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Abstract Based on inductive definitions, we develop a tool that automates the definition of
partial recursive functions in higher-order logic (HOL) and provides appropriate proof rules
for reasoning about them. Termination is modeled by an inductive domain predicate which
follows the structure of the recursion. Since a partial induction rule is available immediately,
partial correctness properties can be proved before termination is established. It turns out
that this modularity also facilitates termination arguments for total functions, in particular
for nested recursions.

Our tool is implemented as a definitional package extending Isabelle/HOL. Various ex-
tensions provide convenience to the user: pattern matching, default values, tail recursion,
mutual recursion and currying.
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1 Introduction

Advanced specification mechanisms that introduce definitions in a natural way are essen-
tial for the practical usability of proof assistants. They provide definition facilities that go
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beyond what the underlying logic natively supports. For example, the Isabelle/HOL [39]
system provides packages for defining inductive datatypes [7] or inductive predicates [43].
All these tools are implemented as definitional extensions, which introduce a definition by
reducing it to a simpler form that can be processed by existing means. The original specifica-
tion is then derived from the primitive definition by an automated proof procedure. Since all
reasoning is performed within the theorem prover, definitional extensions are conservative
by construction, and thus offer a maximum of safety. At the same time they are convenient,
as the internal constructions are transparent to the user.

Konrad Slind’s TFL package [44,45] is such a definitional extension that can introduce
total recursive functions using a special well-founded recursion operator. It is implemented
both in HOL4 and Isabelle/HOL. At definition time, the user must prove the termination of
the function, which ensures that the definition does not introduce inconsistencies. However,
many interesting algorithms do not always terminate: search in an infinite search space,
semi-decision procedures or the evaluation of programs are just a few examples.

Our aim is to provide a definitional principle that is not a priori limited to terminating
recursions, but also works on functions which need not terminate on all input values. There
are several known ways of expressing partiality in a logic of total functions (e.g., option
types, underspecification, and using relations; see also [37]), but defining a function from a
set of non-terminating equations is nontrivial, especially when the domain of the function
is not obvious. Thus, modeling such functions often requires artificial manual workarounds,
which can complicate subsequent reasoning.

This paper describes the foundations and mechanics of a definition principle for partial
recursive functions in Isabelle/HOL. From a set of recursive equations, our package defines a
partial function (modeled as an underspecified total function), together with a set describing
the function’s domain. On the domain, the defined function coincides with the specifica-
tion. The provided proof rules allow convenient reasoning about such partial functions, as is
common practice for total functions.

As a pleasant side effect of handling partiality, our approach naturally supports nested
recursive definitions, which have posed technical problems for a long time. Most of these
difficulties disappear entirely in our setting, since the explicit domain cleanly separates par-
tial correctness and termination properties.

This paper is an extended and improved version of an earlier paper [30], with various
simplifications in the presentation, more examples and a discussion of several extensions of
the tool, and its limitations.

1.1 Motivation
1.1.1 Partiality

As an example of a partial recursive function, consider an interpreter for a minimalistic
imperative language. Such an interpreter must be partial, since the interpreted program might
loop and this non-termination cannot be detected. However we would expect to be able to
prove termination for certain classes of programs — for example, the class of all programs
without while loops.

The language is straightforward and we present it directly in Isabelle/HOL notation
below. For simplicity, a shallow embedding is used for expressions, instead of modeling
their syntax. The notation f(x := y) denotes function update, and fun-pow denotes function
exponentiation.



types s var exp
var = nat & p
| Seq com com
val = nat

| If exp com com

env = var = val
| For exp com

exp = env = val

| While exp com
function exec :: com = env = env
where
exec (Assignvexp)e = e(v:=expe)
exec (Seq ci c2) e = exec cy (exec ¢y €)
exec (Ifexp c1 c2) e = if exp e # O then exec ¢ e else exec ¢ e
exec (Forexpc) e = fun-pow (exp e) (exec c) e
exec (While exp c) e = if exp e # 0 then exec (While exp c) (exec c e) else e

Current tools in Isabelle/HOL cannot handle the definition of exec. The attempt leads to an
unsolvable termination proof obligation.

As a workaround, we can always extend a partial function to a total one: If the function
terminates under certain conditions, this check can be added to the function body, returning
a dummy value if the check fails:

fx = (if (guard) then (body) else dummy)

Then f can be defined as a total function. But this is unsatisfactory as a general method
for two reasons: First, the termination guard must be known at definition time. If it turns
out later that this condition was too restrictive, the definition must be changed. Second, the
workaround changes the body of the function. Since the termination guard is alien to the
functional specification, this is inelegant and may cause difficulties when executable code
is to be extracted from the definition at a later stage. Restricting our interpreter to programs
without while loops is certainly inadequate. So we would have to find a condition that covers
all possible terminating programs, which is at least not obvious, and certainly not always
executable.

In contrast, our package allows to define exec as a partial function and later prove its
termination on the values needed.

1.1.2 Nested recursion

Functions with nested recursive calls are notoriously difficult to define and reason about.
The central problem is that the termination proof for such functions requires some reasoning
about partial correctness properties beforehand.

As a classic example, consider the following definition of the constant zero function on
natural numbers:

Zn=(ifn=0thenOelse Z (Z (n — 1)))

For the termination of the outer call, one would usually prove thatn #0 = Z (n — 1) <
n. Since the function always returns zero, this is certainly true, but seems difficult to prove
before the function is “properly” defined. We can identify two problems here:

1. If the system requires the termination proof to be conducted before the function symbol
Z is even introduced in the logic, it is difficult to support nested recursion, since the
termination goal cannot even be stated. Definitional packages like ours do not have



this problem, since definitions are transformed into a non-recursive form and can be
introduced into the logic immediately without proof. The challenge is then to derive the
desired properties afterwards.

2. After stating the termination goal, we need to prove it, and this requires reasoning prin-
ciples for the function. But the main tool, namely functional induction, is usually not
available at that point, since it depends on the termination of the function. We solve this
by making a restricted version of functional induction available from the very beginning.
Using that rule, proofs for partial correctness properties are simple and natural.

1.2 An overview of our method

Starting from the specification of a function f, our package inductively defines its graph G
and its domain dom, following the recursive structure of the definition. Using the definite
description operator, the graph is turned into a total function f, which models the specified
partial function on the domain.

Then the package proves that Gy actually describes a function on domy, i.e. that function
values exist and are unique. Then it automatically derives the original recursion equations
and an induction rule. The rules are constrained by preconditions of the form ¢ € dom, that
is, they describe the function’s behaviour on its domain only. Despite these constraints, they
allow convenient reasoning about the function, even before its termination is established.
To support natural termination proofs, the package provides a special termination rule, in
addition to the domain rules.

The rest of this paper is organized as follows: In §2, we introduce some logical concepts
required by our package. In §3, we describe the automated definition process. In §4, we
discuss how termination proofs are expressed. In §5, we show how our particular method
improves the treatment of nested recursive definitions, which is further illustrated by the
examples in §6. The algorithm for extracting recursive calls, which was omitted from §3
for brevity, is described in §7. In §§8—10, we discuss extensions to the core system, the
limitations of the approach, and related work.

2 Logical Preliminaries

We work in classical higher-order logic. Derivations are expressed in the natural deduction
framework Isabelle/Pure, using universal quantification /\ and implication =—>. To make
theorems more readable, we sometimes present them in inference rule notation using hori-
zontal lines. Outermost universal quantifiers are often omitted.

In recent versions of Isabelle/HOL, the set type « set is just a synonym for oo = bool.
We often prefer set notation x € A over the synonymous predicate notation A x. We write ]
for the empty list and # for the cons operator. The function set :: « list = « set forms the
set of the elements of a list.

We will frequently use the notion of context. For us, a context is a set of variables and as-
sumptions that are present locally, and captures how structured statements are decomposed.
For example, the proposition Aa b c. P = Q = R can be seen as a context ' = Aa b c.
P; Q and a conclusion R. Conversely, we write I" => R for the above proposition. By abuse
of notation, I" may bind variables in R.



For some of our examples we will use the declarative Isar proof language [49] to present
proofs. Since Isar was designed to be human-readable, we hope that readers unfamiliar with
it are nevertheless able to read the proofs and follow their structure.

To define inductive relations, we build on the existing inductive package [43] from Is-
abelle/HOL, which introduces inductive sets or predicates as least fixed-points by means of
the Knaster-Tarski fixed-point theorem. Given some introduction rules for a set (or predi-
cate) S, the package defines the set and returns the introduction rules as theorems. It also
generates an induction rule expressing that S is in fact the smallest such set.

3 The Process of Definition

In this section, we describe the definitional core of the package. In this presentation, we
ignore extra features like pattern matching, currying and mutual recursion and restrict our
attention to the essential ingredients. We will discuss these extensions in §8.

We start with the recursive specification of the function, which is given by the user as a
fixed point equation of some functional F'.

fe=Ffx

3.1 Recursive calls in a higher-order setting

First of all, we need to analyze the definition and extract the recursive calls.

A recursive call can be written [I” ~ r], where r is the argument of the call, and I"is a
context that specifies when the call occurs. In general, I" can contain both bound variables
and assumptions.

For example, the definition

fn=(ifn=0thenOelsef (n — 1))

has a recursive call [n # 0~ n — 1].
If we have higher-order recursion, the case becomes more complicated. Consider a
datatype of n-ary trees:

datatype « tree = Node o (« tree list)
We can define a function mirror :: o tree = o tree as follows:
mirror (Node a ts) = Node a (map mirror (rev ts))

Here, mirror is passed as an argument to map, so we do not see immediately what the
argument of the recursive call is. The answer is that the call can be described by [Ax. xEser
(rev ts) ~ x]. This means that calls may occur at any element of the list rev ts. Of course,
some knowledge about map is required to come up with this description of the recursive
call.

For the extraction of recursive calls, we use a procedure due to Slind [44,45], which can
be configured by congruence rules and deals with certain forms of higher-order recursion.
However, the details of the extraction process are not relevant for the understanding of our
definitional principles, so we defer the description of the algorithm to §7. For the moment,
we care only about the property that the recursive calls must satisfy:



Definition 1 (Congruence Condition) For a functional F and the recursive calls [} ~
ril, ..., [Tk ~ 1], the congruence condition is the implication

(M=fri=fn=—..=Tr=frr=f"r)=—=Ffx=Ff'x.

Intuitively, this condition states that it is enough to know how a function f behaves at the
recursive calls in order to compute F fx. The value of f on any other input does not influence
the result. So we assume for now that we have a procedure to extract calls from the recursive
equation.

Note however that the congruence condition is always trivially satisfied by the single
recursive call [Ax. ~ x], where it degenerates into the vacuous

(ANx.fx=f'x)=Ffx=Ff'x.

We could actually define any function from this, but it would be of little use: As we will see,
the set of recursive calls also determines the definition of the domain of the function. In this
case, the domain would always be empty.

3.2 Defining the graph, the function, and the domain

We transform the functional specification into an inductive definition of a relation G ¢, which
represents the graph of the function. Suppose we have extracted the recursive calls [I'1 ~
r1], ..., [I'y ~ ri]. The relation G is then defined inductively by the following rule:

M = e eap @ = o e e ap)

(GI)
(x, Fhx) € Gy

In '[P/ etc., the function variable h is substituted for the function symbol f.

Intuitively, we add the pair (x, F h x) to G for a fresh function variable /. The premises
state that & coincides with G on all recursive calls. Note that x and / are universally quan-
tified at the level of the rule.

Compared with a naive relational description, which would invent a new variable for the
result of each recursive call', we use a single function variable /, which is constrained to the
graph on all recursive calls.

After introducing G using the package for inductive definitions, we can define the
function f itself, using HOL’s definite description operator:>

f=(x.THEY. (x,y) € Gy)

Hence the function is defined to take the value given by the graph, whenever that value exists
and is unique. Otherwise the value of f is unspecified, in the sense that we cannot derive
anything about it. In other words, f is total in the usual sense, but possibly underspecified.

The function is now defined, but it is not yet usable. We need to prove that it actually
satisfies the specification. An important reasoning tool will be the domain of the function. It
is defined inductively, too:

! Inventing separate variables for the recursive calls would require additional bookkeeping and lead to
problems with higher-order recursion.

2 The description operator THE belongs to the axiomatic basis of HOL and is axiomatized as
(THE x. x = a) = a. It is basically the ¢ operator used by Andrews [1].



I'y = r1 € domy I'y, = ry, € domy

(dom ¢-intro)
x € domy f
This definition is structurally similar to the definition of G, but it is simpler, since it only
talks about the function arguments, not the values. Also note that the function variable &
is not used here, since f is already defined at this point. (Recall that in the case of nested
recursion, some of the recursive calls may mention f.)

3.3 The relation is a function

We must now show that the relation Gy really describes a function on dom ¢, which gives an
a posteriori justification of our use of the description operator:

x €domy = 3y. (x,y) € Gy

The proof of this property is performed automatically by our package for each definition.
The following proof sketch illustrates the structure of the derivation:

The proof is by induction on dom . For some fixed x € dom ¢, we can assume that the
property holds on all recursive calls. Splitting into existence and uniqueness, and using the
fact that the unique value is denoted by f, we get for each recursive call [I7; ~ r;]:

I'y = (ri,fri) € Gy (ihyp-ex;)
Ne I'i = (ri,2) € Gy = z=fr; (ihyp-un;)

Now, the ihyp-ex; are exactly the premises of the introduction rule for G. Hence we get the
existence part (x, F fx) € G.

For the uniqueness part, we must show that this is the only possible value of the function.
Assume another y with (x, y) € G. By inversion on G it follows that y = F h x for some £,
and that & follows G on the recursive calls. Hence I'; = h r; = f r; for each recursive call.
It remains to apply the congruence property and conclude that F fx = F h x, which proves
uniqueness.

3.4 Deriving simplification and induction rules

Having established that function values exist and are unique on the domain, we prove the
original recursion equation and an induction rule. The equation is just as given in the original
specification, but guarded by a domain condition:

x€domy = fx=Ffx

Deriving the recursion equation is now simple: From uniqueness it follows that (x, y) € G
implies f x = y, and we have already proved the required relation in the existence part of
the previous proof. It can be reused after lifting it out of the induction context, which is
technical but straightforward.

The partial induction rule follows the structure of the recursion: In each case, the prop-
erty may be assumed on the arguments of the recursive calls, but the final inductive result is
restricted to dom

/\x.xedgmf-:>(F1:>Pr1):>...:>(Fk.:>Prk):>Px

induct
acdomy = Pa » 7



This rule is very similar to the induction principle that comes with dom ¢, which looks
like this:

/\x. (I't = r1 €domy) = (I't = Pr1) = ...
= (I'y =1, €domy) = (', = Pry) = Px

(dom s-induct)
a€domy = Pa

The first rule is easily derived from the second, but it is better suited for automation,
since the premise x € dom is useful to unfold a call fx, which would normally occur in an
actual induction.

The induction rule typically does not mention the function f. In a concrete induction,
the function usually occurs in the instantiation of P. However, when the recursion is nested,
then the function already appears in the induction rule, in some of the I'; or r;.

With the proof of the partial simplification and induction rules, the actual definition
process is finished: The rules provide adequate means for reasoning about the function. The
rest of the construction is considered internal, and users need not know about it.

3.5 Simple Examples

The following simple examples illustrate the behaviour of the package. For each function,
we give the extracted recursive calls, the definitions of the graph and the domain, and the
generated simplification and induction rules.

3.5.1 The Fibonacci function

Recursive equation:
fibn=(ifn<Ithennelsefib(n—1)+fib(n—2))
Extracted calls:
[n<I~n—-1,[-n<l~n-2]
Graph:
“n<l=(n—1h(n—1))€Gg "n<l=(n—2,h(n-2))€Gg

(n,ifn <Ithennelseh (n—1)+h(n—2)) € Gg

Domain:

—n< 1= n—1¢domg, —n< 1= n-—2¢domg,

ne dOI’Hﬁb
Simplification and induction rules:

n € domg, = fibn = (if n < I then nelse fib (n — 1) + fib (n — 2))

/\n.nedomﬁb=>(ﬂn§I:>P(n—1))2(—|n§12P(n—2))=>Pn

a € domg, = Pa



3.5.2 Nested zero

We now define the nested zero function from §1.1.2. Observe that the nested recursion does
not make our definitions circular. The definition of domy below may refer to Z, which is
already defined.
Recursive equation:

Zn=(fn=0thenOelse Z (Z (n — 1)))
Extracted calls:

mM#£O0~n—1,[n#£0~Z(n—1)

Graph:

n# 0= mn—-1,h(n—1)) € Gy n#0= (h(n—1),h(h(n—1))) € Gy

(n,ifn=0thenOelse h (h (n— 1))) € Gy

Domain:
n#0=-n—1¢€domy n#0=Z7Z(n—1)¢cdomy

n € domy
Simplification and induction rules:
ne€domy=—Zn=(ifn=0thenOelse Z (Z (n — 1)))

J\n-ne€domz= n#0=P(n—1)= (n#£0=>P(Z(n—1))) = Pn
a € domy = Pa

3.5.3 The partial function findzero

The function findzero (f, n) returns the smallest value n’ > n such that fn’ = 0. If no such
value exists, the function diverges.

Recursive equation:
findzero (f, n) = (if fn = 0 then n else findzero (f, Suc n))
Extracted calls:
[fn# 0~ (f, Suc n))
Graph:
fn#0= ((f, Suc n), h (f, Suc n)) € Gy,
((f,n),if fn=0Othennelse h (f, Suc n)) € Gy,

Domain:
fn#0= (f, Suc n) € domy,
(f, n) € domg,
Simplification and induction rules:
(f, n) € domg, = findzero (f, n) = (if fn = 0 then n else findzero (f, Suc n))

/\fn. (f, n) edomfZ:>(fn#0:>P(f,Sucn))2>P(f,n)
', n") EdomfZ:>P(f',n')

Using the partial induction rule, it is now straightforward to prove properties about the func-
tion, e.g., (f, n) € domy, = Vxe{n..<findzero (f,n)}. fx # 0.
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3.5.4 The function that is always undefined

The package even lets us define the function that never terminates. However, the results are
not very interesting:

Recursive equation:
Ux=Ux+1

Extracted calls:
[~

Graph:

(x, hx) € Gy
(x,hx+1)e Gy

Domain:

n € domy;
n € domy;

Simplification and induction rules:

xedomy=Ux=Ux+1

/\x.xedomU:>Px:>Px

ac€domy=Pa

Both the graph and the domain are just the empty set (which can easily be proved by induc-
tion), and hence the simplification and induction rules are just instances of ex falso quodlibet.

4 Termination Proofs

All results obtained from the partial simplification and induction rules will contain termina-
tion assumptions of the form ¢ € domy. It is desirable to know more about dom y, which is
the objective of a termination proof. Often, our goal will be to show that a function is total,
that is, Vx. x € dom . For partial functions, we usually want to prove S C domy for some
interesting subset S.

While the definition process we saw above is fully automated and works for any function
definition, we cannot expect such complete automation for termination proofs. However,
there is a lot of research in automated termination proofs, and powerful methods exist, e.g.,
[2,33,48].

Our primary goal is to provide a clear and simple interface for integrating automated
tools without requiring a deep knowledge of the inner workings of the function package.
Moreover, since automated tools can always fail, we also need to provide a simple interface
to the user, who may need to perform the termination proof interactively.



4.1 Elementary proofs, using the definition of the domain

The definition of the domain that we gave in the previous section is already a very natural
description of the termination behaviour of the function. It is not hard to do a termination
proof with just the domain introduction rule and a suitable induction principle.

For example, we can show Vn. n € a’omﬁb by course-of-values induction: Under the
assumption = n < I, we know that both n — I and n — 2 are strictly less than n. Thus by
induction hypothesis we get - n < 1 =>n — 1 € domg, and ~n < 1 = n — 2 € domg,.
By the introduction rule for the domain (cf. §3.5) we conclude n € domﬁb.

4.2 Termination proofs using relations

Instead of doing a manual induction, the standard technique for proving that a function is
total is to provide a well-founded relation R and show that all recursive calls are decreasing
w.r.t. R. Although our definition principle does not require user-specified relations, we can
still support them as a way to prove termination. This is accomplished by the following rule,
provided by our package for fib:

wfR /\n.ﬁn§]:>(n—],n)€R /\n.ﬁn§]:>(n—2,n)€R
Vx. x € domgy,

With this rule, a termination proof can be done by giving a well-founded relation and
a proof that every recursive call is decreasing. Of course, this is just what is going on in
the induction proof above, but here the induction is implicit in the relation R. This makes
it easier to automate the proof, as the decrease conditions are often inequalities that are
relatively easy to show once a suitable relation is found.

Here is the general form of this rule, which we call the termination rule:

wfR /\x.F1:>(r17x)ER /\x.Fk:>(rk7x)€R
Vx. x € domy

The proof of the termination rule is just a well-founded induction over R. The termina-
tion rule is proved automatically for each function definition.

4.3 Simplification and induction rules revisited

When we have proved that the function is total, the domain conditions in the simplification
and induction rules become obsolete. It is now easy to project them away, and we obtain
what we call the total simplification rule and the fotal induction rule. These rules are then
the primary tools for reasoning about the function.

For partial functions, we can replace the abstract domain domy by a concrete set D C
domy. Note that in order to replace domy in the premises of the induction rule, we must
also show that D is downward closed under R, since the induction principle is only valid
if calls on elements of D only recurse on elements of D. For example, we cannot use the
set of even numbers in our Fibonacci example. Although the function does terminate on all
even numbers, the modified induction principle would be invalid. In practice, proving this
downward closure property is often simple.
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4.4 Integration of automated tools

Since proving termination of a function is just like proving a lemma, there is a clear interface
for integrating automated termination provers. What we require is just a tactic that is able to
solve goals of a certain form. This form is given in the premises of the termination rule. In
separate work [17,31], we have shown that it is possible to implement nontrivial termination
provers in this way. There is ongoing work on integrating more termination proof techniques.

5 Nested Recursion

Nested recursive definitions have recursive calls that depend on the results of other recursive
calls. Thus, we usually need to prove some property about the behaviour of the function
before we can establish its termination. Here we are facing an apparent circularity, since the
induction rule that we would like to use depends on termination.

Slind’s recursion package TFL [44] provides a “provisional induction rule” [46] to solve
nested termination goals. This rule is basically a modified functional induction rule, where
the unsolved termination conditions become part of the function body. With TFL’s second
definition principle, relationless definition, this becomes even more difficult. The provisional
induction rule can help with termination proofs, but this is often quite inelegant due to the
structure of the rule. Slind already observes these shortcomings [46]:

We regard our results on relationless definition of nested recursion as only partly
satisfactory. The specified recursion equations and induction theorems are auto-
matically derived, which is good; however, the termination proof using the provi-
sional induction theorem and recursion equations for the auxiliary function is usu-
ally clumsy and hard to explain.

As an alternative approach, Krsti¢ and Matthews [32] proposed the notion of inductive
invariants to describe properties of a function f in terms of an input-output relation, without
the need to explicitly mention f. They show how such an inductive invariant can be used to
prove f’s termination.

But this comes at a high cost, since establishing an inductive invariant is comparatively
hard: The proof of an inductive invariant corresponds to a well-founded induction, and to
be able to apply the induction hypothesis, we must show that the arguments in the inner
recursive calls are decreasing. This means that we must anticipate parts of the termination
proof to establish the inductive invariant.

Instead, we would like to be able to use functional induction, which is generally sim-
pler®. Giesl [22] shows that this approach is sound: We may prove lemmas by functional
induction and then use them (in a certain way) in the termination proof of the same func-
tion. The argument is that anything proved by functional induction is “partially true”, i.e., it
holds for all values for which the function terminates. Then, a close look reveals that at the

3 To compare well-founded induction with functional induction, it is an interesting exercise to add even
more nesting to the nested-zero example by changing the second equation to Z (n + 1) = Z (Z (Z (Z n))),
and then try to prove the lemma V n. Z n = 0 once by nat-induction, where the property can be assumed on
smaller arguments and once by functional induction, where the property can be assumed on the arguments of
all recursive calls.
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positions where the lemmas are needed, we know that this condition holds, since the inner
recursive calls are proved first. But since Giesl’s informal proofs include statements like “P
holds for all x where f terminates”, it was previously not clear how to formalize them in a
logic like HOL, where “termination” has no direct correspondence.

Fortunately, our framework provides adequate tools to express such notions, since ter-
mination is modeled by membership in the domain. Given the nested zero function Z from
§1.1.2, we can state and prove that Z returns zero whenever it terminates:

lemma Z-zero: x € domy —Zx =0
by (induct rule: pinduct) auto

The proof is just as simple as if we already knew that the function is total: Induction and
simplification, but using the partial induction and simplification rules. Then termination of
Z is equally simple, using induction and the domain introduction rules, making use of the
lemma to show termination of the outer recursive call:

lemma Z-terminates: x € domy,
proof (induct x rule: less-induct)
fix x assume IH: A\y.y < x =y € domy,
show x € domy,
proof cases
assume x = 0 thus x € domy by (auto intro: dom z-intro)
next
assume x # (0
with TH have (x — 1) € domy by auto
hence Z (x — 1) = 0 by (rule Z-zero)
hence Z (x — 1) € domy by (auto intro: dom z-intro)
from ((x — 1) € domy and Z (x — 1) € domy)
show x € domy by (auto intro: domz-intro)
qed
qed

This shows that our approach separates the partial correctness proof (Z returns zero if it
terminates) and the termination proof (Z terminates), which makes reasoning very natural.
In §6, we give more examples of nested recursions.

5.1 A termination rule for nested recursion

In order to formally justify the informal reasoning skeched in the beginning of this section,
we have another look at the termination rule from §4.2. For the nested-zero function Z, the
following rule would be generated:

wfR /\n.n;é0:>(n71,n)€R /\n.n;é0:>(Z(n71),n)€R
Vx.x € domg

Now the second termination condition involves the function Z, which requires the lemma
X € domy = Z x = 0 to prove that the outer call is decreasing. But with this rule this is
impossible, since we cannot assume termination of the inner call. In the previous induction

proof, this was solved simply by treating the inner call first.
The following variant, which we call the nested termination rule solves the problem:
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wfR /\n.n;é0:>(n—1,n)€R /\n.n;é0:>n—]edomZ:>(Z(n—I),n)ER

Vx.x € domy

The new assumption, marked with grey background, states that the inner call terminates,
when proving that the outer call is decreasing. This is just enough to apply the lemma and
conclude the proof, since we are just left with the trivial goal n # 0 = 0 < n.

5.2 Proving the nested termination rule

The system proves the nested termination rule automatically by well-founded induction on
the relation R. In the body of the induction we need to prove x € dom ; under the assumption
Az. (z, x) € R = z € domy. Using the introduction rule for dom, it is sufficient to show
I'; = r; € domy for each recursive call. Now we proceed from the innermost call to the
outer calls. By assumption, the innermost call satisfies I’y = (r1, x) € R and thus ']y =
r1 € domy holds by induction hypothesis. This fact is used to strengthen the assumptions
for the outer recursive calls, which are then treated in the same way. The outermost calls
come last, and for them we can assume termination of all inner calls.

6 Further Examples and Case Studies

In this section, we present some more examples that demonstrate how the partial induction
rule simplifies reasoning about nested recursive and partial functions.

6.1 Nested list reversal

The following function defines list reversal in an uncommon way that does not need any
auxiliary function or additional parameter. It was given to the author as a challenge problem
by Konrad Slind, and it is probably more of a puzzle than a sensible implementation.

Rev [] (
Rev (x #xs) = caseRevxsof [|= [x]|y# ys=y# Rev (x # Rev ys)

In fact, proving that Rev is equivalent to Isabelle’s built-in function rev is just a straight-
forward functional induction. But the nesting made this function hard to define and reason
about with previous tools. Using the partial induction rule, we can jump forward and prove
that Rev is equal to rev on its domain:

lemma Rev-eq-rev[simp|: xs € domg,, => Rev xs = rev xs
by (induct xs rule: pinductg,,) (auto split: list.splits)

This is so easy because the induction rule is tailored to the recursive structure of the
function. Now, using this lemma, termination is not hard to prove, since much about rev is
already known (in particular, length (rev xs) = length xs). The termination order is found
automatically by Isabelle’s termination prover [17].



6.2 McCarthy’s 91 function

The ninety-one function is a well-known challenge problem due to John McCarthy:
f91n=(if 100 < nthenn — 10 else 91 (91 (n+ 11)))

The termination argument relies on the following lemma:

lemma f91-estimate:
n € dompy; = n <91 n+11
by (induct rule: pinducty; ) auto

Now we can proceed with a manual termination proof, which we give in Isar notation. Note
how the assumption n + 11 € domyy; is used for the outer call to discharge the hypothesis
of the lemma:

lemma f91-terminates: Vx. x € domgy;,

proof (rule f91.termination)
let 7R = measure (Ax. 101 — x) — The termination relation used
show wf 7R ..

fix n :: nat assume — 100 < n — Assumptions for both calls
thus (n + 11, n) € 7R by simp — Inner call

assume inner-trm: (n + 11) € domg; — Outer call

with f91-estimate haven + 11 < f91 (n + 11) 4+ 11.

with (= 100 < n) show (f91 (n + 11), n) € ?R by simp
qed

6.3 First order unification

A standard example of nested recursion is a unification algorithm on a simple first-order
term language. This example was already presented by Slind [46], who in turn adapted it
from Manna and Waldinger [34]. There are many other formalizations of unification (e.g.,
[42,9,36]), and we do not want to go into the details of this specific development, but merely
show that our package makes reasoning about the unification function more direct than be-
fore, which leads to natural and straightforward proofs. The following description is focused
on this aspect, but the interested reader can find the complete theory in the Isabelle 2009 dis-
tribution.

In our formalization, terms can be variables, constants and applications of one term to
another:

datatype « trm =
Var o
| Const o
| App (o trm) (o trm)  (infix - 60)

Substitutions are modeled as association lists mapping variables to terms. The (parallel)
application of a substitution o to a term ¢ is written o > ¢, and we omit its straightforward
definition. Composition of substitutions is written o2 o o1.

The unification function has the following definition:



unify (Const ¢)(M-N) = None
N) (Constc) = None

unify (M
unify (Const ¢) (Var v) = Some [(v, Const ¢)|
unify (M - N) (Varv) = if occ-check (Var v) (M - N) then None

else Some [(v, M - N)]

unify (Varv) M if occ-check (Var v) M then None else Some [(v, M)

unify (Const c) (Const d) = if ¢ = d then Some [] else None
unify (M - N) (M’ - N") = case unify M M’ of None = None
| Some ¥ =

case unify (9 > N) (9 > N') of None = None
| Some o = Some (o o V)
occ-check u (Varv) = False

occ-check u (Const ¢) = False
occ-checku (M -N) = (u=MV u=NV occ-checku M V occ-check u N)

Note that the nesting of the recursion is not directly of the form unify (... unify(...) ...).
Instead the calls are connected via their contexts: The assumption unify M M’ = Some
occurs in the context of the second call.

To demonstrate how the partial induction rule simplifies reasoning, we prove partial
correctness of the unification algorithm first (we omit the definition of MGU):

(M, N) € domy;s, unify M N = Some o
MGU o MN

The proof is by induction using the partial induction rule pinduct,;;s,. Figure 1 shows the
full proof.

In order to prove termination of the function, we need to establish two properties which
have to do with occurrences of variables. First, substitutions produced by unify never intro-
duce new variables (we omit the trivial definition of vars-of):

(M, N) € domys; unify M N = Some o
vars-of (o >t) Cvars-of M U vars-of N U vars-of t

Second, if unify returns a substitution o, then o is either the identity substitution or it elimi-
nates a variable, which means that for any term ¢, o > ¢ no longer contains the variable:

(M, N) € domys; unify M N = Some o
(vevars-of M U vars-of N.Yt. v & vars-of (o>1)) Vo =s ]|

These lemmas are again proved by partial induction, where the recursive case is the inter-
esting one. Again, the partiality has no influence on the structure of the induction proof.

The termination proof then merely puts these results together, using the lexicographic
combination of the measures A\(M, N). card (vars-of M U vars-of N) and A\(M, N). size M,
where card denotes the cardinality of a finite set. We then get total correctness as a corollary,
since we now know that (M, N) € dom,,,;, always holds.

6.4 Depth-first search

Berghofer and Reiter [6] formalized various constructions on finite automata. Their theories
use an abstract specification of depth-first search in directed graphs, which is developed in



lemma unify-partial-correctness:
(M,N) € domy;5, = unify M N = Some ¢ = MGU 0 M N

proof (induct M N arbitrary: o rule: pinductum-fy)

case (7 M N M’N’ o) — The interesting case follows; the other cases are fully automatic (see last line)

then obtain 91 92
where unify M M’ = Some 91 and unify (41 > N) (91 > N’) = Some 92
and [simp]: 0 = 92 o0 91
and MGU-inner: MGU 91 M M’
and MGU-outer: MGU 92 (91 > N) (91 > N”)
by (auto split: option.split-asm)

show MGU o (M - N) (M’ N’)
proof — We have a unifier:
from MGU-inner and MGU-outer
have 91 >M =91 >M’'and 92> 91 >N =92> 91 >N’
by (auto simp: MGU-def Unifier-def)
thus o >M - N = o >M’- N’by simp
next — The unifier is most general:
fix o’assume c'>M-N=0o'>M’- N’
hence 0’'>M =o/'t>M’and Ns: 0'> N = o’ > N/ by auto

with MGU-inner obtain § where eqv: o’ =5 § 0 91
by (auto simp: MGU-def Unifier-def)

from Ns have 6 > 91 >N =¢> 91 >N’
by (simp add: eqv-dest[OF eqv])

with MGU-outer obtain o where eqv2: 6 =5 g 0 92
by (auto simp: MGU-def Unifier-def)

have o' =; po o
by (rule eqv-intro, auto simp: eqv-dest|OF eqv] eqv-dest[OF eqv2])
thus 3v.0'=s~voo0..
qed
qed (auto split: split-if-asm) — Solve the remaining cases automatically

Fig. 1 Partial correctness of unify

an axiomatic context (using Isabelle’s locale mechanism [3]), such that it can later be in-
stantiated to different representations of the graph that is searched and the data structure that
collects the results. The depth-first search function is loosely based on a previous formaliza-
tion by Nishihara and Minamide [40]. A similar formalization in HOL4 is given by Owens
and Slind [41].

The graph is modelled abstractly by a type node and the functions

succs :: node = node list (successor nodes)
is-node :: node = bool (wellformedness predicate)

Not every value of type node is necessarily a node in the graph, and the predicate is-node
models the set of valid nodes, which must be finite. For a valid node, the function succs
returns the list of successors.

During the traversal, nodes are collected in a data structure of another abstract type C,
which behaves like a set of nodes:



is-node x = is-node y =—> invariant S =—> ~memby S
= memb x (insy S) = (x =y V memb x S)

is-node x =—> — memb x empt

is-node x == Y y€Eset (succs x). is-node y

invariant empt

is-node x = invariant S => — memb x S = invariant (ins x S)

finite is-node

Fig. 2 Axiomatic context for the depth-first search algorithm

empt = C (empty collection)
ins inode = C=C (insert operation)
memb  ::node = C = bool (membership test)
invariant :: C = bool (collection invariant)

The axioms that describe these operations are given in Fig. 2. The advantage of working
with an abstract specification of graphs and collections is that the algorithm can be instan-
tiated later with concrete data structures suited for the particular applications, e.g., matrices
and BDDs.

The depth-first search function is defined as follows:

dfs :: C = node list = C

dfsS[]=S
dfs S (x # xs) =
(if memb x S then dfs S xs else dfs (ins x S) (succs x Q xs))

Even though the axiomatization ensures that the graph is finite, dfs is a partial func-
tion, since the behaviour of ins and succs is only specified when the invariants is-node and
invariant are satisfied. Otherwise they may return a value that leads to nontermination of
dfs.

However, termination of dfs S xs can be proved under these invariants, which is ex-
pressed by the theorem invariant S = (¥ x€xs. is-node x) = (S.xs) € domgs;. Moreover,
as we shall see in §8.2, tail-recursion ensures that unconditional equations can be generated.

7 Extraction of Recursive Calls and Congruence Rules

The definition process described in §3 assumed an algorithm to extract the recursive calls
from the right-hand side of an equation. In this section, we describe the extraction process,
which takes a term and produces a set of recursive calls [I'] ~ r1], ..., [["y ~ 1] such that
the associated congruence condition is provable.

For the first-order case, such an extraction was already given by Boyer and Moore [15],
but, as we have seen, higher-order recursion produces some difficulties, which were solved
by Slind [45], who invented a generic extraction procedure that is parameterized by congru-
ence rules. Our extraction is essentially the same, and our main motivation for presenting it
here is to make this paper more self-contained.

Note that the extraction of calls critically influences the definition of the domain of the
function and hence the termination proof obligations and the induction principle that the def-
inition produces. Hence it is sometimes important for users to develop a basic understanding
of this process.



Xs=ys /\x‘x€setys:>fx:gx M=N /\x-x:N:'fngx
(map-cong) . (let-cong)
map fxs = map g ys LetMf=1LetNg
A=B Nxxe€B=Px=0x p=pP" P=90=0"
(Ball-cong) PAO = (P AO (conj-cong)
(Vx€A. Px) = (Vx€B. Qx) PAQ)=( Q)
f=g x:y( ) /\x.fx:gx p )
———  (app-con, ——————— (lam-con,
fx=gy ppecons (Ax. fx) = (Ax. g x) 8

x=y y=0=—a=5»b /\n.y:Sucn:>fn:gn

nat-case-con,
(casex of 0 = a | Sucn = fn) = (casey of 0 = b | Sucn = gn) ¢ 8)

Fig. 3 Congruence rules for commonly used constants

7.1 Congruence rules

Congruence rules are used in contextual rewriting to accumulate context from the structure
of the term. For example, when rewriting the then-part of an if-then-else expression, we may
use the condition as a local assumption. In the else part, we may assume its negation.

This knowledge, which exploits a property of if, is not hard-coded in the rewriter, but
expressed by a congruence rule:

/ / / / /
c=c c —=t=t CcC —e=¢e

(if ¢ then ¢ else e) = (if ¢’ then ¢’ else e”) ({f-cong)

Due to its characteristic form, the congruence rule can be interpreted as a recipe for
rewriting an expression of the form if ¢ then ¢ else e: First, rewrite the condition to some ¢’
then rewrite the then and else part, under the assumption ¢’ or = ¢’, respectively.

Similar congruence rules exist for control structures like if, case or let, for higher-order
combinators like map and filter, and also for bounded quantifiers like V -€-. The congruence
rules tell the contextual rewriter how to extend the context when traversing the term. Figure
3 shows congruence rules for other commonly used constructs. It is worth noting that some
of the rules not only introduce new assumptions in the context but also bind new variables.
For example, the rule for map introduces a variable x, which is constrained to be an element
of the list.

7.2 Extracting calls

The extraction can now be described as a recursive algorithm that traverses a term ¢ and
incrementally builds a context I, starting from the empty context:

1. If ¢ does not contain f, then there are no more calls and we can stop.

2. If ¢ has the form f r, then we have the recursive call [I" ~ r] where I" is the current
context. We continue with the extraction on subterm r, in the same context.

3. Otherwise, we try the congruence rules in order, until the left-hand side of the conclusion
of one rule matches . Then, for each premise Axs. As => C = C' of the instantiated
congruence rule, extend the current context with the bound variables xs and assumptions
As, and continue the extraction on C. The instantiated congruence rule is stored, as it is
needed in later proofs.
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The last two congruence rules that are tried are always app-cong and lam-cong. This en-
sures that the last case always works: Any application is just split into two parts by app-cong,
and if a term still contains f, but is not an application, then we can apply lam-cong, possibly
after eta-expansion.

The extraction algorithm can be seen as a process of contextual rewriting to prove the
congruence condition. Congruence rules are used to build up the right context for the recur-
sive calls.

Example 1 We consider the function mirror given in §3. The extraction process is illustrated
by a tree. Each node consists of a context and a term, written I" |- ¢. At the root we have the
complete right-hand side of the equation and the empty context. Then the term is split into
components via congruence rules:

F Node (map mirror (rev xs))

F Node F map mirror (rev xs)
map-cong

F rev xs ’ N\t. t€set (rev xs) b mirror t ‘

{

\t. teset (rev xs) F t

Since there is no special congruence rule for the Node constructor, the app-cong rule is
applied, and it simply splits the application in two parts. The Node constructor on the left-
hand side is uninteresting, since there is no recursive call here. On the right hand side, we
have map mirror (rev xs), which now matches the map-cong rule. Following the structure
of that rule, we get two branches, one for rev xs, which is again uninteresting, and one for
mirror t, which now appears in a context extended by a new variable ¢ and an assumption ¢t €
set (rev xs). At this point, we have found a recursive call, since mirror is now fully applied.
We continue this search on the subterm #, where it immediately terminates, since there are
no more occurrences of mirror.

If the rule map-cong were not present, we would still get a tree, but it would instead look
like this:
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F Node (map mirror (rev xs))

~ Node F map mirror (rev xs)
F map mirror F rev xs
F map F mirror

lam-cong

Nt. b mirror t

Nt Ft

Now the extracted recursive call would be [Ax. ~~ x], which is not helpful, as we have seen.

This example demonstrates that the extraction mechanism depends on the configuration
via congruence rules, which encode instructions for dealing with higher-order constructs.
This has the advantage that it makes the package very flexible. The disadvantage however
is that users sometimes need to know how the extraction works, in order to feed it the right
congruence rules.

The result of the extraction process is a set of calls [I'1 ~ r1], ..., [['k ~ rg]. This set is
used in the definition process as we have seen in §3. In particular it determines the definition
of the graph and the domain and, as a consequence, the form of the induction rule and the
termination proof obligations.

The way the calls are constructed guarantees that the congruence condition given in §3
is provable automatically. The straightforward proof simply follows the tree structure above.

7.3 Congruence rules and evaluation order

Higher-order logic differs from functional programming languages in that it has no built-in
notion of evaluation order. A program is just a set of equations, and it is not specified how
they must be evaluated. However, when reasoning about termination of recursive functions,
an implicit notion of evaluation order sneaks in. The evaluation order is specified by the
congruence rules we are using. For example, consider the following simple recursion on
natural numbers:

fa=m=0Vf(n—-1)

Whether this is a total function or not depends on how we interpret V. We could use the
semantics known from ML, where orelse and andalso are strict in the left argument but
non-strict in the right one. Then the function terminates because n # 0 implies n — 1 < n.
However, if the disjunction is strict in both arguments we get nontermination. (Recall that
on natural numbers, n — I may be equal to n if n is zero.)
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HOL itself does not make this distinction, since there is no explicit notion of undefined-
ness. Instead, the congruence rules that we use to extract the recursive calls will determine
which function we get out. Without any congruence rules, the extraction will regard disjunc-
tion as strict in both arguments, and our function has the empty domain. However, we can
give a congruence rule for disjunction that gives the behaviour known from ML:

P=pP P =0=0
(PVQ)=(P'VQ)
Now the definition of f above gives us the total function we expect. The termination
proof will use the extra condition that we obtained from the congruence rule.

However, as evaluation is not a hard-wired concept, we could just turn everything around
by declaring a different congruence rule:

-Q'=pP=P 0=0'
(PVQ)=(P'vQ)

This would allow us to make the reverse definition:

fn=(fn—-1)vn=0)

This already shows that the congruence rules that we need might depend on the function
we are defining. Note that the meaning of disjunction does not change.

One could argue that disj-cong?2 is unnatural, and that disj-cong should be enabled by
default. Adding this rule will always make the termination proof simpler, since the recursive
calls are restricted by an extra condition. However, as another consequence we get a weaker
induction rule. Consider for example a function that checks if some element in a list satisfies
some (fixed) predicate fest:

(disj-cong)

(disj-cong2)

testany [| = False
testany (x # xs) = (test x \V testany xs)

Obviously, testany terminates just by structural recursion over the list, so disj-cong is
not needed here. If we still add it, the function is not changed, but in the induction rule, the
inductive hypothesis is now guarded by a condition:

P /\xxs. (- test x => P xs) => P (x # xs)
Pa

When we do induction with this rule, we will always have to show — test x before we can
apply the induction hypothesis. So in this case we get a better induction principle by avoiding
the unnecessary congruence rule. Of course, for this example we can just use standard list
induction, but in other situations the custom induction rule might be important.

These examples show that, in general, there is no “best” or “complete” set of congruence
rules. The default setup in Isabelle is rather conservative, relying on the user to manually add
rules when needed. Nonetheless, the basic set of predefined congruence rules often proves
sufficient.

8 Extensions

The core recursion infrastructure described above is already quite powerful. In this section
we describe some useful extensions: default values, tail recursion, pattern matching, mutual
recursion and currying.
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8.1 Default values

Recall that we model partial functions as underspecified total functions. Outside their do-
main, we cannot determine their value. Sometimes this is not desirable, as there may be a
natural completion of the function that better suits the needs of the application.

Here, we note the difference between the algorithm that is specified by the recursive
equations and the function that we define in the logic. While the algorithm cannot return
anything when it does not terminate, the function actually has a value, and we can specify
that value (which we call the default value) at definition time.

The only change that is needed is to replace the description operator THE which we
used to define the function (cf. §3.2) by a variant that takes a default value:

THE-default :: o= (o = bool) = «
THE-default d P = (if 3lx. P x then THE x. P x else d)

Then we can define functions with a user-specified default value d, which may even depend
on x. We can then derive the following theorem:

x & domy=>fx=dx

To motivate the use of default values, consider a function that checks some kind of certifi-
cate:

checker :: cert = bool

The implementation of checker may be a very complicated algorithm, for which we can only
prove partial correctness. Hence we have a theorem

¢ € dom ppcker = checker ¢ = True = P ¢

for some interesting property P.

Now, if we can define checker such that it returns False when given a value that is not in
the domain, then we can remove the domain condition from the theorem above, which can
make subsequent reasoning simpler:

checker ¢ = True — P ¢

Note that default values are just a logical concept and have no operational meaning.
If the function checker is run on something outside its domain, it will still loop instead of
returning False. However, we have a theorem that it is equal to False, logically. Here the
difference between the logical view and the algorithmic view of a function becomes very
apparent.

8.2 Tail recursion

The partial simplification rules generated by the function package are guarded by domain
conditions. If the function does not always terminate, it is usually not possible to remove
them (recall the example U x = U x + 1, which is obviously inconsistent). However, there
is an important special case for which unguarded recursion equations are derivable even for
partial functions. This is the case when the function is tail-recursive, a fact that was first
noticed and exploited by Manolios and Moore [35]. In HOL, tail-recursive functions could
previously be defined by instantiating a while combinator, but that was a tedious manual
process.
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While it would be possible to automate the definition of tail-recursive functions using
a while combinator, it turns out that we can achieve the same effect with the definition
framework presented here, by deriving the unconstrained simplification rules afterwards.
For this we use the default value feature described above, and give the function an arbitrary
default value d that is independent from the input.

Now, the unconstrained recursion equation f x = F f x can be proved as follows: For x
€ domy, we just need to apply the partial simplification rule. Consider the case x ¢ domy.
By tail recursion we know that F fx = f (g x), for some expression g. Now g x cannot be
in domf, since otherwise x would also be in domf. Since both x and g x are not in domf, we
have fx =d =f (g x) = F fx which is our recursive equation.

This reasoning has been automated, and thus we can provide unconstrained recursion
equations for the user, if the function is tail-recursive.

One important motivation for removing the domain conditions even for partial functions
is that Isabelle/HOL’s code generator can only handle unconditional equations. When we are
able to derive them as theorems, then we can use all the existing code generation facilities
[5,27] to convert our Isabelle/HOL specifications to ML or Haskell programs. Note that this
translation only preserves partial correctness, as the resulting code may be nonterminating.

8.3 Pattern matching

So far, our example functions were given by just one equation with a variable as argument.
Often, it is more convenient to write a function in multiple equations using pattern matching.

In functional programming languages, patterns consist only of variables and datatype
constructors, which ensures that they can be compiled into efficient tests. Some languages
also allow simple invertible arithmetic expressions such as n + 2.

We could adopt the same restrictions in a theorem prover, and then compile away the
pattern matching into nested case expressions. After the definition, the pattern matching
equations must be proved from the equation with the case expression, and the induction rule
must be modified to reflect the different cases. Slind goes this way in his thesis [45], where
he describes an algorithm similar to those used in compilers.

However, in an extensible logical framework, the restriction to datatype patterns seems
artificial. Isabelle/HOL contains various extensions that are not plain inductive datatypes,
but behave similarly and suggest some form of pattern matching, e.g., records [38], and
nominal datatypes [47]. Ideally, the function definition package deals with pattern matching
in a general way.

One way to achieve this is by allowing patterns to be arbitrary expressions, and addi-
tionally have conditions attached to them. This radical approach was first suggested by John
Harrison and implemented in HOL Light [28]. It again exploits the non-computational view
of HOL: We are able to define the function and derive the recursive equations, even if we do
not know how to compile the function as a functional program.

8.3.1 Arbitrary expressions as patterns

Up to now, the specification of the function was given by a single fixed-point equation of
the form fx = F f x. With pattern matching, the specification consists of several conditional
equations:
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Cirvsi = f (p1vs1) =r1fvs1

Cn vsn =>f (Pn vSn) = rnfvsn

In each equation, p; is the pattern, r; is the right-hand side, and C; is a condition. The
function f may occur on the right-hand sides as a recursive call, but not in the patterns or
conditions.

If we allow arbitrary expressions as patterns, we must generate proof obligations to
ensure that the pattern matching uniquely defines a function. The proof obligations are as
follows:

Completeness: Every value is matched by at least one pattern.
Compatibility: If a value is matched by two patterns, then the corresponding right hand-
sides are equal in both cases.

Requiring pattern completeness may seem surprising at first, since we usually allow our
functions to be partial. But the completeness property is necessary in order to justify the case
distinction which is built into the induction rule. Incomplete patterns can usually be easily
eliminated by mapping the missing cases to some arbitrary value.

The compatibility condition ensures that the equations do not contradict each other. This
is a slightly weaker requirement than disjointness: We do allow patterns to overlap, but only
if the overlap causes no harm.

Formally, completeness is described by the following elimination rule, which just ex-
presses that any x must have at least one of the given forms:

/\vsl.x:pl vs1 — C1vs1 — P /\vsn.x:pn vsn =—> Cn vsp =— P
P

For each pair of equations ¢ and j, the compatibility condition models the informal descrip-
tion above. If the patterns are non-overlapping, this condition is trivially satisfied:

Avsi vs;'.pivs; =pjvs;' = C;vs; = C; vs; = ri fvs; =rj fvs;’

8.3.2 Matching combinator

We can encode arbitrary pattern matching in a single definition using a special matching
combinator:

MATCH :: (y=boolx ax fB)=F=>a=p

MATCHM d x =
(if Ar. Iv. M v = (True, x, r) then THE r. 3v. M v = (True, x, ) else d)

The argument M is a matching clause which should be of the form Av. (C v, p v, r v), where
C is a condition, p is a pattern and r is the corresponding right-hand side. For example the
equation x <y = f (x, Suc y) = 2 x x + y is expressed by the matching clause \(x, y).
(x <y, (x, Sucy), 2 x x + y). Note how the pattern variables are combined into a tupled
abstraction.

The MATCH combinator takes a value and if the value matches the pattern, the cor-
responding right-hand side is returned. Otherwise, a default value is returned. By nesting
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MATCH expressions, we can describe sequential pattern matching where patterns are tried
in a fixed order.

A matching clause Av. (C v, p v, r v) does not tell us how to effectively compute the
result of the match. However, it captures the logical essence of pattern matching. Since we
are using the definite description operator THE again, the result must be uniquely defined for
the match to succeed. This is always the case when the pattern p is injective, but injectivity is
sometimes too strong a requirement: For example, when modeling a-equated lambda-terms
as a nominal datatype, the lambda constructor is not injective: For example, Lam [a].(Var
a) = Lam [b].(Var b)). Nevertheless it can make sense to do pattern matching on nominal
datatypes, and the function can be applied here in principle. However, the resulting proof
obligations can be tricky to solve as they sometimes require induction. Making (general
recursive) function definitions over nominal datatypes work smoothly in practice is an area
of future work.

8.4 Mutual recursion and currying

Our package implements mutual recursion by first reducing it to simple recursion on a suit-
able sum type. This is a standard trick, which was already described by Boyer and Moore
[16], and adapted to higher-order logic by Slind [45], so we just give a small example: The
functions even and odd with the equations

even 0 = True
even (Sucn) = oddn
odd 0 = Fualse
odd (Suc n) = evenn

are reduced to a single function even-odd :: nat + nat = bool with the equations

even-odd (Inl 0) = True

even-odd (Inl (Sucn)) =  even-odd (Inr n)

even-odd (Inr 0) = False

even-odd (Inr (Sucn)) =  even-odd (Inl n)
Then the individual functions are defined as

evenn =  even-odd (Inln)

oddn = even-odd (Inl n)

and we easily derive the original recursive equations from this.
We must also produce an appropriately modified induction principle. The (total) induc-
tion rule for even and odd involves two induction predicates P and Q:

PO /\n.Qn:>P(Sucn) Q0 /\n.Pan(Sucn)
PanQa

We can handle currying in a similar way: If a function has multiple arguments, we first
define the corresponding uncurried function which takes a tuple. From that function we then
define the curried function and derive the equations.

These transformations can be used as wrappers around the core of the package. They
reduce currying and mutual recursion to simple functions, such that the rest of the definition
infrastructure just needs to handle a single function with one argument.
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9 Limitations

In this section, we briefly discuss some general limitations of our package.

9.1 Higher-order nesting

We have seen how our package gracefully handles higher-order and nested recursion. How-
ever, by combining the two, we can take the difficulty to a new level and make the automa-
tion fail. Here is a simple example — yet another silly way of defining the constant zero
function:

zero n = fun-pow n zero 0

It is easy to see that zero 0 = id 0 = 0 and hence zero n = zero (zero (... (zero 0) ...) =
0. The problem is that we cannot give a useful congruence rule for fun-pow, the function
exponentiation. Intuitively, such a rule should express that in fun-pow n f x, the function f is
called on the values fun-pow i f x for all i < n. But this contains the very same pattern again,
which makes the extraction of recursive calls loop.

This example shows that the extraction of recursive calls using congruence rules is just
an approximation that works well in practice but may also fail.

We can circumvent this problem by expanding the higher-order recursion into a mutual
recursion by adding the recursion equations for fun-pow to the definition of zero:

zero n = zeropow n 0

zeropow 0 x = x
zeropow (Suc n) x = zero (zeropow n x)

Then we no longer need a congruence rule and can proceed in the normal way to prove
termination of the mutual and nested recursion.

9.2 Undefinedness does not propagate

If we expect that the domain domy models the set of values where f terminates, it can be a
little surprising to see that for the function

gx=Ux

the associated domain domyg is the universal set, although g calls U, whose domain is empty.
The reason is that domg arises only from the analysis of the recursion in the definition of g,
and a non-recursive function always terminates in our sense.

It is possible to change the analysis to a more global one, where the domain of g would
also depend on the domain of U. However, recall that we introduced the domain primarily
to simplify partial correctness proofs and not as a faithful model of termination with respect
to some evaluation mechanism. Note that to obtain the latter, we must also settle on a fixed
evaluation order and a fixed set of congruence rules.

It seems that the practical benefit of getting stronger induction and simplification rules
outweighs the somewhat unintuitive property that undefinedness does not propagate.
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9.3 Other forms of recursion

There are other forms of recursive definitions that are not based on well-founded recursion.
One example is corecursion, where the result type of a function is a coinductive datatype,
which can be infinite.

For example, the function

from n = n # from (Suc n)

defines an infinite sequence of numbers. This definition can only work for coinductive lists,
not for normal inductive ones, which are finite by construction.

Well-founded recursion cannot define functions like from, and other tools would be re-
quired to introduce them.

9.4 Code generation for partial functions

A practically relevant limitation of the domain predicate approach is the fact that only un-
conditional equations can be used by Isabelle’s code generator [5,27], which produces func-
tional programs from logical specifications. However, the recursive equations for partial
functions carry the domain conditions, which makes them currently unsuitable for code
generation. A notable exception are the tail-recursive functions, for which unconditional
equations can be generated (§8.2). Although many functions have a natural tail-recursive
definition, this situation is unsatisfactory. We hope to address this issue in future work.

10 Related Work

General recursion in proof assistants. Generating termination conditions and induction
schemes from recursive function definitions was already done by Boyer and Moore in
NQTHM [15], the predecessor of ACL2 [29]. Today, ACL2 still works in essentially the
same way: Functions must be proved total at definition time by giving the appropriate mea-
sure, which can sometimes be inferred by the system. As opposed to a definitional extension,
recursion is built into the system itself and must be trusted. As ACL?2 uses first-order logic,
there is no higher-order recursion. ACL2 also supports the definition of (possibly partial)
tail-recursive functions [35]. Then no termination proof is needed.

Both Isabelle and HOL4 [24] include (different versions of) the definitional recursion
package TFL, a work by Slind [44,45]. TFL supports the definition of total recursive func-
tions by using the specialized fixed-point combinator wfrec and a well-founded relation
given by the user. Proving termination amounts to showing that the relation is well-founded
and recursive calls are decreasing. Optionally, termination arguments can be deferred by
replacing the relation by its specification using a choice operator.

HOL Light [28] provides a similar mechanism, also based on a fixed-point combinator.
Furthermore, by a clever combination with tail recursion, termination proof obligations only
arise from non-tail calls, even if the function as a whole is not tail recursive. The drawback
of this approach is that no induction principles can be generated. There is no general support
for higher-order recursion.

In Coq [8], a package by Barthe, Forest, Pichardie, and Rusu [4] allows definitions in a
manner similar to TFL. However, nested and higher-order recursion are not supported.
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Fartiality and domain predicates. The idea of generating an explicit description of a func-
tion’s domain is by no means new, and appeared already in various previous approaches.

Finn, Fourman, and Longley [21] describe how partial functions can be axiomatized
consistently in a total higher-order logic, by having their equations guarded by domain pred-
icates. The domain predicates are again specified by recursive equations, but (as is justified
semantically), a domain predicate for the domain predicate is not required.

Dubois and Donzeau-Gouge [19] replace the recursive domain with an inductive one,
which makes the approach (in principle) amenable to implementation as a definitional ex-
tension to Coq. However, they did not provide an implementation.

Giesl [23] studies the use of functional induction for partial functions, and shows that it
is applicable and useful. The partial induction rule is similar to the one we are using, and is
proved sound with respect to the semantics of programs. As this employs a modified notion
of truth for formulae, it is not directly applicable to higher-order logic, whose semantics is
fixed. However, Giesl managed to extend existing induction provers with his calculus with
little effort.

Bove and Capretta [10, 12] investigate how general recursion can be treated in construc-
tive type theory, which by default only admits structural recursion. Their approach is also
based on an inductively defined domain predicate which is similar to our dom . However,
then the actual function is defined by structural recursion on that inductive predicate, which
is possible in the dependently typed setting. This approach also underlies the implemen-
tation of Coq’s function package [4]. The disadvantage is that there is no general type of
partial recursive functions, but instead each function has its own private type of the form
o — domy o — 7. Either impredicativity [13] or a coinductive construction [14] can be
used to overcome this. Note that in our simply-typed framework this is not an issue, since
partial functions are just underspecified total functions (of type o — 7).

Another related approach using a recursive domain predicate is given by Cowles, Greve
and Young [18] for ACL2. Although the construction is different, similar ideas are present
here, and a conditional equation and induction rule is proved in the end. Recently, Greve
presented some refinements of the approach, together with an implementation [25].

A different approach for dealing with non-termination is to work in a logic that features
a “native” notion of partiality. One such logic is domain theory, where any computable
function can easily be defined, since general fixed points exist. On the other hand, reasoning
in domain theory comes with a certain overhead, since induction is restricted to admissible
predicates. This leads to additional admissibility and definedness proof obligations that can
make reasoning harder.

Nested recursion. Nested recursion is currently not well-supported in theorem provers.
Slind’s TFL package provides some support using a provisional induction rule [46], but
the resulting proof obligations are clumsy.

The approach sketched by Dubois and Donzeau-Gouge [19] supports a user-specified
post condition that can encode the property required for the termination proof of a nested
recursive definition. Later, Krsti¢ and Matthews [32] suggested a very similar notion they
called inductive invariant. Inductive invariants are given by the user at definition time and
are used to approximate the results of nested recursive calls to make the termination proof
work. However, no convenient reasoning principles are given for them, and one must resort
to general well-founded induction, which is more awkward to use than functional induction.

In our approach, such properties are simply expressed as ordinary lemmas about possi-
bly partial functions, constrained by a domain predicate and provable by the partial induc-
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tion rule. This follows Giesl’s approach [22,23], but it does not require a new notion of truth,
since all constructions happen in standard HOL.

Bove and Capretta [11] can only support nested recursion by defining the domain and the
function simultaneously, which requires extending the underlying theory to support simulta-
neous inductive-recursive definitions as described by Dybjer [20]. In contrast, our classical
setting avoids this issue and works in standard higher-order logic, since the domain is not
required for the function definition but only introduced for the purpose of convenient reason-
ing. However, since we make use of the definite description operator, it is not clear whether
a similar construction could work in constructive type theory, which does not have such an
operator.

In ACL2, nested recursive functions must be transformed by adding extra tests to the
body of the function, before they can be defined. These checks can later be removed when
the function is executed due to a special mechanism [26].

11 Conclusion

We have presented a methodology for recursive function definitions, based on inductive
definitions of the function’s graph and domain. Our treatment of nested recursion facilitates
defining and reasoning about such functions, since the domain predicate allows to express
partial correctness statements naturally, and the partial induction principle is available early.

The implementation of our approach has become the principal tool for defining recursive
functions in Isabelle/HOL since version 2007. Together with the termination provers [17]
that can find termination proofs automatically for most of the function definitions that oc-
cur in practice, our package considerably facilitates defining and reasoning about recursive
functions.
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