
Competitive Proving for Fun

Maximilian P. L. Haslbeck and Simon Wimmer?

Technische Universität München
{haslbema,wimmers}@in.tum.de

http://www.in.tum.de/~{haslbema,wimmers}

Abstract. We propose a system for large-scale theorem proving contests.
We hope that such contests could spark interest in the research field, at-
tract a new generation of theorem proving savants, and foster competition
among proof assistants. For the proof assistant Isabelle, we construct and
evaluate a prototype implementation of our proposed system architecture.

Keywords: Interactive Theorem Proving, Isabelle/HOL, Competition

Programming contests such as the Google Code Jam, the ACM ICPC or the
International Olympiad in Informatics challenge large numbers1 of participants
to design and implement correct programs to solve algorithmic problems within
a short time. A typical problem statement consists of a problem description, and
valid input and output pairs. The participant has to come up with an algorithmic
idea to solve the given problem and to finally implement the idea in his favourite
programming language. The grading is automated: a given solution is compiled
and run on a set of unknown test cases. If the participant’s program produces
the right answers within a given timeout the solution is considered correct.

In the formal methods community similar kind of contests exist, for instance
the VerifyThis [5] challenge. However, this contest relies on physical presence of
participants and manual grading of solutions.

In contrast, we propose a system for proving contests that runs online and can
grade solutions automatically. Thus the approach is open to participants all over
the world and is applicable on a large scale. Judging a formal proof is simpler
than testing the correctness of an algorithm: it simply means proof checking, a
task that lies at the very heart of proof assistants such as Isabelle [9], PVS [1],
or Coq [11].

A typical problem in such a contest would look like this: a problem state-
ment together with definitions for concepts that are used in the problem and
propositions to be shown are given to the participant. The task the participant
is intended to accomplish is to find a proof for the given proposition but what he
really has to do is to make the proof assistant accept his proof text.

While most users of a proof assistant would argue the these two tasks are
the same in their favourite proof assistant, there are potential pitfalls. We will

? Authors listed in alphabetical order. Haslbeck supported by Grant NI 491/16-1
1 In 2017 Google Code Jam had 25.289 participants in the qualification round [3].



2 Maximilian P. L. Haslbeck, Simon Wimmer

address some of the obvious ones when describing our prototype implementation
(Section 1) and more subtle ones that arose when evaluating our system (Section
2) with capable users of the chosen proof assistant.

Immediate motivations for carrying out such contests are the following:

– Seeing a team of three, as in the ACM ICPC, find and implement correct
solutions for intricate algorithms in a matter of hours is inspiring to many.
Similarly, seeing what other people can formally prove within a short amount
of time might also spark motivation and interest among students and novices.
In that light, one could also hope that companies would start to see the
contests as a tool for recruiting and even preparatory online tutorials (c.f.
[7]) or books (c.f. [10]) could come into existence.

– Competitors can use different proof assistants to participate as long as the
problem statements (definition and lemmas) are given in the corresponding
logic. This could foster comparability and competition among proof assistants.

– The system can also be used in order to grade classwork by considering each
week’s homework a contest. A similar system has proved to be successful for
teaching functional programming [4].

– Different proofs for the same theorem (even in different logics) could be
compared and grouped considering e.g. length, technical complexity or beauty
of the proof idea. The data could be used for machine learning to learn how
to guide successful proof, or to extract proof search strategies, for instance.

1 A Prototype Implementation

In this section we describe a prototype implementation of the theorem proving
contest system for Isabelle/HOL. User management, administration of contests,
score reporting, and workload balancing among grading servers is realized by the
programming contest system DOMJudge2. Our implementation mainly needs to
provide a grading server for Isabelle/HOL solutions.

theory Defs

imports Main Primes

begin

definition pi ("π") where

"π n = card {i. prime i ∧ i≤n}"
save test theory

end

theory Submission

imports Defs

begin

lemma pi: "π (n + 1) - π n =

(if prime (n + 1) then 1 else 0)"

<proof>

end

theory Check

imports Submission

begin

test "π (n + 1) - π n =

(if prime (n + 1) then 1 else 0)"

by (rule Submission.pi)

end

Fig. 1: The definition, submission and check theories for a minimal example.

Task Layout A task is split into three Isabelle theory files: two provided by the
masters of competition (MCs) and one submitted by the competitor. A definitions
file contains definitions and theorems necessary for the description of the problem.
To assess the competitor’s solution, a check file contains statements of theorems
that should have been proved by the competitor and additionally specifies the

2 https://www.domjudge.org/



Competitive Proving for Fun 3

names of the theorems in the competitor’s solution. It is then checked by a
trivial proof method that the correct fact was indeed proved. In case the fact was
not proved Isabelle terminates with an error. The competitors hand in a single
submission theory file with their solution. See Figure 1 for an example.

This approach works well for assigning a binary grade to a submission. If a
submission can contain solutions to multiple tasks that should be graded sepa-
rately, one can conceive a solution where the MCs provide additional annotations
in their check file or where special grading commands are used to compute a list
of proved propositions on the ML level.

Grading The grading process is started by first loading the definitions file in
Isabelle, followed by the submission, and the check file. The final assessment is
simple: if Isabelle does not report an error the solution is deemed correct.

We rely on libisabelle [6] to realize the Isabelle grading functionality. It allows
to automatically install a specific version of Isabelle (as specified by the MCs)
from the internet and to send theory “snippets” to an Isabelle process via a Scala
interface. The concrete implementation poses a number of technical challenges.

Firstly, Isabelle “snippets” need to be sent without the header part of a theory
file, thus we need a parser to strip the three files from this information.

Secondly, the MCs should be able to choose which part of the standard
library (or the AFP [2]) should be available to competitors and whether the
competitors should be allowed (typically not) to import additional theories from
the library on their own. The latter option is configured by the MCs, while we
need to extract the first information from the theory header in the definitions
file. The aforementioned parsing and preparation functionalities are implemented
in Python. The prepared input is then passed on to the Scala process. Moreover,
one wants to pre-build Isabelle session images that bundle part of the library to
make the grading process efficient. Session images are then stored on the server
between grading runs and only the three input files need to be checked when
grading a solution. Thus the MCs specify which image their competition relies
on and we provide a script that can pre-build a list of standard session images
when a grading server is initialized.

Finally, the grading pipeline of DOMJudge does not quite fit our purposes.
It expects the MCs to provide a compilation script that compiles submission, a
test runner script that given the compiled submission can run a test case on it,
and a number of test cases. We need to bundle up the definition and check files
as single test cases. The compilation script then simply leaves the submission
unchanged. The test runner script executes a Python script that first splits the
test case into the definitions and the check file and then runs the remainder of
our grading pipeline.

Cheating An important consideration is to which amount cheating can and
should be prevented. A simple variant of cheating is the use of skipped proofs, as
expressed by the Admitted keyword in Coq or the sorry keyword in Isabelle. In
Isabelle this can be detected by a simple textual analysis or in a more reliable



4 Maximilian P. L. Haslbeck, Simon Wimmer

way by using its internal tracking of the oracles that a theorem depends on, with
sorry just being an instance of an oracle that can prove anything.

One can also make the argument that the use of skipped proofs should be
allowed in proving competitions. Just as a programming solution can only pass
some of the test cases, a formalization with some skipped proofs could receive
partial credit. However, automated assessment is harder in this case: the proof
of a minor arithmetic manipulation but also the proof of the main proposition
could be skipped. Thus a grading scheme that would deduct a number of points
for each skipped proof is meaningless in the general case. Despite, we can carve
out a use case where one certainly wants to allow skipped proofs: automated
grading of homework submissions. The grader only needs to inspect the part
of the assignment where skipped proofs were used. A technical complication in
Isabelle is that a regular build fails whenever sorry is used. Thus we introduce
a new variant of the keyword that does not show this behaviour but can be
identified as an oracle in theorems.

2 First Evaluation

A first internal competition was conducted with our colleagues at the Isabelle
group in Munich, i.e. the competitors can all be considered expert users of the
system. The results were as expected: great fun with theorem proving was enjoyed,
the expert users cracked our simple problems within a number of minutes, and
managed to cheat the system in the most creative ways. Among others, the
following tricks were used to make our system accept a proof of False :

1. The simplest one of them all: one could simply define a new constant False

as True. The system internal distinguishes the two constants with the name
False but our proposition in the check script would suddenly refer to the
new constant and thus the proof of False would be accepted. Other variants
of the trick make the system misinterpret the MC’s intended propositions by
introducing coercions or redefining syntax.

2. A sophisticated trick would use the known soundness problem from [8] and
turn off the cyclicity checker that usually rectifies the problem.

3. An untrusted code generator translation can be introduced to map False to
True, which allows one to prove False by code reflection.

In light of these exploits, we made improvements to our grading system to
prevent cheating. Tricks of types 2 and 3 can be prevented by using a blacklist
of keywords that would allow to introduce new axioms, or to tinker with the
ML level or the code generator setup. The other exploits are remedied by a
more sophisticated approach, which relies on the logical context of Isabelle that
records existing constants and types (among others). Using a special command
(save test theory) at the end of the definitions file, the current logical context is
saved on the ML level. Then, in the check file, we use a modified proposition com-
mand (test) that parses a term using the saved logical context. This means that
for instance False would parse to the standard False constant of Isabelle/HOL
instead of the newly defined one.



Competitive Proving for Fun 5

Acknowledgments We thank Ondřej Kunčar, Stefan Toman, and Lars Hupel
for technical contributions. Also we thank Manuel Eberl, Fabian Immler, and
Peter Lammich for participation and their creative ways of abusing our system.

References

1. PVS Homepage, http://pvs.csl.sri.com/
2. Archive of Formal Proofs (2018), https://www.isa-afp.org/
3. Code jam statistics (2018), https://www.go-hero.net/jam/17/round/0
4. Blanchette, J.C., Hupel, L., Nipkow, T., Noschinski, L., Traytel, D.: Experience

report: The next 1100 haskell programmers. In: Proceedings of the 2014 ACM
SIGPLAN Symposium on Haskell. pp. 25–30. Haskell ’14, ACM, New York, NY,
USA (2014)

5. Huisman, M., Klebanov, V., Monahan, R., Tautschnig, M.: Verifythis 2015. Inter-
national Journal on Software Tools for Technology Transfer 19(6), 763–771 (Nov
2017)

6. Hupel, L.: larsrh/libisabelle, https://lars.hupel.info/libisabelle/
7. Kolstad, R.: USACO training gateway (2018), http://train.usaco.org/

usacogate

8. Kunčar, O., Popescu, A.: A consistent foundation for Isabelle/HOL. In: International
Conference on Interactive Theorem Proving. pp. 234–252. Springer (2015)

9. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002)

10. Skiena, S.S., Revilla, M.A.: Programming challenges: The programming contest
training manual. Springer Science & Business Media (2006)

11. The Coq development team: The Coq Proof Assistant (2016), http://coq.inria.
fr/


