theory More_Asymptotics imports "Asymptotics_1D" "Asymptotics_2D" "HOL-Real_Asymp.Real_Asymp" begin (* by Manuel Eberl *) lemma dlog[asym_bound]: "(λx. real (Discrete.log x)) ∈ Θ(λx. ln (real x))" proof - have "(λx. real (Discrete.log x)) ∈ Θ(λn. real (nat ⌊log 2 (real n)⌋))" by (intro bigthetaI_cong eventually_mono[OF eventually_gt_at_top[of 0]]) (auto simp: Discrete.log_altdef) also have "(λn. real (nat ⌊log 2 (real n)⌋)) ∈ Θ(λx. ln (real x))" by real_asymp finally show ?thesis . qed end