
Efficient Verified Implementation of Introsort and
Pdqsort

Peter Lammich

The University of Manchester, UK

Abstract. Sorting algorithms are an important part of most standard
libraries, and both, their correctness and efficiency is crucial for many
applications.
As generic sorting algorithm, the GNU C++ Standard Library implements
the introsort algorithm, a combination of quicksort, heapsort, and insertion
sort. The Boost C++ Libraries implement pdqsort, an extension of
introsort that achieves linear runtime on inputs with certain patterns.
We verify introsort and pdqsort in the Isabelle LLVM verification frame-
work, closely following the state-of-the-art implementations from GNU
and Boost. On an extensive benchmark set, our verified implementations
perform on par with the originals.

1 Introduction

Sorting algorithms are an important part of any standard library. The GNU C++
Library (libstdc++) [15] implements Musser’s introspective sorting algorithm
(introsort) [28]. It is a combination of quicksort, heapsort, and insertion sort,
which has the fast average case runtime of quicksort and the optimal O(n log(n))
worst-case runtime of heapsort. The Boost C++ Libraries [6] provide a state-of-
the-art implementation of pattern-defeating quicksort (pdqsort) [29], an extension
of introsort to achieve better performance on inputs that contain certain patterns
like already sorted sequences. Verification of these algorithms and their state-of-
the-art implementations is far from trivial, but turns out to be manageable when
handled with adequate tools.

Sorting algorithms in standard libraries have not always been correct. The
timsort [30] algorithm in the Java standard library has a history of bugs1, the
(hopefully) last of which was only found by a formal verification effort [10]. Also,
many real-world mergesort implementations suffered from an overflow bug [5].
Finally, LLVM’s libc++ [26] implements a different quicksort based sorting
algorithm. While it may be functionally correct, it definitely violates the C++
standard by having a quadratic worst-case run time2.

In this paper, we present efficient implementations of introsort and pdqsort
that are verified down to their LLVM intermediate representation [27]. The
1 see https://bugs.java.com/bugdatabase/view_bug.do?bug_id=8011944
2 See https://bugs.llvm.org/show_bug.cgi?id=20837. This has not been fixed by
April 2020.

https://bugs.java.com/bugdatabase/view_bug.do?bug_id=8011944
https://bugs.llvm.org/show_bug.cgi?id=20837

2 Peter Lammich

verification uses the Isabelle Refinement Framework [24], and its recent Isabelle-
LLVM backend [23]. We also report on two extensions of Isabelle-LLVM, to
handle nested container data structures and to automatically generate C-header
files to interface the generated code. Thanks to the modularity of the Isabelle
Refinement Framework, our verified algorithms can easily be reused in larger
verification projects.

While sorting algorithms are a standard benchmark for theorem provers and
program verification tools, verified real-world implementations seem to be rare:
apart from our work, we are only aware of two verified sorting algorithms [10, 3]
from the Java standard library.

The complete Isabelle/HOL formalization and the benchmarks are available
at http://www21.in.tum.de/~lammich/isabelle_llvm/.

2 The Introsort and Pdqsort Algorithms

The introsort algorithm by Musser [28] is a generic unstable sorting algorithm
that combines the good average-case runtime of quicksort [18] with the optimal
O(n log(n)) worst-case complexity of heapsort [1]. The basic idea is to use
quicksort as main sorting algorithm, insertion sort for small partitions, and
heapsort when the recursion depth exceeds a given limit, usually 2blog2 nc for n
elements.

1: procedure introsort(xs, l, h)
2: if h− l > 1 then
3: introsort aux(xs, l, h, 2blog2(h− l)c)
4: final insort(xs, l, h)
5: procedure introsort aux(xs, l, h, d)
6: if h− l > threshold then
7: if d = 0 then heapsort(xs, l, h)
8: else
9: m← partition pivot(xs, l, h)
10: introsort aux(xs, l,m, d− 1)
11: introsort aux(xs,m, h, d− 1)

Algorithm 1: Introsort

Algorithm 1 shows our implementation of introsort, which closely follows
the implementation in libstdc++ [15]. The function introsort sorts the slice
from index l (inclusive) up to index h (exclusive) of the list3 xs. If there is more
than one element (line 2), it initializes a depth counter and calls the function
introsort aux (line 3), which partially sorts the list such that every element
is no more than threshold positions away from its final position in the sorted
3 Our formalization initially uses lists to represent the sequence of elements to be
sorted, and refines them to arrays later (cf. Sec. 4).

http://www21.in.tum.de/~lammich/isabelle_llvm/

Efficient Verified Implementation of Introsort and Pdqsort 3

list. The remaining sorting is then done by insertion sort (line 4). The function
introsort aux implements a recursive quicksort scheme: recursion stops if the
slice becomes smaller than the threshold (line 6). If the maximum recursion
depth is exhausted, heapsort is used to sort the slice (line 7). Otherwise, the
slice is partitioned (line 9), and the procedure is recursively invoked for the
two partitions (line 10–11). Here, partition pivot moves the pivot element to
the first element of the left partition, and returns the start index of the right
partition.

Note that we do not try to invent our own implementation, but closely follow
the existing (and hopefully well-thought) libstdc++ implementation. This includes
the slightly idiosyncratic partitioning scheme, which leaves the pivot-element
as first element of the left partition. Moreover, the libstdc++ implementation
contains a manual tail-call optimization, replacing the recursive call in line 11 by
a loop. While we could easily add this optimization in an additional refinement
step, it turned out to be unnecessary, as LLVM recognizes and eliminates this
tail call automatically.

1: procedure pdqsort(xs, l, h)
2: if h− l > 1 then pdqsort aux(true, xs, l, h, log(h− l))
3: procedure pdqsort aux(lm, xs, l, h, d)
4: if h− l < threshold then insort(lm, xs, l, h)
5: else
6: pivot to front(xs, l, h)
7: if ¬lm ∧ xs[l − 1] 6< xs[l] then
8: m← partition left(xs, l, h)
9: assert m+ 1 ≤ h
10: pdqsort aux(false, xs,m+ 1, h, d)
11: else
12: (m,ap)← partition right(xs, l, h)
13: if m− l < b(h− l)/8c ∨ h−m− 1 < b(h− l)/8c then
14: if −−d = 0 then heapsort(xs,l,h); return
15: shuffle(xs,l,h,m)
16: else if ap ∧ maybe sort(xs, l,m) ∧ maybe sort(xs,m+ 1, h) then
17: return
18: pdqsort aux(lm, xs, l,m, d)
19: pdqsort aux(false, xs,m+ 1, h, d)

Algorithm 2: Pdqsort

Algorithm 2 shows our implementation of pdqsort. As for introsort, the
wrapper pdqsort just initializes a depth counter, and then calls the function
pdqsort aux (line 2), which, in contrast to introsort, completely sorts the
list, such that no final insertion sort is necessary. Again, the pdqsort aux
function implements a recursive quicksort scheme, however, with a few additional
optimizations. Slices smaller than the threshold are sorted with insertion sort

4 Peter Lammich

(line 4). If the current slice is not the leftmost one of the list, as indicated by the
parameter lm, the element before the start of the slice is guaranteed to be smaller
than any element of the slice itself. This can be exploited to omit a comparison
in the inner loop of insertion sort (cf. Sec. 3.3). If the slice is not smaller than
the threshold, a pivot element is selected and moved to the front of the slice
(line 6). If the pivot is equal to the element before the current slice (line 7), this
indicates a lot of equal elements. The partition left function (line 8) will put
them in the left partition, and then only the right partition needs to be sorted
recursively (line 10). Otherwise, partition right (line 12) places elements equal
to the pivot in the right partition. Additionally, it returns a flag ap that indicates
that the slice was already partitioned. Next, we check for a highly unbalanced
partitioning (line 13), i.e., if one partition is less than 1/8th of the overall size.
After encountering a certain number of highly unbalanced partitionings, pdqsort
switches to heapsort (line 14). Otherwise, it will shuffle some elements in both
partitions, trying to break up patterns in the input (line 15). If the input was
already partitioned wrt. the selected pivot (indicated by the flag ap), pdqsort will
optimistically try to sort both partitions with insertion sort (line 17). However,
these insertion sorts abort if they cannot sort the list with a small number of
swaps, limiting the penalty for being too optimistic. Finally, the two partitions
are recursively sorted (lines 18–19).

Our implementation of pdqsort closely follows the implementation we found
in Boost [6]. Again, we omitted a manual tail call optimization that LLVM does
automatically. Moreover, for certain comparison functions, Boost’s pdqsort uses
a special branch-aware partitioning algorithm [11]. We leave its verification to
future work, but note that it will easily integrate in our existing formalization.

While introsort and pdqsort are based on the same idea, this presentation fo-
cuses on the more complex pdqsort: apart from the more involved pdqsort aux
function, pivot to front uses Tukey’s ’ninther’ pivot selection [4], while in-
trosort uses the simpler median-of-three scheme. It has two partitioning algorithms
used in different situations, and the partition right algorithm also checks for
already partitioned slices. Finally, with insort and maybe sort, it uses two
different versions of insertion sort.

3 Verification

We use the Isabelle Refinement Framework [24, 23] to formally verify our al-
gorithms. It provides tools to develop algorithms by stepwise refinement, and
generates code in the LLVM intermediate representation [27].

A program returns an element of the following datatype:

α nres ≡ fail | spec (α ⇒ bool)

Here fail represents possible non-termination or assertion violation, and spec P
a result nondeterministically chosen to satisfy predicate P . Note that we use ≡
to indicate defining equations. We define a refinement ordering on nres by

spec P ≤ spec Q ≡ ∀x. P x =⇒ Q x fail 6≤ spec Q m ≤ fail

Efficient Verified Implementation of Introsort and Pdqsort 5

Intuitively, m1 ≤ m2 means that m1 returns fewer possible results than m2, and
may only fail if m2 may fail. Note that ≤ is a complete lattice, with top element
fail. The monad combinators are then defined as

return x ≡ spec y. y=x
bind (spec P) f ≡

⊔
{f x | P x} bind fail f ≡ fail

Here, return x deterministically returns x, and bind m f chooses a result of m
and then applies f to it. If m may fail, then the bind may also fail. We write
x←m; f x for bind m (λx. f x), and m1; m2 for bind m1 (λ . m2).

Arbitrary recursive programs can be defined via a fixed-point construction [20].
An assertion fails if its condition is not met, otherwise it returns the unit value:

assert P ≡ if P then return () else fail;

Assertions are used to express that a program m satisfies the Hoare triple with
precondition P and postcondition Q:

m ≤ assert P; spec x. Q x

If the precondition is false, the right hand side is fail, and the statement trivially
holds. Otherwise, m cannot fail, and every possible result x of m must satisfy Q.

While the Isabelle Refinement Framework provides some syntax to express
programs, for better readability, we use the slightly more informal syntax that we
have already used in Algorithms 1 and 2. In particular, we treat lists as if they
were updated in place, while our actual formalization is purely functional, i.e.,
generates a new version of the list on each update, which is explicitly threaded
through the program. Destructively updated arrays will only be introduced in a
later refinement step (cf. Sec. 4).

3.1 Specification of Sorting Algorithms

The first step to verify a sorting algorithm is to specify the desired result. We
specify a sorting algorithm as follows:

sort spec xs l h
≡ assert l≤h ∧ h≤|xs|; spec xs′. xs =l,h xs′ ∧ sorted (xs′[l..<h])

here |xs| is the length of the list xs and xs[I] is the slice of the list xs for indexes
in the interval I4. The equivalence relation xs =l,h xs′ relates lists xs and xs′ iff
they are equal outside the slice l..<h and xs is a permutation of xs′. To simplify
the presentation, we assume a linear ordering on the elements. Note that both
C++ and our actual formalization support arbitrary weak orderings [19].

3.2 Quicksort Scheme

We split a call of pdqsort aux into phases, described by the following predicates:
4 An interval from index l (inclusive) to h (exclusive) is denoted as l..<h. If both
indexes are exclusive, we write l<..<h.

6 Peter Lammich

pvt xs ≡ a0 =l,h xs ∧ (∃i ∈ l<..<h. xs[i] ≤ xs[l]) ∧ (∃i ∈ l<..<h. xs[i] ≥ xs[l])
part m xs ≡ a0 =l,h xs ∧ l≤m ∧ m<h

∧ (∀i ∈ l..<m. xs[i]≤xs[m]) ∧ (∀i ∈ m<..<h. xs[m]≤xs[i])
sortl m xs ≡ part m xs ∧ sorted (xs[l..<m])
sortr m xs ≡ sortl m xs ∧ sorted (xs[m<..<h])

Let a0 denote the original list. First, a pivot element is selected and moved to
the beginning of the slice (phase pvt). The pivot is selected in a way such there is
at least one smaller (≤) and one greater (≥) element, e.g., by a median-of-three
selection. This knowledge can later be exploited to optimize the inner loops of
the partitioning algorithm. After the partitioning (phase part m), m points to
the pivot element, and all elements before m are smaller, and all elements after
m are greater. Then, first the left (phase sortl m), and then the right (phase
sortr m) partition gets sorted, while the list remains partitioned around m.

This approach allows us to prove correct the algorithm, without assuming
too many details of the underlying subroutines. The following is all we need to
know about the subroutines:

(a) lm ∨ notleft xs l h =⇒ insort lm xs l h ≤ sort spec xs l h
(b) l+4<h =⇒ pivot to front xs l h ≤ spec xs′. pvt xs′
(c) pvt xs =⇒ partition right xs l h ≤ spec (xs′,m,). part m xs′

∧ partition left xs l h ≤ spec (xs′,m,). part m xs′
(d) heapsort xs l h ≤ sort spec xs l h
(e) part m xs =⇒ shuffle xs l h m ≤ spec xs′. part m xs′
(f) i≤j ∧ j≤|xs|
=⇒ maybe sort xs i j ≤ spec (b,xs′). xs=i,jxs′ ∧ (¬b ∨ sorted xs′[i..<j])

where notleft xs l h ≡ 0<l ∧ ∀i ∈ l..<h. xs[l−1] ≤ xs[i] states that the element
xs[l−1] before the slice is smaller than any element of the slice. Note that we
explicitly mention the changed list xs′ in these specifications, while we left the
list changes implicit in the algorithm description.

Intuitively, (a,d,f) state correctness of the sorting subroutines, (b) states that
pivot selection goes to phase pvt, (c) states that partitioning transitions from
phase pvt to phase part, and (e) states that shuffling preserves phase part. From
the above, we easily prove the following lemmas:

(g) part m xs ∧ notleft xs l h ∧ xs[m] ≤ xs[l−1] =⇒ sorted xs[l..<m]
(h) part m xs ∧ (xs=l,mxs′ ∨ xs=m+1,hxs′) =⇒ part m xs′
(i) sortl m xs ∧ xs=m+1,hxs′ =⇒ sortl m xs′
(j) part m xs =⇒ sort spec xs l m ≤ spec xs′. sortl m xs′
(k) sortl m xs =⇒ sort spec xs (m+1) h ≤ spec xs′. sortr m xs′
(l) sortr m xs =⇒ sorted xs[l..<h]

The correctness statement for pdqsort aux is:

lm ∨ notleft xs l h =⇒ pdqsort aux lm xs l h d ≤ sort spec xs l h

The proof is done by using the Refinement Framework’s verification condition
generator, and then discharging the generated VCs using the above lemmas. The

Efficient Verified Implementation of Introsort and Pdqsort 7

line numbers in the following brief sketch refer to Algorithm 2. As termination
measure for the recursion, we use the size h− l of the slice to be sorted. If we
switch to insertion sort in line 4, (a) implies that the slice gets sorted, and we are
done. Otherwise, we select a pivot in line 6, going to phase pvt (b). When the
equals optimization is triggered in line 7, we transition to phase part (c), and the
left partition is already sorted5 (g), such that we can transition to phase sortl (j),
and, via a recursive call in line 10 to phase sortr (k). This implies that the slice is
sorted (l), and we are done. When the equals optimization is not used, (c) shows
that we transition to phase part in line 12. If the partition is unbalanced, we
either use heapsort (line 14) to directly sort the slice (d), or shuffle the elements
(line 15) and stay in phase part (e). In line 17, the algorithm may attempt to sort
the slice. If this succeeds, we are done (f). Otherwise, we stay in phase part (h),
and the recursive calls in lines 18 and 19 will take us to phase sortr (j,k), which
implies sortedness of the slice (l).

Using the above statement, and an analogous statement for introsort, we can
prove the main correctness theorem:

Theorem 1. pdqsort xs l h ≤ sort spec xs l h
and introsort xs l h ≤ sort spec xs l h

Note that we could prove the correctness of our algorithm with only minimal
assumptions about the used subroutines. This decoupling of the algorithm from
its subroutines simplifies the proof, as it is not obfuscated with unnecessary
details. For example, correctness of the algorithm does not depend on the exact
partitioning scheme being used, as long as it implements a transition from the pvt
to the part phase. It also simplifies changing the subroutines later, e.g., adding
further optimizations such as branch-aware partitioning [11].

Breaking down an algorithm into small and decoupled modules is often the
key to its successful verification. Note that the original implementation in Boost
is more coarse grained, inlining much of the functionality into the main algorithm.
After having proved correct an algorithm, we can always do the inlining in a
later refinement step, or rely on the LLVM optimizer to do the inlining for us. In
our formalization, we use the inlining feature of Isabelle-LLVM’s preprocessor.

1: procedure insort(G, xs, l, h)
2: if l = h then return
3: i← l + 1
4: while i < h do
5: insert(G, xs, l, i)
6: ++i

7: procedure insert(G, xs, l, i)
8: t← xs[i]
9: while (¬G∨ l < i)∧ t < xs[i− 1] do
10: xs[i]← xs[i− 1]
11: −−i
12: xs[i]← t

Algorithm 3: Insertion Sort

5 actually all elements in the left partition are equal to the pivot.

8 Peter Lammich

3.3 Insertion Sort

Algorithm 3 shows our implementation of insertion sort. The insort procedure
repeatedly calls insert to add elements to a sorted prefix of the list. The flag
G controls the unguarded optimization: if it is false, we assume that insert
will hit a smaller element before underflowing the list index i, and thus omit
the comparison l < i (line 9) in the inner loop. We later specialize the insort
algorithm for the two cases of G, and simplify the loop conditions accordingly.

Again, we split the insertion sort algorithm into two smaller parts, which are
proved separately via the following specification for insert:

assert sorted xs[l..<i] ∧ l≤i ∧ i<|xs| ∧ (G ∨ xs[l−1] ≤ xs[i]);
spec xs′. xs=l,i+1xs′ ∧ sorted xs[l..<i+1]

This captures the intuition that insert goes from a slice that is sorted up to
index i to one that is sorted up to index i+ 1.

3.4 The Remaining Subroutines

The proofs of the remaining subroutines follow a similar plot, and are not displayed
here in full. Most of them were straightforward, and we could use existing Isabelle
proofs as guideline [25, 16, 22]. For the shuffle and pivot to front procedures,
which contain a large number of indexing and update operations, we ran into
a scalability problem: the many partially redundant in-bound statements for
the indexes overwhelmed the linear arithmetic solver that is hard-wired into the
simplifier. We worked around this problem by introducing auxiliary definitions,
which hide the in-bound statements from the simplifier, and allow us to precisely
control when it sees them.

Finally, we point out another interesting application of refinement: the
sift down function of heapsort restores the heap property by floating down an
element6. A straightforward implementation swaps the element with one of its
children, until the heap property is restored (Alg. 4 (left)). However, the element
that is written to xs[right(i)] or xs[left(i)] by the swap will get overwritten in
the next iteration. A common optimization to save half of the writes is to store
the element to be moved down in a temporary variable, and only assign it to its
final position after the loop (Alg. 4 (right)). Note that the insert procedure of
insertion sort (cf. Alg. 3) does a similar optimization. However, for insert, it was
feasible to prove the optimization together with the actual algorithm. For the
slightly more complicated sift-down procedure, we first prove correct the simpler
algorithm with swaps, and then refine it to the optimized version. Inside the
loop, the refinement relation between the abstract list xs and the concrete list xs′
is xs = xs′[i:=t]. Using the tool support of the Isabelle Refinement Framework,
the proof that the optimized version refines the version with swaps requires only
about 20 lines of straightforward Isabelle script.

6 see, e.g., [9, Ch. 6] or [33, Ch. 2.4] for a description of heapsort.

Efficient Verified Implementation of Introsort and Pdqsort 9

procedure sift down(xs, i)

while has right(i) do
if xs[left(i)] < xs[right(i)] then

if xs[i] < xs[right(i)] then
swap(xs[i], xs[right(i)])
i← right(i)

else return
else if xs[i] < xs[left(i)] then

swap(xs[i], xs[left(i)])
i← left(i)

else return
if has left(i) ∧ xs[i] < xs[left(i)]

then
swap(xs[i], xs[left(i)])

procedure sift down opt(xs′, i)
t← xs′[i]
while has right(i) do

if xs′[left(i)] < xs′[right(i)] then
if t < xs′[right(i)] then

xs′[i]← xs′[right(i)]
i← right(i)

else return
else if t < xs[left(i)] then

xs′[i]← xs′[left(i)]
i← left(i)

else return
if has left(i) ∧ t < xs′[left(i)] then

xs′[i]← xs′[left(i)]
i← left(i)

xs′[i]← t

Algorithm 4: The standard (left) and optimized (right) sift-down function.

4 Imperative Implementation

We have presented a refinement based approach to verify the introsort and pdqsort
algorithms, including most optimizations we found in their libstdc++ and Boost
implementations. However, the algorithms are still expressed as nondetermistic
programs on functional lists and unbounded natural numbers. In this section,
we use the Isabelle-LLVM framework [23] to (semi-)automatically refine them to
LLVM programs on arrays and 64 bit integers.

4.1 The Sepref Tool

The Sepref tool [21, 23] symbolically executes an abstract program in the nres-
monad, keeping track of refinements for every abstract variable to a concrete
representation, which may use pointers to dynamically allocated memory. During
the symbolic execution, the tool synthesizes an imperative Isabelle-LLVM pro-
gram, together with a refinement proof. The synthesis is automatic, but usually
requires some program-specific setup and boilerplate. For a detailed discussion of
Sepref and Isabelle-LLVM, we refer the reader to [21, 23].

Sepref comes with standard setup to refine lists to arrays. List updates are
refined to destructive array updates, as long as the old version of the list is
not used after the update. It also provides setup to refine unbounded natural
numbers to bounded integers. It tries to discharge the resulting in-bounds proof
obligations automatically. If this is not possible, it relies on hints from the user.

A common technique to provide such hints is to insert additional assertions
into the abstract program. Usually, these can be proved easily. For example, in
the pdqsort aux algorithm (Alg. 2, line 9), the assertion m+1≤h ensures that
the addition m+1 in the next line cannot overflow. This assertion adds a proof

10 Peter Lammich

obligation to the correctness proof of pdqsort aux, which is easily discharged
(we are in phase part, which guarantees m<h). When refining pdqsort aux to
an implementation with bounded integers, one can assume m+1≤h to discharge
the non-overflow proof obligation. Note that re-proving m+1≤h when doing
the refinement would require duplicating large parts of the correctness proof.
Thus, assertions provide a convenient tool to pass properties down the refinement
chain. Our actual formalization contains multiple such assertions, which we have
omitted in this presentation for the sake of readability.

ug insert impl ≡ λa l i. doM {
x ← array nth a i;
(a, i) ← llc while (λ(a, i). doM {

bi ← ll sub i 1;
t ← array nth a bi;
ll icmp ult x t

}) (λ(a, i). doM {
i′← ll sub i 1;
t ← array nth a i′;
a ← array upd a i t;
i ← ll sub i 1;
return (a, i)

}) (a, i);
array upd a i x
}

Fig. 1: Implementation of the insert
procedure for 64bit unsigned integer
elements and G=false, which is gener-
ated by the Sepref tool. This definition
lies within the executable fragment of
Isabelle-LLVM, i.e., the Isabelle LLVM
code generator can translate it to LLVM
intermediate representation. Note that
the function does not depend on the
lower bound parameter l any more, as
this was only required in the guarded
version. Inlining will remove this bogus
parameter.

Using the Sepref tool, it is straightforward to refine the sorting algorithms
and their subroutines to an Isabelle-LLVM program. For example, Figure 1 shows
the Isabelle-LLVM code that is generated for the insert procedure for unsigned
64 bit integer elements and G=false (cf. 3.3). Moreover, the Sepref tool proves
that the generated program actually implements the abstract one:

(ug insert impl, insert False) : arrd × natk64 × natk64 → arr

This specifies the refinement relations for the parameters and the result, where arr
relates arrays with lists, and nat64 relates 64-bit integers with natural numbers.
The ·d annotation means that the parameter will be destroyed by the function
call, while ·k means that the parameter is kept. Here, the insertion is done in
place, such that the original array is destroyed.

The final correctness statement for our implementations is:

Theorem 2. (introsort impl, sort spec) : arrd × natk64 × natk64 → arr
and (pdqsort impl, sort spec) : arrd × natk64 × natk64 → arr

Here, introsort impl and pdqsort impl are the Isabelle-LLVM programs generated
by Sepref from introsort and pdqsort (Algs. 1 and 2). The theorem is easily
proved by combining Theorem 1 with the theorems generated by Sepref.

Efficient Verified Implementation of Introsort and Pdqsort 11

4.2 Separation Logic and Ownership

Internally, the Sepref tool represents the symbolic state that contains all abstract
variables and their refinements to concrete variables as an assertion in separation
logic [31, 8]. Thus, two variables can never reference the same memory. This is a
problem for nested container data structures like arrays of strings: when indexing
the array, both the array element and the result of the indexing operation would
point to the same string. In the original Sepref tool [21], which targeted Standard
ML, we worked around this problem by always using functional data types (e.g.
lists) to represent the inner type of a nested container. This workaround is no
longer applicable for the purely imperative LLVM, such that we could not use
Sepref for nested container data structures7.

We now describe an approach towards solving this problem for Sepref. Ab-
stractly, we model an array by the type α option list8, where None means that
the array does currently not own the respective element. The abstract indexing
operation then moves the element from the list to the result:

move xs i ≡ assert i<|xs| ∧ xs[i]6=None; return (the (xs[i]), xs[i:=None])

As no memory is shared between the result and the array, we can show the
following refinement:

(λa i. (a[i],a), λxs i. move xs i) : oarrd × natk64 → A × oarr

where oarr is the relation between an array and an α option list, and A is the
relation for the array elements. Note that this operation does not change the
concrete array a. The movement of ownership is a purely abstract concept, which
results in no implementation overhead.

The transition from α list to α option list can typically be done in an addi-
tional refinement step, and thus does not obfuscate the actual correctness proofs,
which are still done on plain α list. Moreover, the α option list representation is
only required for subroutines where extracted array elements are actually visible.
For example, we define an operation to compare two array elements:

cmp idxs xs i j ≡ assert i<|xs| ∧ j<|xs|; return xs[i] < xs[j]

Inside this operation, we have to temporarily extract the elements i and j from
the array, requiring an intermediate refinement step to α option list. However,
at the start and end of this operation, the array owns all its elements. For the
whole operation, we thus get a refinement on plain arrays:

(cmp impl, cmp idxs) : arrk × natk64 × natk64 → bool

In our case, we only have to explicitly refine insert and sift down. The other
subroutines use cmp idxs and swap operations on plain lists.

7 We could still reason about such structures on a lower level.
8 Here, α option = None | Some α is Isabelle’s option datatype, and the (Some x) ≡ x
is the corresponding selector function.

12 Peter Lammich

4.3 The Isabelle-LLVM Code Generator

The programs that are generated by Sepref (cf. Fig. 1) lie in the fragment for
which Isabelle-LLVM [23] can generate LLVM text. For example, the pdqsort
algorithm for strings yields an LLVM function with the signature:

{ i64, { i64, i8∗ } }∗ @str pdqsort({ i64, { i64, i8∗ } }∗, i64, i64)
Here, the type { i64, { i64, i8∗ } } represents dynamic arrays of characters9,
represented by length, capacity, and a data pointer.

The generated LLVM text is then compiled to machine code using the LLVM
toolchain. To make the generated program usable, one has to link it to a C wrapper,
which handles parsing of command line options and printing of results. However,
the original Isabelle-LLVM framework provides no support for interfacing the
generated code from C: one has to manually write a C header file, which hopefully
matches the object file generated by the LLVM compiler. If it doesn’t, the program
has undefined behaviour10.

To this end, we extended Isabelle-LLVM to also generate a header file for the
exported functions. For example, the Isabelle command
export llvm str sort introsort impl
is llstring∗ str introsort(llstring∗, int64 t, int64 t)
defines ‹ typedef struct {

int64 t size; struct {int64 t capacity; char ∗data;};
} llstring; ›

will check that the specified signature actually matches the Isabelle definition,
and generate the following C declarations:
typedef struct { int64 t size; struct { int64 t capacity; char ∗data; }; } llstring;
llstring∗ str introsort(llstring∗, int64 t, int64 t);

5 Benchmarks

The Boost library comes with a sorting algorithm benchmark suite, which we
extended with further benchmarks indicated in [4]: apart from sorting random
lists of elements that are mostly different (random), we also sort lists of length
n that contain only n/10 different elements (random-dup-10), and lists of only
two different elements (random-boolean), as well as lists where all elements are
equal (equal). We also consider already sorted sequences (sorted, rev-sorted),
as well as a sequence of n/2 elements in ascending order, followed by the same
elements in descending order (organ-pipe). We also consider sorted sequences
where we applied pn/100 random swap operations (almost-sorted-p). Finally, we
consider sorted sequences with pn/100 random elements inserted at the end or
in the middle ([rev-]sorted-end-p, [rev-]sorted-middle-p).
9 For strings, we use the verified dynamic array implementation provided by Isabelle-
LLVM. Note that C++ uses a similar representation, with an additional optimization
for small strings.

10 In practice, this means it will probably SEGFAULT. However, it also might return
wrong results, or be prone to various kinds of exploits.

Efficient Verified Implementation of Introsort and Pdqsort 13

re
v-
so
rt
ed

-e
nd

-1
0

re
v-
so
rt
ed

-e
nd

-1

so
rt
ed

-e
nd

-.1

al
m
os
t-
so
rt
ed

-5
0

ra
nd

om
-b
oo

le
an

or
ga

n-
pi
pe

so
rt
ed

-e
nd

-1
0

eq
ua

l

re
v-
so
rt
ed

-m
id
dl
e-
.1

re
v-
so
rt
ed

so
rt
ed

-m
id
dl
e-
1

re
v-
so
rt
ed

-m
id
dl
e-
10

ra
nd

om

al
m
os
t-
so
rt
ed

-.1

so
rt
ed

re
v-
so
rt
ed

-m
id
dl
e-
1

so
rt
ed

-m
id
dl
e-
.1

al
m
os
t-
so
rt
ed

-1
0

al
m
os
t-
so
rt
ed

-1

so
rt
ed

-m
id
dl
e-
10

re
v-
so
rt
ed

-e
nd

-.1

so
rt
ed

-e
nd

-1

ra
nd

om
-d
up

-1
0

−10

0

10

20

30 Pdqsort uint64 (server)

uint64 (laptop)

string (server)

string (laptop)

re
v-
so
rt
ed

-e
nd

-1
0

re
v-
so
rt
ed

-e
nd

-1

so
rt
ed

-e
nd

-.1

al
m
os
t-
so
rt
ed

-5
0

ra
nd

om
-b
oo

le
an

or
ga

n-
pi
pe

so
rt
ed

-e
nd

-1
0

eq
ua

l

re
v-
so
rt
ed

-m
id
dl
e-
.1

re
v-
so
rt
ed

so
rt
ed

-m
id
dl
e-
1

re
v-
so
rt
ed

-m
id
dl
e-
10

ra
nd

om

al
m
os
t-
so
rt
ed

-.1

so
rt
ed

re
v-
so
rt
ed

-m
id
dl
e-
1

so
rt
ed

-m
id
dl
e-
.1

al
m
os
t-
so
rt
ed

-1
0

al
m
os
t-
so
rt
ed

-1

so
rt
ed

-m
id
dl
e-
10

re
v-
so
rt
ed

-e
nd

-.1

so
rt
ed

-e
nd

-1

ra
nd

om
-d
up

-1
0

−20

−10

0

10

20 Introsort uint64 (server)

uint64 (laptop)

string (server)

string (laptop)

Fig. 2: Benchmarking our verified implementations against the unverified originals.
For each element type, machine, and distribution, the value (t1/t2 − 1) ∗ s is
shown, where t1 is the slower time, t2 is the faster time, and s = 100 if our
implementation is slower, and s = −100 if the original implementation is slower.
That is, a positive value p indicates that our implementation is slower, requiring
100 + p percent of the run time of the original. Analogously, a negative value −p
means that the original implementation is slower, requiring 100 + p percent of
our implementation’s run time.

14 Peter Lammich

We sorted integer arrays with n = 108 elements, and string arrays with
n = 107 elements. For strings, all implementations use the same data structure
and compare function. For integers, we disable pdqsorts branch-aware partitioning,
which we have not yet verified. For strings, it does not apply anyway.

We compile both, the verified and unverified algorithms with clang-6.0.0, and
run them on a laptop with an Intel(R) Core(TM) i7-8665U CPU and 32GiB
of RAM, as well as on a server machine with 24 AMD Opteron 6176 cores and
128GiB of RAM. Ideally, the same algorithm should take exactly the same time
when repeatedly run on the same data and machine. However, in practice, we
encountered some noise up to 17%. Thus, we have repeated each experiment
at least ten times, and more often to confirm outliers where the verified and
unverified algorithms’ run times differ significantly. Assuming that the noise only
slows down an algorithm, we take the fastest time measured over all repetitions.
The results are displayed in Figure 2.

They indicate that both our pdqsort and introsort implementations are
competitive. There is one outlier for pdqsort for already sorted integer arrays on
the laptop. We have not yet understood its exact reason. The remaining cases
differ by less than 20%, and in many cases our verified algorithm is actually
faster.

6 Conclusions

We have presented the first verification of the introsort and pdqsort algorithms.
We verified state-of-the-art implementations, down to LLVM intermediate rep-
resentation. On an extensive set of benchmarks, our verified implementations
perform on par with their unverified counterparts from the GNU C++ and
Boost C++ libraries. Apart from our work, the only other verified real-world
implementations of sorting algorithms are Java implementations of timsort and
dual-pivot quicksort that have been verified with KeY [10, 3].

Compared to other program verification methods, the trusted code base
of our approach is small: apart from the well-tested and widely used LLVM
compiler, it only includes Isabelle’s logical inference kernel, and the relatively
straightforward Isabelle-LLVM semantics and code generation [23]. In contrast,
deductive verification tools like KeY [2] depend on the correct axiomatization
of the highly complex Java semantics, as well as on several automatic theorem
provers, which, themselves, are highly complex and optimized C programs.

Our verified algorithms can readily be used in larger verification projects, and
we have already replaced a naive quicksort implementation that caused a stack
overflow in an ongoing SAT-solver verification project [13]. For fixed element
types and containers based on arrays (e.g. std::vector), we can use our verified
algorithms as a drop-in replacement for C++’s std::sort. A direct verification of
the C++ code of std::sort, however, would require a formal semantics of C++,
including templates and the relevant concepts from the standard template library
(orderings, iterators, etc.). To the best of our knowledge, such a semantics has
not yet been formalized, let alone been used to verify non-trivial algorithms.

Efficient Verified Implementation of Introsort and Pdqsort 15

The verification of introsort took us about 100 person hours. After we had
set up most of the infrastructure for introsort, we could verify the more complex
pdqsort in about 30h. The development consists of roughly 8700 lines of Isabelle
text, of which 2400 lines are for introsort and 2200 lines for pdqsort. The rest is
boilerplate and libraries shared between both algorithms, among them 1500 lines
for the verification of heapsort.

6.1 Related Work

Sorting algorithms are a standard benchmark for program verification tools, such
that we cannot give an exhaustive overview here. Nevertheless, we discuss a few
notable examples: the arguably first formal proof of quicksort was given by Foley
and Hoare himself [14], though, due to the lack of powerful enough theorem
provers at these times, it was only done on paper.

One of the first mechanical verifications of imperative sorting algorithms is
by Filliâtre and Magaud [12], who prove correct imperative versions of quicksort,
heapsort, and insertion sort in Coq. However, they use a simplistic partitioning
scheme, do not report on code generation or benchmarking, nor do they combine
their separate algorithms to get introsort.

The timsort algorithm, which was used in the Java standard library, has been
verified with the KeY tool [10]. A bug was found and fixed during the verification.
Subsequently, KeY has been used to also verify the dual-pivot quicksort algorithm
from the Java standard library [3]. This time, no bugs were found.

6.2 Future Work

An obvious next step is to verify a branch-aware partitioning algorithm [11].
Thanks to our modular approach, this will easily integrate with our existing
formalization. We also plan to extend our work to stable sorting algorithms.
Recently, we have extended the Refinement Framework to support reasoning about
algorithmic complexity [17]. Once this work has been integrated with Isabelle-
LLVM, we can also prove that our implementations have a worst-case complexity
of O(n log(n)), as required by the C++ standard. Finally, we proposed an explicit
ownership model for nested lists. We plan to extend this to more advanced
concepts like read-only shared ownership, inspired by Rust’s [32] ownership
system. Formally, this could be realized with fractional permission separation
logic [7].

Acknowledgements We received funding from DFG grant LA 3292/1 "Verifizierte
Model Checker" and VeTSS grant "Formal Verification of Information Flow
Security for Relational Databases".

Bibliography

[1] Algorithm 232: Heapsort. Commun. ACM, 7(6):347–349, June 1964.
[2] B. Beckert, R. Hähnle, and P. H. Schmitt. Verification of Object-oriented

Software: The KeY Approach. Springer-Verlag, Berlin, Heidelberg, 2007.
[3] B. Beckert, J. Schiffl, P. H. Schmitt, and M. Ulbrich. Proving jdk’s dual

pivot quicksort correct. In VSTTE, 2017.
[4] J. L. Bentley and M. D. McIlroy. Engineering a sort function. Softw. Pract.

Exper., 23(11):1249–1265, Nov. 1993.
[5] J. Bloch. Extra, extra - read all about it: Nearly all binary searches and

mergesorts are broken.
[6] Boost C++ libraries.
[7] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission account-

ing in separation logic. In Proceedings of the 32Nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’05, pages 259–
270, New York, NY, USA, 2005. ACM.

[8] C. Calcagno, P. O’Hearn, and H. Yang. Local action and abstract separation
logic. In LICS 2007, pages 366–378, July 2007.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[10] S. de Gouw, J. Rot, F. S. de Boer, R. Bubel, and R. Hähnle. Openjdk’s
java.utils.collection.sort() is broken: The good, the bad and the worst case.
In CAV, 2015.

[11] S. Edelkamp and A. Weiß. Blockquicksort: How branch mispredictions don’t
affect quicksort. CoRR, abs/1604.06697, 2016.

[12] J.-C. Filliâtre and N. Magaud. Certification of sorting algorithms in the coq
system. 1999.

[13] M. Fleury, J. C. Blanchette, and P. Lammich. A verified SAT solver with
watched literals using Imperative HOL. In Proc. of CPP, pages 158–171,
2018.

[14] M. Foley and C. A. R. Hoare. Proof of a recursive program: Quicksort. The
Computer Journal, 14(4):391–395, 01 1971.

[15] The GNU C++ library. Version 7.4.0.
[16] S. Griebel. Binary heaps for imp2. Archive of Formal Proofs, June 2019.

http://isa-afp.org/entries/IMP2_Binary_Heap.html, Formal proof de-
velopment.

[17] M. Haslbeck and P. Lammich. Refinement with time – refining the run-time
of algorithms in isabelle/hol. In ITP2019: Interactive Theorem Proving, 6
2019.

[18] C. A. R. Hoare. Algorithm 64: Quicksort. Commun. ACM, 4(7):321–, July
1961.

[19] N. M. Josuttis. The C++ Standard Library: A Tutorial and Reference.
Addison-Wesley Professional, 2nd edition, 2012.

http://isa-afp.org/entries/IMP2_Binary_Heap.html

Efficient Verified Implementation of Introsort and Pdqsort 17

[20] A. Krauss. Recursive definitions of monadic functions. In Proc. of PAR,
volume 43, pages 1–13, 2010.

[21] P. Lammich. Refinement to Imperative/HOL. In ITP, volume 9236 of LNCS,
pages 253–269. Springer, 2015.

[22] P. Lammich. Refinement based verification of imperative data structures.
In J. Avigad and A. Chlipala, editors, CPP 2016, pages 27–36. ACM, 2016.

[23] P. Lammich. Generating Verified LLVM from Isabelle/HOL. In J. Harrison,
J. O’Leary, and A. Tolmach, editors, 10th International Conference on
Interactive Theorem Proving (ITP 2019), volume 141 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 22:1–22:19, Dagstuhl, Germany,
2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[24] P. Lammich and T. Tuerk. Applying data refinement for monadic programs
to Hopcroft’s algorithm. In L. Beringer and A. P. Felty, editors, ITP 2012,
volume 7406 of LNCS, pages 166–182. Springer, 2012.

[25] P. Lammich and S. Wimmer. Imp2 – simple program verification in is-
abelle/hol. Archive of Formal Proofs, Jan. 2019. http://isa-afp.org/
entries/IMP2.html, Formal proof development.

[26] "libc++" c++ standard library.
[27] LLVM language reference manual.
[28] D. R. MUSSER. Introspective sorting and selection algorithms. Software:

Practice and Experience, 27(8):983–993, 1997.
[29] Pattern-defeating quicksort.
[30] T. Peters. Original description of timsort. Accessed 2019-10-21.
[31] J. C. Reynolds. Separation logic: A logic for shared mutable data structures.

In Proc of. Logic in Computer Science (LICS), pages 55–74. IEEE, 2002.
[32] The rust programmin language.
[33] R. Sedgewick and K. Wayne. Algorithms. Addison-Wesley Professional, 4th

edition, 2011.

http://isa-afp.org/entries/IMP2.html
http://isa-afp.org/entries/IMP2.html

	Efficient Verified Implementation of Introsort and Pdqsort

