assertion for all the parameters that stay
unchanged and a separating conjunct for the result (here dynaassn (xs · [x]) p′). Here,
both input parameters get eliminated, i. e. together they will be contained in the
result. For parameters that get destroyed in the operation an invalidated assertion will
be added. It represents the empty heap but records that the parameter once existed.
This allows to retrieve pure facts from them. Formally we write:

inv A x x† = ↑(∃h. h |= A x x†)

In particular data not stored on the heap and properties about them can be recovered.
For example h |= idassn x x† =⇒ x = x†.
Second, the specification push_listspec is defined as:

push_listspec T x′ xs = res [xs · [x′] 7→ T xs]

We can now come up with a synthesis rule that links the implementation with the
abstract operation. It is obtained by unfolding the above Hoare triple and integrating
the specification for push_listspec. Let us first look at the unfolded version:

1 nofail (res [xs · [x] 7→ T xs]) =⇒
2 (∀h n. abs (h, n) |= dynaassn xs p ? natassn x x† =⇒
3 (∃h′ t r. (push_arrayimpl x† p, h) ⇒ (r, h′, t)
4 ∧ (∃ta ra. abs (h′, (n + ta)−t) |= inv dynaassn xs p ? inv natassn x x†
5 ? dynaassn ra r ? true
6 ∧ elapse (return ra) (enat ta) ≤ res [xs · [x] 7→ T xs]
7 ∧ t ≤ n + ta)))

Let the heap h and time credits n that entail the assertion on the pre-heap. This means,
that n contains time credits corresponding to the potential stored in the amortized
data structure dynamic array. Observe that n does not yet contain the advertised
cost 19 of the Hoare triple. We have to provide at least as much credits to apply the
Hoare triple above and denote the extra time credits needed by ta. Once we applied
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the Hoare rule, we know that push_arrayimpl terminates after t steps with concrete
result r and post-heap h′. That post heap h′ together with the remaining time credits
(n + ta) − t entails the post assertion. It contains what is left of the input parameters
and a separating conjunct that relates some abstract result ra with the concrete result
r via some refinement assertion. We now have conditions on the abstract result ra
and the advertised running time ta. Line 6 expresses that the abstract result ra is the
specification xs · [x] and that ta is at most T xs. But it serves as an upper bound for
the choice of ta. Line 7 states that n + ta must be able to pay for the real cost t. Thus
it serves as a lower bound for ta. The existence of an abstract ta in that interval can
be made sure by requiring the additional premise 19 ≤ T xs.
In that technique we use the time credits from the amortized data structure together

with the advertised costs expressed in the monadic program to pay for the cost of the
concrete implementation.
We can now fold the definition of hnr and obtain the synthesis rule for dynaassn:

19 ≤ t xs =⇒ hnr (dynaassn xs p ? idassn x x†) (push_arrayimpl x† p)
(inv dynaassn xs p ? inv idassn x x†) dynaassn (push_listspec t x xs)

Here, dynaassn xs p is the representation predicate relating the pointer p pointing to an
dynamic array with the abstract list xs it represents. Typically, for each pair of abstract
and concrete parameters there is an assertion on the pre and post-heap. The synthesis
predicate expresses that if the parameters of the implementation push_arrayimpl refine
the parameters of the abstract operation push_listspec, the resulting dynamic array
refines the abstract result. The abstract operation expects the reserved time in param-
eter t dependent on the abstract parameters. The synthesis rule only holds if there is
enough time reserved in the abstract algorithm. The premise ensures that.

In order to validate that this definition makes sense, observe what we can prove for it:
First, we can extract Hoare triples from synthesis rules and vice versa if the synthesis
rules have a specific form. Second, this definition enables us to prove soundness of
synthesis rules for all the combinators in particular for bind. Before we see those
combinator rules let us examine the connection to Hoare triples.

9.1.2 Connection to Hoare Triples
For programs with specifications of the special form spec P (λ_. t), we can extract a
standard Hoare triple from a valid synthesis predicate and vice versa:

hnr Γ c Γ′ A (spec P (λ_. t))
←→ <Γ ? $ t> c <λr†. Γ′ ? (∃A r. A r r† ? ↑(P r))>

While during reasoning the abstract time bound needs to depend on the result (e. g. in
order to prove the synthesis rule for bind correct), when proving the running time of an
algorithm, in most cases the final running time only depends on the input parameters.
This equivalence has two consequences. First, after synthesis of a program from an

abstract algorithm, we can extract a Hoare Triple that only uses concepts from the un-
derlying program semantics but is independent from the theory about NREST. NREST
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only serves as a means of structuring the proofs. The algorithm as well as its proper-
ties are expressed in terms of the semantics of the language and its Separation Logic.
Second, we can prove synthesis predicates for basic abstract operations, by providing
concrete implementations, setting up the appropriate synthesis rule, converting it into
a Hoare triple and using infrastructure of the target monad to prove those.

Example 9.1.2. The specification push_listspec has that form:

push_listspec T x′ xs = spec (λr. r = xs · [x′]) (λ_. T xs)

So we can retrieve the Hoare triple from the synthesis rule we just derived.

<dynaassn xs p ? idassn x x† ? $19>
push_arrayimpl x† p

<λr†. inv dynaassn xs p ? inv idassn x x†
? (∃A r. dynaassn r r† ? ↑(r = xs · [x′]))>

That Hoare triple simplifies to the one we just had for push_arrayimpl. Or conversely
we could have proved the synthesis rule from the Hoare triple.

3

What prevents us from defining the synthesis predicate relative to a Hoare triple is
the fact that the running time needs to be able to depend on the result. While the
classical — non-negative — time credits need to be stated in the pre-heap, integer
time credits may solve the problem. Negative time credits in the post-heap are
equivalent to positive time credits in the pre-heap but additionally may depend on
the result of the computation. Using integer time credits instead might simplify the
synthesis predicate considerably.

In the following we will present how we organize basic abstract operations, and
provide implementations with concrete data structures and respective synthesis rules.

9.1.3 Organizing Abstract Operations

Synthesis rules have the following general form:

P (x1†,. . . ,x†n) (x1,. . . ,xn) =⇒
hnr (A1 x1† x1 ? . . . ? An xn† xn) (Ximpl (x1†, . . . ,xn†))

(A1
p1 x1† x1 ? . . . ? A

pn
n xn† xn) A (X (x1, . . . ,xn))

Here pi ∈ {k, d} signals whether the data structure is kept or destroyed during the
computation. In particular, Aki = Ai and Adi = inv Ai. The synthesis rule is only valid
subject the premise P.
Once we have ensured that more restricted structure of the synthesis rules, we can

intro a more succinct notation.1 With that notation the rule above can be written in
the following way:

(Ximpl, Xspec) ∈ [P] Ap1
1 → . . . → Apn

n → A

1The notation is introduced in [84, §5.1].
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The notation is inspired by relational parametricity rules. It follows the same ideas
as the notation for refinements from Section 8.1.2. It shows that if the parameters
of the implementation Ximpl and the specification Xspec are related by the refinement
assertions Ai, then the result is related by the resulting refinement assertion A. The
superscripts of the refinement assertions indicate whether the parameter will be kept
on the heap or destroyed during the operation. Those synthesis rules can also have
additional preconditions.

Example 9.1.3. We can write the synthesis rule of the above example in that notation:

(push_arrayimpl, push_listspec T)
∈ [λ_ (xs,_). 19 ≤ T xs] dynaassnd × idassnd → dynaassn

Both parameters — the dynamic array and the element to push to it — are destroyed
during the execution of the algorithm, but the resulting heap contains the new dynamic
array after pushing the element. As the added element was a pure element, one can
retrieve the information about it in the post-heap. The allotted time bound T only
depends on the first abstract parameter, and the lower bound for it stemming from the
implementation in Imperative-HOL is enforced by the precondition.

Stating synthesis rules in this more restricted form simplifies their usage for the Sepref
tool. Furthermore, it stresses how they can be composed with refinements. Consider
the following example:

Example 9.1.4. In Example 5.5.1 we proved the Hoare triple for push_arrayimpl
mentioned earlier in this section in several steps. First proving the implementation
correct w. r. t. an implementation on dynamic lists. Then abstracting the dynamic
list to a list. We now want to illustrate the composition of a synthesis rule and an
NREST-enat refinement.
From the intermediate Hoare triple from Example 5.5.1 we obtain the following

synthesis rule:

(push_arrayimpl, λ(xs, n) x. res [push_arrayfun (xs, n) x 7→ 19])
∈ dyn_arrayassnd → Idd → dyn_arrayassn

In Example 8.3.2 we have obtained the following correctness lemma involving a data
refinement:

(λ(xs, n) x. res [push_arrayfun (xs, n) x 7→ T xs], push_listspec T)
∈ Rlistdynlist → Id → Rlistdynlist

If we combine the refinement assertion dyn_arrayassn and the refinement relation
Rlistdynlist we obtain the compound refinement assertion Rlistdynlist:

dyn_arrayassn ◦AR Rlistdynlist = dynaassn

The operator is defined by (A ◦AR R) a c = (∃Ab. A b c ? ↑( (b, a) ∈ R)).
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3

Note that for historic reasons (already in the Separation Logic for Imperative-HOL
[85]) assertions take the abstract argument as the first argument. In contrast to
that, the refinement relation (e. g. Rlist

dynlist) takes a pair where the abstract element
is the second component. This inconsistency sometimes leads to confusion. For
this thesis I decided to stay truthful to the Isabelle theories and to not switch the
order in presentation. Future work consolidating the IRF should streamline this
inconvenience.

Remember that Rlistdynlist and dyn_abs are related in the following way:

(c, a) ∈ Rlistdynlist ←→ dyn_abs c a

To check that the composition is equal to the definition of dynaassn, here again see the
of dynaassn, which was:

dynaassn as p = (∃Abs n. dyn_arrayassn (bs, n) p ? ↑(dyn_abs (bs, n) as))

So finally we can compose the above synthesis rule and the correctness lemma to
obtain a new synthesis rule with the more abstract result:

(push_arrayimpl, λ(xs, n) x. push_listspec (λ. 19))
∈ (dyn_arrayassn ◦AR Rlistdynlist)d → (idassn ◦AR Id)d

→ (dyn_arrayassn ◦AR Rlistdynlist)

Which also simplifies to the synthesis rule for push_arrayimpl we already proved in the
example earlier this Section.

As a general pattern, the correctness theorem for an NREST-enat program X can be
combined with a refinement lemma in the following way:

J (Ximpl, X T) ∈ [λx† x. T† x† ≤ T x] Ap1
1 → . . . → Apn

n → A;
(X T, Xspec T ′) ∈ [λx x′. T x ≤ T ′ x′] R1 → . . . → Rn → R K

=⇒ (Ximpl, Xspec T ′) ∈ [λx† x′. T† x† ≤ T ′ x′]
(A1 ◦AR R1)p1 → . . . → (An ◦AR Rn)pn → (A ◦AR R)

The parameter T† is an implementation-dependent bound for the running time of the
program Ximpl. When modeling the abstract program X we need to choose a time
bound T for it. This happens by filling the time parameters of the locale it lives in.
The precondition of the first premise ensures that the time bound T is at most T†.
The time bound T ′ for the specification Xspec depends on the time parameters of the
locale. When establishing the second premise we have to prove that T ′ is at most
T. The combination of those two preconditions gives the precondition of the resulting
synthesis rule. In the original framework, the FCOMP tool [82, §3.3.1] automates the
combination of synthesis rules and nres refinements. It was adapted for our purposes.

In Example 5.5.1 dynamic arrays were verified in Imperative-HOL-Time and con-
nected to a list representation. Now, in Example 9.1.4 we have only used the Imperative-
HOL-Time implementation relative to a dynamic list representation and composed it
with a data refinement in NREST-enat between dynamic lists and lists. The overall goal
is to move as much reasoning from the concrete program semantics (here Imperative-
HOL-Time) to the abstract modeling in NREST. In Section 10.2 we will see that also
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abstract operations running time concrete
matrix create; lookup, update O(n2); O(1) array

set/map create; insert, delete, update O(1); O(logn) red-black tree
O(n); O(1) array

list create, append; lookup, update O(1)∗; O(1) dynamic array
disjoint sets create; union, find O(n); O(α(n))∗ union-find

Table 9.1: The abstract data structures with abstract operations that we provide implementa-
tions for in the TIICF. Amortized running time bounds are marked with an asterisk
(*).

the amortized reasoning for the push operation of dynamic lists can be conducted on
the NREST level.

The Isabelle Imperative Collections Framework Table 9.1 lists abstract data struc-
tures with their abstract operations and the implementations we currently provide in
the Timed Imperative Isabelle Collections Framework (TIICF).

9.1.4 The Synthesis Process
With basic synthesis rules for the abstract operations in place, we want to automatically
synthesize programs from abstract algorithms that combine those operations. This
process extends surprisingly seamless from the original Sepref tool to reasoning about
resources.
The translation works by symbolically executing the abstract program, thereby syn-

thesizing a structurally similar concrete program. During the symbolic execution, the
relation between the abstract and concrete variables is modeled by refinement asser-
tions. In the synthesis predicate hnr Γ m† Γ′ A m, the pre-heap Γ contains the re-
finements for the variables before the execution, Γ′ contains the refinements after the
execution, and A is the refinement assertion for the result of m. For example, a bind
is processed by the following synthesis rule:

1 J hnr Γ m† Γ′ Ax m;
2 (∀x x†. hnr (Ax x x† ? Γ′) (f† x†) (A′x x x† ? Γ′′) Ry (f x)) K
3 =⇒ hnr Γ (do {x† ← m†; f† x†}) Γ′′ Ay (do {x ← m; f x})

To refine x ← m; f x, we first execute m, synthesizing the concrete program m† (line 1).
The state after m is Rx x x† ? Γ′, where x is the result created by m. From this state,
we execute f x (line 2). The new state is R′x x x† ? Γ′′ ? Ry y y†, where y is the result
of f x. Note that x† goes out of scope but is still on the heap. It is contained in the
true portion of the postheap in the synthesis rule. You can think of it being taken care
of by the garbage collector.

While executing the abstract program, not only a concrete program is created, but
also the set of refinement assertions Γ evolves: it contains all the data structures (pure
or on the heap) that the concrete program maintains.
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All the other combinators (rec, while, if, case, ...) have similar rules that are used
to decompose an abstract program into parts, to synthesize corresponding concrete
parts recursively and to combine them afterwards.
At the leaves of this decomposition one has to find “atomic” abstract operations,

with a suitable synthesis rule. We have seen examples earlier.

Example 9.1.5. To illustrate this process let us just synthesize a program for the
operation that pushes an element to a list and then returns the length of the resulting
list. For this example let us assume we have a synthesis rule for a program determining
the length of a list.

(len_arrayimpl, lenspec (λ. 1)) ∈ dynaassnk → Id

We define the following monadic program and want to synthesize an Imperative-HOL-
Time program from it:

len_push (as, a) = do {
as′← push_listspec (λ. 19) as a;
lengthspec (λ. 1) as′

}

To start the synthesis, we assume that we have an implementation of the input list xs
in the form of a dynamic array and the elements to push are refined by themselves.
The synthesis goal to solve is:

hnr (dynaassn as p ? idassn a† a) ?c ?Γ′ ?A (len_push (as, a))

Here the program c, the post-heap Γ′ and the refinement assertion A for the result are
unknown in advance. This is indicated with the leading ?. Those variables will be
generated in the synthesis process. Let us denote the pre-heap by Γ. We now apply
the synthesis rule for bind and have to solve the synthesis goal for the first part:

hnr (dynaassn as p ? idassn a a†) ?cx ?Γ′x ?Ax (push_listspec (λ. 19) as a)

We use the synthesis rule for push_listspec to obtain cx = push_arrayimpl p a†, the post-
heap Γx′ = inv dynaassn as p ? inv idassn a a†, and the refinement assertion for the re-
sult Ax = dynaassn. Note that before applying the synthesis rule of push_listspec as a,
frame inference is used on the pre-heap Γ to find the portions of the heap that contain
the implementations of the parameters as and a. Now we obtain the pair of abstract
and concrete intermediate results (as′ and as′†), and we have to synthesize the program
for the second push operation starting from pre-heap Ax as′ as′† ? Γ′x. Thus the next
synthesis goal is:

hnr (dynaassn as′ as′† ? inv dynaassn as p ? inv idassn a† a)
?cf ?Γ′f ?Af (lenspec (λ. 1) as′)

Again, after finding the heap portion that contains the abstract parameter as′, we now
apply the synthesis rule for lengthspec. This yields the program cf = len_arrayimpl as′†,
the final post-heap Γ′f = dynaassn as′ as′† ? inv dynaassn as p ? inv idassn a a†, and the
refinement assertion for the result Af = idassn.
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Now, the intermediate result as′goes out of scope and we need to get rid of its portion
on the heap dynaassn as′ as′†. We can push it into the true portion of the post-heap of
the synthesis rule. That way, we ensure that only portions of the heap that correspond
to the parameters in scope are valid in the symbolic heap.
In the next section we will not be able to discard arbitrary portions of the heap

and Sepref will have to explicitly deallocate the intermediate result. Here, the garbage
collector takes care of it. Both input parameters as and a are invalidated on the post-
heap, and the result is contained in the result assertion Af .

The final synthesis predicate thus is:

(len_pushimpl, len_push) ∈ dynaassnd → idassnd → idassn

with len_pushimpl (p, a†) = do { as′† ← push_arrayimpl p a†; len_arrayimpl as′† }.

The Sepref tool registers a set of synthesis rules for all combinators and keeps a set of
synthesis rules for the “atomic” abstract operations. Those sets of rules can be extended
later: if we use Sepref to synthesize an implementation from an abstract algorithm that
comes with a refinement proof w. r. t. to some specification, we can combine those two
refinement lemmas into a synthesis rule and register it with Sepref. That way, one can
grow those sets of rules and reuse implemented abstract algorithms when synthesizing
larger programs. The synthesis can be modularized and need not be run on the whole
algorithm once, but can be run on parts. The resulting synthesis rules can be saved
for later use.
In particular, it is notable that during the synthesis process the Sepref tool has to

check, whether the timing precondition is fulfilled, i. e. whether the reserved time for any
abstract operation suffices to cover the costs of the implementation. In general proving
those inequalities can be quite hard. The tool tries to discharge them automatically
and, if this fails, leaves them as a proof obligation for the user. In the following we give
an example of a synthesis procedure where a nontrivial timing side condition occurs.

9.1.5 Case Study: Removing Duplicates

In earlier examples we have seen how to specify push_listspec (Example 8.3.2), how to
implement it with a concrete program (Example 5.5.1) and how to prove a synthesis
rule for it (cf. Example 9.1.1). In the following I want to illustrate how this can be
used in a more complex algorithm. Note that we are working here in the NREST-enat,
so no resource currencies are used and we have to use locales in order to structure the
refinement of resource consumption.
The abstract operation push_listspec can now be used when specifying an abstract

algorithm. Then, a concrete time function T can be specified, which is used to determine
the overall cost of the algorithm.
We now want to implement the removal of duplicates from a list. First we specify

that operation:

remdupsspec T as = spec (λys. set ys = set as ∧ distinct ys) T
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1 remdups as = do {
2 ys ← empty_listspec tel;
3 S ← set_emptyspec tes;
4 (zs, ys, S) ← while (λ(xs, ys, S). |xs| > 0) (λ(xs, ys, S). do {
5 assert (|xs| > 0 ∧ |xs| + |ys| ≤ |as| ∧ |S| ≤ |ys|);
6 (x, xs) ← return (hd xs, tl xs);
7 b ← set_memberspec (λ_. tsm |as|) x S;
8 if b then
9 return (xs, ys, S)

10 else do {
11 S ← set_insertspec (λ_. tsi |as|) x S;
12 ys ← push_listspec (λ_. tpl) x ys;
13 return (xs, ys, S)
14 }
15 }) (as, ys, S);
16 return ys
17 }

Figure 9.1: An algorithm in NREST-enat for removing duplicates from a list.

Consider the following program to remove duplicates from a list (Figure 9.1). It lives
in an environment where we fix the cost for initializing an empty list tel, initializing an
empty set tes, testing for set membership (λn. tsm n), inserting into a set (λn. tsi n)
and the cost for pushing an element to the back of a list tpl.
The idea of the algorithm in Figure 9.1 is to iterate through the list, while maintaining

the set of already encountered elements. Only new elements will be pushed to an
accumulator list. Observe that the costs for the set operations in line 7 and 11 are
bounded not dependent on the current size of the set (|S|) but on the length of the input
list as. This is an upper bounding that we make explicitly at this level of abstraction.
That way, this allows to give a closed form for the time bound of remdups that only
depends on the input parameter. Note that at this point the upper bounding does not
require proving any property. The running time bounds are just assumed and thus can
be combined to the total cost for remdups. We can prove the correctness lemma for
remdups by specification refinement:

remdupstime n = n ∗ (tsm n + tsi n + tpl) + tel + tes
(remdups, remdupsspec (λ_. remdupstime |as|)) ∈ Id → Id

The program uses push_listspec from above as well as other abstract operations with
corresponding reserved running time bounds. For example insertion into a set:

set_insertspec t x S = res [S ∪ {x} 7→ t S]

For each operation in the program some time is reserved. The overall running
time of the program is a function of these reserved quantities. Before synthesizing
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an Imperative-HOL-Time program we have to provide values for those reserved quanti-
ties. On the one hand, those quantities have to be as small as possible in order to allow
for a tight time bound for the overall algorithm. On the other hand, those quantities
have to be at least the time bound the implementation needs. We now set the following
quantities in order to implement the set by a red-black tree and the list by a dynamic
array:

tel = 12 tpl = 19
tes = 1 tsm n = rbt_searchtime n tsi n = rbt_inserttime n

Here, rbt_searchtime n and rbt_inserttime n are the running time bounds for searching
and inserting in a red-black tree for a tree of with n elements. Both are monotone
and in O(logn). On the one hand we can now use the automation from Chapter 5 to
automatically prove that the overall running time of remdups is in O(logn).

remdupstime ∈ Θ(n ∗ logn)

On the other hand we can synthesize an Imperative-HOL-Time program using the
adapted Sepref. During that process, the synthesis rules will be applied and their
preconditions must be discharged. For the push_listspec this boils down to the trivial
check 19 ≤ 19. The synthesis rule for push_listimpl (cf. Example 9.1.1) only displays
the amortized cost, while the amortization is hidden at this level. Amortized data
structures seamlessly can be modeled using time credits, and this comfort extends to
also be available for the abstract algorithm. At the abstract level, an amortized data
structure behaves just as a normal data structure does.
Let us consider a more interesting operation. The synthesis rule of the red-black tree

implementation of insert_setspec is the following:

(rbt_set_insert, set_insertspec t) ∈
[λS. rbt_inserttime (|S|) ≤ t S] idassnd → rbt_setassnd → rbt_setassn

Here, the refinement assertion rbt_setassn S p relates a set S with a red-black tree
at address p. During synthesis the Sepref tool has to check whether there is enough
reserved time for the set insertion. I have added the relevant information that is known
from the assertions (line 5) at that point.

|S| ≤ |ys| ∧ |xs| + |ys| ≤ |as|
=⇒ rbt_inserttime (|S|) ≤ (λ_. rbt_inserttime (|as|)) S

The goal can be discharged with the knowledge from the premises that stem from the
assertions in the program and the monotonicity of rbt_inserttime. This goal may not
be solved automatically by the Sepref tool initially. Either the user provides some hints
(e. g. the monotonicity lemma) or proves the timing side condition after the synthesis.
From Sepref we will obtain an implementation for remdups with a synthesis predicate.

We can combine that with the refinement lemma for remdups and obtain the following
synthesis predicate:

(remdupsimpl, remdupsspec (λ_. remdupstime |as|)) ∈ idassnd → dynaassn
Finally, we obtain a Hoare triple and massage it into the following form:

158



9.1 NREST-enat with Imperative-HOL-Time

< $ (remdupstime |as|)> remdupsimpl as <λys. set ys = set as ∧ distinct ys>

That Hoare triple can be easily interpreted. Actually one need not know anything about
the NREST monad or the synthesis process. To believe in the final judgment, one only
has to inspect the definition of Hoare triples and the program logic of Imperative-HOL-
Time.

9.1.6 Recap

Let me comment on some specifics of Sepref, how much manual interaction generally
is required in this process, and what some limitations are.
The Sepref tool maintains a set of synthesis rules for implementations of operations

of abstract data structures. For example, we have seen the synthesis rule connecting
push_arrayimpl and push_listspec. There might be a different synthesis rule that imple-
ments push_listspec by a different data structure (e. g. a linked list). While it is possible
to let Sepref choose which implementation to use for each abstract data structure, it
is more efficient to avoid the backtracking and manually annotate the choice. This is
done by rewriting the initialization of a data structure (e. g. empty_listspec in line 2)
with a synonym (e. g. empty_arrayspec) and only register the synthesis rule for the
implementation relative to the synonym. Once the data structure is initialized on the
symbolic heap, frame inference will find it during synthesis and only one synthesis rule
will be applicable.
With that restriction Sepref is deterministic and synthesizes an implementation by

traversing the abstract program once. In that process side conditions are generated
that are automatically discharged or left to the user as final proof obligations. In
general, it is favorable to add the preconditions as assertions in the abstract program.
This takes the work off the Sepref tool and moves the proof burden to the refinement
proofs that typically are more interactive. Only for the timing side conditions this is
not possible, as they will be inserted with the synthesis rules and are not known to the
abstract program. Registering special rules with Sepref that solve those side conditions
and adding their premises as assertions in the abstract program usually works well.
When inspecting the Hoare triple and the program remdups it occurs that the split-

ting of the first element of the list in line 6 does not incur time costs. As commented in
Chapter 5, the cost semantics of Imperative-HOL-Time only counts the operations that
involve arrays and references. One has to interpret Hoare triples in Imperative-HOL-
Time always relative to that premise. The cost semantics of LLVM-Time, however,
does not allow for functional operations and leads to a more faithful running time anal-
ysis. Furthermore, it is not clear when and how exactly the memory of the input list
of remdups is cleared by the garbage collector. For LLVM-Time we have to explicitly
free the memory. This also has to happen during synthesis when an intermediate result
goes out of scope. In the next section, I will show how amortization again allows for
an elegant solution.
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9.2 NREST-ecost with LLVM-Time

Ò
Portions of this section appear in the paper “For a Few Dollars More – Verified
Fine-Grained Algorithm Analysis Down to LLVM” (Haslbeck and Lammich [44]).

Now let us turn to synthesizing programs in LLVM-Time from abstract algorithms
in the NREST-monad with resource currencies. First, I will note some peculiarities of
LLVM-Time. Then, I will present how the synthesis predicate is defined in this instance,
comment on the attains-sup effect, and show how the bind rule has to be altered in
order to cope with the fact that LLVM does not allow arbitrary garbage-collection of
heap portions.
As in the last section, the synthesis predicate joining NREST-ecost with LLVM-Time

can not be defined on Hoare triples of LLVM-Time. Instead we had to go one semantic
level deeper and I repeat their definition from Chapter 6 here.
Hoare triples of the LLVM semantics are defined in the general wp framework (Sec-

tion 6.2.3) relative to the definition of a weakest precondition predicate wp and a
garbage collection assertion >> together with some properties about them. Based on
these, a Hoare triple {P} c {Q} hold iff:

∀F s. (P ? F) (abs s) =⇒ wp c (λr s′. (Q r ? >> ? F) (abs s′)) s

To instantiate this generic framework to our LLVM cost model, states are pairs of a heap
and a resource cost function s = (m, c), where c is of type ecost = string → enat. The
type of the cost credits has two consequences: first this allows for resource currencies,
and second this allows to have infinite resource credits. The latter allows us to write
down Hoare triples that only focus on functional correctness and on certain currencies,
by adding infinitely many time credits of the currencies to ignore in the precondition.
The type of the time credits in the LLVM semantics thus is the same as in the

NREST-monad. When refining NREST to Imperative-HOL-Time we did not have this
situation, as Imperative-HOL-Time only allowed finite time credits but NREST-enat
did allow infinite costs.
The generic framework we instantiated for the LLVM cost model can of course be

instantiated for other program semantics. In the following we present how the synthesis
works for LLVM, but it actually serves as a blueprint how to treat other instances in a
similar way.
Before delving into the definition of the synthesis rule, there is another peculiarity

of LLVM to consider.

9.2.1 Extra Combinators

In contrast to Imperative-HOL-Time we chose to design control flow to actually have
costs in LLVM-Time. In Imperative-HOL-Time branching and recursive calls do not
incur any costs. This is different here.
We defined the combinators for branching, recursion and while loops that do not

incur time. As the respective combinators of the target LLVM do incur cost, we define
resource-aware variants. Furthermore, we also derive a while combinator:

160



9.2 NREST-ecost with LLVM-Time

ifc b then c1 else c2 = elapse (r ← b; if r then c1 else c2) $if
recc F x = elapse (rec (λD x. F (λx. elapse (D x) $call) x) x) $call
whilec b f s = recc (λD s. ifc b s then s ← f s; D s else return s) s

Here, the guard of ifc is a computation itself, and it consumes an additional if coin to
account for the conditional branching in the target model. Similarly, every recursive
call consumes an additional call coin.
Those definitions are actually used when presenting abstract algorithms in NREST-

ecost. Only programs that contain only the resource-aware variants and none of the
original ones can be synthesized to implementations. Similarly, we will only be able to
show synthesis rules for the resource-aware variants and not for the original ones.

9.2.2 Synthesis Predicate

As in the last section, the synthesis predicate hnr Γ m† Γ′ A m intuitively expresses that
the concrete program m† computes a concrete result that relates, via the refinement
assertion A, to a result in the abstract program m, using at most the resources specified
bym for that result. A refinement assertion describes how an abstract variable is refined
by a concrete value on the heap. It can also contain time credits.
The assertions Γ and Γ′ constitute the heaps before and after the computation and

typically are a separating conjunction of refinement assertions for the respective pa-
rameters of m† and m. Formally, we now define:

hnr :: assn → α M → assn → (β → α → assn) → (β, ecost) NREST → bool
hnr Γ m† Γ′ A m = m 6= fail =⇒

(∀F s c. (Γ ? F) (absm s,c) =⇒
(∃ra ca. elapse (return ra) ca ≤ m
∧ wp m† (λr (s′,c′). (Γ′ ? A ra r ? F ? >>) (absm s′,c′)) (s, c+ca)))

The predicate holds if either the abstract program fails or for all heaps and resources
(s, c) that satisfy the pre-assertion Γ with some frame F, there exists an abstract result
and cost (ra, ca) that refine m, and m† terminates with concrete result r in a state s′
which is described by Γ′ and the frame F, and r relates to the abstract result via
assertion A. The execution costs of m† and the time credits c′ required by the post-
assertion Γ′ are paid for by the specified cost ca and the time credits c described by
the pre-assertion Γ. Thus, the real costs are paid by a combination of the advertised
costs in the abstract program and the potential difference of Γ′ and Γ. This is the same
technique as we seen in the last section (Example 9.1.1).
Using the affine top >>, it is possible for the program to throw away portions of the

heap. Note that >> for LLVM can only discard time credits. Memory must be explicitly
freed by the concrete program m†.

When presenting the synthesis rule for bind we will see that the free operation can
be added automatically and is transparent to the abstract algorithm.
In contrast to the definition for Imperative-HOL-Time we here do not talk about

the semantics of LLVM explicitly, but use the abstraction of the weakest precondition
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to express the effect of the implementation m†. In that way, the definition of the syn-
thesis predicate may serve as a blueprint for connecting NREST with other program
semantics: it is only defined relative to wp and a time credit Separation Logic. If it
provides a weakest precondition predicate, and a Separation Logic with an affine top
>> and a resource credit assertion, the above synthesis rule can be defined. I already
commented that it is only mere technical problems to prevent Imperative-HOL-Time
with its original Separation Logic to be pressed into the generic wp in Section 5.7.

­

Note that in the NREST-monad time increases during execution, in the Hoare triple
time credits get consumed during execution and thus decreases, and again time in-
creases in the LLVM-Time as well as the Imperative-HOL-Time monad. It is note-
worthy that the direction of lapse of time changes twice during the synthesis from
NREST to LLVM. On the other hand, time credits do not measure time passed but
the ability that time will pass safely in the future.
Time credits constitute potential while in the forwards direction of NREST or the
program semantics it is rather cost.

9.2.3 The Synthesis Mechanism

In the previous section we have already seen how Sepref symbolically executes the
abstract program while synthesizing a concrete implementation. For that process we
need synthesis rules for all abstract combinators. The combinator bind is processed
by the following rule:

1 J hnr Γ m† Γ′ Ax m;
2 (∀x x†. hnr (Ax x x† ? Γ′) (f† x†) (A′x x x† ? Γ′′) Ay (f x));
3 destructor A′x free K
4 =⇒ hnr Γ (x† ← m†; r† ← f† x†; free x†; return r†) Γ′′ Ay (x ← m; f x)

The rule works similarly as the rule for Imperative-HOL-Time (cf. Example 9.1.5),
with one modification. As our LLVM semantics only allows to discard time credits,
but no data structures from the heap, we need to explicitly deallocate the intermediate
variable x when it goes out of scope. The predicate destructor A′x free (line 3) states
that free is a deallocator for data structures implemented by refinement assertion A′x
(cf. Section 6.2.5). The program free is now inserted into the implementation after
calculating f† and before returning the result. Note that free can only use time credits
that are stored in A′x. Typically, these are paid for during creation of the data structure.
We require each data structure to contain time credits for freeing it (cf. Section 6.2.5),
such that those can simply be consumed at this point. This way amortization can
be used effectively to hide the necessary free operation and its costs in the abstract
program.
All other combinators (recc, ifc, whilec, etc.) have similar rules that are used to

decompose an abstract program into parts, synthesize corresponding concrete parts
recursively and combine them afterwards with the respective combinators from LLVM.
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9.2.4 Attain Supremum

Let us comment on a problem that arises when composing hnr predicates and data
refinement in the NREST monad. Consider the following programs and relations:

m′ = res [x 7→ $a, y 7→ $b] R = {(z, a), (z, b)}
m = res [z 7→ $a + $b] A = idassn
m† = consume ($a + $b); return z

Data refinement defines the resource bound for a concrete result (here z) as the supre-
mum over all bounds of related results (here x, y). Thus, we have m ≤ ⇓CR m′. More-
over, we trivially have hnr @ m† @ A m. Intuitively, we want to compose these two
refinements, to obtain hnr @ m† @ (A ◦AR R) m′. However, as our definition of hnr
does not form a supremum, this would require $a + $b ≤ $a or $a + $b ≤ $b, which
obviously does not hold.
We have not yet found a way to define hnr or ⇓D in a form that does not exhibit this

effect. Instead, we explicitly require that the supremum of the data refinement has a
witness. The predicate attains_sup m m′ R characterizes that situation: it holds, if for
all results r of m the supremum of the set of all abstractions (r, r′) ∈ R applied to m′
is in that set. This trivially holds if R is single-valued, i.e. any concrete value is related
with at most one abstract value, or if m′ is one-time, i. e. assigns the same resource
bound to all its results.
In our example, both do not holds. The refinement relation R is not single-valued

— z is abstracted by both a and b — and the abstract program m′ is not one−time —
the results x and y are assigned different costs.

In practice we do encounter non-single-valued relations2, but they only occur as
intermediate results where the composition with an hnr predicate is not necessary.
Also, collapsing synthesis predicates and refinements in the NREST-monad typically is
performed for the final algorithm whose running time does not depend on the result,
thus is one-time, and ultimately attains_sup.

Why did that not occur already in the synthesis predicate for Imperative-HOL-
Time? We did not have the same problem earlier, because the resource usage of
Imperative-HOL-Time is always a finite number. In particular, it cannot be infinite
nor the supremum of two incomparable elements (there are no currencies!). Thus, if the
presumed hnr rule holds, for the result r there exists a witness result w of the abstract
operation m that has enough advertised cost to cover the expenses of the implemen-
tation. Now from the refinement theorem m ≤ ⇓DR m′ we know that the supremum
over the costs of all results w′ that are refined by w is larger than the assigned costs
for w and in turn larger than the costs of the implementation. Even if the supremum
in m′ is infinite while all costs incurred by the witnesses w′ are finite, we always find a

2The relation oarr, described in earlier work [80, p. 4.2] by one of the authors, is used to model
ownership of parts of a list on an abstract level and is an example for a relation that is not single-
valued.
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witness w′ in m′ that is larger than the real costs.

­

It is remarkable that naively choosing the time credits of Imperative-HOL-Time to
be natural numbers instead of enat lead to this simplification. Both modifications —
changing the type of time credits from nat to enat and adding resource currencies —
make the attains−sup problem apparent.

9.2.5 Extracting Hoare Triples
Similar to the synthesis predicate in the last section we can again extract Hoare triples
for synthesis rules for abstract algorithms whose resource consumption does not depend
on the result but only on the input parameters:

hnr Γ m† Γ′ R (spec Φ (λ_. T))
= {$T ? Γ} m† {λr. Γ′ ? (∃Ara. R ra r ? ↑(Φ ra))}

Again note that the above rule is an equivalence. Thus, it can also be used to obtain
synthesis rules from Hoare triples that are provided by the basic VCG infrastructure.

9.2.6 Basic Data Structures
At the leaves of decomposition performed by the synthesis process, atomic operations
need to be provided with suitable synthesis predicates.
An example is a list lookup that is implemented by an array:

(array_nth, list_getspec (λ_. array_getcost))
∈ arraykassn ×a snatkassn →a idassn

Here, the refinement assertions arrayassn, snatassn and idassn relate a list with an array,
an unbounded natural number with a bounded signed word and identical elements
respectively.
With an array at address p holding the list xs and an index i† that is a bounded

signed word representing an unbounded natural number i, array_nth p i† leaves the
parameters unchanged and extracts the element specified by list_getspec incurring costs
array_getcost = $ofs_ptr + $load.
Ideally, each operation has its own currency (e.g. list_get). However, as our defi-

nition of hnr does not include currency refinement, the basic operations must use the
currencies of the LLVM cost model.

To still obtain modular hnr rules, we encapsulate specifications for data struc-
tures with their cost, e.g. by defining array_getspec = list_getspec (λ_. array_getcost).
These can easily be introduced in an additional refinement step. Automating this
process, and possibly integrating currency refinement into hnr is left to future work.
It is left to comment that for LLVM-Time we only provided very basic data struc-

tures: arrays and option arrays. We focused on realizing a case study with a com-
plicated algorithm that involves some complicated running time arguments but only
uses simple data structures. For future work, we plan to port many data structures
from Imperative-HOL-Time and the Imperative Collections Framework [84, Table 1].
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The verification of some of them depends on reasoning about pointer manipulations
(e. g. circular linked lists), while other involved data structures are based on basic data
structures (e. g. dynamic arrays depend on arrays). For the latter it is possible to model
them in an abstract NREST setting, and synthesize implementations using the more
basic data structures (following the approach in [82]). For dynamic arrays we describe
how amortization can be modeled on the abstract level in Section 10.2. After proving
the data structures correct we can wrap up their operations into synthesis rules, to be
used as basic operations in more complicated algorithms.

9.3 Summary
• In this chapter we have seen how adaptations of the Sepref tool can be used to
synthesize implementations from abstract algorithms in the NREST monad.

• Time credits can be used to seamlessly integrate amortized concrete data struc-
tures, where only the advertised costs are visible to the abstract algorithm. Pre-
paying the costs of deallocation when generating a data structure allows hiding
the freeing from the abstract algorithm, keeping those algorithms clear of too
many implementation details.

• On the LLVM level control flow is modeled to incur costs. Unfortunately, this
has to be modeled also on the NREST level to allow synthesis.

• When combining a synthesis refinement and an abstract refinement, we have to
make sure that a witness in the abstract program exists. I have presented an
important effect, called it “attains-sup”, described its effects and a solution to
cope with it.
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We have seen that our framework allows to conveniently model abstract algorithms
and reason about their functional correctness and resource consumption. Ultimately the
goal is to verify the correctness and running time analysis of competitive and executable
programs. In this chapter I describe the verification of two larger case studies that I
believe would not be feasible to verify using only the verification frameworks described
in Part II. Furthermore, I show that amortized analysis can be conducted at the NREST
level.
First, I present the verification of Kruskal’s minimum spanning tree algorithm. I

conducted that formalization in NREST-enat. This yields a verified implementation
in Imperative-HOL-Time with time complexity O(E logE +M + Eα(M)) using the
union-find data structure presented in Chapter 5.
Second, I present the verification of the amortized data structure dynamic array.

While I already verified its analysis in Imperative-HOL-Time (Chapter 5) using basic
reasoning infrastructure, I now show how amortized data structures can also be modeled
in the NREST monad and based on the already provided array formalization can be
automatically refined to a concrete implementation in LLVM-Time.
Lastly, I present the verification of the competitive introsort algorithm, a combination

of quicksort, insertion sort and heap sort, which has — in contrast to quicksort alone —
time complexity O(n logn). I present the verification of introsort and its components,
as well as the refinement to an executable LLVM program that is competitive with real
world implementations from standard libraries.
In the end of this chapter I will review related work to the case studies and close this

part by examining the framework w. r. t. the features identified in Section 7.1.

10.1 Kruskal

Ò
Portions of this section appear in the paper “Refinement with Time - Refining the
Run-Time of Algorithms in Isabelle/HOL” (Haslbeck and Lammich [45]).

Functional correctness of Kruskal’s minimum spanning tree algorithm was verified in
the standard Isabelle Refinement Framework and can be found in the Archive of Formal
Proofs [52]. In an earlier publication [45], we additionally have added the verification
of the running time analysis. In this section I elaborate more on the structuring of the
algorithm verification and focus on the novel running time analysis. I want to illustrate
in detail what mechanisms can be used to decompose the verification into parts and
thus make it manageable.
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10.1.1 Overview

A minimum spanning tree is a concept from graph theory that is a special instance of
a general concept in matroids called minimum weight basis. Our proof development is
structured as follows: first we define the abstract algorithm for minimum weight basis in
matroids (c.f. Figure 8.3b) and verify it. Then we instantiate it with the cycle matroid
for forests in undirected graphs and refine the algorithm with the usage of equivalence
classes. Figure 8.3a shows the last-but-one stage in the stepwise refinement process. In
a last step we fix the vertices to be natural numbers and the domain of the disjoint-set
data structure to be the set {0,. . . ,M}, with M being the maximal vertex in the graph.
After that, we use the implementation of the union-find data structure from the TIICF
to synthesize a concrete algorithm with the Sepref tool.
Provided with a procedure that obtains a list of edges of a graph in linear time,

a O(n logn) sorting algorithm, and an efficient union-find data structure we obtain a
concrete algorithm that calculates the minimum weight spanning forest for the graph
in time O(E logE +M +Eα(M)), with E being the number of edges and M being the
maximal vertex in the graph.
In a first iteration, only the logarithmic bounds for the union-find data structure

were proved for this case-study. Charguéraud and Pottier [21] verified a union-find
data structure with amortized running time O(α(M)) (where M is the size of the
domain of the disjoint-set data structure and α is the inverse Ackermann function) in
Coq. Löwenberg [98] ported that formalization to Isabelle/HOL using the framework
from Chapter 5, and it replaced the less efficient implementation.
I consider it worthwhile to illustrate here in more detail how the verification is struc-

tured. We start from the abstract theory (matroids), form the greedy algorithm, and
prove it correct abstractly. Then, we instantiate it with an instance of the Cycle Matroid
structure and refine an algorithm to an executable Imperative-HOL-Time program.
This case study illustrates that NREST can serve the two desired purposes. First, it

can be used to model abstract algorithms (i. e. the minimum weight basis algorithm)
and reason about their correctness and running time complexity. Second, it allows
specializing the abstract algorithm and refining it to an executable and efficient imple-
mentation that preserves the guarantees for correctness and running time bounds.
Before we delve into the algorithm verification, let us recall some basic theory about

matroids.

10.1.2 Weighted Matroids and Minimum Weight Basis

A matroid (E, I) consists of a finite set E (called the carrier set) and a family I of
subsets of E (called the independent sets) and fulfills the following three properties: first,
the empty set is independent; second, every subset of an independent set is independent;
and finally, the augmentation property. It states that if A and B are two independent
sets and A has more elements than B, then there exists some element x ∈ A − B such
that B ∪ {x} is independent.
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A subset A of E that is not independent (i. e. A /∈ I) is called dependent. If a subset
A of E is independent and adding any element x ∈ E − A would make it dependent,
it is called a basis. That is, a basis is an inclusion-maximal independent set.
If we extend the matroid with a weight function w that maps any element of the

carrier set to an element of a linearly ordered commutative monoid (e. g. integers) we
obtain a weighted matroid. The weight of a subset A of E is defined to be the sum
of the weights of the elements in the subset. A minimum weight basis is a basis with
minimum weight.

Example 10.1.1. The cycle matroid is a well-known instance of the abstract concept,
and also the one we use in this case study. For a graph G = (V, E), the carrier set is
the set of edges and all sets of edges A ⊆ E that do not contain a cycle are deemed
independent. Consequently, dependent sets of edges are those that do contain a cycle,
and a basis in the cycle matroid is a spanning forest.

Suppose we have an additional function w that assigns a weight to each edge in the
graph. Then, a minimum weight basis corresponds to a minimum spanning forest in
the graph G, i. e. a minimum-weight inclusion-maximal subset of the edges that does
not contain a cycle. If the graph G is connected, that forest is actually a tree.

We use the formalization of matroids by Keinholz [68].

10.1.3 Greedy Algorithm
The task of finding a minimum weight basis in a weighted matroid can be solved by
a greedy algorithm: starting from the empty set the algorithm grows the basis by
repeatedly adding one element at a time, at each step selecting the minimum-weight
element which does not make the set dependent if it was added. The only component
of the algorithm that has to do with the matroid is an independence oracle: i. e. a
subroutine that checks whether adding an element to a set keeps the set independent.
The algorithm is depicted in Figure 8.3b. It lives in the locale minimum-weight-basis,

which fixes the carrier set c, its subset of possible elements E, the weight function w
and the time bounds I will mention in the following. In line 2 the algorithms calculates
a list that contains each element of the carrier set once and whose elements are sorted
in ascending order by their weight. The running time tsc is reserved for that first
operation. In line 5 the accumulator set is initialized as the empty set at cost teb. Then
the algorithm iterates over each element e of the sorted list, checks whether adding
e would keep the set independent (line 9), and adds it in case it stays independent
(line 12). Those operations have cost tit and ti respectively. After iterating over all
elements, the accumulator is returned as the resulting minimum weight basis.
The running time of the algorithm consists of the time to obtain the sorted list

and initialize the accumulator with the empty set, |E| times the cost for executing the
independence oracle, and the cost for adding the element to the accumulator.
The correctness lemma for the algorithm mwb_greedy was already mentioned in

Example 8.3.3. We repeat it here:
mwb_greedy ≤ spec min_weight_basis (λ_. tsc + teb + |E| ∗ (tit + ti))
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It can be routinely proved with the automation refine_vcg for specification refine-
ment. The predicate min_weight_basis characterizes a subset F ⊆ E that is a mini-
mum weight basis of for the set of elements E fixed in the locale minimum-weight-basis.

While this algorithm works for any matroid, in our case study we instantiate it with
the cycle matroid and refine it down to executable code.

10.1.4 Refinement to Graphs
For instantiating the matroid structure an abstract undirected graph G is assumed. It
is represented by a set of edges E, a weight function w, and the reachability relation
on vertices (connected F). That relation is is an equivalence relation for each subset
F ⊆ E. The predicate forest characterizes sets of edges F ⊆ E that do not contain
a cycle. Together with some properties on the graph and predicates, we assume one
crucial property to hold:

J forest F; (u, v) ∈ E − F K forest (F ∪ {(u, v)}) ⇐⇒ (u, v) /∈ connected F
It expresses that the query to the independence oracle for adding the edge (u, v) can
be decided by checking whether u and v are connected in the graph induced by the set
of edges F. As connectivity is an equivalence relation, it will later be represented by a
disjoint-set forest and implemented with the union-find data structure.

Using those concepts, the locale minimum-weight-basis can be instantiated. The
derived predicate min_weight_basis characterizes minimum weight spanning forests in
the graph G.

The context that assumes the graph is called minimum-spanning-tree. It additionally
fixes certain time bounds for the basic operations needed for the algorithm that refines
the minimum weight basis algorithm. With those time bounds the locale minimum-
weight-basis can be instantiated by proving the matroid properties for the cycle matroid
and by replacing its parameters with combinations of time bounds fixed in the locale
minimum-spanning-tree. The expression tsc for obtaining the sorted list of the carrier
set is replaced by the sum of get_edgestime and sorttime, which is the time allotted for
getting a distinct list of the edges of the graph, and sorting it. The expression teb for
obtaining an empty basis is replaced by the sum of empty_foresttime and empty_djstime,
which stand for the time used to generate the data structure of an empty forest and
a disjoint-set forest where each element is in its own equivalence class. The running
time reserved for the call of the independence oracle (indep_testtime) replaces tit. For
adding an element to the accumulator the abstract algorithm reserves ti time, this is
replaced by the sum of insert_foresttime and insert_djstime, the time to insert a new
edge into a forest and for linking two disjoint sets in the disjoint-set forest.
The total running time of kruskal then reads the following:
kruskaltime = get_edgestime + sorttime

+ empty_djstime + empty_foresttime
+ |E| ∗ (indep_testtime + insert_foresttime + insert_djstime)

Remember, that this case study is conducted in NREST-enat and Imperative-HOL-
Time. Thus the running time bound is just a number.
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In the contextminimum-spanning-tree the algorithmmwb_greedy is refined to kruskal
(cf. the two algorithms in Figure 8.3). There are three main ingredients for that refine-
ment: first, the accumulator set is refined with a list. Second, a disjoint-set forest is
maintained that represents the connectivity in the graph induced by the accumulator
through the loop. Finally, the independence oracle is implemented by a lookup in the
disjoint-set forest. In Example 8.3.5 we described technical details which infrastructure
is used to prove the refinement. We obtain the following refinement relation:

kruskal ≤ ⇓D Rgraphlist mwb_greedy

Here, Rgraph
list relates a set of abstract edges in the undirected graph with a list of

edge tuples representing them. Example 8.3.5 describes how this refinement can be
automatically proven with the tactic refine_rcg.

10.1.5 Refinement to Executable

At this point the weighted graph is represented by a weight function and a set of
edges, which are represented by abstract unordered pairs of vertices. Furthermore,
some subroutines are only specified but we did not yet provide implementations for
them.
We now fix the representation of an edge to a tuple (x, wxy, y) of two natural numbers

x and y representing its end nodes and an integer wxy representing its weight. A
weighted graph is then represented by a distinct list of such tuples. We assume that
for each edge there is only one element in that list, and the weight is identical to the
weight assigned by the weight function w.
The implementation of the disjoint-set forest will later use maps from the vertices of

the graph to information needed in the data structure. Those maps will be implemented
by arrays with indices from 0 to the maximum vertex number M occurring in the
graph. Thus, we refine the algorithm kruskal one step further to kruskal2, where the
sorting algorithm also calculates the maximum node number and the initialization of the
disjoint set data structure uses that number. The algorithm kruskal2 (Figure 10.1) again
lives in a locale (minimum-spanning-tree2) that fixes time bounds, and instantiates the
locale minimum-spanning-tree that contains the abstract algorithm kruskal. Note that
at this point we have to add implementation details to the abstract algorithm in order
to allow the implementation later. For the monadic programs further up the refinement
chain, we could leave out those details effectively.
Consider the algorithm kruskal2 in Figure 10.1. Here, the domain of the partial

equivalence relation per is denoted by Dom per. Observe that in this refinement step,
the if-branches are swapped. That is because per_comparespec per a b returns True
if the elements a and b are in the same equivalence class, i. e. when the current edge
should not be added to the forest. Note that this breaks lockstep refinement. While it
is straightforward to conduct the proof interactively it is not so clear how to automate
steps like this. Furthermore, we added some more or less obvious assertions that express
facts about the size of data structures. By making them visible as assertions, the Sepref
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1 kruskal2 = do {
2 l ← get_edges;
3 assert (|l| = |E|);
4 (sl, mn) ← sort_edgesspec (λ_. sort_edgestime) l;
5 assert (mn = Max V);
6 per0 ← per_initspec (λ_. empty_djstime) (mn + 1);
7 assert ( |Dom per0| = mn + 1);
8 F0 ← empty_listspec empty_foresttime;
9 s ← return (per0, F0);

10 (per, spanning_forest) ← nfold sl
11 (λ(a, w, b) (per, F). do {
12 assert (a ∈ Dom per ∧ b ∈ Dom per
13 ∧ |Dom per| = Max V + 1);
14 i ← per_comparespec (λ_. indep_testtime) per a b;
15 if i then
16 return (per, F)
17 else do {
18 assert ((a, w, b) /∈ set F);
19 per ′ ← per_unionspec (λ_. insert_djstime) per a b;
20 F ′ ← push_listspec (λ_. inserttime) (a, w, b) F;
21 return (per ′, F ′)
22 }
23 }) s;
24 return spanning_forest
25 }

Figure 10.1: The second refinement of Kruskal’s algorithm using a disjoint-set forest.
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tool can plainly use them to prove the timing side conditions of the synthesis rules for
basic operations. We will see an example soon.

Implementation Locales As we might later plug in different implementations for ob-
taining the distinct list of edges, sorting and disjoint-set forest we use Isabelle’s locale
mechanism to form components that assume those implementations and can be com-
bined to synthesize an algorithm for Kruskal.
First we come up with a locale for the sorting algorithm. We assume to have an

Imperative-HOL-Time program sort_edgesimpl and a running time function sorttime
that maps the length of a list to an upper bound on the running time of that algorithm.
Then we assume the following synthesis rule:

(sort_edgesimpl, sort_edgesspec t)
∈ [λxs. sorttime |xs| ≤ t |xs| ]

(〈edgeassn〉listassn)k → (〈edgeassn〉listassn × natassn)

Here, the assertion 〈A〉listassn relates a list of elements to another list, where the el-
ements are refined with assertion A. The assertion edgeassn relates an edge with a
triple representing its end nodes and weight. It essentially is a lifting of the refinement
relation Redgetuple to assertions. Note that 〈idassn〉listassn = idassn. The monadic program
sort_edgesspec t xs specifies a computations that sorts the list xs consisting of edge tu-
ples (x, wxy, y) in ascending order by the second component, calculates the maximum
value of the first and third components, and returns both while incurring cost at most
t. The implementation sort_edgesimpl works on lists, and the rule is able to refine the
specification if it reserves enough time: the allotted time t |xs| needs to be at least the
time needed by the implementation sorttime |xs|.
Second, we form a locale for the disjoint-set forest, or partial equivalence relation.

We come up with specifications for the following operations: per_initspec n to initialize
a partial equivalence relation with the numbers 0 to n − 1 each in one equivalence
class, per_comparespec for checking whether two elements are in the same equivalence
class, and per_unionspec for unifying the equivalence classes of two elements. Then,
the locale fixes a refinement assertion that relates some a partial equivalence relation
on natural numbers with a type per representing the partial equivalence relation on
Imperative-HOL-Time’s heap. For each of the above mentioned operations the locale
fixes a program and a running time function, and assumes a synthesis rule. For instance,
initialization has the program per_init :: nat → per Heap, the running time bound
per_inittime :: nat → nat and the following synthesis rule:

(per_initimpl, per_initspec t) ∈ [λl. per_inittime l ≤ t l] (nat_assn)k → is_perassn

This rule ensures that if the specification reserved enough time, per_initimpl n refines
per_initspec t n. That is, given a natural number it returns a data structure that refines
(via the refinement assertion is_perassn) the partial equivalence relation that contains
singleton equivalence classes for the numbers 0 to n − 1. It is not an equivalence
relation because it is not idempotent for elements larger than n − 1.
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For merging of two equivalence classes, we assume the program per_unionimpl, the
function per_uniontime and the following synthesis rule:

(per_unionimpl, per_unionspec)
∈ [λ(R′, a′, b′). a′ ∈ Dom R′ ∧ b′ ∈ Dom R′

∧ per_uniontime |Dom R′| ≤ t R′]
is_perassnd → natassnk → natassnk → is_perassn

In the precondition we have to ensure that the elements to be joined actually are in
the domain of the data structure and that enough time was reserved by the abstract
operation.
For the third locale we extend the locale that assumes a graph to additionally assume

to have an implementation that computes a distinct list of the edges of the graph in the
tuple representation we described in this subsection. In essence, we fix an Imperative-
HOL-Time program get_edges and the following synthesis rule:

(get_edges_impl, get_edges t)
[∈ λ_. get_edgestime ≤ t ()]

unit_assnk → list_assn (nat_assn × int_assn × nat_assn)

Forming those locales allows us to postpone the decision of how to implement cer-
tain subprocesses and data structures, but still makes it possible to synthesize an
Imperative-HOL-Time program using Sepref. As a last step, when instantiating (in-
terpreting in Isabelle-speak) the locales we need to provide Imperative-HOL-Time pro-
grams with their respective running time bounds and prove the respective synthesis
rules.

Combining Locales Now for synthesizing a program for kruskal2 we combine the
three locales from above. We have to additionally add conditions that ensure that the
abstract algorithm reserved enough time for the respective operations. Recall, that
empty_pertime was the time reserved for initializing the disjoint sets data structure.
As this has to be at least as much as the assumed implementation uses, we add the
following assumption:

per_inittime (Max V + 1) ≤ empty_djstime
where Max V describes the maximum vertex number in the graph. As the elements
of the union-find data structure is 0-indexed we need to cover Max V + 1 elements.
We need to add such constraints for getting the list of edges, sorting and the other
operations of the disjoint sets data structure. This shows that the reserved amounts
of time now have to respect lower bounds in order to allow implementations to be
generated. Until now those numbers have only been meaningless place holders. When
getting nearer to the implementation they have to respect more properties, in particular
they have to respect lower bounds.

Synthesis In the context of this locale we can use Sepref to synthesize an algorithm
for kruskal2. As the number of edges in the final forest is not known in advance and
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elements need to be pushed to the resulting list in line 20 (in Figure 10.1), the list is
implemented efficiently by dynamic arrays. Sepref has to check timing side conditions
in the synthesis process: e. g. for the initialization of the union-find data structure in
line 6 the property per_inittime (mn + 1) ≤ (λ_. empty_djstime) (mn + 1) has to be
checked. It can be discharged with the assumptions from the locale and the fact from
the assertion in line 5. For the operation in line 19 that unifies the equivalence classes
of two elements the side condition per_uniontime |Dom per| ≤ (λ_. insert_djstime) per
has to be checked. It can be discharged with the respective locale assumption and the
fact from the assertion in line 12 and 13. We then obtain the synthesis rule for kruskal2,
which is combined with its refinement lemma and the correctness lemma for kruskal.
Already at the current stage we can extract a Hoare triple for the synthesized pro-

gram, which is dependent on the assumed Hoare triples for the subprograms and their
running times:

< $ kruskaltime>
kruskalimpl

<λr. (∃Ara. 〈edgeassn〉daassn ra r ? ↑(min_weight_basis ra))>

Here, the refinement assertion 〈A〉daassn ra r refines an abstract set ra with a dynamic
array, where the elements are related by the refinement assertion A.1 The predicate
min_weight_basis characterizes subsets F ⊆ E of the edges of the graph G that form
a minimum weight spanning forest. Note that the program does not have explicit
arguments, as they are captured in the implementation locale. Also kruskaltime actually
depends on the number of edges |E| in the graph, and the largest vertex M.

Implementing the Locales But remember, that we still assume to have implementa-
tions for get_edges, sorting and the partial equivalence class. As a final step we have
to provide implementations for that. This is achieved by interpreting the locales with
concrete implementations.

I illustrate this for with the union-find data structure: in Section 5.5.2 we described
how we obtained Hoare triples for implementing the union-find data structure. For
the initialization, for example, we get the program uf_initimpl and the time function
uf_inittime. We feed them into the locale and obtain the goal to prove the synthesis
rule for uf_initimpl and per_initspec. Let the representation predicate for union-find be
is_uf. We can reduce proving the synthesis rule to proving a Hoare triple using the
equivalence mentioned in Section 9.1, which gives us the following proof obligation:

< $ uf_inittime n> uf_initimpl n <λr. is_ufassn r {(v, v)| v ≤ n}}>

This lemma can be proved with what we already established in Section 5.5.2.
Similarly we provide implementations for the other union-find operations and the

sorting locale. In the end we have to get an input graph. We assume to get a list
of distinct edges L, which represent an abstract graph. Then, the implementation of
get_edges just emits that list. We can plug that operation into the locale and finally

1This assertion is essentially dynaassn from Example 5.5.1 with an extra refinement for the elements.
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can use kruskalimpl together with the implementations of the subprograms. As the
running time bound for the synthesized Kruskal algorithm (kruskaltime (|E|, M)) only
depends on the size of the edge set and the maximum vertex number and otherwise
is free from parameters, we can also examine its running time complexity. Using the
union-find data structure mentioned in Section 5.5.2 we get:

kruskaltime ∈ Θ2(λ(E, M). E log E + M + E α(M))

Here the first summand covers the sorting of the edge list, and also the linear time for
obtaining the edge list, the constant time initialization of the empty forest list and the
linear time for pushing of elements to the forest list. The second summand pays the
initialization of the union-find data structure, and the last summand covers the union
and compare operations that are executed for each edge in the worst case.

Recap Let me recapitulate what we have just seen. Provided with theory about
matroids, we verified also the running time analysis of the greedy algorithm on that
abstract level. After that we instantiated it with the specific form for the cycle matroid
and refined the independence oracle to be implemented via a connectivity check in the
graph. That check can be realized by maintaining a disjoints set data structure and
executing checks on that. Implementing that data structure by union-find and refining
other subprograms accordingly yields an executable implementation. At any stage of
that stepwise refinement one could intervene and take another path, e. g. instantiating
the greedy algorithm for a different matroid structure, or using another implementation
of union-find (as we did) or changing the representation of the independent set that
gets grown to a basis.
We use locales and their free variables as place holders for running times that are

yet to be determined. When refining some operation we also refine those place holders
by substituting them with sums of new and more basic place holders that come from
the locale in which we interpret the original locale. In that way, a locale serves as
a currency system environment that reserves time functions as implicit currencies.
When interpreting those locales from another foreign currency environment, one has
to determine what value those foreign currencies have in terms of the current domestic
currencies. In fact it evolves a stacking of several locales and “currency exchanges”.

10.1.6 Lessons Learned

Separation of Concerns What we have seen in this case study is an example where
we separated the abstract analysis of an algorithm from the implementation details.
The combinatorial concept that generalizes minimum spanning trees is a concept in
matroids. I think this use case shows that interesting algorithmic challenges of software
verification can be separated cleanly and tackled individually, while living in the same
environment and being combined to obtain a final correctness lemma (the Hoare Triple)
of a synthesized algorithm.
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Reuse of formalizations without running time analysis This case study shows that
the correctness arguments can be plainly reused from earlier verifications that focus
on functional correctness only. Adding the proofs of the running time claims does not
interfere with the proofs for functional correctness. They only evoke additional verifi-
cation conditions and leave the ones concerned with functional correctness unchanged.
However, it is necessary to add more assertions in the algorithms that express facts
about the sizes of the data structures used. This reasoning is mostly done on the
abstract level, but the information has to be passed to the concrete algorithm via as-
sertions. In the Sepref translation phase, this information is needed to discharge the
preconditions of the hnr predicates, which demand that enough time has been reserved
to execute the step.

Improved Union-Find Data Structure For the first iteration we wanted to showcase
the mechanism, how to use NREST and the Sepref tool for the running time analysis
of larger algorithms. We only proved the logarithmic running time bound and came
up with the (ICF-style [89]) locale to later facilitate plugging in other implementations
of union-find. Later, Löwenberg ported the Coq formalization of Charguéraud and
Pottier [21] that proved the improved O(α(n)) bound to Isabelle/HOL. It was easy
to use that one instead of the one with the worse running time complexity proof. As
mentioned before, he uncovered a running time bug in the original Imperative-HOL-
Time implementation that prohibited proving the better bound: it did not compress
on union but only on find. The tighter running time bound was proven for the repaired
program. This shows that even verifying the functional correctness does not necessarily
prevent running time bugs.

10.2 Dynamic Arrays in the Abstract

In this section I will present a case study that shows that amortized data structures
can also be proven correct on the abstract NREST level.
I have already presented the verification of dynamic arrays for Imperative-HOL-

Time in Example 5.5.1. There the bottom-up approach was used: first the amortized
data structure dynamic array was directly implemented in the target language and its
correctness and amortized running time was verified with the automation of Imperative-
HOL-Time. This includes a component that reasons about time credits, which I have
described in Section 5. That development is specific to Imperative-HOL-Time and
cannot be reused for other program logics. Also, it does not take advantage of the
top-down approach of the refinement framework.
For LLVM-Time we did not adapt the special tactics for reasoning about time credits,

but only added the simple running time consumption of some basic operations. As
described in Chapter 6, a thin layer is added on top of the shallow LLVM semantic and
only rules for basic operations are proved. As much as possible of the verification of
more involved data structures and algorithms should be moved to the abstract NREST-
level and the proof automation on that level should be used. That way, those algorithms
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are largely independent from the target language and can be reused for several back
ends. In the overview of the IRF (Section 7.2) I have mentioned that while the back
ends evolve, the monadic language is more stable. Furthermore, it is beneficial to
separate concerns, and prove the correctness of the algorithmic idea separately from
the implementation details.

This certainly has limitations: pushing reasoning to the abstract seems not to be
possible for more involved data structures that use pointer reasoning, as NREST does
not support that. But we still can lift amortized complexity reasoning to the abstract.
This case study shows how that works and what its limitations are.
For presentation purposes I omit some size side conditions that are vital for the

implementation in LLVM. I will comment on that at the end of this section.
Note that because in this case study we target LLVM-Time we work with NREST-

ecost and resource currencies. In fact, the mechanism is general enough that it also
works for the NREST-enat monad. For presentation purposes I will present the theory
for the instance NREST-ecost.

10.2.1 Specifying the Operation on Lists
The operation to focus on in this section is the amortized constant time push operation
on dynamic arrays. The corresponding abstract operation is appending an element to
the back of a list. We routinely define the specification in NREST:

push_listspec t = spec [xs · [x] 7→ t ]

The resource bound is left as a parameter to be specified later. In the end, we want to
obtain a synthesis rule that can directly refine the abstract list operation to a concrete
LLVM-Time implementation with a constant running time. In Example 5.5.1 and
Example 9.1.1 we have seen the verification in Imperative-HOL-Time and the synthesis
predicate that can be obtained from it. This case study takes a different route by
verifying the abstract data structure on the NREST-level and then refining it down
to LLVM-Time. Regardless, we want to obtain a similar result: a synthesis rule that
refines push_listspec with constant time. Formally the result should look like this:

(da_pushimpl, push_listspec arraylist_pushcost)
∈ (〈A〉daassn)d → Ak → 〈A〉daassn

Here, the refinement assertion 〈A〉daassn relates an abstract list to a concrete LLVM
representation of a dynamic array (da) with the elements of that list being refined with
refinement assertion A. Note that this refinement assertion will contain time credits
that represent the potential of the data structure. The LLVM program da_pushimpl
refines the push operation on a dynamic array. To the user the internals of the data
structure, i. e. the length, the capacity and the implementation of the list, are irrelevant.

10.2.2 Modeling Dynamic Lists
We model dynamic arrays (da) first abstractly by dynamic lists (dl). They consist of
a carrier list cs and two numbers l and c representing the length and the capacity of
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the dynamic list. A list as is refined by a dynamic list (cs, l, c), if the first l elements
of cs form the list as. Furthermore, in a valid dynamic list the length is at most the
capacity, the capacity is the length of the carrier list and the carrier list is non-empty.
Formally:

((cs, l, c), as) ∈ Rlistdynlist ←→ take l cs = as ∧ l ≤ c ∧ c = |cs| ∧ |cs| > 0

Using this representation, we can now specify a push operation on dynamic lists. A
push of an element x to a dynamic list (cs, l, c) will result in a valid dynamic list that
contains the same elements as before and adds the element x at the end. As the dynamic
list may have reached its capacity, it may be necessary to increase the capacity. We
can state the intuition in the following NREST-program:

dl_pushspec t (cs, l, c) x = spec (λ(cs′, l′, c′). take l cs′ = take l cs ∧ cs′ ! l = x
∧ l′ ≤ c′ ∧ c′ = |cs′|
∧ l′ = l + 1 ∧ c′ ≥ c) (λr. t)

Here, we first only specify the functional correctness, and leave the cost t as a parameter.
We already fix that the program has constant cost, independent from the result and
the input. The specification requires that the resulting dynamic list contains all the
elements as before and adds x at the end. It is not specified whether or how much the
carrier list has to increase.
We now can show that the push operation on dynamic lists refines the push_list

operation on lists:

(dl_pushspec t, push_listspec t) ∈ Rlistdynlist → Id → Rlistdynlist

Pushing element x to a dynamic list yields a valid dynamic list that represents the
abstract list with element x at the end. Note that, the time specified with t represents
the amortized costs of that operation. It is agnostic to the exact implementation of the
operation.

Refining the push operation Now let us refine the push operation with the abstract
algorithmic idea. If we run out of capacity, we double the size of the carrier list and push
the element afterwards. First we specify the doubling and the basic push operation.
The first operation doubles the carrier list while keeping the first l elements of the

carrier list the same. The cost is specified to be linear in the capacity c of the original
dynamic list. We will have to allocate 2 ∗ c space at cost linear in c and have to copy at
most c elements from the old to the new carrier list. We use a new currency dl_doublec
to capture the constants that will arise in implementations. Formally we specify:

dl_doublespec (cs, l, c) = do {
assert (l ≤ c ∧ c = |cs|);
spec (λ(cs′, l′, c′). take l cs′ = take l cs ∧ |cs′| = 2 ∗ |cs|

∧ l′ = l ∧ l ≤ c′ ∧ c′ = |cs′|)
(λ_. $dl_doublec c)

}
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Note that, while we will use the double operation only if the capacity is reached (l = c),
we do not assert this in the specification. The specification works also in the case when
there is still space left. Then the cost for copying the elements will not be tight, but
over-approximated.
The second operation is to push an element to a dynamic list, given we already know

that there is enough space. We write the element x to position l of the carrier list and
increase the length l. This operation takes cost for the addition and the write into the
list.

dl_push_basicspec (cs,l,c) x = do {
assert (l < |cs|);
cs′← list_setspec (λ_. $list_set) cs l x;
l′← return (l +$add

1);
return (cs′, l′, c)
}

Here, the program return (a +T b) returns the result a + b incurring cost T.
At this point we still leave open how we will implement the carrier list. As long as

the set operation will have constant time, we will be able to prove the dynamic list
correct. Later we will use LLVM arrays to implement those lists.

Now let us formulate the algorithmic idea of the push operation for dynamic lists:
if there is space left, we simply use dl_push_basicspec to push the element into the
dynamic list. If the capacity is reached, we first double the carrier list size with
dl_doublespec and then push the element.

dl_push (cs, l, c) x = do {
assert (l ≤ c ∧ c = |cs| ∧ 0 < |cs|);
ifc l <$less

c then do {
dl_push_basicspec (cs, l, c) x

else do {
(cs′, l′, c′) ← dl_doublespec (cs,l,c);
assert (l′ = l ∧ l < c′ ∧ c′ = |cs′| ∧ take l cs = take l cs′);
dl_push_basicspec (cs′, l′, c′) x

}
}

While we later call dl_push only from valid dynamic lists, we add seemingly trivial
assertions to facilitate further refinement. When refining dl_push we can simply use
the facts from those assertions, and do not need to restrict in what context the operation
is used.
There is a trade-off between making abstract algorithms verbose by adding too many

assertions and additional proof burden by using too few assertions. During development
of a refinement chain one often tries to use as few as possible but as many as necessary to
allow to automatically solve the side conditions emitted by the VCG during a refinement
proof. Usually, to facilitate the automatic proof of a refinement on one level, one adds
assertions that express facts about the abstract concepts to the program one level above.
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But those assertions then have to be proved in the refinement proof of the abstract
program. Often that are simple facts on that level and they are proved automatically.
Using assertions allows to transport knowledge down the refinement chain.
Note that the cost of the push operation incurs the raw, i. e. non-amortized, costs

of the operation. Let us examine what costs the two cases incur. If there is capac-
ity left, we have to pay for the if-branch and its guard as well as the addition and
the list update for the push. This can be summarized in the constant costs push in-
curs: push_overheadcost = $less + $if + $add + $list_set. In the other case, we have to
additionally pay for the doubling: push_overheadcost + $dl_doublec c. Thus, the worst-
case cost of the operation is not constant, but rather linear in c because of the double
operations.
As a next step we will see how we can model the potential method on the NREST

level and prove that the abstract push operation has amortized constant time.

10.2.3 Amortized Analysis

The potential method for amortized complexity has the following well-known inequality
that relates the raw cost of an operation with its advertised cost and the potential of
the data structure before and after an operation.

raw_costi ≤ (Φi + advertised_costi) − Φi+1

Before executing an operation we can get the cost credits from the potential of the data
structure and add it to the cost that is advertised to the caller of the operation. Then
we execute the operation incurring the raw costs, and afterwards we need to give back
the cost credits for the potential of the resulting data structure. Then we can execute
several operations on the data structure one after the other and use telescoping to
obtain the following inequality∑

0≤i<n raw_costi ≤
∑

0≤i<n (Φi + advertised_costi) − Φi+1
= (Φ0 +

∑
0≤i<n advertised_costi) − Φn

≤
∑

0≤i<n advertised_costi
Where we assume that each raw_costi and Φi is non-negative. For the last inequality we
assume that the potential is 0 in the beginning, i. e. Φ0 = 0. The inequality expresses
that the real costs can be upper bounded by the sum of the advertised costs.
To model the subtraction in the amortization inequality we cannot simply use elapse

as we do not necessarily allow for negative costs. Instead, we introduce a new combi-
nator reclaim and formulate the amortization inequality in the NREST-monad in the
following way:

mraw ds ≤ reclaim (elapse (madv ds) (Φ ds)) (λds′. Φ ds′)

Here the raw monadic program mraw executed on some data structure has to refine
the program that first consumes the potential of the data structure, then executes the
monadic program with advertised costs, and in the end reclaims as much costs as the
resulting data structure needs for its potential.
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The combinator reclaim subtracts cost from a monadic program, and fails if it would
get negative. Note that this approach only works if the resource type provides a minus
operator, as ecost does in our case.2 Here is the formal definition:

reclaim :: (α, ecost) NREST → (α ⇒ ecost) → (α, ecost) NREST
reclaim fail t = fail
reclaim (res M) t = Sup { if t x ≤ t′ then res [x 7→ t′ − t x]

else fail | t′ x. M x = Some t′ }
For each possible result x of M the combinator checks whether the consumed time t′
is at least the reclaimed time t x for that result. This ensures not falling into the
negative when subtracting. If one of the inequalities does not hold, the whole program
reclaim m t fails.
Using reclaim we can state the theorem that dl_push refines dl_pushspec using the

potential method. Here is the amortization refinement lemma:
dl_push (cs, l, c) x
≤ reclaim (elapse (dl_pushspec push_advcost (cs, l, c) x) (Φdl (cs, l, c))) Φdl

We did not yet specify what push_advcost and Φdl are, and we can leave them as free
variables to explore what properties they need to fulfill. The generated verification
conditions regarding functional correctness can be discharged automatically and we
are left with those that are concerned with the cost analysis:

push_overheadcost ≤ push_advcost + Φdl (cs, l, c) − Φdl (cs′, l + 1, |cs|)
push_overheadcost + $dyn_list_doublec (|cs|)
≤ push_advcost + Φdl (cs, l, |cs|) − Φdl (cs′, l + 1, 2 ∗ |cs|)

For readability I have left out the preconditions of the goals. The first one originates
from the first branch where there is enough capacity: the length increases and the
capacity stays the same. The second one stems from the second branch where we need
to double the carrier list: here the length increases and the capacity doubles.
First consider the latter condition: the raw costs contain the overhead to push the

element plus the cost to double the carrier list, which is linear in the capacity (c = |cs|).
We can pay for that with the advertised cost and the difference in potential. One way
of achieving that is that the potential Φdl is 0 after the doubling, i. e. when the length is
at most half the capacity, and contains the necessary resource coins when the capacity
is reached (l = c). The potential function we already have used in Example 5.5.1 works
here again: Φdl (cs, l, c) = $dl_doublec (2 ∗ l − c). For l = c we obtain c coins, and for
2 ∗ l ≤ c we obtain 0 coins as we cut off negative values. Note that we use the currency
$dl_doublec to mean per-element costs instead of per-operation costs. That is, one coin
stands for how much a double operation costs per element.

Consider now the first inequality with the potential that we have just chosen. If we
push an element, the length increases and thus the potential increases by two dl_doublec

2Alternatively one could pull the reclaim to the left of the inequality and model it with a consume.
But we would like to further refine raw programs and use transitivity of the refinement relation to
easily compose refinements. That is why we want to have only the raw program on the left of the
refinement statement.
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coins. So additionally to the overhead costs of push we need to spend two additional
coins to account for the potential difference and thus obtain a feasible value for the
advertised cost: push_advcost = push_overheadcost + $dl_doublec 2. In particular, we
can see that the advertised cost is constant.
Choosing the potential and the advertised cost in that way lets us prove the correct-

ness lemma between dl_push and dl_pushspec involving the potentials. To prove the
lemma, one can first pull the consume and elapse into the specification. This involves
proving that the sum of pre potential (Φ ds) and the advertised cost (ta) is at least the
post potential (Φ ds′). Then, the goal has the standard form for specification refinement
and can be routinely solved by refine_vcg. It essentially proves that program dl_push
has to fulfill the functional specification and take less resources than the remaining
difference ((Φ ds + ta) − Φ ds′).

This concludes the verification on the NREST-level. We have shown that we can
use the potential Φdl to prove dl_push having amortized constant time. We can go on
proving correct other operations on the data structure with amortization, e. g. lookup,
write within bounds, and also initialization. That includes to show that they respect
the change of potential. We can also apply telescoping on this level and sequentially
compose several reclaim–elapse pairs on the same data structure following the intu-
ition above.
It is left to show that we can actually implement the operation with a concrete pro-

gram and obtain the desired synthesis rule mentioned at the beginning of this section.

10.2.4 Moving Potential to Time Credits

Now we have obtained a refinement in the reclaim–elapse pattern. In order to obtain
the desired synthesis rule, we need to move the potential from the abstract NREST-
program into the pre- and post-heap in the synthesis rule. This only leaves the adver-
tised cost in the abstract program.
We now present two rules that allow to move credits in a synthesis rule between the

heap and the NREST program. First, we give a rule that moves the post-potential
that is captured in a reclaim combinator to the post-heap. More specifically we will
integrate the potential using time credits into the refinement assertion relating the
abstract and concrete result of the computation. Second, we prove a rule that moves
the pre-potential that is captured in an elapse combinator to the pre-heap of the
synthesis rule.
Intuitively, the resource usage of the abstract program m in a synthesis rule is the

specified advertised time for the concrete implementation. If we look closer into the
definition of the synthesis predicate (cf. Section 9.1.1 or rather Section 9.2.2) we see
that this abstract cost ca pays together with the resource credits c in the pre-heap for
the cost (say t) of the program m† and the credits c′ that need to be stored on the heap
to make the postcondition true. Additionally, we can discard surplus resource credits
with the garbage collection assertion >>. Thus, morally we have c + ca ≥ t + c′.
I now present the two rules for moving credits from reclaim and elapse into the

synthesis predicate.
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On the one hand, the meaning of a non-failing program m = reclaim m′ T is that
each result of m′ incurs more than T cost and that this cost can just be reclaimed and
the program m then reserves less time. More formally, it expresses that each result x of
m′ incurs more time than T x and m has the same results as m′with T x subtracted from
each of the costs. Let c′a be the cost of m′ for the abstract result ra, with c′a ≥ T ra.
Consequently, we have ca = c′a − T ra, which we can plug into the inequality from
above and obtain: c + (c′a − T ra) ≥ t + c′. We can now move that reclaimed time
to the right hand side and put it on the post-heap: c + c′a ≥ t + (c′ + T ra). We can
formulate this intuition as a rule on hnr:

J nofail m′ =⇒ nofail (reclaim m′ Φ);
hnr Γ c Γ′ A (reclaim m′ Φ K
=⇒ hnr Γ c Γ′ ([Φ]A) m′

Here, the operator [Φ]A r ra = $Φ ra ? A r ra adds the potential as time credits de-
pending on the abstract result to an assertion. The first premise of the rule essentially
states that Φ can be safely subtracted from m′. Then, if we can prove the synthesis rule
for m we can move the reclaimed resources to the refinement assertion for the result
and obtain a synthesis rule for m′.
On the other hand, the meaning of m = elapse m′ T is that we spend T more re-

sources than the computationm′. That is for the abstract result ra we have ca = ca′ + T,
which we can plug into the equality from above, and get: c + (ca′ + T) ≥ t + c′. We
can shift that to the pre-heap and obtain: (c + T) + ca′ ≥ t + c′. We can formulate
that as a rule on hnr.

finite_cost t =⇒ hnr Γ m† Γ′ R (elapse m′ t) =⇒ hnr ($t ? Γ) m† Γ′ R m′

where finite_cost t expresses that the resource function t is finite everywhere, i. e. all of
the currencies in t have a finite amount. From a synthesis predicate with a consume, we
can obtain a synthesis predicate for m′ that moved the surplus cost into the pre-heap.
Note that we could only prove this rule for finite cost t.

Combining those two rules, we can convert a synthesis rule with a reclaim–elapse
abstract program into a synthesis rule that moves the potentials into the refinement
assertion of a data structure in the pre-heap and the refinement assertion for the result:

(m†, λ(x,r). reclaim (consume (m x r) (Φ x)) Φ) ∈ Gd → Rk → G
=⇒ (m†, m) ∈ ([Φ]A)d → Rk → [Φ]A

I call this rule an amortization synthesis rule. Note that I have dropped the two side
conditions for simplicity.

10.2.5 Obtaining a Synthesis Rule

In order to obtain the desired synthesis rule, we need to provide an implementation and
connect it to the program dl_push. Observe that dl_push lives in the currency system
of dynamic lists and not of LLVM currencies. We need to refine it to some abstract
program da_push that fixes the way we implement the carrier list to arrays and refines
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all operations to operations we have synthesis rules for. This involves exchanging the
currencies from dynamic lists to LLVM currencies via some exchange rate Eda. For
presentation purposes we skip the details of that part and assume we come up with a
program da_push and a suitable refinement da_push dl x ≤ ⇓C Eda (dl_push dl x).

Furthermore, let 〈A〉da_rawassn be the refinement assertion that relates a concrete
representation of a dynamic array (e. g. a triple of an array and two words for the length
and capacity) — parameterized with the refinement assertion A for the elements of the
array — with a dynamic list. Further, we assume that we have synthesized an LLVM
program da_pushimpl that refines da_push, with the following synthesis rule:

(da_pushimpl, da_push) ∈ (〈A〉da_rawassn)d → Ak → 〈A〉da_rawassn
Now we can combine the currency refinement rule for da_push and the amortization

refinement rule for dl_push and obtain to the following refinement:
da_push dl x
≤ reclaim (elapse (dl_pushspec push_concrete_advcost dl x) (Φda dl)) Φda

Where the currency refinement was already distributed over reclaim and elapse,
which yields two following two cost functions: push_adv′cost = ↓C Eda push_advcost
and Φda dl = ↓C Eda (Φdl dl).
We can now combine that refinement rule with the synthesis rule from above. Note

that the refinement does not involve data refinement, and thus does not have any
attains-sup side conditions (cf. Section 9.2.4). We obtain the following synthesis rule:

(λ(da′, x′). da_pushimpl da′ x′,
λ(dl, x). reclaim (elapse (dl_pushspec push_adv′cost dl x) (Φda dl)) Φda)

∈ (〈A〉da_rawassn)d → Ak → 〈A〉da_rawassn
This form fits the precondition of the amortization synthesis rule, and we can apply
it to move the elapsed and reclaimed resources to the pre-heap and the refinement
assertion for the result respectively.

(λ(da′, x′). da_pushimpl da′ x′, λ(dl,x) dl_pushspec push_adv′cost dl x)
∈ ([Φda]〈A〉da_rawassn)d → Ak → [Φda]〈A〉da_rawassn

At this point we already have established a refinement between the push operation on
dynamic lists dl_pushspec and the implementation on dynamic arrays da_pushimpl. We
could extract a Hoare triple from the synthesis rule that shows the correctness of the
implementation and the amortized constant running time.
As a last step, we hide the intermediate concept of dynamic lists and obtain a re-

finement between the list operation and the implementation on dynamic arrays. First,
consider the data refinement between dl_push and push_listspec. We repeat it here:

(dl_pushspec T, push_listspec T) ∈ Rlistdynlist → Id → Rlistdynlist

We can apply this data refinement to the synthesis rule above, and use the fact that
dl_listrel is single-valued3 to solve the sup-attains side condition. Then, we obtain the
final synthesis rule:

3That is, every dynamic list has at most one corresponding abstract list.
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(da_pushimpl, push_listspec push_adv′cost) ∈ (〈A〉daassn)d → Ak → 〈A〉daassn

Where 〈A〉daassn relates a list with a dynamic array, where assertion A relates the
elements. This refinement assertion combines the refinement relation dl_listrel, the
raw refinement assertion 〈A〉da_rawassn and the augmentation with the time credits
containing the potential. Formally we define:

〈A〉daassn as al = ∃dl. [Φda](〈A〉da_rawassn) dl al ? ↑((dl,as) ∈ dl_listrel)

Once we have the last synthesis rule, we can cut out the whole reasoning with the
combinators reclaim and elapse and inspect the rule on its own. For a user of the rule,
only the constant advertised cost is visible in push_adv′cost and the whole amortization
is hidden and happens under the hood. The refinement assertion daassn serves as a
black box for the user. It is not transparent whether it is an amortized data structure,
and can be treated like a normal one.

10.2.6 Recap

Let me sum up how the development process of a data structure with amortized running
time was structured. I indicate the terms in this case study that correspond to the
general concepts by adding them in brackets.
First, the operation (push_listspec T) on the abstract data type (list) is defined with

a parameter T as time bound. Next, the abstract representation of the data structure
(dynamic list) and a refinement relation with the abstract data type (Rlistdynlist) is de-
fined. Then, the operation on that representation (dl_push_spec T) is defined and the
refinement of the abstract operation is proved. The programs involved until now have
flexible cost functions and represent amortized costs.
Second, the algorithmic idea is formulated by implementing the operation (dl_push)

on the data structure. To implement the data structure, typically simpler data struc-
tures and operations on them are used (in our example lists). At this point it is still
unspecified how those data structures are implemented, but they already have assigned
costs in currencies specific to the data structure (e. g. list_set and dl_doublec). The
cost of that program is a raw cost that is non-amortized, and typically differs for differ-
ent cases, which will be leveled out by amortization. Now, an amortization refinement
lemma between the specification (dl_pushspec) and the operation (dl_push) is set up.
Here, the amortized costs and the potential function have to be given. Interactive proof
can help by extracting the necessary conditions, but concrete timing functions need to
be found manually.4
Next, the operation needs to be refined into a program (da_push) using LLVM

currencies and only subprograms that come with suitable synthesis rules. Also, a
concrete implementation (da_pushimpl) with a synthesis rule need to be established.
That program operates on a raw LLVM data structure that refines the abstract data
structure via a refinement assertion (da_rawassn).

4One could imagine using a semi-automatic procedure with templates to find candidates, though. See
Carbonneaux’s work on automated amortized resource analysis [17].
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Finally, the synthesis rule can be composed with the currency refinement, the amor-
tization refinement, and the data refinement to obtain the synthesis rule that connects
the LLVM implementation(da_pushimpl) with the abstract operation (push_listspec T).
The data and amortization can be collapsed into a single refinement assertion (daassn).

10.2.7 Reflections

While this methodology seems to be overkill for proving a data structure as simple
as dynamic arrays, it actually shows which parts of the development there are and
separate them to show which concerns can best be tackled on which level. The general
mantra is to always prove properties of algorithms as much in the abstract as possible.
For example the derivation of Φ and the advertised costs of the push operations is
quite abstract and not covered under implementation details. Adding those can be
postponed.
I believe that other amortized analyzes can follow the same pattern, and more in-

volved case studies will show whether this structuring makes sense. A direct application
would be to lift the Imperative-HOL-Time verification of union-find by Löwenberg [98]
to the NREST level, reestablish the result for Imperative-HOL-Time and get a similar
result for LLVM-Time. That is already possible, as LLVM-Time provides the only
necessary basic data structure: arrays.
The limits of that approach might be reached when amortization happens at the level

of pointer structures. This cannot be modeled at the NREST level easily. However, it
might be possible to model the pointer structure as a general graph or a relation, and
then reason about that in the abstract realm.
Moving the verification from a specific program logic to the abstract NREST-level

allows to reuse parts of the verification with several back ends. At least the the proofs
for establishing the reclaim–elapse pattern can be reused. They are independent from
the back end. Also the theory about how to push resource usage from the reclaim–
elapse program into the heaps can be adapted for other program logics.
As mentioned at the beginning of this section, for presentation purposes I have left

out size constraints that are necessary to avoid overflows in the LLVM implementation.
When doubling the list we have to make sure that the multiplication of the capacity
with 2 does not lead to an overflow. We can restrict this by adding a size constraint to
the synthesis rule demanding the length of the list may at most be half of MAX_INT
before pushing an element to it. In a program that uses that operation, one then
has to add assertions before those invocations that help the Sepref tool to discharge
the respective size constraints. Those size constraints then can be propagated to the
precondition of the program. For example, a depth-first search that uses a dynamic
array to represent its waiting list might have an additional size constraint restricting
the number of edges in the graph to MAX_INT / 2.

In the future work section of Chapter 5 I have mentioned that amortization via time
credits can be used to model the running time analysis of dynamic programming (both
bottom-up and top-down). I believe that using the methodology of this section one
can also push the analysis of dynamic programming algorithms to the abstract level.
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Maybe one could even combine the memoization monad of Wimmer et al. [134] with
the NREST monad and automatically get memoized NREST-programs that then can
be synthesized to imperative code.

10.3 Sorting Algorithms

Ò
Portions of this section appear in the paper “For a Few Dollars More – Verified
Fine-Grained Algorithm Analysis Down to LLVM” (Haslbeck and Lammich [44]).

In this section, I present the application of our framework to the introsort algo-
rithm [104]. The verification of its functional correctness [80] is used as a basis to
verify its running time analysis and synthesize competitive efficient LLVM code for it.
In contrast to an earlier publication I focus more on the structuring of the verifica-
tion. Following the “top-down” mantra, several intermediate steps are used to refine a
specification down to an implementation.

10.3.1 Specification of Sorting
We start with the specification of sorting a slice of a list.

slice_sort_aux xs0 l h xs =
(|xs| = |xs0| ∧ xs[0 : l] = xs0[0 : l] ∧ xs[h : |xs|] = xs0[h : |xs|]
∧ mset (xs0[l : h]) = mset (xs[l : h]) ∧ sorted (xs[l : h]))

slice_sortspec T xs0 l h = do {
assert (l ≤ h ∧ h ≤ |xs0|);
spec (λxs. slice_sort_aux xs0 l h xs) (λ_. T)
}

Here, the term as[a : b] denotes the slice of as between a and b, mset as is the multiset
of a list as and sorted xs characterizes lists xs that are sorted. The result xs of the
specification is a permutation of xs0, xs is sorted between l and h and equal to xs0
anywhere else.
This specification can be implemented by several sorting algorithms. In the following

I present the verification of introsort.

10.3.2 Introsort’s Idea
The introsort algorithm is based on quicksort. Like quicksort, it finds a pivot element,
partitions the list around the pivot, and recursively sorts the two partitions. Unlike
quicksort, however, it keeps track of the recursion depth, and if it exceeds a certain value
(typically 2blognc), it falls back to heapsort to sort the current partition. Intuitively,
quicksort’s worst-case behavior can only occur when unbalanced partitioning causes a
high recursion depth, and the introsort algorithm limits the recursion depth, falling back
to the O(n logn) heapsort algorithm. This combines the good practical performance
of quicksort with the good worst-case complexity of heapsort.
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Our implementation of introsort follows the implementation of libstdc++, which
includes a second optimization: a first phase executes quicksort (with fallback to heap-
sort), but stops the recursion when the partition size falls below a certain threshold τ .
Then, a second phase sorts the whole list with one final pass of insertion sort. This
exploits the fact that insertion sort is actually faster than quicksort for almost-sorted
lists, i.e., lists where any element is less than τ positions away from its final position
in the sorted list. While good a good value for the threshold τ needs to be determined
empirically, it does not influence the worst-case complexity of the final insertion sort,
which is O(τn) = O(n) for constant τ . The threshold τ will be an implicit parameter
from now on.
While the two-phase approach seems like a quite concrete optimization, the two

phases are already visible in the abstract algorithmic structure, which is defined as
follows in NREST-ecost:

introsort xs l h = do {
assert(l ≤ h);
n ← return (h −$sub

l);
ifc 1 <$lt

n then do {
xs ← almost_sortspec $almost_sort xs l h;
xs ← final_sortspec $final_sort xs l h;
return xs
}

else return xs
}

Here, almost_sortspec T specifies an algorithm that almost-sorts a list, consuming at
most T resources and final_sortspec T specifies an algorithm that sorts an almost-sorted
list, consuming at most T resources.

The program introsort leaves trivial lists unchanged and otherwise executes the first
and second phase. Its resource usage is bounded by the sum of the first and second
phase and some overhead for the subtraction, comparison, and if-then-else. Using
the verification condition generator we prove that introsort is correct, i.e., refines the
specification of sorting a slice:

introsort xs l h ≤ ⇓CEis (slice_sortspec $sort xs l h)

where Eis = ↑↓[sort:=introsortcost] is the exchange rate used at this step and the total
allotted cost for introsort is introsortcost = $sub + $if + $lt + $almost_sort + $final_sort.

10.3.3 Quicksort Scheme
The first phase can be implemented in the following way:

1 introsort_aux µ xs l h = do {
2 d ← depthspec $depth l h;
3 recc (λintrosort_rec (xs, l, h, d). do {
4 assert (l ≤ h);
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5 n ← return (h −$sub
l);

6 ifc τ <$lt
n then

7 ifc d =$eq
0 then

8 slice_sortspec ($sortc (µ (h − l))) xs l h
9 else do {
10 (xs, m) ← partitionspec ($partitionc (h − l)) xs l h;
11 d′← d −$sub

1;
12 xs ← introsort_rec (xs, l, m, d′);
13 xs ← introsort_rec (xs, m, h, d′);
14 return xs
15 }
16 }
17 else
18 return xs
19 ) (xs,l,h,d)
20 }

where partitionspec partitions a slice into two non-empty partitions, returning the start
indexm of the second partition, and depthspec specifies the computation of 2blog(h− l)c.

Let us first analyze the recursive part: if the slice is shorter than the threshold τ ,
it is simply returned (line 15). Unless the recursion depth limit is reached, the slice is
partitioned using h− l partitionc coins, and the procedure is called recursively for both
partitions (lines 10-14). Otherwise, the slice is sorted at a price of µ (h−l) sortc coins
(line 8). The function µ here represents the leading term in the asymptotic costs of
the used sorting algorithm, and the sortc coin can be seen as the constant factor. This
currency will later be exchanged into the respective currencies that are used by the
sorting algorithm. Note that we use currency sortc to describe costs per comparison of
a sorting algorithm, while currency sort describes the cost for a whole sorting algorithm.
Showing that the procedure results in an almost-sorted list is straightforward. The

running time analysis, however, is a bit more involved. We presume a function µ that
maps the length of a slice to an upper bound on the abstract steps required for sorting
the slice. We will later use heapsort with µnlogn n = n logn.

Consider the recursion tree of a call of introsort_rec: we pessimistically assume
that for every leaf in the recursion tree we need to call the fallback sorting algorithm.
Furthermore, we have to partition at every inner node. This has cost linear in the
length of the current slice. For each following inner level the lengths of the slices add
up to the current one’s, and so do the incurred costs. Finally we have some overhead
at every level including the final one. The cost of the recursive part of introsort_aux
is:

introsort_reccost µ (n, d) = $sortc (µ n) + $partitionc d ∗ n
+ ((d + 1) ∗ n) ∗ ($if 2 + $call 2 + $eq + $lt + $sub 2)

The correctness of the running time bound is proved by induction over the recursion
of introsort_rec. If the recursion limit is reached (d = 0), the first summand pays for
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the fallback sorting algorithm. If d > 0, part of the second summand pays for the
partitioning of the current slice, then the list is split into two and the recursive costs
are paid for by parts of all three summands. To bound the costs for the fallback sorting
algorithm, µ needs to be superadditive: µ a + µ b ≤ µ (a+b). In both cases, the third
summand pays for the overhead in the current call.
If we set d = b2 lognc and use an O(n logn) fallback sorting algorithm (µ = µnlogn),

we have that introsort_reccost µnlogn is in O(n logn).5 In fact, any d ∈ O(logn) would
do.
Before executing the recursive method, introsort_aux calculates the depth limit d.

The correctness theorem then reads:

introsort_aux µnlogn xs l h ≤ ⇓C(Eisa(h − l))(almost_sortspec $almost_sort xs l h)

with Eisa n = ↑↓[almost_sort:= $depth + introsort_reccost µnlogn (n, b2 lognc)].
Note that specifications typically use a single coin of a specific currency for their

abstract operation, which is then exchanged for the actual costs, usually depending on
the parameters.
This concludes the interesting part of the running time analysis of the first phase. It

is now left to plug in an O(n logn) fallback sorting algorithm, and a linear partitioning
algorithm.

Heapsort Independently of introsort, we have proved correctness and worst-case com-
plexity of heapsort, yielding the following refinement lemma:

heapsort xs l h ≤ ⇓C(Ehs (h − l)) (slice_sortspec $sort xs l h)

where Ehs n = ↑↓[sort:= c1 + log n ∗ c2 + n ∗ c3 + (n logn) ∗ c4] for some constants
ci :: ecost.
Assuming6 that n ≥ 2, we can estimate Ehs n sort ≤ µnlogn n ∗ c, for c = c1 + c2 +

c3 + c4, and thus get, for Ehs′ = ↑↓[sortc := c]:

⇓C(Ehs (h−l)) (slice_sortspec $sort xs l h)
≤ ⇓CEhs′ (slice_sortspec ($sortc (µnlogn (h−l))) xs l h)

By transitivity we then get

heapsort xs l h ≤ ⇓CEhs′ (slice_sortspec ($sortc (µnlogn (h − l))) xs l h)

Note that our framework allowed us to easily convert the abstract currency from a
single operation-specific sort coin to a sortc coin for each comparison operation.

Partition and Depth Computation We implement partitioning with the Hoare par-
titioning scheme using the median-of-3 as the pivot element. Moreover, we implement
the computation of the depth limit (2blog(h− l)c) by a loop that counts how often we
can divide by two until zero is reached. This yields the following refinement lemmas:

5More precisely, the sum over all (finitely many) currencies is in O(n log n).
6Note that this is a valid assumption, as heapsort will never be called for trivial slices.
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pivot_partition xs l h ≤ ⇓CEpp (partitionspec ($partitionc (h − l)) xs l h)
calc_depth l h ≤ ⇓C(Ecd (h − l)) (depthspec $depth l h)

Combining the Refinements We replace slice_sortspec, partitionspec and depthspec by
their implementations heapsort, pivot_partition and calc_depth. We call the resulting
implementation introsort_aux2, and prove

introsort_aux2 xs l h ≤ ⇓C(Eaux (h − l)) (introsort_aux µnlogn xs l h)

Here, the exchange rate Eaux combines the exchange rates Ehs′ , Epp and Ecd for the
component refinements.
Transitive combination with the correctness lemma for introsort_aux then yields the

correctness lemma for introsort_aux2:

introsort_aux2 xs l h ≤ ⇓C(Eisa2 (h − l)) (almost_sortspec $almost_sort xs l h )

With Eisa2 n = ↑↓[almost_sort:=↓C(Eaux n) (introsort_auxcost n)] where the opera-
tion ↓CE t applies an exchange rate to a resource function.

Refining Resources The stepwise refinement approach allows to structure an algo-
rithm verification in a way that correctness arguments can be conducted on a high
level and implementation details can be added later. Resource currencies permit the
same for the resource analysis of algorithms: they summarize compound costs, allow
reasoning on a higher level of abstraction and can later be refined into fine-grained
costs. For example, in the resource analysis of introsort_aux the currencies sortc and
partitionc abstract the cost of the respective subroutines. The abstract resource ar-
gument is independent from their implementation details, which are only added in a
subsequent refinement step, via the exchange rate Eaux.

10.3.4 Final Insertion Sort
The second phase is implemented by insertion sort, repeatedly calling the subroutine
insert. The specification of insert for an index i captures the intuition that it goes from
a slice that is sorted up to index i − 1 to one that is sorted up to index i. Insertion
is implemented by moving the last element to the left, as long as the element left of it
is greater (or the start of the list has been reached). Moving an element to its correct
position takes at most τ steps, as after the first phase the list is almost-sorted, i.e.,
any element is less than τ positions away from its final position in the sorted list.
Moreover, elements originally at positions greater τ will never reach the beginning of
the list, which allows for the unguarded optimization. It omits the bounds check for
those elements, saving one index comparison in the innermost loop. Formalizing these
arguments yields the implementation final_insertion_sort that satisfies

final_insertion_sort xs l h ≤ ⇓C(Efis(h − l)) (final_sortspec $final_sort xs l h)

where Efis n = ↑↓[final_sort:=final_insertioncost n], and final_insertioncost n is linear
in n.

192



10.3 Sorting Algorithms

Note that final_insertion_sort and introsort_aux2 use the same currency system.
Plugging both refinements into introsort yields introsort2 and the lemma

introsort2 xs l h ≤ ⇓C(Eis2(h − l)) (introsort xs l h)

where the exchange rate Eis2 combines the rates Eisa2 and Efis.

10.3.5 Separating Correctness and Complexity Proofs

Our formalization of heapsort maintains a binary heap and uses the crucial function
sift_down. It restores the heap property by moving the top element down in the heap.
To implement this function, we first prove correct a version sift_down1, which uses
swap operations to move the element. Using swaps captures the natural algorithmic
idea and simplifies the correctness proof. In a next step, we refine this to sift_down2,
which saves the top element, then executes upward moves instead of swaps, and, after
the last step, moves the saved top element to its final position. This optimization
spares half of the memory accesses, exploiting the fact that the next swap operation
will overwrite an element just written by the previous swap operation.
However, this refinement is not structural: it replaces swap operations by move

operations, and adds an additional move operation at the end. At this point, we chose
to separate the functional correctness and resource aspect, to avoid the complexity of a
combined non-structural functional and currency refinement. It turns out that proving
the complexity of the optimized version sift_down2 directly is straightforward.
Thus, as sketched in Section 8.3.5, we first focus on proving7 functional correctness

only sift_down2 ≤ sift_down1 ≤ sift_downspec (∞), ignoring the resource aspect. Sep-
arately, we prove sift_down2 ≤n spec (λ_. True) sift_downcost, and combine the two
statements to get sift_down2 ≤ sift_downspec sift_downcost.

10.3.6 Refining to LLVM

The above abstract programs implicitly come with a fixed type and comparison operator
for the elements of the list to be sorted. Those programs use abstract operations
and currencies for arithmetic operations on indexes, control flow, comparisons and
read/write of a random-access iterator (abstracted by lists with update and lookup
operations).
When we further assume an LLVM program that refines the comparison operator in

LLVM, and specify how the random-access data structure should be implemented —
we choose arrays — we can automatically synthesize an LLVM program introsort_impl
that refines introsort2, i.e., satisfies the theorem:

(introsortimpl, introsort2) ∈ arraydassn → snatkassn → snatkassn → arrayassn

Combination with the refinement lemmas for introsort2 and introsort, followed by
conversion to a Hoare triple, yields our final correctness statement:

7Note that I have omitted the function parameters for better readability.
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l ≤ h ∧ h < |xs0| =⇒
{$(introsort_implcost (h−l)) ? arrayassn xs0 p ? snatassn l l† ? snatassn h h†}

introsort_impl p l† h†
{λr. ∃Axs. arrayassn xs r ? ↑(slice_sort_aux xs0 l h xs)

? snatassn l l† ? snatassn h h†}

Where introsort_implcost :: nat → ecost is the cost bound obtained from applying the
exchange rates Eis and then Eis2 to $sort.
Note that this statement is independent of the Refinement Framework. Thus, to

believe in its meaningfulness, one has to only check the formalization of Hoare triples,
Separation Logic, and the LLVM semantics.
To formally prove the statement “introsort_impl has complexity O(n logn)”, we ob-

serve that introsort_implcost uses only finitely many currencies, and only finitely many
coins of each currency. We define the overall number of coins as

introsort_implallcost n = Σc. introsort_implcost n c,

which expands to

introsort_implallcost n = 4693 + 5 ∗ log n + 231 ∗ n + 455 ∗ (n logn),

which, in turn, is routinely proved to be in O(n logn).
As a last step, we instantiate the element type to 64-bit unsigned integers and the

comparison operation to LLVM’s icmp_ult instruction, to obtain a program that sorts
integers in ascending order. Our code generator can export this to actual LLVM text
and a corresponding header file for interfacing our sorting algorithm from C or C++.
The extracted program in LLVM performs on par with the real world implementation

of introsort from the GNUC++ Library (libstdc++). For detailed results I refer to
Section 5.7 in the original paper [44].
As LLVM does not support generics, we cannot implement a replacement for C++’s

generic std::sort<T>. However, by repeating the last step for different types and
compare operators, we can implement a replacement for any fixed T.

10.3.7 Recap

We have defined abstract algorithms and proved their complexity. Using currencies
helps structuring the refinement proofs. In particular, there is no need for verbose place
holders as well as forming and instantiating locales. It feels more natural to reason that
way. Note that currencies only make sense together with refinement. However, we still
use locales in order to assume synthesis rules for some basic operation that we reuse.

10.4 Discussion and Related Work

In this section I will revisit the reflection from Section 7.1. I will discuss whether the
design goals are met by the framework described in this part of my thesis. Ultimately,
I review related work to the case studies of this chapter.
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10.4.1 Discussion

For expressing algorithm sketches I have presented the NREST monad. Its do-notation
allows one to write down pseudocode (e. g. Figure 8.3b) that — in my opinion —
already comes quite near to what one finds in a textbook (e. g. Figure 7.1). Instead of
writing English prose, subprograms are often written as specifications. While NREST
programs are certainly readable by a machine, I claim that they are also readable by a
human.
Stepwise refinement allows to fill in implementation details and allows to establish

the refinement of algorithms of different levels of abstraction. The nondeterministic
result monad allows to express qualitative properties about results of algorithms and
the extension to NREST additionally allows to express quantitative properties about
their execution.
We did not yet consider illustrating the execution of abstract algorithms, but I will

comment on that at the end of this section. Furthermore, the algorithm sketches in
NREST lack a precise operational meaning. However, the resource usage specified by
a program in NREST is an abstraction of one aspect of the operational meaning of an
implementation that can be synthesized from it.
Proofs in our framework often consist of annotating the code with invariants, ap-

plying a verification condition generator and then proving the verification conditions
by automatic or interactive proof. Those proofs are readable by the proof assistant
and most of the time readable by a human — especially when structured Isar [133]
proofs are used. One problem that arises is that the correspondence between code and
verification conditions is lost during the automatic proof. Using a labeled VCG [117,
§6] might improve the situation.
Resource currencies are used to further structure the stepwise refinement process.

They furthermore allow for a natural reasoning about the costs of an algorithm in
terms of certain subprograms instead of in terms of the underlying cost model of the
program semantics the algorithm will be implemented in. This mechanism allows to
hide constants and make specifications more robust. It allows for a fine-grained analysis
of the usage of specific operations. The obtained bounds can finally be analyzed for
their asymptotic behavior using the formalization of Landau symbols using filter.
In addition to the desired features mentioned in Section 7.1, it is possible to extract

competitive executable implementations from the algorithm sketches. Both functional
correctness as well as the running time bounds are preserved by the synthesis.
I believe that we have the right tools to comfortably formalize the quantitative anal-

ysis of imperative algorithms. In that process humans still have to provide the right
ideas by a sort of pseudocode and set up the refinement proofs. But they are assisted
by automation that automatically extracts the hard parts of a refinement proof and
automates the rest of the straightforward reasoning.

Limits of Automatic Methods In the introduction of this thesis I stated that the
analysis of many algorithms and data structures is beyond the limit of current au-
tomatic tools. Already in Chapter 5 I have presented several involved case studies,
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e. g. the median of medians selection algorithm or the union-find data structure, whose
running time analysis involves the Akra–Bazzi theorem and laborious reasoning about
invariants and potentials. I can imagine that with sufficient annotations by the user
those challenges could be automated, but I guess automatic tools will not be able to
find non-trivial solutions on their own. Finding tight running time bounds for complex
algorithms involves reasoning about invariants and that is already complicated when
only functional correctness is involved.

In this chapter I have presented two bigger case studies. Here, the same applies.
However, when using a modular approach automation could support the verification
of abstract algorithms where the running time of the components are already known.
Often such abstract algorithms combine data structures or subprograms in simple pat-
terns. It would be desirable to apply automatic tools on that level, integrate their
solutions into the interactive proof and certify their correctness. I believe that auto-
matic methods could be applied to algorithms on the right level of abstraction. If that
fails, one still can switch to interactive proof.

Artifacts of the Verification Once an algorithm is verified in our framework, what can
we do with it? The obvious first answer is: we can synthesize an executable program
and use the implementation in some software component. But there is more.
Another idea is to use the algorithm sketches for teaching and education. Besides

studying the formalized algorithm and the proofs of its analysis statically, also dynamic
concepts are imaginable. In Section 7.1 we have seen that algorithm sketches also should
be able to be illustrated with an example execution. For instance, Kruskal’s algorithm
— albeit being presented as an algorithm sketch which actually is nondeterministic —
is illustrated with a sample execution in CLRS [24]. At least when all the refinements
of the algorithm are structural (i. e. follow the lockstep refinement pattern) and the
data refinement relation used is single-valued, one could execute one implementation
instead of the abstract program and determine the value of the abstract program at
any time during the execution. This actually is already true for programs in nres.
For programs in NREST we additionally have the property to know how much time (in
terms of abstract currencies) has passed after each subprogram. It would be interesting
to investigate how one can effectively extract sample executions and illustrations with
that idea. That might help students to interactively explore algorithms operationally
and support their learning experience.

10.4.2 Related Work
I already discussed related work to the IRF and NREST in Section 7.3. Here I want
to mention work that is related to the case studies of this section.

Amortized Analysis Rajani et al. [123] present a unifying type-theory λamor for higher-
order (amortized) cost analysis. The introduction of the elapse combinator is straight-
forward, but the reclaim operator in NREST seems to be related to their type con-
structor [p]τ . That constructor is central to their paper. It would be interesting to see
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whether their cost monad can be extended to nondeterminism. Rajani [122] studies the
type-theory λcg using a different domain for Information Flow Control. He then unifies
the type-theories and their cost monads for a general domain being a commutative
monoid. I suspect that the underlying mechanism is quite similar to ours.
Nipkow and Brinkop [112] verify several amortized data structures. Löwenberg [98]

verifies the amortized union-find data structure. Integrating those verifications amor-
tized data structures in NREST would be a next step.

Textbook Algorithms Nipkow et al. [113] collect verification efforts concerning text-
book algorithms.
Apart from our formalization, there are several verifications of minimum spanning

tree algorithms (cf. [113, §8.2]). But none of them verifies the running time. Besides
the one in Isabelle by Keinholz [68], there are formalizations of matroids at least in
Coq [99] and Mizar [5].
We add a few instances verifying sorting algorithms with their running time to [113,

§4.1]: Wang et al. use TiML [131] to verify correctness and asymptotic time complexity
of mergesort automatically. Zhan and Haslbeck [138] verify functional correctness and
asymptotic running time analysis of imperative versions of insertion sort and mergesort.
The verification in Section 10.3 builds on earlier work by Lammich [80] and provide
the first verification of functional correctness and asymptotic running time analysis of
heapsort and introsort.

10.5 Summary
In this chapter we have seen the following:

• NREST allows to reason abstractly about algorithms and their running time at
a pseudocode level.

• Furthermore it still allows to extract efficient verified code.

• Amortized data structures can be analyzed at the NREST-level and refined down
to executable code. That is an example for simple algorithms on involved data
structures.

• Resource currencies can be effectively used to structure refinement of running
times with abstract notions. It can be used for involved algorithms on simple
data structures.
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11 Conclusion

To conclude this thesis, I will summarize my contributions, comment on possible direc-
tions for future work and end with general reflections on my work.

11.1 Results
The main contributions of my thesis are the following.

• A formal study of three Hoare logics for time bounds from the literature, formal-
ized in a common framework in Isabelle/HOL, with soundness and completeness
results of the logics and their respective VCGs.

• The verification of an extension of the quantitative Hoare logic for reasoning about
randomized algorithms, the verification of the Quantitative Separation Logic and
its generalization to arbitrary quantales.

• The implementation of a practical framework for reasoning about asymptotic
time complexity of imperative programs in Isabelle/HOL together with an array
of case studies.

• The combination of stepwise refinement with resource analysis for modular devel-
opment of algorithm verification. The novel concept of resource currencies that
allows for a natural formal treatment of algorithm analysis.

• The extension of the IRF and the Sepref tool for the time-bound preserving
synthesis of efficient imperative implementations.

• The first verification of the asymptotic running time O(n logn) of an implemen-
tation of introsort.

11.2 Future Directions
I have mentioned several ideas for future work in my thesis, but I would like to collect
some of them again and present them together with further general ideas.

Theory On the theory side I see several very interesting paths to take. The iden-
tification of quantales as the underlying structure needed for quantitative separating
connectives gives rise to many questions. Clarifying the role of quantales is a major
open question for me. Can the algebraic approach towards software verification [37] be
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lifted along the lines of the potential method, in order to obtain a quantitative analysis?
In general, it would be interesting to revisit the work from Chapter 2 and generalize
the resource type, like we did for NREST in Chapter 8. This also includes exploring
lower bounds. Studying other resource types for NREST, or lifting it to probability
distributions to model randomized algorithms would be interesting future work.

Randomized Algorithms With the verification projects described in Chapter 3 and 4
we only touched the surface of verification of randomized algorithm. Based on the veri-
fication of the ert calculus and the quantitative separating connectives, there are many
possibilities for further projects and opportunities to apply the theory to case stud-
ies. In particular, the integration of classical verification frameworks for deterministic
programs with the ert calculus for probabilistic programs seems promising.

Verified Complexity Theory The NREST monad can serve as a formalism to reason
about computations and reason about their quantitative properties. This is necessary
for formalizing complexity theory and notions like P, NP and polynomial reductions.
While those concepts are defined w. r. t. a concrete computational model with cost
semantics, algorithms in complexity theory are mostly formulated very abstractly and
their refinement is left implicit. To bridge the gap, stepwise refinement seems like a
promising technique. Hooking up NREST with Turing machines or a simple imperative
computational model using a component similar to Sepref could decouple low-level
reasoning about programs and high level arguments typical in complexity theory. A
goal in this direction is the verification of the Cook-Levin theorem.

Tooling While my focus was on developing the necessary theory and sufficient automa-
tion to make the verification of specific case studies feasible, turning the techniques into
a framework that is effectively usable needs more tool support. Synthesizing cost ex-
pressions from a system of constraints (e. g. when finding the potentials in Section 10.2),
or assistance in synthesizing exchange rates in the NREST-ecost framework are tools
that are needed. Furthermore, it would be interesting to design a generalized Sepref
tool, for the synthesis of implementations in a target monad with a heap from a different
source monad. Properly integrating the classical Isabelle Refinement Framework and
its data structures with their verified correctness proofs into the quantitative version
would be desirable.

Libraries & Case Studies Building up libraries of verified data structures that come
with verified resource bounds is an obvious next step. The verification of Fibonacci
heaps needs to be finished and the flow framework formalization (cf. Section 5.5.3)
might serve as a technique to verify overlaid data structures that are hard to handle
with classical Separation Logic.
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11.3 General Reflections

I think in essence the research question of how to verify quantitative analysis of imper-
ative programs in a proof assistant is answered satisfactorily. Functional correctness
and the running time analysis of concrete imperative programs is effectively described
with time credits Separation Logic. Asymptotic analysis, formally defined with filters,
is used to hide implementation details for robust specifications. Stepwise refinement
is extended to reason about resource consumption, the concept of resource currencies
further structures the algorithm development and the IRF “top-down” tool-chain is
adapted to synthesize efficient imperative code that comes with verified running time
bounds. Our case studies have shown that the verified quantitative analysis of imper-
ative algorithms is feasible.
The most central idea in this thesis is the potential method, i. e. the step from

qualitative predicates to quantitative potential. I first encountered it in the papers
by Quentin Carbonneaux et al. [18, 17, 15], and it unfolded its potential in many
parts of this thesis: be it the probabilistic quantitative Hoare logic, the quantitative
separating connectives, or the generalization of the nres monad. But the story is not
over yet. The line of research concerning the type-theoretic approach for amortized cost
analysis has recently been advanced by Jan Hoffmann et al. [65, 119, 123]. Furthermore,
the connection to quantales and its application to the algebraic approach to software
verification is to be explored.
I conducted all the formalizations of this thesis in Isabelle/HOL and I think I would

not have completed my contributions in another proof assistant. This is partly be-
cause of the system itself, which provides many mechanisms and tools that facilitate
the work on formal proofs: type classes, locales, strong simplification and first-order
automation, sledgehammer, the query panel and the Isabelle search tool, and many
more. Furthermore, I have built my thesis upon the shoulders of many people whose
work was conducted in Isabelle/HOL. The abstract analysis of Hoare logics for time
bounds takes inspiration from Tobias Nipkow’s work [110, 114], and we integrated his
formal verification of amortized data structures [109, 112] into an imperative setting.
I build upon Johannes Hölzl’s formalization of probability theory and the ert calculus
[62] for further work on probabilistic programs. We use Manuel Eberl’s formalization
of Landau symbols [31] and the impressive Akra–Bazzi method [32] to analyze the run-
ning time of imperative programs. Bohua Zhan’s auto2 tactic and his formalization
of a Separation Logic for Imperative-HOL [137] formed the basis for Imperative-HOL-
Time. There are many other smaller pieces of work in the Isabelle eco-system that I
was able to conveniently use. Above all, the work by Peter Lammich on the Isabelle
Refinement Framework gave me the blueprint for the theoretical and practical imple-
mentation of quantitative algorithm analysis following the “top-down” approach. At
times it feels like I was just adding “time” to everything Peter was working on: first
extending his Separation Logic of Imperative-HOL with time credits, and adapting his
sep_auto tactic; then, extending the nres monad and its refinement calculus with time,
adapting the Sepref tool and adding the time analysis to some of Peter’s case studies;
finally, extending LLVM with time and adding the verified O(n logn) time bound to
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his introsort case study. On the theory side there are some innovations which are inde-
pendent from Isabelle. On the tool side of my work, however, it is mainly incremental
extensions, which would not have been possible for me without Peter’s work.

While it is certainly possible to implement the ideas of this thesis in another proof
assistant, I expect it to be considerably much more work given that many of the used
formalizations would need to be ported first. However, it would be desirable to connect
the Isabelle Refinement Framework with components of other proof assistants, fore-
most the CompCert compiler to obtain executable byte code from synthesized LLVM
programs.
For me, the fistful of dollars paper [41] by Armaël Guéneau, Arthur Charguéraud

and François Pottier was very influential. It came exactly at the right point in time
when I was just beginning to work with Bohua Zhan on extending Imperative-HOL.
Because it was implemented in Coq, we could not directly use it, but it provided us
with the necessary ideas and techniques to come up with a practical framework in
Isabelle/HOL and connect it with other components that are available there. I hope
that our extension of stepwise refinement to resource consumption and the concept of
resource currencies [44] will be equally stimulating to others and worth a few dollars
more. I am curious what good, bad and ugly concepts will be presented in the final
paper of the Dollars Trilogy at ESOP.
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