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Abstract. We present a framework to verify both, functional correct-
ness and worst-case complexity of practically efficient algorithms. We
implemented a stepwise refinement approach, using the novel concept of
resource currencies to naturally structure the resource analysis along the
refinement chain, and allow a fine-grained analysis of operation counts.
Our framework targets the LLVM intermediate representation. We ex-
tend its semantics from earlier work with a cost model. As case study, we
verify the correctness and O(n logn) worst-case complexity of an imple-
mentation of the introsort algorithm, whose performance is on par with
the state-of-the-art implementation found in the GNU C++ Library.

Keywords: Algorithm Analysis · Program Verification · Refinement

1 Introduction

In general, not only correctness, but also the complexity of algorithms is im-
portant. While it is obvious that the performance observed during experiments
is essential to solve practical problems efficiently, also the theoretical worst-case
complexity of algorithms is crucial: a good worst-case complexity avoids timing
regressions when hitting worst-case input, and, even more important, prevents
denial of service attacks that intentionally produce worst-case scenarios to over-
load critical computing infrastructure.

For example, the C++ standard requires implementations of std::sort to have
worst-case complexity O(n log n) [7]. Note that this rules out quicksort [12],
which is very fast in practice, but has quadratic worst-case complexity. Never-
theless, some standard libraries, most prominently LLVM’s libc++ [20], still use
sorting algorithms with quadratic worst-case complexity.3

A practically efficient sorting algorithm with O(n log n) worst-case complex-
ity is Musser’s introsort [22]. It combines quicksort with the O(n log n) heap-
sort algorithm, which is used as fallback when the quicksort recursion depth

3 See, e.g., https://bugs.llvm.org/show_bug.cgi?id=20837.
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exceeds a certain threshold. It allows to implement standard-compliant, prac-
tically efficient sorting algorithms. Introsort is implemented by, e.g., the GNU
C++ Library (libstdc++) [8].

In this paper, we present techniques to formally verify both, correctness and
worst-case complexity of practically efficient implementations. We build on two
previous lines of research by the authors.

On one hand, we have the Isabelle Refinement Framework [19], which allows
for a modular top-down verification approach. It utilizes stepwise refinement to
separate the different aspects of an efficient implementation, such as algorith-
mic idea and low-level optimizations. It provides a nondeterminism monad to
formalize programs and refinements, and the Sepref tool to automate canonical
data refinement steps. Its recent LLVM back end [15] allows to verify algo-
rithms with competitive performance compared to (unverified) highly optimized
C/C++ implementations. The Refinement Framework has been used to verify
the functional correctness of an implementation of introsort that performs on
par with libstdc++’s implementation [17].

On the other hand, we already have extended the Refinement Framework to
reason about complexity [11]. However, this only supports the Imperative/HOL
back end [16]. It generates implementations in functional languages, which are
inherently less efficient than highly optimized C/C++ implementations. This
paper combines and extends these two approaches. Our main contributions are.

• We present a generalized nondeterminism monad with resource cost, apply it
to resource functions to model fine-grained currencies (Section 2) and show
how they can be used to naturally structure refinement.
• We extend the LLVM back end [15] with a cost model, and amend its basic

reasoning infrastructure (Section 3).
• We extend the Sepref tool (Section 4) to synthesize executable imperative

code in LLVM, together with a proof of correctness and complexity. Our
approach seamlessly supports imperative and amortized data structures.
• We extend the verification of introsort to also show a worst-case complexity of
O(n log n), thus meeting the C++11 stdlib specification [7] (Section 5). The
performance of our implementation is still on par with libstdc++. We believe
that this is the first time that both, correctness and complexity of a sorting
algorithm have been formally verified down to a competitive implementation.

Our formalization is available at https://www21.in.tum.de/~haslbema/

llvm-time.

2 Specification of Algorithms With Resources

We use the formalism of monads [24] to elegantly specify programs with resource
usage. We first describe a framework that works for a very generic notion of
resource, and then instantiate it with resource functions, which model resources
of different currencies. We then describe a refinement calculus and show how
currencies can be used to structure stepwise refinement proofs. Finally, we report
on automation and give some examples.

https://www21.in.tum.de/~haslbema/llvm-time
https://www21.in.tum.de/~haslbema/llvm-time
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2.1 Nondeterministic Computations With Resources

Let us examine the features we require for our computation model.
First, we want to specify programs by their desired properties, without having

to fix a concrete implementation. In general, those programs have more than one
correct result for the same input. Consider, e.g., sorting a list of pairs of numbers
by the first element. For the input [(1, 2), (2, 2), (1, 3)], both [(1, 2), (1, 3), (2, 2)]
and [(1, 3), (1, 2), (2, 2)] are valid results. Formally, this is modelled as a set of
possible results. When we later fix an implementation, the set of possible results
may shrink. For example, the (stable) insertion sort algorithm always returns
the list [(1, 2), (1, 3), (2, 2)]. We say that insertion sort refines our specification
of sorting.

Second, we want to define recursion by a standard fixed-point construction
over a flat lattice. The bottom of this lattice must be a dedicated element, which
we call fail. It represents a computation that may not terminate.

Finally, we want to model the resources required by a computation. For
nondeterministic programs, these may vary depending on the nondeterministic
choices made during the computation. As we model computations by their pos-
sible results, rather than by the exact path in the program that leads to the
result, we also associate resource cost with possible results. When more than
one computation path leads to the same result, we take the supremum of the
used resources. The notion of refinement is now extended to a subset of results
that are computed using less resources.

We now formalize the above intuition: The type

(α,γ) NREST = fail | res (α → γ option)

models a nondeterministic computation with results of type α and resources of
type γ.4 That is, a computation is either fail, or res M, where M is a partial
function from possible results to resources.

We define spec Φ T as a computation of any result r that satisfies Φ r us-
ing T r resources: spec Φ T = res (λr. if Φ r then Some (T r) else None).
By abuse of notation, we write spec x T for spec (λr. r=x) (λ . T).

Based on an ordering on the resources γ, we define the refinement ordering on
NREST, by first lifting the ordering to option with None as the bottom element,
then pointwise to functions and finally to (α,γ) NREST, setting fail as the top
element. This matches the intuition of refinement: m ≤ m′ reads as m refines m′,
i.e., m has less possible results than m′, computed with less resources.

We require the resources γ to have a complete lattice structure, such that
we can form suprema over the (possibly infinitely many) paths that lead to the
same result. Moreover, when sequentially composing computations, we need to
add up the resources. This naturally leads to a monoid structure (γ, 0,+), where
0, intuitively, stands for no resources.

We call such types γ resource types, if they have a complete lattice and monoid
structure. Note that, in an earlier iteration of this work [11], the resource type

4 The name NREST abbreviates Nondeterministic RESult with Time, and has been
inherited from our earlier formalizations.
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was fixed to extended natural numbers (enat=N ∪ {∞}), measuring the resource
consumption with a single number. Also note that (α,unit) NREST is isomorphic
to our original nondeterministic result monad without resources [19].

If γ is a resource type, so is η → γ. Intuitively, such resources consist of coins
of different resource currencies η, the amount of coins being measured by γ.

Example 1. In the following we use the resource type ecost = string → enat, i.e.,
we have currencies described by a string, whose amount is measured by extended
natural numbers, where∞ models arbitrary resource usage. Note that, while the
resource type string→enat guides intuition, most of our theory works for general
resource types of the form η → γ or even just γ.

We define the function $s n to be the resource function that uses n :: enat
coins of the currency s :: string, and write $s as shortcut for $s 1.

A program that sorts a list in O(n2) can be specified by:

sortspec xs = spec (λxs′. sorted xs′ ∧ mset xs′ = mset xs) ($q |xs|2 + $c)

that is, a list xs can result in any sorted list xs′ with the same elements, and
the computation takes (at most) quadratically many q coins in the list length,
and one c coin, independently of the list length. Intuitively, the q and c coins
represent the constant factors of an algorithm that implements that specification
and are later elaborated by exchanging them into several coins of more fine-
grained currencies, corresponding to the concrete operations in the algorithm,
e.g., comparisons and memory accesses. Abstract currencies like q and c only
“have value” if they can be exchanged to meaningful other currencies, and finally
pay for the resource costs of a concrete implementation.

2.2 Atomic Operations and Control Flow

In order to conveniently model actual computations, we define some combinators.
The elapse m t combinator adds the (constant) resources t to all results of m:

elapse :: (α,γ) NREST → γ → (α,γ) NREST
elapse fail t = fail

elapse (res M) t = res (λx. case M x of None ⇒ None
| Some t′ ⇒ Some (t + t′))

The program5 return x computes the single result x without using any resources:

return :: α → (α,γ) NREST
return x = res [ x 7→ 0 ]

The combinator bind m f models the sequential composition of computations m
and f , where f may depend on the result of m:

5 Note that our shallow embedding makes no formal distinction between syntax and
semantics. Nevertheless, we refer to an entity of type NREST, as program to em-
phasize the syntactic aspect, and as computation to emphasize the semantic aspect.
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bind :: (α,γ) NREST → (α → (β,γ) NREST) → (β,γ) NREST
bind fail f = fail

bind (res M) f = Sup { elapse (f x) t |x t. M x = Some t }

If the first computation m fails, then also the sequential composition fails. Oth-
erwise, we consider all possible results x with resources t of m, invoke f x, and
add the cost t for computing x to the results of f x. The supremum aggregates
the cases where f yields the same result, via different intermediate results of m,
and also makes the whole expression fail if one of the f x fails.

Example 2. We now illustrate an effect that stems from our decision to aggregate
the resource usage of different computation paths that lead to the same result.
Consider the program

res (λn::nat. Some ($c n)); return 0

It first chooses an arbitrary natural number n consuming n coins of currency c,
and then returns the result 0. That is, there are arbitrarily many paths that lead
to the result 0, consuming arbitrarily many c coins. The supremum of this is∞,
such that the above program is equal to elapse (return 0) ($c ∞). Note that
none of the computation paths actually attains the aggregated resource usage.
We will come back to this in Section 4.4.

Finally, we use Isabelle/HOL’s if-then-else and define a recursion combinator
rec via a fixed-point construction [13], to get a complete set of basic combinators.
As these combinators also incur cost in the target LLVM, we define resource
aware variants. Furthermore we also derive a while combinator:

ifc b then c1 else c2 = elapse (r ← b; if r then c1 else c2) $if
recc F x = elapse (rec (λD x. F (λx. elapse (D x) $call) x) x) $call
whilec b f s = recc (λD s. ifc b s then s ← f s; D s else return s) s

Here, the guard of ifc is a computation itself, and we consume an additional
if coin to account for the conditional branching in the target model. Similarly,
every recursive call consumes an additional call coin.

Assertions fail if their condition is not met, and return unit otherwise:

assert P = if P then return () else fail

They are used to express preconditions of a program. A Hoare-triple for program
m, with precondition P, postcondition Q and resource usage t is written as a
refinement condition: m ≤ assert P; spec Q (λ . t)

Example 3. Comparison of two list elements at a cost of t can be specified by:

idxs cmpspec xs i j (t) = assert (i<|xs| ∧ j<|xs|); spec (xs!i < xs!j) (λ . t)

where xs!i is the ith element of list xs. Instead of fixing the cost for specifications,
we pass them as parameter t. This allows us to refine different instances of ab-
stract data types (here lists) by different concrete data structures with different
costs. To make bigger programs more readable, we note the cost parameter in
parenthesis at the end of the line, as, e.g., in Example 4.
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2.3 Refinement on NREST

We have used the refinement ordering to express Hoare triples. Two other ap-
plications of refinement are data refinement and currency refinement.

Data Refinement A typical use-case of refinement is to implement an abstract
data type by a concrete data type. For example, we could implement (finite) sets
of numbers by sorted lists. We define a refinement relation R between sorted
lists and sets. A concrete computation m† that yields sorted lists then refines
an abstract computation m that yields sets, if every possible concrete result is
related to a possible abstract result. Formally, m† ≤ ⇓DR m, where the operator
⇓D is defined, for arguments R and m, by the following two rules.

⇓DR (res M) = res (λc. Sup {M a | a. (c,a) ∈ R}) ⇓DR fail = fail

Again, we use the supremum to aggregate the costs of all abstract results that
are related to a concrete result. As in Example 2, this leads to the possibility
that the supremum cost is not attained, which we discuss in Section 4.4.

Currency Refinement Consider we want to refine Example 3 into a program that
first accesses the elements and then compares them.

Example 4. We refine idxs cmpspec ($idxs cmp) from Example 3 as follows:

idxs cmp xs i j =
assert (i<|xs| ∧ j<|xs|);
xsi ← list getspec xs i; ($lookup)
xsj ← list getspec xs j; ($lookup)
return (xsi < xsj) ($less)

where list getspec xs i (T) = assert (i < |xs|); spec (xs!i) T and return x (T)
returns the result x incurring cost T.

Note that idxs cmp and idxs cmpspec use different, incompatible currency
systems. To compare them, we need to exchange coins: one idxs cmp coin will
be traded for two lookup coins and one less coin.

To make that happen we introduce the currency refinement ⇓CE m. Here,
the exchange rate E :: ηa → ηc → γ specifies for each abstract currency ca :: ηa
how many of the coins of the concrete currency cc :: ηc are needed. Note that,
in general, one abstract coin may be exchanged into multiple coins of different
currencies. For a resource type γ that provides a multiplication operation (∗) we
define the operator ⇓C with the following two rules.

⇓CE (res M) = res (λ r. case M r of None ⇒ None |
Some t ⇒ Some (λcc.

∑
ca

t ca ∗ E ca cc))

⇓CE fail = fail

The refined computation has the same results as the original. To get the amount
of a concrete coin cc for some result r with resource function t, we sum, over all
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abstract coins ca, the amount of abstract coins needed in the original computa-
tion (t ca) weighted by the exchange rate (E ca cc).

For the sum to make sense, there must be only finitely many abstract coins ca
with t ca ∗ E ca cc 6= 0. This can be ensured by restricting the resource functions
t of the computation to use finitely many different coins, or by restricting the
exchange rate E accordingly. The latter can be checked syntactically in practice.

Example 5. For refining the specification idxs cmpspec we can use the exchange
rate E1 = 0(idxs cmp:= $lookup 2 + $less), which does the correct exchange for
idxs cmp and is zero everywhere else. Here, + and 0 are lifted to functions in a
pointwise manner, and f(·:=·) denotes a function update. We can now prove:

idxs cmp xs i j ≤ ⇓CE1 (idxs cmpspec xs i j ($idxs cmp))

2.4 Refinement Patterns

In practice, we encounter certain recurring patterns of refinement, which we
describe in this section.

Refinement of Specifications Instead of only asking whether a program m satisfies
a specification res M, we also ask how much it satisfies the specification, i.e.
what is the difference of the resources specified and actually used, denoted by
gwp m M.6 We have the following equality: m ≤ res M ⇔ Some 0 ≤ gwp m M.

To get some intuition let us fix the resource to be time. Then, gwp m M is
the latest feasible time at which we can start m to still match the deadline M.
If there is no feasible starting time (gwp m M = None), m does not fulfill the
specification M. If it has some value t, this is the latest feasible starting time of
all computation paths in m.

Using gwp, we can implement a syntax driven verification condition genera-
tor, as already described in [11].

Lockstep Refinement We often refine a compound program by refining some of
its components. Let A and C be two structurally equal programs (i.e., they have
the same structure of combinators ifc, recc, bind, etc.), and let Ai and Ci be the
pairs of corresponding basic components, for i∈{0,. . . ,n}. Provided with refine-
ment lemmas Φi x ∧ (x†,x) ∈ R′i =⇒ Ci x† ≤ ⇓DRi (⇓CE (Ai x)) for each of
those pairs,7 an automatic procedure walks through the program and establishes
a refinement C ≤ ⇓DRn (⇓CE A). This process generates verification conditions
for ensuring the preconditions Φi, which can be discharged automatically or, if
required, via interactive proof.

6 The definition of gwp requires γ to provide a difference operator, dual to its +
operator. It is a straightforward generalization of the concept defined in [11], and
thus omitted here. We only note that the resource types unit, enat, and ecost provide
a suitable difference operator.

7 The refinement relations R′
i and Ri relate the parameters and respectively the result

of those components.
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Note that, while the data refinements Ri can be different for each component
i, the exchange rate E must be the same for all components. Currently, we align
the exchange rates by manually deriving specialized versions of the component
refinement lemmas. However, we believe that this can be automated in many
practical cases, by collecting constraints on the exchange rate during the lockstep
refinement, which are solved afterwards to obtain a unified exchange rate. We
leave the implementation of this idea to future work.

Separating Analysis of Resource Usage and Correctness We can disregard re-
source usage and only focus on refinement of functional correctness, and then
add resource usage analysis later. This is useful to separate the concerns of func-
tional correctness and resource usage proof. We will describe a practical example
later (Section 5.5), and only present an alternative way to prove the refinement
in Example 4 here:

First, for functional correctness, we use the specification idxs cmpspec (∞)
and a program idxs cmp∞ similar to idxs cmp but with all the costs replaced
by ∞. Proving the refinement idxs cmp∞ xs i j ≤ idxs cmpspec xs i j (∞) only
requires showing verification conditions that correspond to functional prop-
erties and termination. In particular, assertions and annotated invariants in
the concrete program have to be proved. Proof obligations on resource us-
age, however, collapse into the trivial t ≤ ∞. For the same reason, we get
idxs cmp xs i j ≤ idxs cmp∞ xs i j, and by transitivity obtain

idxs cmp xs i j ≤ idxs cmpspec xs i j (∞)

Next, we prove idxs cmp xs i j ≤n spec (λ .True) ($lookup 2 + $less). Here, the
refinement relation m ≤n m′ = m 6= fail =⇒ m ≤ m′ assumes that the con-
crete program does not fail. This has the effect that, during the refinement proof,
assertions and annotated invariants in the concrete program can be assumed to
hold, and we can focus on the resource usage proof.

Finally, the two refinements can be combined to obtain

idxs cmp xs i j ≤ idxs cmpspec xs i j ($lookup 2 + $less)

3 LLVM With Cost Semantics

The NREST-monad allows to specify programs with their resource usage in
abstract currencies. Those currencies only have a meaning when they finally
can be exchanged for the costs of concrete computations. In the following we
present such a concrete computation model, namely a shallow embedding of
the LLVM semantics into Isabelle/HOL. The embedding is an extension of our
earlier work [15] to also account for costs. In Section 4 we then report on linking
the LLVM back end with the NREST front end.

3.1 Basic Monad

At the basis of our LLVM formalization is a monad that provides the notions of
non-termination, failure, state, and execution costs.
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α mres = NTERM | FAIL | SUCC α cost state
α M = state → α mres

Here, cost is a type for execution costs, which forms a monoid with operation +
and neutral element 0, and state is an arbitrary type.8

The type α M describes a program that, when executed on a state, either
does not terminate (NTERM), fails (FAIL), or returns a result of type α, its
execution costs, and a new state (SUCC).

It is straightforward to define the monad operations return and bind, as well
as a recursion combinator rec over M. Thanks to the shallow embedding, we can
also use Isabelle HOL’s if-then-else to get a complete set of basic operations. As
an example, we show the definition of the bind operation, in the case that both
arguments successfully compute a result:

Assume m s = SUCC x c1 s1 and f x s1 = SUCC r c2 s2
then we have bind m f s = SUCC r (c1+c2) s2

That is, the result x and state s1 after the first operation m is passed into the
second operation f, and the result and state after the bind is what emerges from
f. The cost for the bind is the sum of the costs for both operations.

The basic monad operations do not cost anything. To account for execution
costs, we define an explicit operation consume c s = SUCC () c s.9

3.2 Shallowly Embedded LLVM Semantics

The formalization of the LLVM semantics is organized in layers. At the bot-
tom, there is a memory model that stores deeply embedded values, and comes
with basic operations for allocation/deallocation, loading, storing, and pointer
manipulation. Also the basic arithmetic operations are defined on deeply em-
bedded integers. These operations are phrased in the basic monad, but consume
no costs. This way, we could take them unchanged from our original LLVM for-
malization without cost [15]. For example, the low-level load operation has the
signature raw load :: raw ptr → val M. Here, raw ptr is the pointer type of our
memory model, consisting of a block address and an offset, and val is our value
type, which can be an integer, a pointer, or a pair of values.

On top of the basic layer, we define operations that correspond to the actual
LLVM instructions. Here, we map from deeply embedded values to shallowly
embedded values, and add the execution costs.

For example, the semantics of LLVM’s load instruction is defined as follows:

8 Note that this differs from the NREST monad in Section 2.1: it is deterministic,
and provides a state. Because of determinism, we never need to form a supremum,
and thus can base our cost model on natural numbers rather than enats. We leave
a unification of the two monads to future work.

9 For NREST, we defined a higher-order operation elapse, while we use the first-
order operation consume here. This is for historical reasons. Note that elapse can
be defined in terms of consume, and vice versa.
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ll load :: α ptr → α M
ll load p =
consume $load;
r ← raw load (the raw ptr p);
checked from val r

It consumes the cost10 for the operation, and then forwards to the raw load
operation of the lower layer, where the raw ptr and checked from val convert
between the shallow and deep embedding of values.

Like in the original formalization11, an LLVM program is represented by a
set of monomorphic constant definitions of the shape def, defined as follows:

def = proc name var∗ ≡ block
block = var ← cmd; block | return var
cmd = ll <opcode> arg∗ | ll call proc name arg∗ | llc if arg block block

| llc while block block
arg = var | number | null | init

The code generator checks that the set of definitions is complete and adheres
to the required shape. It then translates them into LLVM code, which merely
amounts to pretty printing and translating the structured control flow by if

and while12 statements to the unstructured control flow of LLVM. A powerful
preprocessor can convert a more general class of terms to the restricted shape
required by the code generator. This conversion is done inside the logic, i.e.,
the processed program is proved to be equal to the original. Preprocessing steps
include monomorphization of polymorphic constants, extraction of fixed-point
combinators to recursive function definitions, and conversion of tuple construc-
tors and destructors to LLVM’s insertvalue and extractvalue instructions.

In summary, the layered architecture of our LLVM formalization allowed for
a smooth integration of the cost aspect, reusing most of the existing formaliza-
tion nearly unchanged. Note that we opted to integrate the cost aspect into the
existing top layer, which converts between deep and shallow embedding. Alter-
natively, we could have added another layer on top of the shallow embedding.
While the latter would have been the cleaner design, we opted for the former
approach to avoid the boilerplate of adding a new layer. This was feasible as the
original top layer was quite thin, such that adding another aspect there did not
result in excessive complexity.

10 See Section 3.3 for an explanation of our cost model.
11 Actually, the only change to the original formalization is the introduction of the

ll call instruction, to make the costs of a function call visible.
12 Primitive while loops are not strictly required, as they can always be replaced by tail

recursion. Indeed, our code generator can be configured to not accept while loops, and
our preprocessor can automatically convert while loops to tail-recursive functions.
However, the efficiency of the generated code then relies on LLVM’s optimization
pass to detect the tail recursion and transform it to a loop again.
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3.3 Cost Model

As a cost model for running time, we chose to count how often each instruction is
executed. That is, we set cost = string → nat, where the string encodes the name
of an instruction. It is straightforward to define 0 and + such that (cost,0,+)
forms a monoid. It is thus a valid cost model for our monad.

But how realistic is our cost model, counting LLVM instructions? During
compilation, LLVM text will be transformed by LLVM’s optimizer, and finally,
the LLVM’s back end will translate LLVM instructions to machine instructions.
Moreover, the actual running time of a machine program does not only depend
on the number of executed instructions, but effects like pipeline flushes and cache
misses also play an important role. Thus, without factoring in the details of the
optimization passes and the target machine architecture, our cost model can, at
best, be a rough approximation of the actual running time.

However, we can sensibly assume that a single instruction in the original
LLVM text will result in at most a (small) constant number of machine instruc-
tions, and that each machine instruction has a constant worst-case execution
time. Thus, the steps counted by our model linearly correlate to an upper bound
of the actual execution time, though the exact correlation depends on the actual
program, optimizer passes, and target architecture. Hence, while our cost model
cannot be used for precise statements about execution time, it can be used to
prove worst-case complexity. That is, a program that we have proved efficient
will be compiled to an efficient machine program. Moreover, we can hope that
the constant factors in the proved complexity are related to the actual constant
factors in the machine program, i.e., an LLVM program with small constant
factors will compile to a machine program with small constant factors.

The above discussion justifies the following design choices: The insertvalue
and extractvalue instructions, which are used to construct and destruct tuple
values, have no associated costs. The main reason for this design is to enable
transparent use of tupled values, e.g., to encode the state of a while loop. We
expect LLVM to translate the members of the tuple to separate registers anyway,
such that no real costs are associated with tupling/untupling.

We define the malloc instruction to take cost proportional to the number
of allocated elements. Note that LLVM itself does not provide memory man-
agement, and our code generator forwards memory management instructions to
the libc implementation of the target platform. We use the calloc function here,
which is supposed to initialize the allocated memory with zeros. While the exact
costs of that are implementation dependent, they certainly will depend on the
size of the allocated block.

Charguéraud and Pottier [6, §2.7] discuss the adequacy of abstract cost mod-
els in a functional setting. In their classification, our abstraction is on Level 2.

3.4 Reasoning Setup

Once we have defined the semantics, we need to set up some basic reasoning
infrastructure. The original Isabelle-LLVM already comes with a quite generic
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separation logic and verification condition generation framework. Here, we report
on our extensions to resources using time credits.

Separation Logic with Time Credits Our reasoning infrastructure is based on
separation logic with time credits [1,6,10]. We follow the algebraic approach of
Calcagno et al. [3], using an earlier extension [15] of Klein et al. [18].

A separation algebra on type α induces a separation logic on assertions that
are predicates over α. To guide intuition, elements of α are called heaps here. We
use the following separation logic operators: The assertion ↑Φ holds for an empty
heap if Φ holds, @=↑True describes the empty heap, and ∃A is the existential
quantifier lifted to assertions. The separating conjunction P ? Q describes a heap
comprised from two disjoint parts, one described by P and the other described
by Q, and entailment P ` Q states that Q holds for every heap described by P.

Separation algebras naturally extend over product and function types, i.e., for
separation algebras α, β, and any type γ, also α × β and γ → α are separation
algebras, where the operations are lifted pointwise.

Note that enat forms a separation algebra, where elements, i.e. time credits,
are always disjoint. Hence, also ecost = string → enat, and amemory × ecost are
separation algebras, where amemory is the separation algebra that we already
used in [15] to describe the abstract memory of LLVM. Thus, amemory × ecost
induces a separation logic with time credits that match our cost model. The
time credit assertion $ c = (λa. a=(0,c)) describes an empty memory (0) and
precisely the time c. The primitive assertions on amemory are lifted analogously
to describe no time credits.

Weakest Precondition and Hoare Triples We start by defining a concrete state
cstate that describes the memory content and the available resources:

cstate = memory × ecost

where memory is the memory type from our original LLVM formalization. Based
on this, we define the weakest precondition predicate:

wp :: α M → (α → cstate → bool) → cstate → bool
wp m Q (s,cc) = (∃r c s′. m s = SUCC r c s′ ∧ c≤cc ∧ Q r (s′, cc−c)).

Intuitively, the costs cc stored in the state is the credit available to the program.
The weakest precondition holds if the program runs with real costs c that are
within the available credit, and Q holds for the result r, the new memory s′, and
the new credit, cc−c, which is the old credit reduced by the actually required
costs. Note that actual costs have type cost = string → nat, i.e., are always
finite, while the credits have type ecost = string → enat, i.e., there can be infinite
credits. Setting the credit to be infinite for all instruction types yields the classical
weakest precondition that requires termination, but enforces no time limit.

Our concrete state type, in particular the memory, does not form a separation
algebra, as the natural memory model of LLVM has no natural notion of partial
memories. Thus, we define an abstraction function that maps a concrete state
to an abstract state astate, which forms a separation algebra:
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astate = amemory × ecost abs (m, c) = (absm m, c)

Again, amemory and absm is the abstract state and abstraction function from
the original LLVM formalization. The costs already form a separation algebra,
so we do not abstract them further.

With this, we can instantiate a generic VCG infrastructure: let cstate be
concrete states, wp :: α M → (α → cstate → bool) → cstate → bool be a weak-
est precondition predicate, and astate an abstract state, linked to concrete states
via an abstraction function abs :: cstate → astate. Further, assume that wp dis-
tributes over conjunctions, i.e.,

wp c Q1 s ∧ wp c Q2 s =⇒ wp c (λr s′. Q1 r s′ ∧ Q2 r s′) s

Finally, let >> be an affine top [5], i.e., an assertion with @ ` >> and >> ? >> = >>,
which captures resources that can be safely discarded. We define the Hoare triple
{P} c {Q} to hold iff:

∀F s. (P?F) (abs s) =⇒ wp c (λr s′. (Q r ? >> ? F) (abs s′)) s

Intuitively, {P} c {Q} holds if, for all states that contain a part described by
assertion P, command c terminates with result r and a state where that part
is replaced by a part described by Q r ? >>, and the rest of the state has not
changed. Here, Q r is the postcondition of the Hoare triple, and >> describes
resources that may be left over and can be discarded.

In our case, we set >> to describe the empty memory and any amount of time
credits. This matches the intuition that a program must free all its memory, but
may run faster than estimated, i.e., leave over some time credits. Note that our
wp distributes over conjunctions.

The generic VCG infrastructure now provides us with a syntax driven VCG
with a simple frame inference heuristics.

3.5 Primitive Setup

Once we have defined the basic reasoning infrastructure, we have to prove Hoare
triples for the basic LLVM instructions and control flow combinators. As we have
added the cost aspect only at the top level of our semantics, we can reuse most of
the material from our original LLVM formalization without time. Technically, we
instantiate our reasoning infrastructure with a weakest precondition predicate
wpn, which only holds for programs that consume no costs. We define:

wpn m Q s = wp m (FST ◦ Q) (s,0) where FST P = λ(s,c). P s ∧ c=0

The resulting reasoning infrastructure is identical with the one of our original
formalization, most of which could be reused. Only for the topmost level, i.e., for
those functions that correspond to the functional semantics of the actual LLVM
instructions, we lift the Hoare triples over wpn to Hoare triples over wp:

{P} c {Q}wpn = {FST P} c {FST ◦ Q}
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Example 6. Recall the low-level raw load and the high-level ll load instruction
from Section 3.2. The raw load instruction consumes no costs, and our original
LLVM formalization provides the following Hoare triple:

{raw pto p x} raw load p {λr. ↑(r=x) ? raw pto p x}wpn

This can be transferred to a Hoare triple over wp:

{FST (raw pto p x)} raw load p {λr. ↑(r=x) ? FST (raw pto p x)}

which is then used to prove the Hoare triple for the program ll load

{ $ $load ? pto p x} ll load p {λr. ↑(r=x) ? pto p x}

where pto p x = FST (raw pto (the raw ptr p) (to val x)).

Using the VCG and the Hoare triples for the LLVM instructions, we can now de-
fine and prove correct data structures and algorithms. While this works smoothly
for simple data structures like arrays, it does not scale to more complex develop-
ments. In contrast, NREST does scale, but lacks support for the low-level pointer
reasoning required for basic data structures. In the next section, we show how to
combine both approaches, with the LLVM level providing basic data structures
and the NREST level using them as building blocks for larger algorithms.

4 Automatic Refinement

In this section we describe a tool to synthesize a concrete program in the LLVM-
monad from an abstract algorithm in the NREST-monad. It can automatically
refine abstract functional data structures to imperative heap-based ones. We
will describe the synthesis predicate hnr that connects the two monads, the
synthesis tool, and a way to extract Hoare triples from hnr predicates. Finally,
we will discuss an effect that prevents combining hnr with data refinements in
the NREST-monad in the general case.

4.1 Heap nondeterminism refinement

The heap nondeterminism refinement predicate hnr Γ m† Γ
′ R m intuitively ex-

presses that the concrete program m† computes a concrete result that relates, via
the refinement assertion R, to a result in the abstract program m, using at most
the resources specified by m for that result. A refinement assertion describes
how an abstract variable is refined by a concrete value on the heap. It can also
contain time credits. The assertions Γ and Γ ′ constitute the heaps before and
after the computation and typically are a separating conjunction of refinement
assertions for the respective parameters of m† and m. Formally, we define:

hnr Γ m† Γ
′ R m = m 6= fail =⇒

(∀F s c. (Γ ? F) (absm s,c) =⇒
(∃ra ca. elapse (return ra) ca ≤ m
∧ wp m† (λr (s′,c′). (Γ ′ ? R r ra ? F ? >>) (absm s′,c′)) (s, c+ca)))
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The predicate holds if either the abstract program fails or if, for all heaps and
resources (s,c) that satisfy the pre-assertion Γ with some frame F, there exists an
abstract result and cost (ra,ca) that refine m, and m† terminates with concrete
result r in a state s′where Γ ′with the frame holds, and r relates to the abstract
result via assertion R. The execution costs of m† and the time credits c′ required
by the post-assertion Γ ′ are paid for by the specified cost ca and the time credits
c described by the pre-assertion Γ . Thus, the real costs are paid by a combination
of the advertised costs in the abstract program and the potential difference of
Γ ′ and Γ , allowing to seamlessly model amortized computation costs.

Using the affine top >>, it is possible for the program to throw away portions
of the heap. Note that our >> can only discard time credits. Memory must be
explicitly freed by the concrete program m†.

Also note that hnr is not tied to the LLVM semantics specifically. It actually
is a general pattern for combining the NREST-monad with any other program
semantics that provides a weakest precondition and a separation algebra for data
and resources.

4.2 The Sepref Tool

The Sepref tool [14,15] automatically synthesizes a concrete program in the
LLVM-monad from an abstract algorithm in the NREST-monad. It symbolically
executes the abstract program while maintaining refinements for the abstract
variables to a concrete representation and generates a concrete program as well
as a valid hnr predicate. Proof obligations13 that occur during this process are
discharged automatically, guided by user-provided hints where necessary.

The synthesis requires rules for all abstract combinators. For example, bind
is processed by the following rule:

1 J hnr Γ m† Γ
′ Rx m;

2 (∀x x†. hnr (Rx x† x ? Γ ′) (f† x†) (R′x x† x ? Γ ′′) Ry (f x));
3 MK FREE R′x free K =⇒
4 hnr Γ (x† ← m†; r† ← f† x†; free x†; return r†) Γ

′′ Ry (x ← m; f x)

To refine x ← m; f x, we first execute m, synthesizing the concrete program
m† (line 1). The state after m is Rx x† x ? Γ ′, where x is the result created
by m. From this state, we execute f x and synthesize f† x† (line 2). The new
state is R′x x† x ? Γ ′′ ? Ry y† y, where y is the result of f x. Now, the inter-
mediate variable x goes out of scope and has to be deallocated. The predicate
MK FREE R′x free (line 3) states that free is a deallocator for data structures
implemented by refinement assertion R′x. Note that free can only use time credits
that are stored in R′x. Typically, these are payed for during creation of the data
structure. This way amortization can be used effectively to hide the necessary
free operation and its costs in the abstract program.

All other combinators (recc, ifc, whilec, etc.) have similar rules that are
used to decompose an abstract program into parts, synthesize corresponding con-

13 E.g. from implementing mathematical integers with fixed-bit machine words.
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crete parts recursively and combine them afterwards with the respective combi-
nators from LLVM. At the leaves of this decomposition, atomic operations need
to be provided with suitable synthesis predicates.

An example is a list lookup that is implemented by an array:

hnr (arrayA p xs ? snatA i† i)
(array nth p i†)

(arrayA p xs ? snatA i† i) idA (list getspec xs i (λ . array getcost))

where arrayA, snatA and idA relate a list with an array, an unbounded natural
number with a bounded signed word and identical elements respectively. With
an array at address p holding the list xs and an index i† that is a bounded
signed word representing an unbounded natural number i, array nth leaves the
parameters unchanged and extracts the element specified by list getspec incurring
costs array getcost=$ofs ptr + $load.

Ideally, each operation has its own currency (e.g. list get). However, as our
definition of hnr does not support currency refinement, the basic operations must
use the currencies of the LLVM cost model. To still obtain modular hnr rules,
we encapsulate specifications for data structures with their cost, e.g. by defining
array getspec=list getspec (λ . array getcost). These can easily be introduced in
an additional refinement step. Automating this process, and possibly integrating
currency refinement into hnr is left to future work.

4.3 Extracting Hoare Triples

Note that hnr predicates cannot always be expressed as Hoare triples, as the
running time bound of the abstract program may depend on the result, which
we cannot refer to in the precondition of a Hoare triple, where we have to express
the allowed running time as time credits. However, if the running time bound
does not depend on the result, we can write hnr as a Hoare triple:

hnr Γ m† Γ
′ R (spec Φ (λ .T)) = {$T?Γ}m†{λr. Γ ′?∃Ara. R r ra ? ↑(Φ ra)}

While intermediate components might not be of this form, final algorithms typ-
ically are. At the end of a development, this rule allows to extract a Hoare triple
in the underlying LLVM semantics, cutting out the NREST-monad. For validat-
ing the correctness claim of an algorithm, only the final Hoare triple needs to be
inspected, which only uses concepts of the underlying semantics.

Note that the above rule is an equivalence. Thus, it can also be used to obtain
synthesis rules from Hoare triples provided by the basic VCG infrastructure.

4.4 Attain Supremum

We comment on a problem that arises when composing hnr predicates and data
refinement in the NREST monad. Consider the following programs and relations:

m′ = res [x 7→ $a, y 7→ $b] RR = {(z,a),(z,b)}
m = res [z 7→ $a + $b] RA = idA

m† = consume ($a + $b); return z
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Data refinement defines the resource bound for a concrete result (here z) as
the supremum over all bounds of related results (here x, y). Thus, we have
m ≤ ⇓CRR m′. Moreover, we trivially have hnr @ m† @ RA m. Intuitively, we
want to compose these two refinements, to obtain hnr @ m† @ (RA ◦ RR) m′.
However, as our definition of hnr does not form a supremum, this would require
$a + $b ≤ $a or $a + $b ≤ $b, which obviously does not hold.

We have not yet found a way to define hnr or ⇓D in a form that does not
exhibit this effect. Instead, we explicitly require that the supremum of the data
refinement has a witness. The predicate attains sup m m′ RR characterizes that
situation: it holds, if for all results r of m the supremum of the set of all ab-
stractions (r,r′)∈RR applied to m′ is in that set. This trivially holds if RR is
single-valued, i.e. any concrete value is related with at most one abstract value,
or if m′ is one-time, i.e. assigns the same resource bound to all its results.

In practice we do encounter non-single-valued relations14, but they only oc-
cur as intermediate results where the composition with an hnr predicate is not
necessary. Also, collapsing synthesis predicates and refinements in the NREST-
monad typically is performed for the final algorithm whose running time does
not depend on the result, thus is one-time, and ultimately attains sup.

5 Case Study: Introsort

In this section, we apply our framework to the introsort algorithm [22]. We build
upon the verification of its functional correctness [17] to verify its running time
analysis and synthesize competitive efficient LLVM code for it. Following the
“top-down” mantra, we use several intermediate steps to refine a specification
down to an implementation.

5.1 Specification of Sorting

We start with the specification of sorting a slice of a list:

slice sortspec xs0 l h (T) =
assert (l≤h ∧ h≤length xs0);
spec (λxs. slice sort aux xs0 l h xs) (λ . T)

where slice sort aux xs0 l h xs states that xs is a permutation of xs0, xs is sorted
between l and h and equal to xs0 anywhere else.

5.2 Introsort’s Idea

The introsort algorithm is based on quicksort. Like quicksort, it finds a pivot
element, partitions the list around the pivot, and recursively sorts the two par-
titions. Unlike quicksort, however, it keeps track of the recursion depth, and if it

14 The relation oarr, described in earlier work [17, 4.2] by one of the authors, is used
to model ownership of parts of a list on an abstract level and is an example for a
relation that is not single-valued.
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exceeds a certain value (typically b2 log nc), it falls back to heapsort to sort the
current partition. Intuitively, quicksort’s worst-case behaviour can only occur
when unbalanced partitioning causes a high recursion depth, and the introsort
algorithm limits the recursion depth, falling back to the O(n log n) heapsort al-
gorithm. This combines the good practical performance of quicksort with the
good worst-case complexity of heapsort.

Our implementation of introsort follows the implementation of libstdc++,
which includes a second optimization: a first phase executes quicksort (with
fallback to heapsort), but stops the recursion when the partition size falls below
a certain threshold τ . Then, a second phase sorts the whole list with one final
pass of insertion sort. This exploits the fact that insertion sort is actually faster
than quicksort for almost-sorted lists, i.e., lists where any element is less than
τ positions away from its final position in the sorted list. While the optimal
threshold τ needs to be determined empirically, it does not influence the worst-
case complexity of the final insertion sort, which is O(τn) = O(n) for constant
τ . The threshold τ will be an implicit parameter from now on.

While this seems like a quite concrete optimization, the two phases are al-
ready visible in the abstract algorithm, which is defined as follows in NREST:

introsort xs l h =
assert(l ≤ h);
n ← return h−l; ($sub)
ifc n > 1 then ($lt)

xs ← almost sortspec xs l h; ($almost sort)
xs ← final sortspec xs l h ($final sort)
return xs

else return xs

where almost sortspec (T) specifies an algorithm that almost-sorts a list, con-
suming at most T resources and final sortspec (T) specifies an algorithm that
sorts an almost-sorted list, consuming at most T resources.

The program introsort leaves trivial lists unchanged and otherwise executes
the first and second phase. Its resource usage is bounded by the sum of the
first and second phase and some overhead for the subtraction, comparison, and
if-then-else. Using the verification condition generator we prove that introsort is
correct, i.e., refines the specification of sorting a slice:

introsort xs l h ≤ ⇓CEis (slice sortspec xs l h ($sort))

where Eis = 0(sort:=introsortcost) is the exchange rate used at this step and
introsortcost = $sub + $if + $lt + $almost sort + $final sort is the total allotted
cost for introsort.

5.3 Quicksort Scheme

The first phase can be implemented in the following way:

1 introsort aux µ xs l h =
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2 d ← depthspec l h; ($depth)
3 recc (λintrosort rec (xs,l,h,d).
4 assert (l ≤ h);
5 n ← h−l; ($sub)
6 ifc n > τ then ($lt)
7 ifc d = 0 then ($eq)
8 slice sortspec xs l h ($sortc (µ (h-l)))
9 else

10 (xs,m) ← partitionspec xs l h; ($partitionc (h-l))
11 d′← d − 1; ($sub)
12 xs ← introsort rec (xs,l,m,d′);
13 xs ← introsort rec (xs,m,h,d′);
14 return xs
15 else return xs
16 ) (xs,l,h,d)

where partitionspec partitions a slice into two non-empty partitions, returning
the start index m of the second partition, and depthspec specifies b2 log(h− l)c.

Let us first analyze the recursive part: if the slice is shorter than the threshold
τ , it is simply returned (line 15). Unless the recursion depth limit is reached,
the slice is partitioned using h− l partitionc coins, and the procedure is called
recursively for both partitions (lines 10-14). Otherwise, the slice is sorted at a
price of µ (h−l) sortc coins (line 8). The function µ here represents the leading
term in the asymptotic costs of the used sorting algorithm, and the sortc coin
can be seen as the constant factor. This currency will later be exchanged into
the respective currencies that are used by the sorting algorithm. Note that we
use currency sortc to describe costs per comparison of a sorting algorithm, while
currency sort describes the cost for a whole sorting algorithm.

Showing that the procedure results in an almost-sorted list is straightforward.
The running time analysis, however, is a bit more involved. We presume a func-
tion µ that maps the length of a slice to an upper bound on the abstract steps
required for sorting the slice. We will later use heapsort with µnlogn n = n log n.

Consider the recursion tree of a call in introsort rec: We pessimistically as-
sume that for every leaf in the recursion tree we need to call the fallback sorting
algorithm. Furthermore, we have to partition at every inner node. This has cost
linear in the length of the current slice. For each following inner level the lengths
of the slices add up to the current one’s, and so do the incurred costs. Finally
we have some overhead at every level including the final one. The cost of the
recursive part of introsort aux is:

introsort reccost µ (n,d) = $sortc (µ n) + $partitionc d ∗ n
+ ((d+1)∗n)∗($if 2 + $call 2 + $eq + $lt + $sub 2)

The correctness of the running time bound is proved by induction over the
recursion of introsort rec. If the recursion limit is reached (d=0), the first sum-
mand pays for the fallback sorting algorithm. If d>0, part of the second sum-
mand pays for the partitioning of the current slice, then the list is split into
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two and the recursive costs are payed for by parts of all three summands. To
bound the costs for the fallback sorting algorithm, µ needs to be superadditive:
µ a + µ b ≤ µ (a+b). In both cases, the third summand pays for the overhead
in the current call.

For d=b2 log nc and an O(n log n) fallback sorting algorithm (µ=µnlogn),
introsort reccost µnlogn is in O(n log n).15 In fact, any d∈O(log n) would do.

Before executing the recursive method, introsort aux calculates the depth
limit d. The correctness theorem then reads:

introsort aux µnlogn xs l h ≤ ⇓C(Eisa(h−l))(almost sortspec xs l h $almost sort)

with Eisa n = 0(almost sort:= $depth + introsort reccost µnlogn (n, b2 log nc)).
Note that specifications typically use a single coin of a specific currency for

their abstract operation, which is then exchanged for the actual costs, usually
depending on the parameters.

This concludes the interesting part of the running time analysis of the first
phase. It is now left to plug in an O(n log n) fallback sorting algorithm, and a
linear partitioning algorithm.

Heapsort Independently of introsort, we have proved correctness and worst-case
complexity of heapsort, yielding the following refinement lemma:

heapsort xs l h ≤ ⇓C(Ehs (h−l)) (slice sortspec xs l h ($sort))

where Ehs n = 0(sort:= c1 + log n ∗ c2 + n ∗ c3 + (n ∗ log n) ∗ c4) for some
constants ci :: ecost.

Assuming that n ≥ 2,16 we can estimate Ehs n sort ≤ µnlogn n ∗ c, for c =
c1 + c2 + c3 + c4, and thus get, for Ehs′ = 0(sortc := c):

⇓C(Ehs (h−l)) (slice sortspec xs l h ($sort))
≤ ⇓CEhs′ (slice sortspec xs l h ($sortc (µnlogn (h−l))))

and, by, transitivity

heapsort xs l h ≤ ⇓CEhs′ (slice sortspec xs l h ($sortc (µnlogn (h−l))))

Note that our framework allowed us to easily convert the abstract currency from
a single operation-specific sort coin to a sortc coin for each comparison operation.

Partition and Depth Computation We implement partitioning with the Hoare
partitioning scheme using the median-of-3 as the pivot element. Moreover, we
implement the computation of the depth limit (2blog(h − l)c) by a loop that
counts how often we can divide by two until zero is reached. This yields the
following refinement lemmas:

pivot partition xs l h ≤ ⇓CEpp (partitionspec xs l h ($partitionc
(h−l)))

calc depth l h ≤ ⇓C(Ecd (h−l)) (depthspec l h ($depth))

15 More precisely, the sum over all (finitely many) currencies is in O(n logn).
16 Note that this is a valid assumption, as heapsort will never be called for trivial slices.



For a Few Dollars More 21

Combining the Refinements We replace slice sortspec, partitionspec and depthspec

by their implementations heapsort, pivot partition and calc depth. We call the
resulting implementation introsort aux2, and prove

introsort aux2 xs l h ≤ ⇓C(Eaux (h−l)) (introsort aux µnlogn xs l h)

where the exchange rate Eaux combines the exchange rates Ehs′ , Epp and Ecd

for the component refinements.
Transitive combination with the correctness lemma for introsort aux then

yields the correctness lemma for introsort aux2:

introsort aux2 xs l h ≤ ⇓C(Eisa2 (h−l)) (almost sortspec xs l h ($almost sort))

where Eisa2 n = 0(almost sort:=↓C(Eaux n) (introsort auxcost n)) and the op-
eration ↓CE t applies an exchange rate to a resource function.

Refining Resources The stepwise refinement approach allows to structure an
algorithm verification in a way that correctness arguments can be conducted
on a high level and implementation details can be added later. Resource cur-
rencies permit the same for the resource analysis of algorithms: they summa-
rize compound costs, allow reasoning on a higher level of abstraction and can
later be refined into fine-grained costs. For example, in the resource analysis
of introsort aux the currencies sortc and partitionc abstract the cost of the re-
spective subroutines. The abstract resource argument is independent from their
implementation details, which are only added in a subsequent refinement step,
via the exchange rate Eaux.

5.4 Final Insertion Sort

The second phase is implemented by insertion sort, repeatedly calling the sub-
routine insert. The specification of insert for an index i captures the intuition
that it goes from a slice that is sorted up to index i−1 to one that is sorted up
to index i. Insertion is implemented by moving the last element to the left, as
long as the element left of it is greater (or the start of the list has been reached).
Moving an element to its correct position takes at most τ steps, as after the
first phase the list is almost sorted, i.e., any element is less than τ positions
away from its final position in the sorted list. Moreover, elements originally at
positions greater τ will never reach the beginning of the list, which allows for the
unguarded optimization. It omits the bounds check for those elements, saving
one index comparison in the innermost loop. Formalizing these arguments yields
the implementation final insertion sort that satisfies

final insertion sort xs l h ≤ ⇓C(Efis(h−l)) (final sortspec xs l h ($final sort))

where Efis n = 0(final sort:=final insertioncost n), and final insertioncost n is
linear in n.

Note that final insertion sort and introsort aux2 use the same currency sys-
tem. Plugging both refinements into introsort yields introsort2 and the lemma

introsort2 xs l h ≤ ⇓C(Eis2(h−l)) (introsort xs l h)

where the exchange rate Eis2 combines the rates Eisa2 and Efis.



22 Haslbeck, Lammich

5.5 Separating Correctness and Complexity Proofs

A crucial function in heapsort is sift down, which restores the heap property
by moving the top element down in the heap. To implement this function, we
first prove correct a version sift down1, which uses swap operations to move the
element. In a next step, we refine this to sift down2, which saves the top element,
then executes upward moves instead of swaps, and, after the last step, moves
the saved top element to its final position. This optimization spares half of the
memory accesses, exploiting the fact that the next swap operation will overwrite
an element just written by the previous swap operation.

However, this refinement is not structural: it replaces swap operations by
move operations, and adds an additional move operation at the end. At this
point, we chose to separate the functional correctness and resource aspect, to
avoid the complexity of a combined non-structural functional and currency
refinement. It turns out that proving the complexity of the optimized ver-
sion sift down2 directly is straightforward. Thus, as sketched in Section 2.4, we
first prove17 sift down2 ≤ sift down1 ≤ sift downspec (∞), ignoring the resource
aspect. Separately, we prove sift down2 ≤n spec (λ . True) sift downcost, and
combine the two statements to get sift down2 ≤ sift downspec sift downcost.

5.6 Refining to LLVM

The above abstract programs implicitly come with a fixed type and comparison
operator for the elements of the list to be sorted. Those programs use abstract
operations and currencies for arithmetic operations on indexes, control flow,
comparisons and read/write of a random-access iterator (abstracted by lists with
update and lookup operations).

When we further assume an LLVM program that refines the comparison
operator in LLVM, and specify how the random-access data structure should be
implemented — we choose arrays — we can automatically synthesize an LLVM
program introsort impl that refines introsort2, i.e., satisfies the theorem:

hnr (arrayA p xs ? snatA l† l ? snatA h† h)
(introsort impl p l† h†)

(snatA l† l ? snatA h† h) arrayA (introsort2 xs l h)

Combination with the refinement lemmas for introsort2 and introsort, followed
by conversion to a Hoare triple, yields our final correctness statement:

l ≤ h ∧ h < length xs0 =⇒
{$(introsort implcost (h−l)) ? arrayA p xs0 ? snatA l† l ? snatA h† h}

introsort impl p l† h†
{λr. ∃Axs. arrayA r xs ? ↑(slice sort aux xs0 l h xs) ? snatA l† l ? snatA h† h}

where introsort implcost :: nat → ecost is the cost bound obtained from applying
the exchange rates Eis and then Eis2 to $sort.

17 Note that we have omitted the function parameters for better readability.
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Note that this statement is independent of the Refinement Framework. Thus,
to believe in its meaningfulness, one has to only check the formalization of Hoare
triples, separation logic, and the LLVM semantics.

To formally prove the statement “introsort impl has complexity O(n log n)”,
we observe that introsort implcost uses only finitely many currencies, and only
finitely many coins of each currency. We define the overall number of coins as

introsort implallcost n = Σc. introsort implcost n c

which expands to

introsort implallcost n = 4693 + 5 ∗ log n + 231 ∗ n + 455 ∗ (n ∗ log n)

which, in turn, is routinely proved to be in O(n log n).
As a last step, we instantiate the element type to 64-bit unsigned integers and

the comparison operation to LLVM’s icmp ult instruction, to obtain a program
that sorts integers in ascending order. Our code generator can export this to
actual LLVM text and a corresponding header file for interfacing our sorting
algorithm from C or C++.

As LLVM does not support generics, we cannot implement a replacement for
C++’s generic std::sort<T>. However, by repeating the last step for different
types and compare operators, we can implement a replacement for any fixed T.

5.7 Benchmarks

In this section we present benchmarks comparing the code extracted from our
formalization with the real world implementation of introsort from the GNU
C++ Library (libstdc++). Also, as a regression test, we compare with the code
extracted from an earlier formalization of introsort [17] that did not verify the
running time complexity and used an earlier iteration of the Sepref framework
and LLVM semantics without time.

The results are shown in Figure 1. As expected, all three implementations
have similar running times. Note that the small differences are well within the
noise of the measurements. We conclude that adding the complexity proof to our
introsort formalization, and the time aspect to our refinement process has not
introduced any timing regressions in the generated code. Note, however, that the
code generated by our current formalization is not identical to what the original
formalization generated. This is mainly due to small changes in the formalization
introduced when adding the timing aspect.

6 Conclusions

We have presented a refinement framework for the simultaneous verification of
functional correctness and complexity of algorithm implementations with com-
petitive practical performance.

We use stepwise refinement to separate high-level algorithmic ideas from
low-level optimizations, enabling convenient verification of highly optimized al-
gorithms. The novel concept of resource currencies also allows structuring of the
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Fig. 1. Comparison of the running time measured for the code generated by the formal-
ization described in this paper (Isabelle-LLVM), the original formalization from [17]
(notime), and the libstdc++ implementation. Arrays with 108 uint64s with various
distributions were sorted, and we display the smallest time of 10 runs. The programs
were compiled with clang-10 -O3, and run on an Intel XEON E5-2699 with 128GiB
RAM and 256K/55M L2/L3 cache. See [17] for details of the benchmarking method.

complexity proofs along the refinement chain. Our framework refines down to
the LLVM intermediate representation, such that we can use a state-of-the-art
compiler to generate performant programs.

As a case-study, we have proved the functional correctness and complexity
of the introsort sorting algorithm. Our verified implementation performs on par
with the (unverified) state-of-the-art implementation from the GNU C++ Li-
brary. It also provably meets the C++11 standard library [7] specification for
std::sort, which in particular requires a worst-case time complexity of O(n log n).
We are not aware of any other verified real-world implementations of sorting al-
gorithms that come with a complexity analysis.

Our work is a combination and substantial extension of an earlier refinement
framework for functional correctness [15] which also comes with a verification
of introsort [17], and a refinement framework for a single enat-valued currency
[11]. In particular, we have generalized the refinement framework to arbitrary
resources, introduced currencies that help organizing refinement proofs, extended
the LLVM semantics and reasoning infrastructure with a cost model, connected
it to the refinement framework via a new version of the Sepref tool, and, finally,
added the complexity analysis for introsort.

6.1 Related Work

Nipkow et al. [23, 4.1] collect verification efforts concerning sorting algorithms.
We add a few instances verifying running time: Wang et al. use TiML [25] to
verify correctness and asymptotic time complexity of mergesort automatically.
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Zhan and Haslbeck [26] verify functional correctness and asymptotic running
time analysis of imperative versions of insertion sort and mergesort. We build
on earlier work by Lammich [17] and provide the first verification of functional
correctness and asymptotic running time analysis of heapsort and introsort.

The idea to generalize the nres monad [19] to resource types originates
from Carbonneaux et al. [4]. They use potential functions (state → enat) in-
stead of predicates (state → bool), present a quantitative Hoare logic and extend
the CompCert compiler to preserve properties of stack-usage from programs in
Clight to compiled programs.

We see our paper in the line of research concerning simultaneously verifying
functional correctness and worst-case time complexity of algorithms. Atkey [1]
pioneered resource analysis with separation logic, Guéneau et al. [9] present a
framework that uses time credits in Coq and apply it to involved algorithms and
data structures [10,6]. We further develop their work in three ways: First, while
time credits usually are natural numbers [1,9,26,21,6] or integers [10], we gener-
alize to an abstract resource type and specifically use resource currencies for a
fine-grained analysis. Second, we use stepwise refinement to structure the veri-
fication and make the resource analysis of larger use-cases manageable. Third,
we provide facilities to automatically extract efficient competitive code from the
verification. The following are the most complex algorithms and data structures
with verified running time analysis using time credits and separation logic we are
aware of: a linear time selection algorithm [26], an incremental cycle detection
algorithm [10], Union-Find [6], Edmonds-Karp and Kruskal’s algorithm [11].

6.2 Future Work

A verified compiler down to machine code would further reduce the trusted code
base of our approach. While that is not expected to be available soon for LLVM in
Isabelle, the NREST-monad and the Sepref tool are general enough to connect
to a different back end. Formalizing one of the CompCert C semantics [2] in
Isabelle, connecting it to the NREST-monad and then processing synthesized C
code with CompCert’s verified compiler would be a way to go.

In this paper we apply our framework to verify an involved algorithm that
only uses basic data structures, i.e. arrays. A next step is to verify more involved
data structures, e.g. by porting existing verifications of the Imperative Collec-
tions Framework [16] to LLVM. We do not yet see how to reason about the
running time of data structures like hash maps, where worst-case analysis would
be possible but not useful. In general, extending the framework to average-case
analysis and probabilistic programs are exciting roads to take.

We plan to implement more automation, saving the user from writing boil-
erplate code when handling resource currencies and exchange rates.

Neither the LLVM nor the NREST level of our framework is tied to running
time. Applying it to other resources like maximum heap space consumption
might be a next step.
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