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1 INTRODUCTION
Many theorem provers have the ability to generate executable code in some (typically functional)
programming language from definitions, lemmas and proofs (e.g. [7, 9, 10, 12, 16, 26, 36]). This
makes code generation part of the trusted kernel of the system. Myreen and Owens [29] closed this
gap for the HOL4 system: they have implemented a tool that translates from HOL4 into CakeML,
a subset of SML, and proves a theorem stating that a result produced by the CakeML code is
correct w.r.t. the HOL functions. They also have a verified implementation of CakeML [23, 38].
We go one step further and provide a once-and-for-all verified compiler from (deeply embedded)
function definitions in Isabelle/HOL [31, 32] into CakeML proving partial correctness of the gen-
erated CakeML code w.r.t. the original functions. This is like the step from dynamic to static type
checking. It also means that preconditions on the input to the compiler are explicitly given in the
correctness theorem rather than implicitly by a failing translation. To the best of our knowledge
this is the first verified (as opposed to certifying) compiler from function definitions in a logic into
a programming language.

Our compiler is composed of multiple phases and in principle applicable to other languages than
Isabelle/HOL or even HOL:

• We erase types right away. Hence the type system of the source language is irrelevant.
• We merely assume that the source language has a semantics based on equational logic.

The compiler operates in three stages:
(1) The preprocessing phase eliminates features that are not supported by our compiler. Most

importantly, dictionary construction eliminates occurrences of type classes in HOL terms.
It introduces dictionary datatypes and new constants and proves the equivalence of old
and new constants (§7).
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(2) The deep embedding lifts HOL terms into terms of type term, a HOL model of HOL terms.
For each constant c (of arbitrary type) it defines a constant c ′ of type term and proves a
theorem that expresses equivalence (§3).

(3) There are multiple compiler phases that eliminate certain constructs from the term type,
until we arrive at the CakeML expression type. Most phases target a different intermediate
term type (§5).

The first two stages are preprocessing, are implemented in ML and produce certificate theorems.
Only these stages are specific to Isabelle. The third (and main) stage is implemented completely
in the logic HOL, without recourse to ML. Its correctness is verified once and for all. All Isabelle
definitions and proofs can be found in the supplementary material.

2 RELATEDWORK
There is existing work in the Coq [2, 15] and HOL [29] communities for proof producing or veri-
fied extraction of functions defined in the logic into executable. Anand et al. [2] present work in
progress on a verified compiler from Gallina (Coq’s specification language) via untyped intermedi-
ate languages to CompCert C light. They plan to connect their extraction routine to the CompCert
compiler [25].

Translation of type classes into dictionaries is an important feature of Haskell compilers. In the
setting of Isabelle/HOL, this has been described by Wenzel [42] and Krauss et al. [22]. Haftmann
and Nipkow [17] use this construction to compile HOL definitions into target languages that do
not support type classes, e.g. Standard ML and OCaml. In this work, we provide a certifying
translation that eliminates type classes inside the logic.

Compilation of pattern matching is well understood in literature [3, 34, 37]. In this work, we
contribute a transformation of sets of equations with pattern matching on the left-hand side into
a single equation with nested pattern matching on the right-hand side. This is implemented and
verified inside Isabelle.

Besides CakeML, there are many projects for verified compilers for functional programming
languages of various degrees of sophistication and realism (e.g. [5, 11, 14]). Particularly modular
is the work by Neis et al. [30] on a verified compiler for an ML-like imperative source language.
The main distinguishing feature of our work is that we start from a set of higher-order recursion
equations with pattern matching on the left-hand side rather than a lambda calculus with pattern
matching on the right-hand side. On the other hand we stand on the shoulders of CakeML which
allows us to bypass all complications of machine code generation. Note that much of our compiler
is not specific to CakeML and that it would be possible to retarget it to, for example, Pilsner abstract
syntax with moderate effort.

3 DEEP EMBEDDING
Starting with a HOL definition, we derive a new, reified definition in a deeply embedded term
language depicted in Figure 1a. This term language corresponds closely to the term datatype of
Isabelle’s implementation (using de Bruijn indices [13]), but without types and schematic variables.

To establish a formal connection between the original and the reified definitions, a “family of
relations” is used, “defined by induction on types”.1 This concept of a logical relation is well-
understood in literature [20] and can be nicely implemented in Isabelle using type classes. Note
that the use of type classes here is restricted to correctness proofs; it is not required for the execu-
tion of the compiler itself. That way, there is no contradiction to the elimination of type classes
occurring in a previous stage.
1https://ncatlab.org/nlab/revision/logical+relation/7
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datatype term =
Const string |
Free string |
Abs term |
Bound nat |
App term term

(a) Abstract syntax of
de Bruijn terms

Step
(lhs, rhs) ∈ R match lhs t = Some σ

R ⊢ t −→ subst σ rhs

Beta
closed t ′

R ⊢ (Λt) $ t ′ −→ t [t ′]
Fun

R ⊢ t −→ t ′

R ⊢ t $ u −→ t ′ $ u

Arg
R ⊢ u −→ u ′

R ⊢ t $ u −→ t $ u ′

(b) Small-step semantics

Fig. 1. Basic syntax and semantics of the term type

Notation. We abbreviate App t u to t $ u and Abs t to Λ t . Other term types introduced later
in this paper use the same conventions. We reserve λ for abstractions in HOL itself. Typing
judgments are written with a double colon: t :: τ .

Embedding operation. Embedding is implemented in ML. We denote this operation using angle
brackets: ⟨t⟩, where t is an arbitrary HOL expression and the result ⟨t⟩ is a HOL value of type
term. It is a purely syntactic transformation, without preliminary evaluation or reduction, and
it discards type information. The following examples illustrate this operation and typographical
conventions concerning variables and constants:

⟨x⟩ = Free ”x”
⟨f⟩ = Const ”f”

⟨λx y. f y x⟩ = Λ (Λ (⟨f⟩ $ Bound 0 $ Bound 1))

Small-step semantics. Figure 1b specifies the small-step semantics for term. It is reminiscent of
higher-order term rewriting, and modelled closely after equality in HOL.The basic idea is that if the
proposition t = u can be proved equationally in HOL (without symmetry), then R ⊢ ⟨t⟩ −→∗ ⟨u⟩
holds (where R :: (term × term) set). We call R the rule set. It is the result of translating a set of
defining equations lhs = rhs into pairs (⟨lhs⟩ , ⟨rhs⟩) ∈ R.

Rule Step performs a rewrite step by picking a rewrite rule from R and rewriting the term
at the root. For that purpose, match and subst are (mostly) standard first-order matching and
substitution (see §4 for details).

Rule Beta performs β-reduction. Type term represents bound variables by de Bruijn indices.
The notation t [t ′] represents the substitution of the outermost bound variable in t with t ′.

Our semantics does not constitute a fully-general higher-order term rewriting system, because
we do not allow substitution under binders. For de Bruijn terms, this would pose no problem,
but as soon as we introduce named bound variables, substitution under binders requires dealing
with capture. To avoid this altogether, all our semantics expect terms that are substituted into
abstractions to be closed. However, this does not mean that we restrict ourselves to any particular
evaluation order. Both call-by-value and call-by-name can be used in the small-step semantics.
But later on, the target semantics will only use call-by-value.

Embedding relation. We denote the concept that an embedded term t corresponds to a HOL term
a of type τ w.r.t. rule set R with the syntax R ⊢ t ≈ a. If we want to be explicit about the type, we
index the relation: ≈τ .

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



1:4 Lars Hupel and Tobias Nipkow

datatype nterm =
Nconst string | Nvar string |
Nabs term |
Napp term term

(a) Named bound variable

datatype pterm =
Pconst string | Pvar string |
Pabs ((term × pterm) set) |
Papp pterm pterm

(b) Explicit pattern matching

datatype sterm =
Sconst string | Svar string |
Sabs ((term × sterm) list) |
Sapp sterm sterm

(c) Sequential clauses

Fig. 2. Intermediate term types

For ground types, this can be defined easily. For example, the following two rules define ≈nat:

R ⊢ ⟨0⟩ ≈nat 0
R ⊢ ⟨t⟩ ≈nat n

R ⊢ ⟨Suc t⟩ ≈nat Suc n

Definitions of ≈ for arbitrary datatypes without nested recursion can be derived mechanically in
the same fashion as for nat, where they constitute one-to-one relations. Note that for ground
types, ≈ ignores R. The reason why ≈ is parametrized on R will become clear in a moment.

For function types, we follow Myreen and Owen’s approach [29]. The statement R ⊢ t ≈ f can
be interpreted as “t $ ⟨a⟩ can be rewritten to ⟨f a⟩ for all a”. Because this might involve applying
a function definition from R, the ≈ relation must be indexed by the rule set. As a notational
convenience, we define another relation R ⊢ t ↓ x to mean that there is a t ′ such that R ⊢ t −→∗ t ′
and R ⊢ t ′ ≈ x . Using this notation, we formally define ≈ for functions as follows:

R ⊢ t ≈ f ↔ (∀x tx . R ⊢ tx ↓ x → R ⊢ t $ tx ↓ f x)

Example. As a running example, we will use the map function on lists:

map f [] = []
map f (x # xs) = f x #map f xs

The result of embedding this function is a set of rules map′:

map' =
{(Const ”List.list.map” $ Free ”f” $ (Const ”List.list.Cons” $ Free ”x21” $ Free ”x22”),

Const ”List.list.Cons” $ (Free ”f” $ Free ”x21”) $ (Const ”List.list.map” $ Free ”f” $ Free ”x22”)),
(Const ”List.list.map” $ Free ”f” $ Const ”List.list.Nil”,
Const ”List.list.Nil”)|}

together with the theorem map′ ⊢ Const ”List.list.map” ↓ map, which is proven by simple
induction over map. Constant names like ”List.list.map” come from the fully-qualified internal
names in HOL.

The induction principle for the proof arises from the use of the fun command that is used to
define recursive functions in HOL [21]. But the user is also allowed to specify custom equations
for functions, in which case we will use heuristics to generate and prove the appropriate induction
theorem. For simplicity, we will use the term (defining) equation uniformly to refer to any set of
equations, either default ones or ones specified by the user.

4 TERMS, MATCHING AND SUBSTITUTION
The compiler transforms the initial term type through various stages. All intermediate types are
depicted in Figure 1a and 2. This section gives an overview and introduces necessary terminology.
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Preliminaries. The function arrow in HOL is⇒. The cons operator on lists is the infix #.
Throughout the paper, the concept ofmappings is pervasive: We use the type notation α ⇀ β to

denote a function α ⇒ β option. In certain contexts, a mapping may also be called an environment.
We write mapping literals using brackets: [a ⇒ x ,b ⇒ y, . . .]. If it is clear from the context that
σ is defined on a, we often treat the lookup σ a as returning an x :: β .

The functions dom :: (α ⇀ β) ⇒ α set and range :: (α ⇀ β) ⇒ β set return the domain and
range of a mapping, respectively.

Dropping entries from a mapping is denoted by σ − k , where σ is a mapping and k is either
a single key or a set of keys. We use σ ′ ⊆ σ to denote that σ ′ is a sub-mapping of σ , that is,
dom σ ′ ⊆ dom σ and ∀a ∈ dom σ ′. σ ′ a = σ a.

Merging two mappings σ and ρ is denoted with σ ++ ρ. It constructs a new mapping with the
union domain of σ and ρ. Entries from ρ override entries from σ . That is, ρ ⊆ σ ++ ρ holds, but
not necessarily σ ⊆ σ ++ ρ.

All mappings and sets are assumed to be finite. In the formalization, this is enforced by using
subtypes of⇀ and set. Note that one cannot define datatypes by recursion through sets for cardi-
nality reasons. However, for finite sets, it is possible. This is required to construct the various term
types. We leverage facilities of Blanchette et al.’s datatype command to define these subtypes [8].

Standard functions. All type constructors that we use (⇀, set, list, option, …) support the stan-
dard operations map and rel. For lists, map is the regular covariant map. For mappings, the
function has the type (β ⇒ γ ) ⇒ (α ⇀ β) ⇒ (α ⇀ γ ). It leaves the domain unchanged, but
applies a function to the range of the mapping.

Function relτ lifts a binary predicate P :: α ⇒ α ⇒ bool to the type constructor τ . We call this
lifted relation the relator for a particular type.

For datatypes, its definition is structural, for example:

rellist P [] []

rellist P xs ys P x y

rellist P (x # xs) (y # ys)

For sets and mappings, the definition is a little bit more subtle.

Definition 4.1 (Set relator). For each element a ∈ A, there must be a corresponding element b ∈ B
such that P a b, and vice versa. Formally:

relset P A B ↔ (∀x ∈ A. ∃y ∈ B. P x y) ∧ (∀y ∈ B. ∃x ∈ A. P x y)

Definition 4.2 (Mapping relator). For each a,m a and n a must be related according to reloption P .
Formally:

relmapping P m n ↔ (∀a. reloption P (m a) (n a))

Term types. There are four distinct term types: term, nterm, pterm, and sterm. All of them
support the notions of free variables, matching and substitution. Free variables are always a finite
set of strings. Matching a term against a pattern yields an optional mapping of type string ⇀ α
from free variable names to terms.

Note that the type of patterns is itself term instead of a dedicated pattern type. The reason is
that we have to subject patterns to a linearity constraint anyway and may use this constraint to
carve out the relevant subset of terms:

Definition 4.3. A term is linear if there is at most one occurrence of any variable, it contains no
abstractions, and in an application f $x , f must not be a free variable. The HOL predicate is called
linear :: term⇒ bool.
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Because of the similarity of operations across the term types, they are all instances of the term
type class. Note that in Isabelle, classes and types live in different namespaces. The term type and
the term type class are separate entities.

Definition 4.4. A term type τ supports the operations match :: term ⇒ τ ⇒ (string ⇀ τ ),
subst :: (string⇀ τ )⇒ τ ⇒ τ and frees :: τ ⇒ string set together with the following axioms:

subst [] t = t
x < frees t → subst (σ − x) t = subst σ t

match p t = Some σ → dom σ = frees p
match p t = Some σ → ∀u ∈ range σ . frees u ⊆ frees t

∀u ∈ range σ . frees u = ∅ → frees (subst σ t) = frees t − dom σ

We also define the following derived functions:
• matchs matches a list of patterns and terms sequentially, producing a single mapping
• closed t is an abbreviation for frees t = ∅
• closed σ is an overloading of closed, denoting that all values in a mapping are closed

The above set of axioms does not strive to fully specify an abstract term algebra (cf. work by
Schmidt-Schauß and Siekmann [35]). Instead, they are chosen according to the needs of this for-
malization.
Definition 4.5. An equation is a pair of a pattern (left-hand side) and a term (right-hand side). The

pattern is of the form f $ p1 $ . . . $ pn , where f is a constant (i.e. of the form Const name). We
refer to both f or name interchangeably as the function symbol of the equation.
Following term rewriting terminology, we sometimes refer to an equation as rule.

4.1 De Bruijn terms (term)
The definition of term is almost an exact copy of Isabelle’s internal term type, with the notable
omissions of type information and schematic variables (Figure 1a). The implementation of β-
reduction is straightforward via index shifting of bound variables.

Matching works largely the same across the different term types:
fun match :: term⇒ term⇒ (string⇀ term) option where
match (Const x) (Const y) = (if x = y then Some [] else None)
match (t1 $ t2) (u1 $ u2) = do {
env1← match t1 u1;
env2← match t2 u2;
Some (env1 ++ env2)
}
match (Free s) t = Some [s 7→ t]
match _ _ = None

The first argument denotes the pattern, the second the object. A notable deviation from matching
as discussed in term rewriting literature is that the result of matching is only well-defined if the
pattern is linear.

4.2 Named bound variables (nterm)
The nterm type is similar to term, but removes the distinction between bound and free variables
(Figure 2a). Instead, there are only named variables. As mentioned in the previous section, we
forbid substitution of terms that are not closed in order to avoid capture. This is also reflected in
the syntactic side conditions of the correctness proofs (§5.1).
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4.3 Explicit pattern matching (pterm)
Functions in HOL are usually defined using implicit pattern matching, that is, the terms pi oc-
curring on the left-hand side ⟨f p1 . . . pn⟩ of an equation must be constructor patterns. This is
also common among functional programming languages like Haskell or OCaml. CakeML only sup-
ports explicit patternmatching using case expressions. A function definition consisting of multiple
defining equations must hence be translated to the form f = λx . case x of . . .. The elimination
proceeds by iteratively removing the last parameter in the block of equations until none are left.

In our formalization, we opted to combine the notion of abstraction and case expression, yield-
ing case abstractions, represented as the Pabs constructor in Figure 2b. This is similar to the fn
construct in Standard ML, which denotes an anonymous function that immediately matches on
its argument [27]. The same construct also exists in Haskell with the LambdaCase language
extension.2 We chose this representation mainly for two reasons: First, it allows for a simpler
language grammar because there is only one (shared) constructor for abstraction and case expres-
sion. Second, the elimination procedure outlined above does not have to introduce fresh names in
the process. Later, when translating to CakeML syntax, fresh names are introduced and proved
correct in a separate step.

The set of pairs of pattern and right-hand side inside a case abstraction is referred to as clauses.
As a short-hand notation, we use Λ{p1 ⇒ t1,p2 ⇒ t2, . . .}.

4.4 Sequential clauses (sterm)
In the term rewriting fragment of HOL, the order of rules is not significant. If a rule matches, it
can be applied, regardless when it was defined or proven. This is reflected by the use of sets in
the rule and term types. For CakeML, the rules need to be applied in a deterministic order, i.e.
sequentially. The sterm type only differs from pterm by using list instead of set (Figure 2c). Hence,
case abstractions use list brackets: Λ[p1 ⇒ t1,p2 ⇒ t2, . . .].

4.5 Irreducible terms (value)
CakeML distinguishes between expressions and values. Whereas expressions may contain free
variables or β-redexes, values are closed and fully evaluated. Both have a notion of abstraction,
but values differ from expressions in that they contain an environment binding free variables.

Consider the expression (λx .λy.x) (λz.z), which is rewritten (by β-reduction) to λy.λz.z. Note
how the bound variable x disappears, since it is replaced. This is contrary to how programming
languages are usually implemented: evaluation does not happen by substituting the argument
term t for the bound variable x , but by recording the binding x 7→ t in an environment [23]. A
pair of an abstraction and an environment is usually called a closure [24, 39].

In CakeML, this means that evaluation of the above expression results in the closure
(λy.x , [”x” 7→ (λz.z, [])])

Note the nested structure of the closure, whose environment itself contains a closure.
To reflect this in our formalization, we introduce a type value of values (explanation inline):

datatype value =
(∗ constructor value: a data constructor applied to multiple values ∗)
Vconstr string (value list) |
(∗ closure: clauses combined with an environment mapping variables to values ∗)
Vabs ((term × sterm) list) (string⇀ value) |
(∗ recursive closures: a group of mutually recursive function bodies with an environment mapping variables to values ∗)

2https://downloads.haskell.org/~ghc/7.8.4/docs/html/users_guide/syntax-extns.html
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Vrecabs (string⇀ ((term × sterm) list)) string (string⇀ value)

The above example evaluates to the closure:

Vabs
[
⟨y⟩ ⇒ ⟨x⟩

] [
”x” 7→ Vabs [⟨z⟩ ⇒ ⟨z⟩] []

]
The third case for recursive closures only becomes relevant when we conflate variables and con-
stants. As long as the rule set rs is kept separate, recursive calls are straightforward: the appropri-
ate definition for the constant can be looked up there. CakeML knows no such distinction between
constants and variables, hence everything has to reside in a single environment σ .

Consider this example of odd and even:

odd 0 = False even 0 = True

odd (Suc n) = even n even (Suc n) = odd n

When evaluating the term odd k , the definitions of even and odd themselves must be available in
the environment captured in the definition of odd. However, it would be cumbersome in HOL to
construct such a Vabs that refers to itself. Instead, we capture the expressions used to define odd
and even in a recursive closure. Other encodings might be possible, but since we are targeting
CakeML, we are opting to model it in a similar way as its authors do.

For the above example, this would result in the following global environment:

[”odd” 7→ Vrecabs css ”odd” [], ”even” 7→ Vrecabs css ”even” []]

where css = [”odd” 7→ [⟨0⟩ ⇒ ⟨False⟩ , ⟨Suc n⟩ ⇒ ⟨even n⟩],
”even” 7→ [⟨0⟩ ⇒ ⟨True⟩ , ⟨Suc n⟩ ⇒ ⟨odd n⟩]]

Note that in the first line, the right-hand sides are values, but in css, they are expressions. The addi-
tional string argument of Vrecabs denotes the selected function. When evaluating an application
of a recursive closure to an argument (β-reduction), the semantics adds all constituent functions
of the closure to the environment used for recursive evaluation.

5 INTERMEDIATE SEMANTICS AND COMPILER PHASES
In this section, we will discuss the progression from de Bruijn based term language with its small-
step semantics given in Figure 1a to the final CakeML semantics. The compiler starts out with
terms of type term and applies multiple phases to eliminate features that are not present in the
CakeML source language. Types term, nterm and pterm each have a small-step semantics only.
Type sterm has a small-step and several intermediate big-step semantics that bridge the gap to
CakeML. An overview of the intermediate semantics and compiler phases is depicted in Figure 3.
The left-hand column gives an overview of the different phases. The right-hand column gives the
types of the rule set and the semantics for each phase; you may want to skip it upon first reading.

5.1 Side conditions
All of the following semantics require some side conditions on the rule set. These conditions are
purely syntactic. As an example we list the conditions for the correctness of the first compiler
phase:

• Patterns must be linear, and constructors in patterns must be fully applied.
• Definitions must have at least one parameter on the left-hand side (§5.6).
• The right-hand side of an equation refers only to free variables occurring in patterns on

the left-hand side and contain no dangling de Bruijn indices.
• There are no two defining equations lhs = rhs1 and lhs = rhs2 such that rhs1 , rhs2.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.
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de Bruijn
terms

Named bound
variables

Explicit pattern
matching

Sequential
clauses

Evaluation
semantics

§5.2

§5.3

§5.4

§5.6

constructors :: string set (shared by all phases)
R :: (term × term) set, t , t ′ :: term
R ⊢ t −→ t ′ (Figure 1b)

R :: (term × nterm) set, t , t ′ :: nterm
R ⊢ t −→ t ′ (Figure 4)

R :: (string × pterm) set, t , t ′ :: pterm
R ⊢ t −→ t ′ (Figure 6b)

rs :: (string × sterm) list, t , t ′ :: sterm
rs ⊢ t −→ t ′ (Figure 7)

rs :: (string × sterm) list, σ :: string⇀ sterm
t ,u :: sterm
rs,σ ⊢ t ↓ u (Figure 8)

§5.5

rs :: (string × value) list, σ :: string⇀ value
t :: sterm, u :: value
rs,σ ⊢ t ↓ u (Figure 9)

σ :: string⇀ value
t :: sterm, u :: value
σ ⊢ t ↓ u (Figure 11)

§5.7

Phase/Refinement Types & Semantics

Theorem 5.3

see §5.3, Figure 5

see §5.4

Theorem 5.9

Theorem 5.16

Theorem 5.18

compiler phase; semantics refinement
semantics belonging to the phase; semantics relation

Fig. 3. Intermediate semantics and compiler phases

• For each pair of equations that define the same constant, their arity must be equal and
their patterns must be compatible (§5.3).
• There is at least one equation.
• Variable names occurring in patterns must not overlap with constant names (§5.7).
• Any occurring constants must either be defined by an equation or be a constructor.

The conditions for the subsequent phases are sufficiently similar that we do not list them again.
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Step
(lhs, rhs) ∈ R match lhs t = Some σ

R ⊢ t −→ subst σ rhs
Beta

closed t ′

R ⊢ (Λx . t) $ t ′ −→ subst [x 7→ t ′] t

Fig. 4. Small-step semantics for type nterm with named bound variables

In the formalization, we use named contexts to fix the rules and assumptions on them (locales
in Isabelle terminology [4]). Each phase has its own locale, together with a proof that after com-
pilation, the preconditions of the next phase are satisfied. Correctness proofs assume the above
conditions on R and similar conditions on the term that is reduced. For brevity, this is usually
omitted in our presentation.

5.2 Naming bound variables: From term to nterm

Isabelle uses de Bruijn indices in the term language for the following two reasons: For substitu-
tion, there is no need to rename bound variables. Additionally, α-equivalent terms are equal. In
implementations of programming languages, these advantages are not required: Typically, substi-
tutions do not happen inside abstractions, and there is no notion of equality of functions. Therefore
CakeML uses named variables and in this compilation step, we get rid of de Bruijn indices.

The “named” semantics is based on the nterm type (Figure 2). The rules that are changed from
the original semantics (Figure 1b) are given in Figure 4 (Fun and Arg remain unchanged). Notably,
β-reduction reuses the substitution function.

For the correctness proof, we need to establish a correspondence between terms and nterms.
Translation from nterm to term is trivial: Replace bound variables by the number of abstractions
between occurrence and where they were bound in, and keep free variables as they are. This
function is called nterm_to_term.

The other direction is not unique and requires introduction of fresh names for bound variables.
In our formalization, we have chosen to use a monad to produce these names. This function is
called term_to_nterm.

Lemma 5.1 (Correctness of translation). Let t be a term without dangling de Bruijn indices.
Then nterm_to_term (term_to_nterm t) = t .

The following sections will elaborate on the implementation and proof idea.

5.2.1 The fresh monad. Generation of fresh names in general can be thought of as picking a
string that is not an element of a (finite) set of already existing names. For Isabelle, the Nomi-
nal framework [40, 41] provides support for reasoning over fresh names, but unfortunately, its
definitions are not executable.

Instead, we chose to model generation of fresh names as a monad α fresh with the following
primitive operations in addition to the monad operations:

run :: α fresh⇒ string set⇒ α

fresh_name :: string fresh

In our implementation, we have chosen to represent α fresh as roughly isomorphic to the state
monad.

To avoid collisions of names further in the compilation pipeline, we additionally add the names
of all constants to the set of known names.
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Named bound
variables

Grouped by
constants

Iterative pat-
tern elimination

(Fully) explicit
pattern matching

(1)/(2)

(3)

(4)
(5)

R :: (term × nterm) set, t , t ′ :: nterm
R ⊢ t −→ t ′ (Figure 4)

R :: (string × (term list × nterm) set) set
no semantics (combined correctness proof with next step)

R :: (string × (term list × pterm) set) set, t , t ′ :: pterm
R ⊢ t −→ t ′ (Figure 6a)

R :: (string × pterm) set, t , t ′ :: pterm
R ⊢ t −→ t ′ (Figure 6b)

Step Types & Semantics

Fig. 5. Intermediate semantics, zoomed in on pattern elimination (step numbers refer to §5.3.3)

5.2.2 Implementation. The term_to_nterm function is implemented by structural recursion over
the term, with an additional parameter Γ :: string list that records the context of fresh names gen-
erated at the enclosing abstractions, starting with []. In the case of abstraction Λt , we invent a
fresh name and add it to Γ for translating t .

Compilation of a rule set proceeds by translation of the right-hand side of all rules:

compile R = {(p, term_to_nterm t) | (p, t) ∈ R}

The left-hand side is left unchanged for two reasons: functionmatch expects an argument of type
term (see §4), and patterns do not contain abstractions or bound variables.

5.2.3 Correctness. We first prove a lemma about subst and β-reduction:

Lemma 5.2. nterm_to_term Γ (subst [x 7→ t ′] t) = (nterm_to_term (x#Γ) t)[nterm_to_term Γ t ′]

Recall that t [t ′]means β-reduction for the term type, i.e. with de Bruijn indices. Informally speak-
ing, this means that we can either substitute t ′ for x in t and then translate the resulting nterm
back to term, or translate back both t and t ′ and then perform β-reduction.

Theorem 5.3 (Correctness of compilation). Assuming a step can be taken with the compiled
rule set, it can be reproduced with the original rule set.

compile R ⊢ t −→ u closed t

R ⊢ nterm_to_term t −→ nterm_to_term u

We prove this by induction over the semantics (Figure 4). The interesting case is Beta, which is
immediately proved by the above lemma.
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Step
(f , Rf ) ∈ R ([p1, . . . ,pn ], rhs) ∈ Rf match (Pconst f $ p1 $ . . . $ pn) t = Some σ

R ⊢ t −→ subst σ rhs

Beta
(pat, rhs) ∈ C match pat t = Some σ closed t

R ⊢ (Λ C) $ t −→ subst σ rhs

(a) Combined implicit and explicit pattern matching

Step’
(name, rhs) ∈ R

R ⊢ Pconst name −→ rhs

(b) Modified Step rule for explicit-only pattern matching

Fig. 6. Small-step semantics for pterm with pattern matching

5.3 Explicit pattern matching: From nterm to pterm

Usually, functions in HOL are defined using implicit pattern matching, that is, the left-hand side
of an equation is of the form ⟨f p1 . . . pn⟩. For any given function f, there may be multiple such
equations. In this compilation step, we successively eliminate patterns from right-to-left until
there is only one equation for f of the form ⟨f⟩ = Λ C, where C is a set of clauses. After this
step, the right-hand sides contain n nested abstractions, where n is the arity of f, i.e. the number
of parameters of its defining equations.

Recall our running example (map). It has arity 2. We omit the brackets ⟨⟩ for brevity. First, the
list parameter gets eliminated:

map f = λ []⇒ []

| x # xs ⇒ f x #map f xs

Finally, the function parameter gets eliminated:
map = λ f ⇒

(
λ []⇒ []

| x # xs ⇒ f x #map f xs
)

This has now arity 0 and is defined by a twice-nested abstraction.

5.3.1 Semantics. The intermediate semantics is given in Figure 6a (the Fun and Arg rules from
previous semantics remain unchanged). We start out with a rule set R that allows both implicit
and explicit pattern matching. Hence, both the Step and Beta functions need to call the match
function. After elimination, only explicit pattern matching remains, which is reflected in Figure 6b.
Themodified Step rule merely replaces a constant by its definition, without taking arguments into
account.

5.3.2 Elimination procedure. The elimination procedure can be described as an iterative matrix
transformation. In a similar fashion as Slind’s pattern matching compiler [37, §3.3.1], we view the
set of defining equations of f as a matrix where each row is an equation.

f p1,1 . . . p1,n = rhs1
f p2,1 . . . p2,n = rhs2

...
f pm,1 . . . pm,n = rhsm

⇝

©«
p1,1 p1,2 · · · p1,n rhs1
p2,1 p2,2 · · · p2,n rhs2
...

...
. . .

...
...

pm,1 pm,2 · · · pm,n rhsm

ª®®®®¬
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In each step, we group these equations by the initial n − 1 patterns. More formally, we treat a row
in the matrix as an (n + 1)-tuple (pi,1, . . . ,pi,n , rhsi ) and define an equivalence relation ≡p such
that

(pi,1, . . . ,pi,n , rhsi ) ≡p (pj,1, . . . ,pj,n , rhsj)⇔ (pi,1, . . . ,pi,n−1) = (pj,1, . . . ,pj,n−1)

The new matrix is constructed from the set of equivalence classes. It consists of n columns and
one row per equivalence class. The first n−1 columns contain the unique pi,1, . . . ,pi,n−1, whereas
the last column is an abstraction with the set Si of all (pk,n , rhsk ) in the equivalence class as the
set of clauses. ©«

p ′1,1 p ′1,2 · · · p ′1,n−1 Λ S1
p ′2,1 p ′2,2 · · · p ′2,n−1 Λ S2
...

...
. . .

...
...

p ′m′,1 p ′m′,2 · · · p ′m′,n−1 Λ Sm′

ª®®®®¬
For the transformation to work, we need a strong assumption about the structure of the patterns
pi to avoid the following situation:

map f [] = []
map д (x # xs) = д x #map д xs

Through elimination, this would turn into:

map = λ f ⇒
(
λ []⇒ []

)
| д⇒

(
λ x # xs ⇒ f x #map f xs

)
Even though the original equations were non-overlapping, we suddenly obtained an abstraction
with two overlapping patterns. Slind observed a similar problem [37, §3.3.2] in his algorithm.
Therefore, he only permits uniform equations, as defined by Wadler [34, §5.5]. Wadler also carries
out the proof that the definition order of uniform equations does not matter. However, neither give
a syntactic criterion of uniformity that does not require running their respective pattern compila-
tion algorithms. The classic example for a non-uniform set of equations is the diagonal function:
fun diagonal :: bool⇒ bool⇒ bool⇒ nat where
diagonal _ True False = 1
diagonal False _ True = 2
diagonal True False _ = 3

While our algorithm also cannot deal with this definition, we are able to formally characterize our
requirements as a computable function on pairs of patterns:
fun pat_compatible :: term⇒ term⇒ bool where
pat_compatible (t1 $ t2) (u1 $ u2)↔ pat_compatible t1 u1 ∧ (t1 = u1→ pat_compatible t2 u2)
pat_compatible t u↔ (overlapping t u→ t = u)

This compatibility constraint ensures that any two overlapping patterns (of the same column) pi,k
and pj,k are equal and are thus appropriately grouped together in the elimination procedure. We
require all defining equations of a constant to be mutually compatible. Equations violating this
constraint will be flagged during embedding (§3), whereas the pattern elimination algorithm al-
ways succeeds.

Lemma 5.4 (Invariant). Given a set of non-overlapping and pattern-compatible equations, the
elimination procedure produces another set of non-overlapping and pattern-compatible equations.
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5.3.3 Implementation. After transformation to nterm, equations have the type term × nterm.
Below we describe the stepwise transformation into a set of equations of type string × pterm. A
diagram of the following algorithm is given in Figure 5.

(1) The left-hand side of each equation (of type term) is destructured into a tuple (name, pats) ::
string × term list, where name denotes the function symbol of the equation and pats the
list of patterns.

(2) Equations with the same function symbol are grouped together. Different groups are pro-
cessed separately. A single group has the type (term list × nterm) set. This corresponds
to the initial matrix representation as depicted above.

(3) The right-hand side (of type nterm) can be trivially embedded into pterm: An nterm-
abstraction Λx . t is translated to the pterm-abstraction Λ{⟨x⟩ ⇒ t}, i.e. a case abstraction
with the single clause (Pvar x , t).

(4) For each function (i.e. for each group) that has an arity greater than zero, we apply the
elimination procedure (compile_single :: (term list×pterm) set⇒ (term list×pterm) set).
This can be iterated until all functions have arity zero.

(5) A function of arity zero can be represented by a single pterm. The type of the rule set can
thus be simplified to (string × pterm) set.

For correctness purposes, all but step (4) are trivial. For step (4), we first need to figure out what
the correct correspondence relation is.

5.3.4 Correspondence relation. The statement of the semantic correctness property is more dif-
ficult than in the previous phase. The obvious property does not hold:

compile_single R ⊢ t −→ u closed t

R ⊢ t −→ u

Consider themap function again. After eliminating the right-most patterns, the defining equation
ofmap is of the form ⟨map f = λ . . .⟩, which means that we can rewrite the term ⟨map id⟩. How-
ever, we cannot reproduce this rewrite step in the original rule set, because the second argument is
missing. Thus, we need to introduce a dedicated correspondence relation ≈p that takes extension-
ality and R into account. Therefore ≈p is implicitly parametrized by R. Note that extensionality is
only needed if the translated term contains a Λ-abstraction.

Definition 5.5 (Left-deferred correspondence). Given a rule set R :: (string × pterm) set, the cor-
respondence relation ≈p is defined inductively by the following rules:

Const
Pconst n ≈p Pconst n

Var
Pvar n ≈p Pvar n

Comb
t1 ≈p t2 u1 ≈p u2
t1 $ u1 ≈p t2 $ u2

Abs
relset (λ(p1, t1) (p2, t2). p1 = p2 ∧ t1 ≈p t2) C1 C2

Λ C1 ≈p Λ C2

Defer

∀i . closed ti (f , Rf ) ∈ R
arity Rf > 0 relset (λ(p1, t1) (p2, t2). p1 = p2 ∧ t1 ≈p t2) (deferred [t1, . . . , tn ] Rf ) C

Pconst f $ t1 $ . . . $ tn ≈p Λ C

deferred ts Rf = {(pn+1, subst σ rhs) |
([p1,p2, . . . ,pn+1], rhs) ∈ Rf ∧matchs [p1, . . . ,pn ] ts = Some σ }
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We can illustrate the meaning of this relation based on the map example. Consider the matrix
representation of the function:

Rmap =

(
⟨f ⟩

⟨
[]
⟩ ⟨

[]
⟩

⟨f ⟩ ⟨x # xs⟩ ⟨f x #map f xs⟩

)
A single compilation step turns that into:

R′map =

(
⟨f ⟩

⟨
λ []⇒ []

| x # xs ⇒ f x #map f xs

⟩ )
In this modified rule set, the term

⟨
map (λy. y)

⟩
can be rewritten. In the original rule set, it cannot.

With the Defer rule, we can still relate the un-reduced term to the reduced term:⟨
map (λy. y)

⟩
≈p

⟨
λ []⇒ []

| x # xs ⇒ (λy. y) x #map (λy. y) xs

⟩
TheDefer rule can be explained by examining the deferred function. Given a function application
for n parameters ⟨f t1 . . . tn⟩ of a function with arity n + 1, it selects all defining equations that
match these arguments. Each of these equations (⟨f p1 . . . pn pn+1⟩ , ⟨t⟩) carries an additional
pattern pn+1 for the (n + 1)st argument which has to be supplied eventually. From these equa-
tions, we construct a Λ-abstraction comprising pairs (⟨pn+1⟩ , subst σ ⟨t⟩), where σ is the result
of matching the initial n patterns.

In other words, the left-deferred correspondence can also be described as a right-extensional
correspondence. We exploit the idea that we can relate f and д if for all x , f x is related to д x . It
is “right-extensional” in the sense that д needs to be a Λ-abstraction.

5.3.5 Correctness.

Theorem 5.6 (Correctness).

compile_single R ⊢ u −→ u ′ t ≈p u closed t

∃t ′. R ⊢ t −→∗ t ′ ∧ t ′ ≈p u ′
Proof. The main idea is that the rewrite steps for a term t that are possible in compile_single R

are captured in the deferred set. We prove this by rule induction on the semantics (Figure 6a). The
interesting cases are Step and Beta.
Step Consider the term ⟨f t1 . . . tn⟩. As explained above, the new rule set may be able to perform

a rewrite step which cannot be reproduced in the original set. Whether or not that is the
case depends on the arity of the constant in the original rule set. If f already had arity
zero, nothing changed during compilation. If not, we must use the Defer rule to relate
the term ⟨f t1 . . . tn⟩ to a case abstraction. In essence, this case is the correctness proof
of the deferred set.

Beta Here, we need to reproduce a β-reduction of a term of the form Λ C $u. We also know that
there is a term t such that t ≈p Λ C . We can apply rule inversion on this fact. The proof
proceeds by case analysis of the two possible rules Ext and Defer. Ext is trivial, because
it reveals that t has an identical structure to Λ C . Defer requires the inverse direction of
the Step case, i.e. the completeness of the deferred set.

Note that in the conclusion of the theorem the reflexive-transitive closure of −→ is used. But in
both Step and Beta, we would only need reflexive closure, because −→ is applied zero times or
once. □
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Step
(name, rhs) ∈ R

R ⊢ Sconst name −→ rhs
Beta

first_match cs t = Some (σ , rhs) closed t

R ⊢ (Λ cs) $ t −→ subst σ rhs

Fig. 7. Small-step semantics for type sterm

Const
(name, rhs) ∈ rs

rs,σ ⊢ Sconst name ↓ rhs
Var

σ name = Some v

rs,σ ⊢ Svar name ↓ v
Abs

rs,σ ⊢ Λ cs ↓ Λ [(pat, subst (σ − frees pat) t | (pat, t)← cs]

Comb

rs,σ ⊢ t ↓ Λ cs
rs,σ ⊢ u ↓ u ′ first_match cs u ′ = Some (σ ′, rhs) rs,σ ++ σ ′ ⊢ rhs ↓ v

rs,σ ⊢ t $ u ↓ v

Constr
name ∈ constructors rs,σ ⊢ t1 ↓ u1 · · · rs,σ ⊢ tn ↓ un
rs,σ ⊢ Sconst name $ t1 $ . . . $ tn ↓ Sconst name $ u1 $ . . . $ un

Fig. 8. Big-step semantics for type sterm

5.4 Sequentialization: From pterm to sterm

The semantics of pterm and sterm differ only in rule Step and Beta. Figure 7 shows the modified
rules, where instead of anymatching clause the first matching clause in a case abstraction is picked.
For the correctness proof, the order of clauses does not matter: we only need to prove that a
step taken in the sequential semantics can be reproduced in the unordered semantics. As long
as no rules are dropped, this is trivially true. For that reason, the compiler orders the clauses
lexicographically. At the same time the rules are also converted from type (string × pterm) set to
(string × sterm) list. Below, rs will always denote a list of the latter type.

Note that this semantics only sequentializes pattern matching: rewriting may still be non-
deterministic because terms may contain multiple redexes.

5.5 Big-step semantics for sterm
This big-step semantics for sterm is not a compiler phase but moves towards the desired evaluation
semantics. In this first step, we reuse the sterm type for evaluation results, instead of evaluating
to the separate type value. This allows us to ignore environment capture in closures for now.

All previous −→ relations were parametrized by a rule set. Now the big-step predicate is of the
form rs,σ ⊢ t ↓ t ′ where σ :: string⇀ sterm is a variable environment.

This semantics also introduces the distinction between constructors and defined constants. If C
is a constructor, the term ⟨C t1 . . . tn⟩ is evaluated to

⟨
C t ′1 . . . t

′
n
⟩
where the t ′i are the results

of evaluating the ti .
The full set of rules is shown in Figure 8. They deserve a short explanation:

Const Constants are retrieved from the rule set rs.
Var Variables are retrieved from the environment σ .
Abs In order to achieve the intended invariant, abstractions are evaluated to their fully substituted

form.
Comb Function application t $ u first requires evaluation of t into an abstraction Λ cs and eval-

uation of u into an arbitrary term u ′. Afterwards, we look for a clause matching u ′ in cs,
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Const
(name, rhs) ∈ rs

rs,σ ⊢ Sconst name ↓ rhs
Var

σ name = Some v

rs,σ ⊢ Svar name ↓ v
Abs

rs,σ ⊢ Λ cs ↓ Vabs cs σ

Comb

rs,σ ⊢ t ↓ Vabs cs σ ′
rs,σ ⊢ u ↓ v first_match cs v = Some (σ ′′, rhs) rs,σ ′ ++ σ ′′ ⊢ rhs ↓ v ′

rs,σ ⊢ t $ u ↓ v ′

RecComb

rs,σ ⊢ t ↓ Vrecabs css name σ ′ css name = Some cs
rs,σ ⊢ u ↓ v first_match cs v = Some (σ ′′, rhs) rs,σ ′ ++ σ ′′ ⊢ rhs ↓ v ′

rs,σ ⊢ t $ u ↓ v ′

Constr
name ∈ constructors rs,σ ⊢ t1 ↓ v1 · · · rs,σ ⊢ tn ↓ vn
rs,σ ⊢ Sconst name $ t1 $ . . . $ tn ↓ Vconstr name [v1, . . . ,vn ]

Fig. 9. Evaluation semantics from sterm to value

which produces a local variable environment σ ′, possibly overwriting existing variables
in σ . Finally, we evaluate the right-hand side of the clause with the combined global and
local variable environment.

Constr For a constructor application ⟨C t1 . . .⟩, evaluate all ti . The set constructors is an implicit
parameter of the semantics.

Lemma 5.7 (Closedness invariant). If σ contains only closed terms, frees t ⊆ dom σ and
rs,σ ⊢ t ↓ t ′, then t ′ is closed.

Correctness of the big-step w.r.t. the small-step semantics is proved easily by induction on the
former:

Lemma 5.8. For any closed environment σ satisfying frees t ⊆ dom σ ,

rs,σ ⊢ t ↓ u → rs ⊢ subst σ t −→∗ u

By setting σ = [], we obtain:

Theorem 5.9 (Correctness). rs, [] ⊢ t ↓ u ∧ closed t → rs ⊢ t −→∗ u

5.6 Evaluation semantics: Refining sterm to value

At this point, we introduce the concept of values into the semantics, while still keeping the rule set
(for constants) and the environment (for variables) separate. The evaluation rules are specified in
Figure 9 and represent a departure from the original rewriting semantics: a term does not evaluate
to another term but to an object of a different type, a value. We still use ↓ as notation, because
big-step and evaluation semantics can be disambiguated by their types.

The evaluation model itself is fairly straightforward. As explained in §4.5, abstraction terms are
evaluated to closures capturing the current variable environment. Note that at this point, recursive
closures are not treated differently from non-recursive closures. In a later stage, when rs and σ
are merged, this distinction becomes relevant.

We will now explain each rule that has changed from the previous semantics:
Abs Abstraction terms are evaluated to a closure capturing the current environment.
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datatype pat = Patvar string | Patconstr string (pat list)

mk_pat (Const name $ p1 $ . . . $ pn ) = Patconstr name (map mk_pat [p1, . . ., pn])
mk_pat (Free name) = Patvar name

Fig. 10. Proper patterns

Comb As before, in an application t $ u, t must evaluate to a closure Vabs cs σ ′. The evaluation
result ofu is then matched against the clauses cs, producing an environment σ ′′. The right-
hand side of the clause is then evaluated using σ ′ ++ σ ′′; the original environment σ is
effectively discarded.

RecComb Similar as above. Finding the matching clause is a two-step process: First, the appro-
priate clause list is selected by name of the currently active function. Then, matching is
performed.

Constr As before, for an n-ary application ⟨C t1 . . .⟩, where C is a data constructor, we evaluate
all ti . The result is a Vconstr value.

5.6.1 Conversion between sterm and value. To establish a correspondence between evaluating
a term to an sterm and to a value, we apply the same trick as in §5.2. Instead of specifying a com-
plicated relation, we translate value back to sterm: simply apply the substitutions in the captured
environments to the clauses.
fun list_comb :: sterm⇒ sterm list⇒ sterm where
list_comb f [] = f
list_comb f (t # ts) = list_comb (f $ t) ts

fun value_to_sterm :: value⇒ sterm where
value_to_sterm (Vconstr name vs) = list_comb (Sconst name) (map value_to_sterm vs)
value_to_sterm (Vabs cs σ ) = Λ [(pat, subst (map value_to_sterm σ − frees pat) t)) | (pat, t)← cs]
value_to_sterm (Vrecabs css name σ ) = value_to_sterm (Vabs (css name) σ )

The translation rules for Vabs and Vrecabs are intentionally similar to the Abs rule from the big-
step semantics (Figure 8). Roughly speaking, the big-step semantics always keeps terms fully
substituted, whereas the evaluation semantics defers substitution.

Similarly to Lemma 5.1, we can also define a function sterm_to_value :: sterm ⇒ value and
prove that one function is the inverse of the other. Before we can state that property, it is important
to observe that it does not hold for arbitrary terms, but just for value terms. These are characterized
by the codomain of the value_to_sterm function. But we can also prove that the big-step semantics
only produces value terms.

Lemma 5.10 (Correctness of translation). value_to_sterm (sterm_to_value t) = t for all
value terms t .

5.6.2 Matching. The value type, instead of using binary function application as all other term
types, usesn-ary constructor application. This introduces a conceptual mismatch between (binary)
patterns and values. Tomake the proofs easier, we introduce an intermediate type ofn-ary patterns
(Figure 10). The function mk_pat :: term ⇒ pat converts from binary to n-ary patterns. For
readability, we show only its informal specification.
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TheComb and RecComb rules use a variant of the first_match function that converts the term to
pat first (with mk_pat) and uses vmatch :: pat⇒ value⇒ (string⇀ value) option for matching.
Note that this merely simplifies proofs: the intermediate pattern type can be optimized away by
fusing the vmatch and mk_pat functions.

Lemma 5.11 (n-ary vs. binary patterns). For all linear patterns, the result of vmatch corresponds
(w.r.t. value_to_sterm) to match. Formally:

linear p →reloption (relmapping (λv t . t = value_to_sterm v)) σ1 σ2

where σ1 = vmatch (mk_pat p) v

σ2 = match p (value_to_sterm v)

5.6.3 Correctness. The correctness proof requires a number of interesting lemmas.

Lemma 5.12 (Substitution before evaluation). Assuming that a term t can be evaluated to a
value u given a closed environment σ , it can be evaluated to the same value after substitution with a
sub-environment σ ′. Formally: rs,σ ⊢ t ↓ u ∧ σ ′ ⊆ σ → rs,σ ⊢ subst σ ′ t ↓ u
This justifies the “pre-substitution” exhibited by the Abs rule in the big-step semantics in contrast
to the environment-capturing Abs rule in the evaluation semantics.

Lemma 5.13 (Environment coincidence). Let σ ,σ ′ be two closed environments whose mappings
coincide on the set S . Formally: S ⊆ dom σ ∧ ∀a ∈ S . σ a = σ ′ a. Then, if frees t ⊆ S , evaluation in
both environments yields the same result: rs,σ ⊢ t ↓ u ↔ rs,σ ′ ⊢ t ↓ u.
The lemma itself is obvious. Its proof is mainly technical; it requires set-theoretic reasoning about
domains of mappings.

Theorem 5.14 (Correctness). Let σ be a closed environment and t a term which only contains
free variables in dom σ . Then, an evaluation to a value rs,σ ⊢ t ↓ v can be reproduced in the
big-step semantics as rs′,map value_to_sterm σ ⊢ t ↓ value_to_sterm v , where rs′ = [(name,
value_to_sterm rhs) | (name, rhs)← rs].

Proof. By induction over the evaluation semantics. The interesting cases are Comb and Rec-
Comb. Both are roughly identical, save for the additional complication that RecComb has an extra
selection step to find the clause set. We will omit that for brevity and focus on the Comb case.
In this case, we need to prove that function application behaves the same way in both semantics.
The major difference between the two different Comb rules is that in the evaluation semantics, the
evaluation of t to a closure cs reveals a hidden environment σ ′ that is subsequently used in the
evaluation of rhs (where (pat, rhs) ∈ cs). That hidden environment may bear no relation to the
active environment σ which is used in the big-step semantics. Hence, we use a trick: We “pre-
substitute” in rhs (Lemma 5.12) and can then use Lemma 5.13 to replace σ ′ for σ (side-conditions
omitted):

Comb
Lemma 5.13
Lemma 5.12

IH
rs′,map value_to_sterm (σ ′ ++ σ ′′) ⊢ rhs ↓ value_to_sterm v ′

rs′,map value_to_sterm (σ ′ ++ σ ′′) ⊢ rhsσ ′ ↓ value_to_sterm v ′

rs′,map value_to_sterm (σ ++ σ ′′) ⊢ rhsσ ′ ↓ value_to_sterm v ′

rs′,map value_to_sterm σ ⊢ t $ u ↓ value_to_sterm v ′

where rhsσ ′ = subst (map value_to_sterm σ ′− frees pat) rhs. We specifically chose this value for
rhsσ ′ to be able to combine both lemmas and to coincide with the definition of value_to_sterm. □
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5.6.4 Instantiating the correctness theorem. The correctness theorem states that, for any given
evaluation of a term t with a given environment rs,σ containing values, we can reproduce that
evaluation in the big-step semantics using a derived list of rules rs′ and an environment σ ′ contain-
ing sterms that are generated by the value_to_sterm function. But recall the diagram in Figure 3.
In our scenario, we start with a given rule set of sterms (that has been compiled from a rule set of
terms). Hence, the correctness theorem only deals with the opposite direction.

It remains to construct a suitable rs such that applying value_to_sterm to it yields the given
sterm rule set. We can exploit the side condition (§5.1) that all bindings define functions, not
constants:

Definition 5.15 (Global clause set). The mapping global_css :: string ⇀ ((term × sterm) list) is
obtained by stripping the Sabs constructors from all definitions and converting the resulting list
to a mapping.

For each definition with name f we define a corresponding term vf = Vrecabs global_css f [].
In other words, each function is now represented by a recursive closure bundling all functions.
Applying value_to_sterm to vf returns the original definition of f . Let rs denote the original
sterm rule set and rsv the environment mapping all f ’s to the vf ’s.

The variable environments σ and σ ′ can safely be set to the empty mapping, because top-level
terms are evaluated without any free variable bindings.

Corollary 5.16 (Correctness). rsv, [] ⊢ t ↓ v → rs, [] ⊢ t ↓ value_to_sterm v

Note that this step was not part of the compiler (although rsv is computable) but it is a refinement
of the semantics to support a more modular correctness proof.

Example. Recall the odd and even example from §4.5. After compilation to sterm, the rule set
looks like this:

rs = {(”odd”, Sabs [⟨0⟩ ⇒ ⟨False⟩ , ⟨Suc n⟩ ⇒ ⟨even n⟩]),
(”even”, Sabs [⟨0⟩ ⇒ ⟨True⟩ , ⟨Suc n⟩ ⇒ ⟨odd n⟩])}

This can be easily transformed into the following global clause set:
global_css = [”odd” 7→ [⟨0⟩ ⇒ ⟨False⟩ , ⟨Suc n⟩ ⇒ ⟨even n⟩],

”even” 7→ [⟨0⟩ ⇒ ⟨True⟩ , ⟨Suc n⟩ ⇒ ⟨odd n⟩]]
Finally, rsv is computed by creating a recursive closure for each function:

rsv = [”odd” 7→ Vrecabs global_css ”odd” [], ”even” 7→ Vrecabs global_css ”even” []]

5.7 Evaluation with recursive closures
CakeML distinguishes between non-recursive and recursive closures [29]. This distinction is also
present in the value type. In this step, we will conflate variables with constants which necessitates
a special treatment of recursive closures. Therefore we introduce a new predicate σ ⊢ t ↓ v in
Figure 11 (in contrast to the previous rs,σ ⊢ t ↓ v). We examine the rules one by one:
Const/Var Constant definition and variable values are both retrieved from the same environment

σ . We have opted to keep the distinction between constants and variables in the sterm type
to avoid the introduction of another term type.

Abs Identical to the previous evaluation semantics. Note that evaluation never creates recursive
closures at run-time (only at compile-time, see §5.6.4). Anonymous functions, e.g. in the
term

⟨
map (λx . x)

⟩
, are evaluated to non-recursive closures.
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Const
name < constructors σ name = Some v

σ ⊢ Sconst name ↓ v

Var
σ name = Some v

σ ⊢ Svar name ↓ v
Abs

σ ⊢ Λ cs ↓ Vabs cs σ

Comb

σ ⊢ t ↓ Vabs cs σ ′
σ ⊢ u ↓ v first_match cs v = Some (σ ′′, rhs) σ ′ ++ σ ′′ ⊢ rhs ↓ v ′

σ ⊢ t $ u ↓ v ′

RecComb

σ ⊢ t ↓ Vrecabs css name σ ′ css name = Some cs σ ⊢ u ↓ v
first_match cs v = Some (σ ′′, rhs) σ ′ ++mk_rec_env css σ ′ ++ σ ′′ ⊢ rhs ↓ v ′

σ ⊢ t $ u ↓ v ′

Constr
name ∈ constructors σ ⊢ t1 ↓ v1 · · · σ ⊢ tn ↓ vn
σ ⊢ Sconst name $ t1 $ . . . $ tn ↓ Vconstr name [v1, . . . ,vn ]

Fig. 11. ML-style evaluation semantics

Comb Identical to the previous evaluation semantics.
RecComb Almost identical to the evaluation semantics. For each function (name, cs) ∈ css, a new

recursive closure Vrecabs css name σ ′ is created and inserted into the environment. This
ensures that after the first call to a recursive function, the function itself is present in the
environment to be called recursively, without having to introduce coinductive environ-
ments.

Constr Identical to the evaluation semantics.

5.7.1 Conflating constants and variables. By merging the rule set rs with the variable environ-
ment σ , it becomes necessary to discuss possible clashes. Previously, the syntactic distinction
between Svar and Sconstmeant that ⟨x⟩ and ⟨x⟩ are not ambiguous: all semantics up to the evalu-
ation semantics clearly specify where to look for the substitute. This is not the case in functional
languages where functions and variables are not distinguished syntactically.

Instead, we rely on the fact that the initial rule set only defines constants. All variables are
introduced by matching before β-reduction (that is, in the Comb and RecComb rules). The Abs
rule does not change the environment. Hence it suffices to assume that variables in patterns must
not overlap with constant names (see §5.1).

5.7.2 Correspondence relation. Both constant definitions and values of variables are recorded
in a single environment σ . This also applies to the environment contained in a closure. The corre-
spondence relation thus needs to take a different sets of bindings in closures into account.

Hence, we define a relation ≈v that is implicitly parametrized on the rule set rs and compares
environments. We call it right-conflating, because in a correspondencev ≈v u, any bound environ-
ment inu is thought to contain both variables and constants, whereas inv , any bound environment
contains only variables.

Definition 5.17 (Right-conflating correspondence). We define ≈v coinductively as follows:

v1 ≈v u1 · · · vn ≈v un
Vconstr name [v1, . . . ,vn ] ≈v Vconstr name [u1, . . . ,un ]
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∀x ∈ frees cs. σ1 x ≈v σ2 x ∀x ∈ consts cs. rs x ≈v σ2 x
Vabs cs σ1 ≈v Vabs cs σ2

∀cs ∈ range css. ∀x ∈ frees cs. σ1 x ≈v σ2 x
∀cs ∈ range css. ∀x ∈ consts cs. σ1 x ≈v (σ2 ++mk_rec_env css σ2) x

Vrecabs css name σ1 ≈v Vrecabs css name σ2

Consequently, ≈v is not reflexive.

5.7.3 Correctness. The correctness lemma is straightforward to state:

Theorem 5.18 (Correctness). Let σ be an environment, t be a closed term and v a value such
that σ ⊢ t ↓ v . If for all constants x occurring in t , rs x ≈v σ x holds, then there is an u such that
rs, [] ⊢ t ↓ u and u ≈v v .

As usual, the rather technical proof proceeds via induction over the semantics (Figure 11). It is
important to note that the global clause set construction (§5.6.4) satisfies the preconditions of this
theorem:

Lemma 5.19. If name is the name of a constant in rs, then Vrecabs global_css name [] ≈v
Vrecabs global_css name [].

Because ≈v is defined coinductively, the proof of this precondition proceeds by coinduction.

5.8 CakeML
CakeML is a verified implementation of a subset of Standard ML [23, 38]. It comprises a parser,
type checker, formal semantics and backend for machine code. The semantics has been formalized
in Lem [28], which allows export to Isabelle theories.

Our compiler targets CakeML’s abstract syntax tree. However, we do not make use of cer-
tain CakeML features; notably mutable cells, modules, and literals. We have derived a smaller,
executable version of the original CakeML semantics, called CupCakeML, together with an equiva-
lence proof. The correctness proof of the last compiler phase establishes a correspondence between
CupCakeML and the final semantics of our compiler pipeline.

For the correctness proof of the CakeML compiler, its authors have extracted the Lem specifica-
tion into HOL4 theories [1]. In our work, we directly target CakeML abstract syntax trees (thereby
bypassing the parser) and use its big-step semantics, which we have extracted into Isabelle.3

5.8.1 CupCakeML. The core of CakeML’s big-step semantics is organized in three mutually
recursive inductive predicates (evaluate, evaluate_list, evaluate_match) with a total of over thirty
rules. It is that large because it has to deal with exceptions, modules, step counters, and other
features that their compiler supports, but we do not need. For that reason, we have defined the
subset CupCakeML which only allows the syntactic forms known from the sterm type.

We define a smaller big-step semantics with a single inductive predicate and twelve remaining
rules. We then prove equivalence to the original semantics, that is, both correctness and com-
pleteness, under the assumption that the expression and initial environments are in the supported
fragment. We also prove that the supported fragment is closed under the relevant functions and
relations.

3based on a repository snapshot from March 27, 2017 (0c48672)
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5.8.2 Conversion from sterm to exp. After the series of translations described in the earlier
sections, our terms are syntactically close to CakeML’s terms (Cake.exp). The only remaining
differences are outlined below:

• CakeML does not combine abstraction and pattern matching. For that reason, we have to
translate Λ [p1 ⇒ t1, . . .] into Λx . case x of p1 ⇒ t1 | . . ., where x is a fresh variable
name. We reuse the fresh monad to obtain a bound variable name. Note that it is not
necessary to thread through already created variable names, only existing names. The
reason is simple: a generated variable is bound and then immediately used in the body.
Shadowing it somewhere in the body is not problematic.
• CakeML has two distinct syntactic categories for identifiers (that can represent variables

or functions) and data constructors. Our term types however have two distinct syntactic
categories for constants (that can represent functions or data constructors) and variables.
The necessary prerequisites to deal with this are already present in theML-style evaluation
semantics (§5.7) which conflates constants and variables, but has a dedicated Constr rule
for data constructors.

5.8.3 Types. During embedding (§3), all type information is erased. Yet, CakeML performs
some limited form of type checking at run-time: constructing and matching data must always
be fully applied. That is, data constructors must always occur with all arguments supplied on
right-hand and left-hand sides.

Fully applied constructors in terms can be easily guaranteed by simple pre-processing. For pat-
terns however, this must be ensured throughout the compilation pipeline; it is (like other syntactic
constraints) another side condition imposed on the rule set (§5.1).

The shape of datatypes and constructors is managed in CakeML’s environment. This particu-
lar piece of information is allowed to vary in closures, since ML supports local type definitions.
Tracking this would greatly complicate our proofs. Hence, we fix a global set of constructors and
enforce that all values use exactly that one.

5.8.4 Correspondence relation. We define two different correspondence relations: One for val-
ues and one for expressions.

Definition 5.20 (Expression correspondence).

Var
rel_e (Svar n) (Cake.Var n)

Const
n < constructors

rel_e (Sconst n) (Cake.Var n)

Constr
n ∈ constructors rel_e t1 u1 · · ·

rel_e (Sconst name $ t1 $ . . . $ tn) (Cake.Con (Some (Cake.Short name) [u1, . . . ,un ]))

App
rel_e t1 u1 rel_e t2 u2

rel_e t1 $ t2 Cake.App Cake.Opapp [u1,u2]

Fun
n < ids (Λ [p1 ⇒ t1, . . .]) ∪ constructors q1 = mk_ml_pat p1 rel_e t1 u1 · · ·

rel_e (Λ [p1 ⇒ t1, . . .]) (Cake.Fun n (Cake.Mat (Cake.Var n)) [q1 ⇒ u1, . . .])

Mat
rel_e t u q1 = mk_ml_pat p1 rel_e t1 u1 · · ·
rel_e (Λ [p1 ⇒ t1, . . .] $ t) (Cake.Mat u [q1 ⇒ u1, . . .])

We will explain each of the rules briefly here.
Var Variables are directly related by identical name.
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Const As described earlier, constructors are treated specially in CakeML. In order to not confuse
functions or variables with data constructors themselves, we require that the constant
name is not a constructor.

Constr Constructors are directly related by identical name, and recursively related arguments.
App CakeML does not just support general function application but also unary and binary opera-

tors. In fact, function application is the binary operator Opapp. We never generate other
operators. Hence the correspondence is restricted to Opapp.

Fun/Mat Observe the symmetry between these two cases: In our term language, matching and
abstraction are combined, which is not the case in CakeML. This means we relate a case
abstraction to a CakeML function containing a match, and a case abstraction applied to a
value to just a CakeML match.

There is no separate relation for patterns, because their translation is simple.
The value correspondence (rel_v) is structurally simpler. In the case of constructor values

(Vconstr and Cake.Conv), arguments are compared recursively. Closures and recursive closures
are compared extensionally, i.e. only bindings that occur in the body are checked recursively for
correspondence.

5.8.5 Correctness. We use the same trick as in §5.6.4 to obtain a suitable environment for
CakeML evaluation based on the rule set rs.

Theorem 5.21 (Correctness). If the compiled expression sterm_to_cake t terminates with a
value u in the CakeML semantics, there is a value v such that rel_v v u and rs ⊢ t ↓ v .

6 COMPOSITION
The complete compiler pipeline consists of multiple phases. Correctness is justified for each phase
between intermediate semantics and correspondence relations, most of which are rather technical.
Whereas the compiler may be complex and impenetrable, the trustworthiness of the constructions
hinges on the obviousness of those correspondence relations.

Fortunately, under the assumption that terms to be evaluated and the resulting values do not
contain abstractions – or closures, respectively – all of the correspondence relations collapse to
simple structural equality: two terms are related if and only if one can be converted to the other
by consistent renaming of term constructors.

For example, to convert a Cake.v back into a value:
fun cake_to_value :: Cake.v⇒ value where
cake_to_value (Cake.Conv (Some (name, _)) vs) = Vconstr name (map cake_to_value vs)

This function is intentionally underspecified, because we assume that it is not applicable for clo-
sures.

The actual compiler can be characterized with two functions. Firstly, the translation of term to
Cake.exp is a simple composition of each term translation function:
definition term_to_cake :: term⇒ Cake.exp where
term_to_cake = sterm_to_cake ◦ pterm_to_sterm ◦ nterm_to_pterm ◦ term_to_nterm

Secondly, the function that translates function definitions by composing the phases as outlined in
Figure 3, including iterated application of pattern elimination:
definition compile :: (term × term) fset⇒ Cake.dec where
compile = Cake.Dletrec ◦ compile_srules_to_cake ◦ compile_prules_to_srules ◦ compile_irules_to_srules ◦
compile_irules_iter ◦ compile_crules_to_irules ◦ consts_of ◦ compile_rules_to_nrules
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Each function compile_* corresponds to one compiler phase; the remaining functions are trivial.
This produces a CakeML top-level declaration. We prove that evaluating this declaration in the
top-level semantics (evaluate_prog) results in an environment cake_sem_env. But cake_sem_env
can also be computed via another instance of the global clause set trick (§5.6.4).

Equipped with these functions, we can state the final correctness theorem:

theorem compiled_correct:
(∗ If CakeML evaluation of a term succeeds … ∗)
assumes evaluate False cake_sem_env s (term_to_cake t) (s', Rval ml_v)
(∗ … producing a constructor term without closures … ∗)
assumes cake_abstraction_free ml_v
(∗ … and some syntactic properties of the involved terms hold … ∗)
assumes closed t and ¬ shadows_consts (heads rs ∪ constructors) t and
welldefined (heads rs ∪ constructors) t and wellformed t

(∗ … then this evaluation can be reproduced in the term−rewriting semantics ∗)
shows rs ⊢ t→∗ cake_to_term ml_v

This theorem directly relates the evaluation of a term t in the full CakeML (includingmutability and
exceptions) to the evaluation in the initial higher-order term rewriting semantics. The evaluation
of t happens using the environment produced from the initial rule set. Hence, the theorem can be
interpreted as the correctness of the pseudo-ML expression let rec rs in t .

Observe that in the assumption, the conversion goes from our terms to CakeML expressions,
whereas in the conclusion, the conversion goes the opposite direction.

7 DICTIONARY CONSTRUCTION
Isabelle’s type system supports type classes (or simply classes) [18, 42] whereas CakeML does not.
In order to not complicate the correctness proofs, type classes are not supported by our embedded
term language either. Instead, we eliminate classes and instances by a dictionary construction [19]
before embedding into the term language. Haftmann and Nipkow give a pen-and-paper correct-
ness proof of this construction [17, §4.1]. We augmented the dictionary construction with the
generation of a certificate theorem that shows the equivalence of the two versions of a function,
with type classes and with dictionaries. This section briefly explains our dictionary construction.

Figure 12 shows a simple example of a dictionary construction. Type variables may carry class
constraints (e.g.α :: add). The basic idea is that classes become dictionaries containing the functions
of that class; class instances become dictionary definitions. Dictionaries are realized as datatypes.
Class constraints become additional dictionary parameters for that class. In the example, class
add becomes dict_add; function f is translated into f ′ which takes an additional parameter of
type dict_add. In reality our tool does not produce the Isabelle source code shown in Figure 12 (b)
but performs the constructions internally. The correctness lemma f′_eq is proved automatically.
Its precondition expresses that the dictionary must contain exactly the function(s) of class add.
For any monomorphic instance, the precondition can be proved outright based on the certificate
theorems proved for each class instance as explained next.

Not shown in the example is the translation of class instances. The basic form of a class instance
in Isabelle is τ :: (c1, . . . , cn) c where τ is an n-ary type constructor. It corresponds to Haskell’s
(c1 α1, . . . , cn αn) ⇒ c (τ α1 . . . αn) and is translated into a function inst_c_τ :: α1 dict_c1 ⇒
· · · ⇒ αn dict_cn ⇒ (α1, . . . ,αn)τ dict_c and the following certificate theorem is proved:

cert_c1 dict1 → · · · → cert_cn dictn → cert_c (inst_c_τ dict1 . . . dictn)
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class add =
fixes plus :: 'a⇒ 'a⇒ 'a

definition f :: ('a::add)⇒ 'a where
f x = plus x x

(a) Source program

datatype 'a dict_add = Dict_add ('a⇒ 'a⇒ 'a)

fun cert_add :: ('a::add) dict_add⇒ bool where
cert_add (Dict_add pls) = (pls = plus)

fun f' :: 'a dict_add⇒ 'a⇒ 'a where
f' (Dict_add pls) x = pls x x

lemma f'_eq: cert_add dict→ f' dict = f
<proof>

(b) Result of translation

Fig. 12. Dictionary construction in Isabelle

8 CONCLUSION
For this paper we have concentrated on the compiler from Isabelle/HOL to CakeML abstract syntax
trees. Partial correctness is proved w.r.t. the big-step semantics of CakeML. In the next step we
will link our work with the compiler from CakeML to machine code. Tan et al. [38, §10] prove a
correctness theorem that relates their semantics with the execution of the compiled machine code.
In that paper, they use a newer iteration of the CakeML semantics (functional big-step [33]) than
we do here. Both semantics are still present in the CakeML source repository, together with an
equivalence proof.

Evaluation of our compiled programs is already possible via Isabelle’s predicate compiler [6],
which allows us to turn CakeML’s big-step semantics into an executable function. We have used
this execution mechanism to establish for sample programs that they terminate successfully. We
also plan to prove that our compiled programs terminate, i.e. total correctness.

The total size of this formalization, excluding theories extracted from Lem, is currently approx-
imately 20000 lines of proof text (90 %) and ML code (10 %).
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