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Abstract. In order to make existing formalizations available for set-
theoretic developments, we present an automated translation of theories
from Isabelle/HOL to Isabelle/ZF. This covers all fundamental primi-
tives, particularly type classes. The translation produces LCF-style the-
orems that are checked by Isabelle’s inference kernel. Type checking is
replaced by explicit reasoning about set membership.

1 Introduction

Compared to the type theories underlying most widely-known proof assistants
today, set theory has received less attention in the field of interactive theorem
proving. This is unfortunate, since set theory is arguably the formalism that
comes closest to a “standard foundation of mathematics” and since it provides
a rich and well-understood foundation.

This paper describes an automated translation of theories from Isabelle/HOL
to Isabelle/ZF (which implements ZFC). We interpret recorded proof terms,
and the resulting derivations are again checked by Isabelle’s LCF-style inference
kernel, which ensures soundness of the approach and implementation.

While the general idea of a mapping to set theory is not new—in fact, the
standard semantics of HOL [17] is defined in ZFC—, translating entire theories
of realistic proof developments is a highly non-trivial task: In addition to the
bare proofs, one must cope with theory extension mechanisms like constant and
type definitions. Moreover, Isabelle’s type classes and overloading as well as
interactions between the object-logic Isabelle/HOL and the logical framework
Isabelle/Pure complicate this task. To our knowledge, this is the first complete
translation scheme to set theory (it is complete except for a fine point, discussed
in §5.2). It is also the first proof-producing one.

1.1 Motivation

The motivation for this work comes from several directions:

Ezxperimenting with theorem proving based on set theory. The simple type theory
of HOL is sometimes a limitation that makes certain concepts (e.g., monads,
which would require parametrization over type constructors) hard or impossible
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to formalize. One way of improving this is to move to a stronger type theory, like
the calculus of constructions [2] or the recently proposed HOL Omega [8]. An
alternative path is to abandon types as an integral part of the logic and to work
in a logic that is untyped, but expresses the equivalent of typing judgements
explicitly as propositions. A type discipline could then be reintroduced as an
extra layer of “soft types” built on top of an untyped LCF kernel. Such a system
could make the notion of type checking more open to experimentation, since it
is easier to change something that is not part of the foundation.

This idea has been mentioned in the literature several times [5,9, 20, 6], and,
in principle, Isabelle/ZF could be a starting point to explore these possibilities.
This work intends to explore how HOL-style reasoning can be turned into set-
theoretic reasoning, mechanized in Isabelle/ZF.

Exchange format between proof assistants. Although there already exist trans-
lation facilities for proofs between different theorem provers, combining devel-
opments from different systems in practice is still an open problem (Gordon
calls it a “Grand Challenge” [6]). Set theory has sometimes been mentioned as
a candidate for an exchange format between different logics, mainly because the
semantics of many logical systems can be defined set-theoretically.

Reviving Isabelle/ZF. Our translation makes the large body of theories devel-
oped in Isabelle/HOL available in ZF. We believe that this may facilitate the
development of proof tools (e.g., arithmetic decision procedures) in set theory,
which typically require a certain amount of established theory.

None of the goals that we take as a long-term motivation can be solved by
this work alone. However, we aim to take a small step towards them with the
following concrete contributions:

— By carefully revisiting the foundations of the Isabelle/HOL system, we show
how all its primitives can be translated to a purely definitional theory in
Isabelle/ZF (with global choice; see §3). In particular, type classes and over-
loading are eliminated.

— We provide a prototype implementation of this mapping that produces machine-
checked proofs in Isabelle/ZF.

1.2 Related Work

The standard set-theoretic semantics of HOL is described by Pitts [17]. Gordon
[5] experimented with combinations of HOL and ZFC by axiomatizing a type of
sets in HOL. He describes a transfer principle between the two worlds which is
very similar to our translation of propositions. However, Gordon’s translation is
not proof-producing, and one must trust the correctness of its implementation.
Moreover, the semantics of the axiomatic combination of HOL and ZFC are still
slightly unclear.

A number of proof transformation tools have been developed to replay proofs
of one theorem prover in another, mostly within the HOL family of provers [10,
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14]. Similarly, the AWE extension [1] interprets theories within the Isabelle/HOL
system, replacing types, constants, and axioms with concrete models. Our trans-
lation is closely related to these tools but slightly more complex, since our target
language is untyped and type reasoning has to be made explicit.

2 Formal Preliminaries

Isabelle [15] is a generic theorem prover, which supports reasoning in different
object-logics embedded in a logical framework (often referred to as the “meta-
logic”). While many Isabelle applications use Isabelle/HOL exclusively, this par-
ticular work critically relies on the generic nature of the system.

In this section, we recall the logical foundations of Isabelle, including how
the object-logics HOL and ZF are embedded in Isabelle/Pure.

The meta-syntactic abbreviation t,, always denotes the sequence t; ...t,,.
Binding a sequence of variables (AT, © 7,,,. t) always means iteration of binders
(AZpy, : T t). We omit type and sort annotations when they are clear from the
context. Substitution of ¢y for = in ¢; is written as ¢z := t2].

2.1 Pure

Isabelle/Pure is a simply-typed intuitionistic higher-order logic featuring just
implication, universal quantification, equality and schematic polymorphism with
type classes [19, 7]. Unlike many dependently-typed systems, it retains the strat-
ification into sorts, types, terms, and proofs, which we discuss in this order.

Sorts and Types. Syntactically, (type) classes ¢ are formal names, and sorts s
are finite symbolic intersections of classes, written as finite sets {ci1,...,¢,},
where the empty intersection is denoted by T. Types are either type constructor
applications, or type variables annotated with their sort.

T u= KETm | «

Special type constructors are prop (propositions) and = (function space).

A set of type classes together with an acyclic subclass relation < and a
set A of arities of the form x :: (S;,)c is called an order-sorted algebra [18].
It induces the type-in-class relation 7 : ¢ defined by the following rules, where

7:{e1,...,cn} abbreviates 7 : ¢y, ..., T Cp.
T:cCy c1 < ¢o Tm & Sm (k::(Sm)e)e A cEs
T:Coy K Tm: C a’:e

For now, we regard classes and sorts as purely syntactic. The details, including
the interaction of type classes and derivations, are deferred to §5.
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Terms. The language of terms is a conventional simply-typed lambda calculus
extended with constants (also denoted by c¢), whose types can be instantiated
at each occurrence. This yields schematic polymorphism, where type inference
is still decidable, since arbitrary type abstractions are not allowed.

t o= x| ) | tite | Az:Tot

We also write ¢ for ¢[]. Primitive constants include universal quantification A :
a' = prop) = prop, implication = : prop = prop = prop, and equality
=:a' = a = prop. A term is called closed if it contains no free term
variables.

The typing rules for terms are standard. We assume a function X' that maps
constants to their types with canonical type variables o]

m-*

rz:Tel

'cz:r T'Fc[fm] s D)o} = 7]
I'Ety:m = m I'Hity:m INr:mbt:m

'ttty : T I'tAz:m.t):m =1

Terms of type prop are called propositions and are denoted by ¢.

Proofs. The language of proofs constitutes another level of lambda calculus on
top of terms, in the spirit of the Curry-Howard correspondence. The two versions
of abstraction and application correspond to the introduction and elimination
of A\ and =, respectively. Proof variables h stand for hypotheses. Axioms and
previously-proved theorems are modelled as proof constants thm, whose types
can be instantiated in a manner similar to term constants.

p u= Az:T.p | Ah:ig.p | pOt | preps | h | thm[r]

Note that thm is a meta variable for proof constants. We also write thm for thm|].

We give the main propositions-as-types typing rules for proofs, which are
to be read modulo afn-equivalence. Like for term constants, the function X
yields the proposition proved by a proof constant, which may contain free type
variables a7 .

Ix:tkp:o I''h:p1Fp: s
'Az:7m.p):(Nx:7. &) I'(Ah:¢1.p): dp1 = b2
I'tp:(Nx:7. 9) I'kbt:r I'bpr: ¢ = ¢o I'Fps: ¢y
'E(pot):oz:=t 't (p1 e p2): o

h:¢pel T & S
F'bEh:¢  TFthm[Tn) : D(thm)|asy = 7]

Pure has further rules and axioms, ensuring that = is an extensional and con-
gruent equivalence relation, which equates a8n-convertible lambda terms and is
the bi-implication on propositions.
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Sometimes it is convenient to imagine that all type variables oy occurring
in a closed proposition ¢ are explicitly quantified on the outermost level. We
take the freedom to write this as Vo, © ;. ¢. Similarly, on the level of proofs,
the dependency on type variables is expressed using an abstraction-like notation
AQm, © Sm- P - A proof is called closed if all occuring term and type variables are
bound in this way. However, these notations are not part of the formal system!

Constant definitions. Pure allows constant definitions, i.e., the introduction of
a new constant ¢ : 7 and the definitional axiom c[ay,| = ¢, if T contains exactly
the type variables &,,, t is closed, t : 7, and t contains only type variables &,,.
Since defining equations can always be unfolded, this is a conservative theory
extension. Defining equations are written with := instead of =.

2.2 HOL

Higher-order logic (HOL) is embedded as an object-logic in Isabelle/Pure by
introducing a type bool of classical truth values. A constant Trueprop : bool =
prop embeds booleans into propositions. We write Trueprop t as [t]. Object-level
quantifiers and connectives are introduced as constants V : (o = bool) = bool;
=1 bool = bool; —,V, A : bool = bool = bool; = : o = a = bool, etc.

A B
Natural-deduction rules — can then be expressed as meta-level propo-

sitions A = B = C. For example, these are the introduction and elimination
rules for V and —, and the law of the excluded middle:

alll: AP:a= bool. (Az:a. [P zx]) = [Vz. P ]
spec: A(P:a = bool)(a:a). [Vx. Px] =[P a]
impl: APQ :bool. ([P]=[Q]) = [P — Q]
mp: APQ:bool.[P— Q]=[P]=[Q]
True_or_False: AP : bool. [P = True V P = False]

In Isabelle, outermost quantifiers and the |[-]-embedding are not printed, such
that the first rule reads (Az : a. P z) = Va. P z, but we will keep them
explicit in this paper, to visualize the division between meta- and object-logic.

HOL has some more rules and axioms, which we omit for brevity. However,
two primitive constants are notable: the definite description operator THE :
(a0 = bool) = «, axiomatized by Aa.[(THE x. x = a) = a], and the constant
undefined : o, which is unspecified as it comes with no axiom.

The approach of modelling the inference rules of the object-logic as theorems
in the meta-logic is common to all of Isabelle’s object logics. What is special in
HOL is that the function space of the object-logic coincides with that of the meta-
logic. This works because HOL and Pure are so similar. To make interactions
with the framework more explicit, a type class hol is used to characterize HOL
types.

This class contains types such as bool, natural numbers, lists, and it is closed
under =-. Types such as prop or bool = prop are not in this class. The HOL
axioms are restricted to types which are in the hol class.
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Type definitions. A speciality of HOL is the ability to define new type construc-
tors from non-empty subsets of existing types. A type definition k @, = P,
where P : 7 = bool is a closed term (called the representing set) with type vari-
ables @, together with a proof of [Jz. P x], gives rise to a bijection between
K Qm and 7, in the form of new constants Rep, : k @, = 7, Abs, : T = K O,
and an axiom

N

[ (Vz: K Qm. P (Rep,[aim] 2)) A
(Vz : K Q. Absi[@m] (Rep,[aim] 2) = 2) A
(Vy : 7. Py — Rep,[aum] (Absi[am] y) =) |,

which we abbreviate as typedef,. Notice that this axiom does not specify the
value of Abs,[aq,] y when [ P y] does not hold.

2.3 ZF

First-order logic (FOL), the basis of ZFC, is modelled in Isabelle by two types
¢ and o, representing individuals and truth values, respectively. Again, an em-
bedding [-] : 0 = prop is introduced, along with first-order connectives V : (v =
0)=0;-:0=0, —,V,AN:0=0=0; =:1L= (= o0, etc., and the usual nat-
ural deduction rules for them. ZFC is then added using the standard collection
of FOL axioms (see [16] for details) about the constant € : ¢ = ¢ = o. Note that
the axiom schema of replacement is represented as Pure quantification over a
predicate. As ¢ is the type of all sets, the meta level can be used to reason about
proper classes (¢ = 0), operators (¢ = ¢), binding structures ((¢ = 7) = 7), etc.

Function spaces can be constructed using — : ¢ = ¢ = ¢, and elements of
A — B can be constructed using an operator Lambda : ¢ = (1 = ¢) = ¢, which
restricts the domain of an operator f : ¢ = ¢ to a set A. We write (Az € A. f x)
for Lambda A f. The application of such a function to an argument is written

using an explicit apply operator ‘ : ¢ =- ¢ = . While a-conversion is inherited
from the framework, - and n-reduction are conditional rewrite rules.
Ay f.lye Al = Az €A fx)‘y=
NAy f.lye Al = ( fr)y=ry (ZF-An)

AMABf|[feA—>Bl= \z€cA fa)=]f

As opposed to HOL, where formulas are just special terms, in FOL the
languages of formulas (o) and terms (¢) are syntactically separated. For the
sake of uniformity, our translation will map everything to type ¢, using the set
B := {0,1} for truth values, with the interpretation function (-) := (Az. z =
1) : © = 0. We must thus define appropriate versions of logical connectives, such

—

as True, False, = :rand =,V : 1= .

ﬁ”u\ezzl, False := 0
= =(MABeB.if A= False then True else B),
= =M. zye A if e =y then True else F/’age),
= (

Vi=(AA:.APEA—B.P=45(\zeA True))
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(2)Axyiswritten z =4 y, and (VA (Az € A. P x)) is written (Vo € A. P z).

3 The Basic Translation

The standard set-theoretic model of HOL [17] is based on a set U, which serves
as the universe of types. Among other requirements, & must be closed under
function spaces. For example, the set V1, \ {0}, with V,,;, of the cumulative
hierarchy (see, e.g., [11]), could be used as the set of all types. While such a
relatively small model may be desirable from a foundational point of view, it
would make the results of our translation weaker than necessary, and not very
intuitive. In fact, it is not necessary that the universe of types forms a set, and
so we prefer to use the proper class of all non-empty sets.
The idea underlying the translation is as follows.

— Types 7 are mapped to terms denoting non-empty sets [7] : ¢.

— Type constructors are mapped to operations on sets.

— Terms ¢ : 7 are mapped to terms [¢] : ¢, such that [¢t] € [7] holds.

— Application and abstraction are translated to (Az € A. ...) and .

— Quantification over types (which may only occur on the outermost level) is
mapped to Pure quantification over sets.

— Type annotations on variables are mapped to set membership assumptions.

— Proofs are instrumented with non-emptiness and membership derivations,
following the typing rules.

Ezample 1. The statement Vo : {hol}. Az : «)(P : a = bool). [P x| is
translated to

NA: L [A£D0] = (Nz:t.[z€A]l= (ANP:t.[PEA—-B]= [(P‘z)]),
which, after moving quantifiers out, becomes
NAzP: 1. [A£0] = [z€A]= [P A—-B]=[(P‘x)] .
Ezxample 2. The transitivity rule for HOL equality,
Va:{hol}. Arst:a. [r=s]=[s=t] = [r=t]

is translated to

NA: L [AZD) = (Ar:v.[re Al = (As: . [s€ A] =

(At [teAl=[(r=as)=[{s=at)] = [(r=at)]),

which, after moving quantifiers out, becomes

NArst: v [A#0]| = [re Al = [sc A] = [t € A]
= [(r=as)]=[s=at)] = [r=at)].
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One consequence of our choice of translation is that we need an axiom of global
choice, which postulates an operation choose satisfying

NA:1. [A#D] = [choose A e A].

This is a conservative extension of ZFC [4]. The need for it arises not only
from the fact that HOL includes a choice operator by itself, but already from
the presence of underspecification. While the constant undefined has no partic-
ular properties in HOL, its translation to ZF must satisfy at least the formula
NA:L[A#£D] = | u@ed A € A], which arises from its type. This is ex-
actly the global choice axiom.

In the following presentation of the basic translation scheme, we make a few
simplifying assumptions: First, we assume that the theorems we translate do not
mix HOL and Pure arbitrarily, but use essentially plain HOL reasoning, except
for an outermost layer of A and =. Theorems relevant in practice typically
have this form (see §6.2 for exceptions). Second, all type variables must be of
sort {hol} (see §5 for the treatment of other classes). Third, we assume that there
are no type or term variables in proofs that do not occur in the corresponding
proposition (which is easy to achieve by substituting any ground type or term)
and that proofs are closed.

Type constructors k, term constants ¢, and proof constants thm occurring
in proofs must already have translations %, ¢ and thm. These are either set
up manually, as it must be done for the primitives and axioms, or come from a
recursive invocation of the translation scheme.

Types and terms are translated as follows:

Translation of types: Translation of terms:
[£7m] = &[] [c[m]] == ¢ lmm]
[a] = =2 [Ax:7.t] = Aze[7]. [t]

[z] == =«
[tit2] = [ta] " [22]

Note that for a type 7, [ 7] is a term (of type ¢), not a type. Type instantiations
of constants are translated to applications.

In the outer structure of propositions, the domain of universal quantifiers is
restricted to the respective sets, and the Trueprop embedding is replaced with
[(-)]- On the outermost level, non-emptiness conditions are added for the sets
arising from type variables.

Translation of outer proposition structure:

[Az:7m.¢] = Az:v]ze[r]]=[¢]
[¢r = ¢2] = [d1] = [¢2]
(el = KD
[Vam: {hol}. 6] = Azar 1. [ Z0] = [9]
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In the proof transformation given below, the proofs corresponding to typing
judgements and non-emptiness of types must be filled in explicitly. We mark the
positions where a proof of [ P ] must be inserted by placeholders { P}. This proof,
which may refer to hypotheses available in the respective context, is generated by
means of a tactic. Moreover, since the original proof is modulo a/8n-equivalence
and abstraction and application have been translated to their ZF counterparts,
we must explicitly normalize them by rewriting with the rules (ZF-8n). For
a proposition ¢, let norm (¢) denote the normalized proposition. For a proof
p : ¢, norm (p) denotes a proof of norm (¢), and p; e, p2 abbreviates norm (p;) e
norm (p2). We generate the proof of norm (p) from p using Isabelle’s simplifier.

Translation of proofs:

[Ax:7.p] = Az:wAh:[ze[7]] [p]
[An:o.p] = Xh:[o]. [p]
[h] == h
[p1 ep2] = [p1] en [p2]
[pot] = [p]©I[t]en {[t]€[r]} where t:7
[Aaw : {hol}. p] = ATa, it Ah : [2a,, # 0] [p]
[thmfral] = thm © [7n] o0 {[rm ] # 0}

Ezxample 3. The proof of the transitivity rule shown previously is based on a
substitution rule, one of HOL’s axioms:
subst : (Va: {hol}. A(st:a)(P:a= bool). [s=t] = [Ps]=[Pt])
subst : (AZa b [Ta # 0] = (As: e [$ € za] = (At [t € 2a] =
(AP :v[Peza—B] = [(s=s, t)] = [(P's)]| = [(P‘1)]))))
trans = (A (a : {hol}) (rst:a)(h:[r= ])( (s =t]).
substfa] © s @t © (Az:a.r=x) e ' e h)
:(Va: {hol}. AN(rst:a). [r=s]=[s=t]=[r=1t])
trans = (A (2o 1 1) (ha : [2a #0]) (r:0) (he: [r € xa]) (s:0) (hs : [s € Ta]).
At 0) (he s [E€ @al) (B [(r = s)]) (05 [(5 =2 £)]).
Subst © T &0 {Ta 0} © 5 00 {SETa} Ot o {t € 70}
O AT E€Exa.7 =2, ) & {(AT ET(. 7 =5, T) €E To — B}
o h' e h))

4 Translating Constant and Type Definitions

When translating constant definitions c[a;,] := ¢ where ¢ : 7, the dependency on
types @, is made explicit. We introduce a new constant ¢ : (™ = ¢.

¢:=(A\Tq,, i [t])
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The translation of the original definition [ c[as,] = t] (that is, ¢ T, = [t]) isa
simple consequence of the above definition and proved automatically. Moreover,
the following theorem is deduced, which is needed by the type checking tactic
to derive the translation of typing judgements involving c.

Ao, it [Ta,, # 0] = [€ Za, € [7]]

Type definitions k @, = P with P : 7 = bool are translated to constant def-
initions of a set % (parameterized by the sets T, arising from type parameters)

and two functions Rep, and Abs, .
R i=ATq, :t.{z€[7] | {[P] ‘z)}

Rep, :=AZT,, 1. A2€ R Tq,,. 2

Abs, = ATq,, it. Ay €[7].ify € kK T, then y else u@ed (R Ta,)

Since the new type is simply mapped to a subset of the original type, the func-
tions l?ep\,_i and A/bs\N become identity mappings. Since A/bS\K must be total and
always return an element of % to satisfy its type, we use undc%ed.

From these definitions we derive the characteristic property [ typedef, ] for
the type definition, as well as the typing lemmas for @ and Ib?ﬁ and the
fact that the new type constructor preserves non-emptiness. The proof of the

latter theorem makes use of the non-emptiness proof provided for the original
HOL definition.

ATar it [%a,, #0] = | Rep,, Ta,, € R Tay — [7]]

/\mw.[mam#@]:[ﬂs\nﬁ

m

elr]— k7]

Nea, i - [a,, # 0] = [ R Ta, # 0]

5 Translating Type Classes and Overloaded Definitions

The translation described so far covers standard HOL. However, in the Is-
abelle/HOL libraries, even the most basic theories make heavy use of type classes
and overloading, which means that our translation must support them to be
practically useful.

The basic solution is to employ a preprocessing step which eliminates classes
and overloading from theories, producing a theory in plain HOL. Then, the
translation from the previous section can be applied to obtain the set-theoretic
version.

In this section, we describe the basics of type classes and overloading, which
were neglected in §2. Then we show how to compile them away. Although the two
mechanisms are typically used together (cf. [7]), we can treat them separately,
removing first type classes and then overloading. The outline of this transforma-
tion was already pointed out by Haftmann and Wenzel [7], but not considering
proof terms and without implementation.
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5.1 Type Classes

In a nutshell, classes assigned to a type 7 express extra properties of 7 that
are propagated by the type system. In particular, a sort annotation s on a type
variable o® corresponds to an implicit hypothesis about a.

It is possible to embed types into the term language using a unary type
constructor itself and a constant TYPEFE : itself «, such that the type 7 can be
represented by the term TYPE([7].

To describe the logical properties of types in a class ¢, a constant Cl. :
itself a = prop is defined. For example, the class of all finite types can be
defined as Clgpie[a] := (Az @ itself a. [Bf : nat = «. injective[nat,a] f]). The
proposition Cl.[7] (TYPE|[7]) serves as the logical interpretation of the type-in-
class statement 7 : ¢ as defined in §2.1, and we abbreviate it by (7 : ¢).

When subclass relationships ¢; < ¢2 and arities & :: (3, )c are backed up by
proofs of Vao : T. (v : 1) = (a : o)) and Vag, : T. (aun, @ Sm ) = (K @y 2 C)),
respectively, then (7 : ¢|) is provable in Pure when 7 : ¢ holds. More precisely,

7:c implies {(a':¢)]a® occursin T, ¢ € s}t (7" :¢),

where 7' denotes the type 7 with all sort annotations replaced by T.
To reflect this connection between the type system and the inference system,
Pure provides a special proof constructor ofclass 7 ¢ and the rule

T:C

I'ofclasstc: (7:¢c)

The ofclass constructor serves as a placeholder for an explicit proof of (7 : ¢)),
which can always be constructed in a straightforward manner, following the rules
for 7 : c.

Elimination of classes. To eliminate classes from propositions, we remove all
sort annotations from type variables and replace them by explicit assumptions.
Thus, a proposition Ve, : Sm,. ¢ becomes Va,, : T. (am : $Sm|) = ¢.

Ezxzample 4. The proposition
Vo : {finite}. Nf : o = a. [injective|a, o] f «—— surjective[a, o] f]
is converted to
Va: T. (a: finite) = Af : @ = a. [injective|a, o] f «— surjective[a, o] f] .

Eliminating classes from proofs amounts to this explication of sort constraints
on type variables and replacing the proof constructors ofclass ¢ with deriva-
tions for (7 : ¢)), using the newly-introduced assumptions on type variables.

A subtlety arises when the proof of a proposition contains type variables that
do not occur in the proposition itself. Since the presence of such a type variable
(3° constitutes an implicit assumption that the sort s is inhabited (i.e., (7 : s)
holds for some ground type 7), we must introduce an extra hypothesis (« : s|) for
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some canonical «. These sort inhabitedness hypotheses are tracked by Isabelle’s
inference kernel, ensuring soundness even when proof term recording is disabled.
Term variables do not need a corresponding treatment, since types are always
inhabited.

5.2 Overloading

Overloaded constants can have multiple defining equations on different types.
To simplify the presentation, we assume that types of constants have exactly
one parameter «, which allows us to write ¢[7] instead of ¢[7,,]. The treatment
below is easily extended to the general case.

An overloaded constant c is specified by giving its type 7 and multiple defining
equations ¢[r;] := t; : T[a := 7] for different type instances 7;, where all type
variables in the closed ¢; have to occur in 7[a := 7;], or equivalently in 7;.

We write c[7] > d[o] iff there exists a type 7;, a substitution 6, and a defining
equation c[r;] := t;, such that 7 = 0(7;) and ¢; contains a constant occurrence
d[o’] where o = 6(o’). This relation on constants with types is called the depen-
dency relation.

A system of overloaded definitions is well-formed, if the defining equations
for any constant do not overlap (i.e., different 7; and 7; are not unifiable after
renaming variables apart) and the dependency relation > is terminating. The
latter property ensures that unfolding definitions cannot lead to non-termination
and is undecidable [13], but Isabelle approximates this by a simpler criterion [7].

Note that this notion of overloading is more than just the use of a single
name for multiple logical constants: The definition of another constant d[«] may
refer to an overloaded constant c[r], with the effect that the meaning of d also
depends on instantiations of «. Then d is called indirectly overloaded. We call
a constant c[r] overloading-free iff it is primitive or has exactly one defining
equation, whose right-hand side mentions only overloading-free constants.

A constant occurrence ¢[7] in a term is called resolvable iff 7 = 0(7;) for some
substitution 6 and some 7; from a defining equation ¢[r;] := ¢;. Since defining
equations do not overlap, 7; and 6 are then uniquely defined and we say c¢[r] is
resolvable via 6 on c[r;].

Eliminating Overloading. The idea behind the elimination of overloading re-
sembles the dictionary construction used to eliminate type classes from Haskell
programs. For overloaded constants ¢, an overloading-free dictionary constant
¢; is defined for each of the equations ¢[r;] := t;, abstracting out unresolvable
overloading in ;.

Concrete occurrences ¢[7] can then be replaced by so-called dictionary terms:
If ¢[7] is resolvable, the corresponding dictionary constant is used, possibly pass-
ing through other dictionaries. If c[7] is not resolvable, a dictionary variable D,
is inserted.

Formally, for a constant ¢ and type 7, we define the set

Uermap dicts(d[r’]) if ¢[r] is resolvable.

{c[7]} otherwise.

dicts(c[7]) := {
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This set is well-defined and finite, since the dependency relation ©> is terminat-
ing and finitely branching. Lifting this to arbitrary terms, we define dicts(¢) :=
Uieqa,...ky dicts(di[oi]), where di[ox] are the occurrences of constants in . We

assume some canonical order on dicts(¢).

To eliminate overloading from a term, the mapping [-],, replaces (indi-
rectly) overloaded constant occurrences ¢[r] with dictionaries. Overloading-free
constants and the rest of the term structure is preserved. If ¢[7] is not resolvable,
a dictionary variable is inserted.

[[C[T] ]]ov = DC[T]

If ¢[r] is resolvable via 6 on c[r;], the corresponding dictionary constant ¢; is
used, passing dictionaries through:

[cl07iloy := cil0@m] [di[0aw]],, -

where {di[o]} = dicts(c[r;]) and @, are the type variables in 7;.
The definitions of the dictionary constants c; arise from the defining equations
clri) =t
cilam] := (A Day o]+ [ti]oy)

where @, are the type variables in 7; and {di[ox]} = dicts(c[r]).
At the outermost level of propositions, we abstract over the generated dic-
tionary variables.

[Vom. ¢]o, = Yam. ADg,o]- [0]oy where {d[or]} = dicts(o) .

Proofs are structurally unchanged, but constant definitions of overloaded
constants are replaced by theorems about the resulting dictionary term.

Ezample 5. Assume an infix type constructor x with pair syntax (-,-) and pro-
jections fst and snd, and a type nat where nat-plus : nat = nat = nat defines
addition. An overloaded addition function plus : &« = o« = « could be defined
by the following equations.

plus[nat] := nat-plus
plusfa X B] :=Azy: a x 8. (plus[a] (fst z) (fst y), plus[F] (snd x) (snd y))

The overloading elimination introduces constants

plusy := nat-plus
plusyla, B] := (A (Dprusa] : @ = o = @) (Dpusig) - 8= 8= 8) (xy : a x ).
(Dplus[a] (fSt x) (fSt y)v Dplus[ﬁ] (snd :L') (Snd y)))

from which dictionaries for plus on arbitrarily nested tuples can be built, e.g.,

[ plus[(nat x nat) x nat]],, = plusy[nat x nat, nat] (plus,[nat, nat] plus, plus,) plus; .
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Notice the dictionary variables in the following translation of a simple theorem.

[¥a s : T. [commla] plusfal] = [ commi] plus[B]] = [ commia x 8] plusla x 6]]],,
=Vaf:T. A\ (Dpusia) : @ = @ = &) (Dpusip) : B= B8 = B).
[comm]a] Dypiusa)| = [ comm|[B] Dppus|g ]

= [comm[a X ﬁ] (plu‘SQ[aaﬂ] Dplus[a] Dplus[ﬁ])]

Overloaded constants appearing in representing sets of type definitions are re-
placed in the same way using [-],,. However, a fine point should be noted here:
Abstracting out unresolvable overloading would give rise to dependent types.
This is no problem in the set-theoretic interpretation, but as the overloading
elimination is currently implemented as a preprocessing step on the HOL side,
it does not handle such overloading. This can be fixed by collapsing the differ-
ent parts of the translation. However, to remove unresolvable overloading from
type definitions while staying in HOL, one has to eliminate the type definition
altogether, replacing it by its representing type together with a predicate.

It appears that this subtle issue was overlooked in all proof sketches of con-
servativity of overloading so far [13,19,7]. Practically, this form of overloading
seems to be quite rare. It does not occur in the main HOL image, but a few
instances exist in the HOLCF development [12].

6 Discussion and Limitations

We briefly discuss some limitations of our approach and current implementation.

6.1 Replacing constants and types

The translations of some concepts defined in HOL are not as one would like to
use them in set theory. For example, the translation [int] of the HOL integers
should be the set Z, which is already defined in Isabelle/ZF but happens to be
a different (though isomorphic) object.

This problem is common to all proof translation tools and there is no general
solution yet, apart from configuration to match up the concepts with equivalent
ones. For example, in the proof translation from HOL4 and HOL Light to Is-
abelle/HOL [14], concepts can be replaced with others that behave in the same
way, possibly with minor modifications such as argument order. In principle,
our translation supports such replacements, but currently this requires tedious
manual configuration and equivalence proofs.

6.2 Interactions of Pure and HOL

Recall that our translation inserts explicit constants Lambda and ‘ for abstrac-
tion and application in object-logic statements but leaves the outer proposition
structure consisting of /\ and = intact. The advantage of this approach is that
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the results adhere to Isabelle’s standard rule format. But in a few corner cases,
the translation becomes difficult. For example, consider the following substitu-
tion rule for Pure equality:

Vap: T.Nf:a=p0)(z:a)(y:a)z=y= fa=fy

This is clearly a rule of the framework, as it contains no connectives of any
object-logic. The translation should thus keep the rule as it is. On the other hand,
when « and g are instantiated with HOL types, then it should turn the types
into sets and translate the application f x to f‘z. This shows that separating
the framework from the object-logic cannot be done in a modular way. We have
solved this problem by producing several variants for such rules, for different
type instantiations.

An alternative translation that we would like to explore in the future is to
abandon the distinction between Pure and HOL connectives, mapping everything
to sets. Of course, dependencies on types must still use the framework, as type
constructors and polymorphic constants are not sets in our model.

6.3 Performance

In its current implementation, the translation is expensive both in terms of
time and memory. We exercised it on the main HOL image and HOL’s num-
ber theory. Translating Fermat’s little theorem and all its dependencies from
the basic axioms takes 80 minutes and 1.6 GB of main memory on stock hard-
ware. Measurements indicate that this performance cost is mainly due to extra
On-normalization of terms and type checking proofs becoming explicit in ZF.
Obviously, more work is needed here to improve the performance.

7 Conclusion

Our translation maps all Isabelle/HOL primitives to set theory. By translating
the proofs along with the theories, we can guarantee soundness of the overall
method. The fact that we uncovered a notable omission in all previous proofs of
conservativity of overloading (see §5.2) shows that our approach of “implemented
semantics” is also useful for better understanding the logical system. Moreover,
having an implementation facilitates experiments and modifications and will
hopefully stimulate the further development of Isabelle/ZF.

Our elimination of type classes and overloading can also be of help when
translating Isabelle/HOL developments to other systems. Previously, these con-
cepts could only be translated by using extra-logical abstraction mechanisms
provided by the OCaml language [10].
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