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Abstract—Anomalies are an inevitable occurrence while op-
erating enterprise software systems. Traditionally, anomalies are
detected by threshold-based alarms for critical metrics, or health
probing requests. However, fully automated detection in complex
systems is challenging, since it is very difficult to distinguish truly
anomalous behavior from normal operation. To this end, the
traditional approaches may not be sufficient. Thus, we propose
machine learning classifiers to predict the system’s health status.
We evaluated our approach in an industrial case study, on a
large, real-world dataset of 7.5 ·106 data points for 231 features.
Our results show that recurrent neural networks with long short-
term memory (LSTM) are more effective in detecting anomalies
and health issues, as compared to other classifiers. We achieved
an area under precision-recall curve of 0.44. At the default
threshold, we can automatically detect 70% of the anomalies.
Despite the low precision of 31%, the rate in which false positives
occur is only 4%.

I. INTRODUCTION

An enterprise software system is a software system designed
as a part of a business that interacts with users, typically
responding to web-based requests. During the operation of
an enterprise software, anomalies might occur that impede
the system’s capabilities of serving properly. In this work, we
define an anomaly as “any unintended state of a system that
has or might have negative impact on its normal operation”.
This includes cases such as fatal conditions that bring nodes to
a halt (e.g. out-of-memory errors) or more subtle issues such
as hung threads that keep consuming resources, while the rest
of the system is still up with reduced capacity. In both cases,
we consider the system to be in an “unhealthy” state.

Fatal anomalies are obvious once a node stops responding,
whereas non-fatal anomalies might continue unnoticed for a
while. In any case, it is desirable that the anomaly is detected
early on. If so, the system can react in time by automatically
restarting affected components, and the problem does not
impact the users’ experience negatively. To achieve this goal,
practitioners use monitoring techniques to constantly check the
“health” status of the system.

Traditional monitoring approaches often employ a combi-
nation of a) fixed rules and thresholds for the values of the

important system metrics, such as memory or CPU usage,
b) probing requests that are expected to return successfully
within a certain period of time, and c) customized health
checks defined for each specific system. These approaches,
whose precise rules must be defined a priori, may fail to detect
complex and non-fatal anomalies. For example, a system might
seem healthy based on the probing request, but exhibits low
performance on certain types of user requests. In addition,
in-depth expert knowledge about the system’s internals is
required to define the monitoring rules and thresholds.

For DevOps, the traditional methods may not be not suf-
ficient, as anomalies need to be detected accurately with a
very high degree of automation. We propose an alternative
approach. Instead of relying on fixed rules, we build machine
learning (ML) models for detecting health issues and anoma-
lies. Together with the engineers at QAware1, with whom
we conducted this research, we have identified the problem
statement and the solution as follows:

Problem. Insufficient or delayed detection of run-time
anomalies in complex enterprise systems leads to performance
issues and service failures. Is it possible to detect anomalies
ahead of failures, in order to prevent negative user experi-
ences?

Solution. We propose to use ML on operational data to
create a model to predict the system’s health status, to detect
if any kind of anomaly is happening.

Contribution. We demonstrate our methodology on a com-
plex real-world enterprise application, and discuss results of
various supervised algorithms and the applicability of the
approach. For this, we utilize a total of 7.5·106 measurements;
our dataset is published in [1] and [2]. To the best of our
knowledge, there is no prior work in incorporating data from
a live real-world system into a ML model to detect operation
anomalies.

Organization. In Section II, we explain our approach.
We describe the experiment in Section III, including setup,

1https://www.qaware.de



evaluation metrics, and results. In Section IV, we review
related work. Finally, in Section V, we discuss our findings
and conclude.

II. METHODOLOGY

In the following, we describe our data collection, prepara-
tion, and ML steps.

A. Approach

To build an anomaly detection model, we collect related
data from multiple sources first. We clean the collected data
by removing/replacing missing values and eliminating invalid
measurements. We define anomaly detection as a binary clas-
sification task. Thus, we label the data, using the “anomaly”
and “healthy” class labels. Finally, we train and tune our ML
models to find the best model for our case. In the following,
we explain these steps in detail.

1) Collecting Data: To detect the operational anomalies
of our complex enterprise application, we considered the
operating system, and WebLogic Server monitoring beans, as
our data sources. A total of twenty instances of the application
were active on multiple hosts at the same time; as they
are uniform, we do not differentiate between them when
detecting anomalies. We measured 831 metrics in 1-minute
time intervals, and used the time series of these measurements
to form our dataset. As the result, our dataset contains 7.5·106
data points, or 5,209 days of time series data. Traditionally, a
few of the above mentioned metrics would be used to check
the health status of the system. The metrics include CPU load,
usages of different memory areas and thread pools throughout
the application, connection delays to its different data sources,
etc. A complete list can be found in [1].

2) Handling Missing Values: Incomplete data can occur
when performing long-term measurements for different rea-
sons. During system restarts, or when the system is unrespon-
sive such that a restart is required, measurements cannot be
made correctly. In addition, the set of measured metrics might
change over time. Hence, the collected data might contain
missing values.

To handle missing values, first we select a subset of metrics
for which the majority of the values are present. Then, we
replace missing values using linear interpolation [3]. This
allows us to utilize ML algorithms that can not handle in-
complete data. Additionally, we want to retain the information
that measurements were unavailable at certain points in time,
even if we could interpolate the missing values. For this, we
introduce a feature that indicates at which points in time the
measurements failed.

3) Creating Features: Some metrics like the absolute usage
of a resource or total count of the occurrences of an event
might not be very informative on their own. Combining these
metrics or deriving a function can be more informative and
also less influenced by configuration changes. With the help
of the experts, we selected a set of metrics, combined some
of them, and defined some functions, as our feature set. For
example, the size of the allocated heap alone is not very

TABLE I
SUMMARIZED FEATURE SET

Database connections Currently active connections
Database connection activity
Database connection delay
Failed reserve connection requests
Relative unavailable connections
Reserve connection request activity
Started/Failed/Successful connections

Memory spaces Activity in JVM memory spaces
Physical memory activity
Relative JVM memory space usages
Relative physical memory usage

Transactions Currently active transactions
Transaction rollback/commit activity

Threads Daemon/Total thread count
Stuck threads

Swap Relative swap usage
Swap activity

Other Class loading/unloading activity
CPU usage/time
Garbage collection activity/duration
Hit rate of prepared statement caches
JVM objects to be finalized
Missing data
Relative open file descriptors
Relative physical memory usage

informative, but combined with the maximum heap size, a
feature for the relative heap usage is useful. Table I provides
a summary of our features, the whole list can be found in [2].

4) Labeling the Data: We define anomaly detection as a
binary classification task. Thus, we need to assign our data
into “anomaly” and “healthy” classes. Considering the huge
amount of the data, scanning the whole dataset manually to
find anomalies sounds very difficult and time-consuming, if
not infeasible. To make this task faster and easier, we use
restarts as an indicator for the possible health issues, since
the application was restarted once an issue became apparent.
With the help of experts, we analyze the behavior of the
system preceding the restarts. If the behavior of the system
is abnormal or anomalous, we label all the feature vectors in
that specific period of time as “anomaly”. The rest of data is
then “healthy”.

5) Balancing the Dataset: Imbalanced class distribution is
a predominant problem in anomaly detection. In our case,
the number of observations belonging to the “anomaly” class
is significantly lower than those belonging to the “healthy”
class. But most classifiers perform better when learning on
more balanced data [4]. Since we have a huge amount of
data, we balance the training set to some extent by random
undersampling [5] of the “healthy” class. As a result, we have
a 62.3% “healthy” and 37.7% “anomaly” distribution.

6) Normalizing the Data: Anomaly detection models per-
form better on normalized data [6]. In order to avoid a bias in
the results, we normalize our features to zero mean and unit
variance, i.e. feature X becomes X−µ

σ where µ is its mean
and σ the variance.

7) Building a ML Model: Our goal is to predict the
system’s health status yt at time t based on a new mea-



surement xt and the preceding sequence of measurements
(xt−1, ..., xt−τ ), assuming only the last τ measurements are
relevant. Mathematically, we need to find a predictor L so
that L(xt, ..., xt−τ ) = yt for as many measurement points as
possible. To classify such sequences, we use recurrent neural
networks (RNNs), i.e. layers of cells that feed the weighted
sum of their inputs into a nonlinear activation function, and
output their signal to other cells. Connections to previous
layers, or the same layer, are recurrent and essentially allow
the network to “remember” input from previous time steps.
RNNs are trained by descending on the gradient of their
error function and updating their weights [7]. However, in the
calculation of the gradient for the error function for recurrent
networks, a lot of multiplications occur. Since for bounded
activation functions, the individual gradients are well below
one, the total gradient becomes very small and vanishes. To
solve this vanishing gradient problem, we utilize long short-
term memory (LSTM) cells as proposed by Hochreiter and
Schmidhuber [8], which have a linear self connection that
prevents the gradient from vanishing. This yields a nonlinear
anomaly detection model that takes into account more relevant
information than traditional monitoring techniques such as
thresholds.

8) Discretizing the Time Series Data: To be able to use a
wider range of classifiers on the time series data, we can create
feature vectors zt(δ) for a sliding time window δ from the
sequence (xt, ..., xt−δ), and train the predictor for L(zt(δ)) =
y′t(δ). The aggregated label y′t(δ) in that window is the label
with the most frequent occurrence there. This allows the use
of simpler models; Sun et al. [9] pursue this simplification
using support vector machines to detect synthetic failures.

B. Optimizing Parameters
We need to choose a set of optimal hyperparameters for all

of the learning algorithms we use in our experiment. Typical
examples include learning rate and number of cells for neural
network classifiers [7]. To search the hyperparameter space for
the best values, we use four-fold cross validation [7], using
all data for the validation part, not only the (undersampled)
balanced subset.

III. EXPERIMENT

We can now refine the research questions and describe
evaluation metrics, evaluation results and threats to validity.

A. Research Questions
We aim to detect anomalies and health issues of a software

system using ML models built on operating data. We need to
answer the following questions to evaluate how successful our
solution is in predicting the health status of the system:
• RQ1: Can our classification models effectively serve as

a predictor for the health status of a software system?
• RQ2: Are LSTM neural networks more effective in clas-

sifying operating data sequences than other classification
algorithms?

These questions boil down to determining how “well” our
classification works. We start by defining what “well” means.

B. Evaluation Metrics

Typical objectives in classification are precision ( TP
TP+FP )

and recall ( TP
TP+FN ) [7]. In our case, a true positive (TP)

means that a measurement for an anomaly is correctly rec-
ognized as such; a false positive (FP) is normal behaviour
wrongly classified as anomaly. False negatives (FN) and true
negatives (TN) are defined accordingly.

For classifiers which output a probability distribution over
a set of classes, we need a threshold for class assignment
to be able to evaluate the results. For instance, the default
threshold value of 50% means that an instance would be
classified as an “anomaly”, if for that instance the probability
of being in anomaly class is more than 50%. We utilize
the precision/recall (PRC) plot to compare different threshold
values. PRC plots are more informative than receiver operating
characteristic (ROC) plots in showing the performance of
classifiers on unbalanced data [10]. In addition, we utilize
the area under the PRC (AUPRC) metric as a numerical
performance indicator to compare different curves.

C. Results of the Industrial Case Study

Our experiment data is collected from August 2014 to
October 2015. We used 54.5% of the original dataset (all
data before May 2015) for training. 1.38% of the training
data belonged to the “anomaly” class; by undersampling the
“healthy” class, we achieved a more balanced distribution with
37.7% anomaly instances. In total, the training set consists of
1.5 · 105 data points.

Our cross validation results show that using two layers of
200 LSTM cells with the hyperparameters presented in Table
II yields the best performance on the training dataset. Thus,
we built the model using these settings and tested our model
on the test dataset.

We compared the performance of the LSTM network with
two other classifiers, namely naïve Bayes [11] and random
forest [7]. Figure 1, Figure 2, and Figure 3 show the PRC
plots for the LSTM network, naïve Bayes, and random forest
respectively. The results are based on 1000 threshold steps.

The LSTM network had the highest performance of all
classifiers with an AUPRC of 0.444. For reference, the cor-
responding area under ROC is as high as 0.892. At 50%
threshold , the LSTM network has 31.1% precision and 69.5%
recall. The performance at that point is as good as random
forest for fifteen minutes (if their threshold was adapted
accordingly).

TABLE II
HYPERPARAMETERS FOR BEST LSTM NETWORK WITH TWO LAYERS OF

200 CELLS EACH, USING TEN PASSES OVER THE TRAINING SET.

learning rate 0.0025
recurrent activation functions tanh
output activation function softmax
backpropagation length 600
L2 norm constant 0.001
dropout regularization 40%
optimization algorithm STGD with RMSPROP
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Fig. 1. PRC for best-performing LSTM network, threshold from 100% (left)
to 0% (right).

The naïve Bayes classifier has an AUPRC of 0.257 for the
smallest time window and 0.334 for the largest. At the 50%
threshold, performance is similar for all the window sizes
with about 19% precision and 78% recall. It is remarkable
that performance is hardly affected by the window size in the
high recall regions. In general, larger windows yield higher
performance.

The random forest classifier indicates an AUPRC of 0.381
for a 1-minute window and 0.408 for the 15-minute window.
This results in 50.2% precision and 56.5% recall (at 50%
threshold) for the 15-minute window setting.
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Fig. 2. PRC for naïve Bayes classifier. Threshold ranges from 100% (left)
to 0% (right), with markings at 50%.
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Fig. 3. PRC for random forest. Threshold ranges from 100% (left) to 0%
(right), with markings at 50%.

Apart from the models discussed above, we also employed
gradient-boosted trees and multi-layer perceptrons, but did
not achieve good results. The multi-layer perceptron achieved
at most 41.3% precision and 37.8% recall; gradient-boosted
trees were the worst models with a maximum of 27.6%
precision and 16.6% recall. Our reasoning is that due to
the relatively high degree of error in the data labeling, only
models that are robust to label noise could perform well. For
instance, while gradient-boosted trees usually perform better
than random forests on low-noise data, they are found to be
much more sensitive to label noise [12, 13]. The naïve Bayes
classifier, which performs reasonable in our test, is also known
to be less affected by label noise [14].

Based on the above results, we answer the research ques-
tions as follows:

• RQ1: Although a precision of 30% and 70% recall
(that we could achieve with multiple models) do not
sound very high, the FP rate is actually only about 4%.
This very low rate of FPs makes the results promising
for our industry partner, especially because in DevOps
environments, restarts are not too expensive. Compared to
manual inspection of metrics, utilizing our classification
technique to detect about 70% of the anomalies automat-
ically, is a big step forward.

• RQ2: The best overall performance was achieved by
LSTM networks with an AUPRC of 0.44. However,
the figures show that LSTM networks only perform
significantly better than the other classifiers when using
higher thresholds. At lower thresholds, random forests
are mostly better, and both models go through the 70%
recall, 30% precision point.



D. Threats to Validity

We offered a methodology for adapting ML-based anomaly
detection to an industrial context. We do not claim that our
experiment setup and results will be valid for all other con-
texts. The first important factor that might impact the results
is our data labeling. There might be some mistakes since we
did not have any ground truth to compare the labeling results
with. To mitigate the threats to the validity, we discussed our
labeling and findings with experts.

In addition, since we use system restarts as indicators for
problems, anomalies not severe enough to lead to a restart are
not taken into account. This problem is inherent when using
real-world data, and can hardly be mitigated.

Furthermore, it is possible that the set of features we used
might not be ideal.

Finally, since anomaly detection is done only in retrospect,
we ignore the back coupling of the operation decisions.
When performing automated anomaly handling in practice,
one would have to account for this, but it is likely that this
can be solved programmatically.

IV. RELATED WORK

In this paper, we focus on applying ML techniques in order
to detect software operation anomalies, as opposed to static
anomalies. Although ML is vastly used to solve various prob-
lems in many different fields, there is almost no work when
it comes to applying ML techniques for detecting operation
anomalies in distributed software systems. Thus, we discuss
related literature in the field of intrusion detection in addition
to already existing ML approaches for detecting anomalies for
DevOps, and correlation-based anomaly detection.

Detecting anomalies on a predefined time interval (called
window), for long DevOps operations, has been introduced in
[9]. Support Vector Machines (SVMs) are being used to train
multiple classifiers from monitored data, in a way that a SVM
is created for each phase of the DevOps operation, on which
the logging information can indicate the best suitable classifier
at any time. For further anomaly detection improvement, the
authors introduce moving average over the windows, and the
entropy of metrics, as additional features to the SVM. Ran-
domly injected faults can be accurately classified with larger
time windows of three minutes and above. Yet the approach
introduces several minute delays when the measurements can’t
be made more frequently than once per minute. The work
focuses on SVMs and dedicates a lot of effort to anomaly
detection during a rolling upgrade. In this paper, on the other
hand, a wider range of different models are examined and
put into comparison. Additionally, we employ sequence-based
models that have the potential of avoiding the delay from
larger time windows.

To assist in the reliable assurance of correct execution
of cloud operations, an approach based on regression-based
correlation analysis technique has been derived in [15]. The
approach models the correlation between operations, like re-
deployment or scaling, and their effects on the resources of
the underlying cloud platform. The correlation can be used as

the basis for generating run-time assertions in order to detect
anomalies in running operations. Operations are inferred from
their event log messages, while resource usage is measured by
metrics. Behaviour rules are extracted from the model and the
predicted behaviour is compared with the actual behaviour;
if they differ, an anomaly is assumed to have occurred. This
approach performs well after injecting random, artificial faults
on a initially trained healthy system. However, in this paper,
we focus on anomaly detection for already faulty systems.

Intrusion detection is a research area that has been broadly
studied for nearly 20 years, and is still a contemporary subject
of widespread interest by researchers. Anomaly detection is
closely related to intrusion detection, as disturbances of normal
behaviour indicate a presence of intended or unintended in-
duced attacks, faults or defects [16]. Since both research fields
are very similar, there is an enormous potential in utilizing
ML techniques for accurate anomaly detection. However, this
also means that the problems are likely the same across
these two fields. Kaur et al. [17] highlight the advantage
of employing ML based techniques for detecting unknown
anomalies, as well as known ones. Still, they describe the
problem of separating normal from truly abnormal behaviour
as extremely challenging. Omar et al. [16] are going a step
further and describe the problem of distinguishing between
normal and truly abnormal even as yet unsolved. Further-
more, they find that if the evaluation consists only of known
attacks, supervised methods significantly outperform unsuper-
vised techniques. This is in line with research in other problem
domains that suggests that supervised methods outperform
unsupervised approaches for classification problems in the
majority of the time [18, 19, 20]. Hence, in this paper, we focus
on supervised techniques for classification. While the intrusion
detection research field enjoys great popularity, Sommer and
Paxson [21] have analyzed that there is a wide discrepancy
to the actual use of such systems in practice. This industrial
evaluation aims to help close the gap and evaluate performance
and challenges on a real-world application.

V. CONCLUSION AND FUTURE WORK

Detecting operation anomalies for complex distributed soft-
ware systems is quite a challenging task. The large amount of
data (7.5 · 106 data points), class imbalance of a mere 1.91%
anomalies, and prevalent label noise made it hard to find a
high-performing classifier. Using LSTM networks to classify
sequences, we achieved the highest area under precision-recall
curve of 0.444. However, performance was only good at some
parts of the curve; at a default 50% threshold, we achieved
31.1% precision and 69.5% recall. When classifying single
feature vectors from a sliding time window, larger windows did
correspond to higher performance. For the largest window of
fifteen minutes, the random forest classifier had an area under
PRC of 0.408, which is slightly lower than the LSTM network.
This corresponds to 50.2% precision and 56.5% recall at
default threshold. The naïve Bayes classifier performed worse
with an area under curve of 0.257; we also tested gradient-
boosted trees and multilayer perceptrons, but did not discuss



performance in detail as it was significantly worse due to
labeling noise.

In many applications, unnecessary node restarts are not too
expensive, so low precision might be acceptable. But recall has
to be very high to allow the use in a live system, since unrec-
ognized anomalies can be expensive. As the precision-recall
curves show, further increasing recall by lowering threshold is
very costly to precision and thus not a suitable solution. Hence,
the models we found in our research have to be combined with
other detection mechanisms for a sufficient anomaly detection.

Of course, classification performance can still be improved
in several ways. To better capture the process happening in
a time window, different time window lengths could be used:
Automated feature selection is found to increase prediction
accuracy [22], and can yield more useful features on a feature
set for multiple time window lengths. Additionally, one could
utilize more sophisticated hyperparameter tuning (for example
random search) as well as means to counteract label noise.

Another potential solution could be an interactive environ-
ment for developers (e.g., using a chat-bot), where the ML
system proposes an assessment of the situation that can be
confirmed or corrected by developers. This way, over time
a more precise dataset is built. It is likely that this way,
classification performance would increase steadily up to the
point where completely autonomous error handling is possible
at times when developers are not available, e.g., at night.
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