
Institut für Informatik

der Technischen Universität München

Automating Recursive Definitions and
Termination Proofs in Higher-Order Logic

Alexander Krauss

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Helmut Seidl

Prüfer der Dissertation:

1. Univ.-Prof. Tobias Nipkow, Ph.D.

2. Prof. Lawrence C. Paulson, Ph.D.
University of Cambridge, UK

Die Dissertation wurde am 29.01.2009 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 02.07.2009 angenommen.

Abstract

The aim of this thesis is to provide an infrastructure for general recursive func-
tion definitions in a proof assistant based on higher-order logic (HOL) that has
no native support for recursion or pattern matching.

In the first part we develop a tool that automates recursive function defi-
nitions and provides appropriate proof rules for them. Compared to previous
work, our package supports the definition of partial functions, modeling the
domain of the function by an inductive domain predicate. An automatically-
generated partial induction rule makes partial correctness proofs independent
from termination proofs. This modularity considerably facilitates termination
arguments for nested recursions.

The second part addresses the problem of automatically solving the termi-
nation proof obligations that arise from function definitions. Methods from the
literature can be applied, but require significant adaptation to the specific needs
of our setting: They must produce full formal proofs and work relative to a rich
interactive theory. Our approach encompasses a rule-based selection of measure
functions, a simple control-flow analysis inspired by the dependency-pairs ap-
proach, and a modified version of the size-change principle based on certificates.
A formalization of the full size-change principle is also provided.

In the third part we discuss how pattern matching, which occurs frequently
in functional programming, can be supported in HOL function definitions. We
present a very general form of pattern matching, where arbitrary expressions
can serve as patterns. We show how such patterns can be encoded using a
custom matching combinator and how their consistency can be expressed in
proof obligations.

We also study the problem of transforming ML-style sequential pattern
matching into minimal sets of independent equations, such that they are con-
sistent in HOL. We relate the problem to the minimization problem for propo-
sitional DNF formulas and show that it is ΣP2 -complete. We then develop a
concrete algorithm that computes minimal patterns.

As another application of the new set of tools, we show how user-specified
induction schemes can be generated from simpler properties, which often makes
their proofs fully automatic.

Zusammenfassung

Ziel dieser Arbeit ist die Entwicklung einer Infrastruktur für rekursive Funk-
tionsdefinitionen in einem interaktiven Theorembeweiser, in dem Rekursion und
Pattern-Matching nicht von Haus aus unterstützt werden. Wir arbeiten im Kon-
text höherstufiger Logik (higher-order logic, HOL).

Im ersten Teil entwickeln wir ein Werkzeug, welches Funktionsdefinitionen
automatisiert und geeignete Beweisregeln dafür bereitstellt. Im Gegensatz zu
existierenden Ansätzen unterstützt unser Verfahren auch partielle Funktionen,
die mit Hilfe eines induktiven Domainprädikats modelliert werden. Eine au-
tomatisch generierte Induktionsregel erlaubt partielle Korrektheitsbeweise un-
abhängig von der Terminierung der Funktion. Diese modulare Struktur erle-
ichtert insbesondere die Behandlung von geschachtelter Rekursion.

Der zweite Teil behandelt automatische Terminierungsbeweise, um die aus
Funktionsdefinitionen entstehenden Beweisverpflichtungen automatisch zu lösen.
Dabei verwenden wir Methoden aus der Literatur, die allerdings an die spezifis-
chen Anforderungen unseres Szenarios angepasst werden müssen. Unser Ansatz
beinhaltet eine regelbasierte Auswahl von Maßfunktionen, eine einfache Kon-
trollflussanalyse ähnlich der Dependency-Pairs-Methode, und eine Variante des
Size-Change-Kriteriums mit Zertifikaten. Eine Formalisierung des vollen Size-
Change-Kriteriums wird ebenfalls entwickelt.

Im dritten Teil untersuchen wir, wie das in der funktionalen Programmierung
gebräuchliche Pattern-Matching in HOL unterstützt werden kann. Wir ent-
wickeln eine sehr allgemeine Form von Pattern-Matching in der Logik, welches
beliebige Terme als Patterns erlaubt und mit Hilfe eines speziellen Kombinators
in der Logik ausgedrückt werden kann. Die Konsistenz der Spezifikation wird
durch spezielle Beweisverpflichtungen sichergestellt.

Außerdem untersuchen wir das Problem, Spezifikationen mit sequenziellem
Pattern-Matching in reine Gleichungsspezifikationen mit möglichst wenigen Glei-
chungen umzuwandeln. Wir ziehen eine Parallele zum Problem der Minimierung
Boolescher Ausdrücke in DNF und zeigen, dass das Minimierungsproblem für
Patterns ΣP2 -vollständig ist. Wir geben auch einen konkreten Algorithmus zur
Minimierung von Patterns an.

Als weitere Anwendung der neuen Werkzeuge zeigen wir, wie sich vom Be-
nutzer vorgegebene Induktionsschemata automatisch auf einfachere Beweisziele
reduzieren lassen, wodurch sich der Beweis solcher Schemata oft weitgehend
automatisieren lässt.

To Katharina — with nonterminating love

Acknowledgements

I am deeply indebted to Tobias Nipkow for offering me the opportunity to work
with him, and for being such a pleasant supervisor in every respect. He greatly
contributes to my education not only in logic and computer science, but also in
other areas, such as contemporary music. Working under his guidance is great
fun.

I am also grateful to Larry Paulson for agreeing to act as a referee and examiner,
and for creating the next 700 theorem provers.

I want to thank all present and former members of the Isabelle group at TUM
for making it such a fertile research biotope and such a friendly place. They
all influenced this work in one or the other way: Clemens Ballarin, Stefan
Berghofer, Jasmin C. Blanchette, Sascha Böhme, Amine Chaieb, Florian Haft-
mann, Julien Narboux, Steven Obua, Norbert Schirmer, Christian Urban, Tjark
Weber, Makarius M. Wenzel, and Martin Wildmoser.

Jasmin and Makarius deserve special thanks for reading parts of this thesis and
decorating it with countless colourful annotations and corrections. Florian, who
shared the office with me in the beginning, has become something like a travel
companion on this journey (and various sub-journeys). I always enjoy being
exposed to his detailed knowledge of Bavarian history and his bizarre humour
— often both at the same time. Thanks are also due to Lukas Bulwahn and
Armin Heller, who worked on the implementation of the termination provers
described in Chapter 3. They did a very good job.

Finally I would like to thank the numerous users of Isabelle, without whom
much of this work would be meaningless.

My wife, Katharina Kühn, provided moral support of all kinds during the whole
time, and especially in the end. I cannot thank her enough.

Parts of this research were financially supported by DFG Project Ni 491/10-1.

Contents

1 Introduction 1
1.1 Contributions . 1
1.2 Interactive Theorem Proving . 3
1.3 Isabelle/HOL . 5
1.4 Functional Programming in HOL 9
1.5 Structure of this thesis . 11

2 Function definitions 13
2.1 Introduction . 13

2.1.1 Motivation . 13
2.1.2 An overview of the approach 15

2.2 The Process of Definition . 16
2.2.1 Recursive calls in a higher-order setting 16
2.2.2 Defining the graph, the function, and the domain 17
2.2.3 The relation is a function 17
2.2.4 Deriving simplification and induction rules 18
2.2.5 Simple Examples . 19

2.3 Termination Proofs . 21
2.3.1 Elementary proofs, using the definition of the domain . . 22
2.3.2 Termination proofs using relations 22
2.3.3 Simplification and induction rules revisited 23
2.3.4 Integration of automated tools 23

2.4 Nested Recursion . 23
2.4.1 A termination rule for nested recursion 25
2.4.2 Proving the nested termination rule 25

2.5 Extraction of Recursive Calls and Congruence Rules 26
2.5.1 Congruence rules . 26
2.5.2 Extracting calls . 26
2.5.3 Congruence rules and evaluation order 28

2.6 Extensions . 30
2.6.1 Default values . 30
2.6.2 Tail recursion . 31
2.6.3 Pattern matching . 31
2.6.4 Mutual recursion and currying 32

2.7 Further Examples . 32
2.7.1 Nested list reversal . 33
2.7.2 McCarthy’s 91 function 33
2.7.3 First order unification . 34

ix

x Contents

2.7.4 Depth-first search . 36
2.7.5 Pseudo-division for multivariate polynomials 37

2.8 Limitations . 37
2.8.1 Higher-order nesting . 37
2.8.2 Undefinedness does not propagate 38
2.8.3 Other forms of recursion 38

2.9 Related Work . 39

3 Termination Proofs 41
3.1 Introduction . 41

3.1.1 Termination goals . 42
3.1.2 Overview . 44

3.2 Related Work . 45
3.2.1 Termination of term rewrite systems 45
3.2.2 Size-Change Termination 49
3.2.3 Termination proofs in interactive theorem provers 51

3.3 Measure Functions . 52
3.3.1 Collecting Measure Functions 52
3.3.2 Size functions for inductive datatypes 53

3.4 Proving Local Descent . 55
3.5 Simple Termination Proofs and Lexicographic Descent 56
3.6 Control Flow: Dependency Graph Analysis 58

3.6.1 Building the Dependency Graph 58
3.6.2 Decomposition . 59
3.6.3 Trivial calls . 60

3.7 Mutual Recursion . 60
3.7.1 Avoidable exponential blowup 61
3.7.2 Unavoidable exponential blowup 61

3.8 Data Flow: Size-Change Termination with Certificates 63
3.8.1 Certificates for size-change termination? 64
3.8.2 SCNP = SCT in NP . 64
3.8.3 SAT encoding . 66
3.8.4 Proof reconstruction . 68

3.9 Implementation and Practical Considerations 72
3.9.1 Strategies . 72
3.9.2 Examples . 73
3.9.3 Evaluation . 75
3.9.4 Feedback from failure . 76

3.10 Full Size-Change Termination . 76
3.10.1 Formalization . 77
3.10.2 Reflecting size-change problems 79
3.10.3 Implementation prototype 81
3.10.4 The complete procedure 82

4 Pattern Matching 83
4.1 Introduction . 83
4.2 General Pattern Matching . 84

4.2.1 Compatibility and Completeness 86
4.2.2 Implementation using a matching combinator 87

4.3 Pattern Disambiguation and Minimization 89

Contents xi

4.3.1 Notation and Problem definition 90
4.3.2 Complexity Results . 93
4.3.3 A Minimization Algorithm 95
4.3.4 Implementation and Experiments 100
4.3.5 Discussion . 101

4.4 Related Work . 103

5 Induction Schemes 105
5.1 User-Specified Induction Rules 105
5.2 The General Format . 106

5.2.1 Proof obligations . 107
5.3 Internal Derivation . 109
5.4 Example Applications . 109

5.4.1 Huffman’s algorithm: Consistent trees 109
5.4.2 Depth-first search . 111
5.4.3 Strong nominal induction 111

5.5 Multiple Induction Predicates . 112

6 Conclusion 115
6.1 New Toys . 115
6.2 Future Work . 117

xii Contents

Chapter 1

Introduction

Contents
1.1 Contributions . 1

1.2 Interactive Theorem Proving 3

1.3 Isabelle/HOL . 5

1.4 Functional Programming in HOL 9

1.5 Structure of this thesis 11

The purpose of this thesis is to provide better infrastructure for the definition
of recursive functions in an interactive theorem prover. Such an infrastructure
is essential for the practical usability of a proof assistant, since definitions can
become very complex in nontrivial formalizations. However, recursive specifi-
cations can become inconsistent if the function is not terminating or otherwise
ill-defined.

In traditional mathematical texts, these issues are typically not treated for-
mally, and it is left to the the reader’s intuition and experience to check that
the definitions are well-formed. When working formally with an interactive the-
orem prover, such omissions are inacceptable. However, doing all the tedious
justifications by hand for every function definition is not an attractive option
either, and would severely limit the practical usability of the prover.

As a solution, we provide a tool which soundly introduces complex recursive
definitions automatically by reducing them to first principles. This approach
has been taken before [98], but our particular method solves several technical
problems that have made working with general recursive functions hard in the
past.

1.1 Contributions

In his PhD thesis [98], Konrad Slind describes a definitional specification mech-
anism for total recursive functions based on a wellfounded recursion operator.
The package is called TFL (Terminating Functional Language) and is imple-
mented for the theorem provers HOL4 [44] and Isabelle/HOL [81]. Developed
about ten years ago, it still marks the state of the art for function definition

1

2 Chapter 1. Introduction

packages in theorem provers, and the specific contributions of the present work
are best understood in comparison with TFL. We discuss other related work in
the individual chapters.

Partiality While TFL supports the definition of total functions only, we show
how to define partial functions from recursive specifications that may be
nonterminating. Such partial functions are modelled as total functions
together with a domain predicate. A special induction rule allows reason-
ing about the functions in such a way that partial correctness proofs are
orthogonal to termination proofs.

Nested Recursion As a pleasant side effect of partiality, our approach deals
nicely with nested recursive functions, which have posed serious difficul-
ties in all previous approaches, since their termination proof depends on
the proof of some partial correctness property. Since termination and par-
tial correctness are cleanly separated, all problems with nested recursion
disappear.

Pattern matching Compared to TFL, which compiles pattern matching to
nested case expressions, we propose a more flexible and expressive notion
of pattern matching, where patterns are not syntactically restricted to
datatype constructors. This supports a wider class of definitions and solves
some issues with overlapping patterns.

We also study pattern transformations that are necessary to transform se-
quential pattern matching to purely equational specifications definable in
HOL, which can sometimes lead to a large blowup in the number of equa-
tions. To avoid such an explosion where possible, we study the underlying
minimization problem. However, the results are negative: It turns out
that the explosion is unavoidable in some cases, and finding a minimal set
of patterns is computationally expensive — the problem is ΣP2 -complete.
We also give a concrete algorithm that can minimize patterns.

Automated termination proofs We develop automated methods to solve
the termination proof obligations that arise from function definitions. TFL
provides no automation here, and requires the user to provide termination
arguments manually.

Existing approaches for termination proofs of programs (in different for-
malism, e.g., term rewrite systems) must be adapted to be applicable in
our particular scenario. Our modular approach includes a rule-based se-
lection of measure functions, a simple control-flow analysis inspired by the
popular dependency-pairs approach [4], and a modified version of the size-
change principle [66] based on certificates. To our knowledge, this is the
first procedure that proves termination of a nontrivial class of recursive
functions in an LCF-style theorem prover.

User-specified induction rules We show how our tools can also be used to
derive induction rules that are given by the user instead of generated by a
package. This often drastically simplifies the proofs of custom induction
rules.

1.2. Interactive Theorem Proving 3

1.2 Interactive Theorem Proving

From the nature of formal proofs, it is apparent that the help of computers
is necessary to develop, check and maintain them, once the development has
reached a certain size.

Interactive theorem proving is based on the idea that humans and comput-
ers can best combine their respective strengths when they interact. The role
of the human is to guide the overall proof and formalize the intuitive ideas.
The role of the machine is to check the correctness of the proof under develop-
ment. Additionally, the system provides assistance of various kinds: different
forms of proof automation, decision procedures, presentation, counterexample
generation, type inference and many more.

Systems that support this mode of interaction are called interactive theorem
provers or proof assistants. Among the most widely known systems in this
category are ACL2 [60], Coq [15], HOL4 [44], HOL Light [51], Mizar [79], PVS
[85] and Isabelle [90, 81], on which this work is based.

LCF approach It is an important design principle to keep the different ac-
tivities of producing and checking formal proofs clearly separated. The LCF
approach, which first appeared in the Edinburgh LCF system [45] and is used
in most of the aforementioned systems, achieves this in a simple and effective
way: Proved theorems are implemented as an abstract datatype thm, and the
type system of the implementation language (in Isabelle: Standard ML [74])
ensures that values of this type can only be produced using a fixed set of con-
structions, each corresponding to a logical axiom or inference rule. The part of
the system that provides these interfaces is called the inference kernel, or just
the kernel of the theorem prover. It forms the trusted computing base of the
system: If its soundness is guaranteed, then the system as a whole is also sound,
as the kernel effectively checks all proofs. Using terminology from the operat-
ing systems world, this separates the code in a theorem prover into a trusted
“kernel-space” and an untrusted “user-space”.

The LCF approach is roughly equivalent to demanding that all provers must
produce proofs in some explicit form, which are checked independently. Realiz-
ing the separation within the same system, means that the actual proofs never
have to be stored explicitly (assuming proof irrelevance in the logic), although
most systems also have an explicit representation for proofs.

The most obvious advantage of the LCF approach is safety. Keeping the
soundness-critical code base small minimizes the possibility for errors in the
implementation, and thus provides a higher level of assurance that the proofs
produced by the system are correct. However, equally important is its extensi-
bility: Since any extension in user-space is preserves soundness by construction,
it may itself be entirely untrusted and still be used to construct proofs of a very
high assurance. In particular, a change to such an extension does not affect the
integrity of the kernel.

Like most of the proof automation in Isabelle, all proof procedures presented
in this thesis are implemented in user-space. Hence they may be safely used even
without trusting their author.

4 Chapter 1. Introduction

Definitional specification mechanisms While the LCF principle guarantees
that only valid conclusions can be derived from the axioms, it cannot rule out the
possibility that the axioms themselves are inconsistent, in which case anything
could be derived from them.

It is therefore generally discouraged to extend the system with arbitrary
axioms, and the preferred mode of usage is to leave the basic set of axioms
untouched and extend the theory by definitions only. For example, we may
define a new constant One :: nat by the following equation, where Suc denotes
the successor of a natural number:

One = Suc 0

Due to its special form new-name = closed-term, a definition cannot endanger
consistency — after all, it is just an abbreviation and can always be eliminated
by unfolding it. Hence, we can add definitions freely, while asserting arbitrary
axioms requires a justification.

However, the definition scheme above is quite restrictive, and one might
argue that the following are definitions as well:

(a) even 0
even n =⇒ even (Suc (Suc n))

(b) even 0 = True
even (Suc n) = odd n
odd 0 = False
odd (Suc n) = even n

(c) U x = U x + 1

The specification in (a) is an inductive definition of the predicate even. In (b)
we have an alternative definition of the same predicate, but written in functional
form, together with its companion odd. Finally, specification (c) is also recursive,
but it is not an admissible definition: If U x = U x + 1, then we may subtract
U x on both sides, and we can derive 0 = 1 — an inconsistency. The reason is
that this recursive equation has no total model, but all functions in HOL must
be total.

Instead of extending the notion of definition to include definitions of the
form (a) and (b) and carefully avoiding (c), the solution is to keep the restricted
notion of definition, and reduce more complex ones to this primitive form. For
example, the inductive definition of even can be reduced to the equation

even = lfp (λp x . x = 0 ∨ (∃n. x = Suc (Suc n) ∧ p n)),

where lfp is a least fixed-point operator on the lattice of predicates over nat. The
inductive specification given above can then be derived. Similarly, the mutual
recursive definition of even and odd can be reduced to a primitive definition.

Reducing every single definition back to the basic principles using fixed-
point theorems and recursion combinators is no less tedious than reducing all
reasoning to primitive inference steps, and it is only practical because it can be
fully automated. This automation is implemented in a definitional specification
mechanism, also called a definitional package or just package. It automates the
task of transforming a specification to a more primitive form, which is then

1.3. Isabelle/HOL 5

introduced as a definition. Then, the original specification is derived from the
primitive definition in a fully automated way.

Definitional packages take the LCF approach to the level of specifications.
As all reasoning is formally checked and the notion of definition is not ex-
tended, definitional packages are conservative by construction, and thus offer
a maximum of safety. At the same time they are convenient, as the internal
constructions are transparent to the user.

In Isabelle/HOL, definitional packages are available for defining inductive
predicates [89], inductive datatypes and primitive recursive functions [14], record
types [80], and total recursive functions (the TFL package [97, 98]). The more
recent nominal datatype package for defining data structures with binders [108,
109] is another example for this class of tools. In Chapter 2, we will develop a
package for defining a more general class of functions than previously possible.

1.3 Isabelle/HOL

Isabelle [90, 81, 115] is a generic interactive theorem prover designed to be
independent from concrete object logics. It provides a relatively weak meta-
logic, called Isabelle/Pure, which serves as a natural deduction framework that
can embed other logics.

Pure Isabelle/Pure is based on minimal higher-order logic. Types are built
from type variables (α, β, γ, . . .) and type constructor symbols of a fixed arity
written in postfix notation like in ML. The special type constructor symbol
⇒ is written infix and denotes the function space. Terms of type prop denote
propositions, which can be formed using the built-in constants

=⇒ :: prop ⇒ prop ⇒ prop (implication)∧
:: (α ⇒ prop) ⇒ prop (universal quantification)

≡ :: α ⇒ α ⇒ prop (equality)

Specific object logics are embedded into the meta-logic by declaring their connec-
tives as constants, and their characteristic axioms and inference rules as axioms
in Pure. For example, the natural deduction rule for disjunction elimination

P ∨ Q

[P]
...
R

[Q]
...
R

R

is represented in Isabelle/Pure as

P ∨ Q =⇒ (P =⇒ R) =⇒ (Q =⇒ R) =⇒ R

Thus, the rules of the object logic become theorems of the meta-logic.
In this thesis, we use the terms rule and theorem synonymously, and we

sometimes write the outermost implication in inference rule notation when it
improves readability.

6 Chapter 1. Introduction

Tactics and structured proofs Intuitively, tactics are proof procedures that
operate on goals. They are composable from smaller tactics and range from
single rule applications to full-blown automated reasoning procedures. Thus,
goal-oriented proofs work backwards by first stating a goal and then repeatedly
applying tactics until no more subgoals are left.

User-level proofs are written in the structured proof language Isar [114], a
declarative formalism for managing contexts and the flow of facts. Isar only pro-
vides the abstract notation for structuring proofs, while most of the the actual
reasoning is done by proof methods, which are invoked in the text. Simplifying
a little, methods can be seen as tactics that are available at the Isar level. Com-
monly used methods are simp (simplification), blast (a classical prover based on
tableaux), and auto (which tries to combine classical reasoning with rewriting
and some arithmetic). The special-purpose proof procedures we develop in this
thesis are made available to the user as methods.

When we give examples for user-level proofs, they are written in Isar. Since
that language was designed to be human-readable and has a terminology that
is close enough to common mathematical notation, we hope that readers unfa-
miliar with it are nevertheless able to read the proofs and follow their structure,
even without further introduction.

We will frequently use the notion of context. For us, a context is a set of
variables and assumptions that are present locally, and captures how structured
statements are decomposed. For example, the proposition

∧
a b c. P =⇒ Q =⇒

R corresponds to a context Γ =
∧

a b c. P ; Q and a conclusion R. Conversely,
we write Γ =⇒ R for the above proposition. By abuse of notation, Γ may bind
variables in R.

HOL: Basic logic Isabelle/HOL is the most widely used and best developed
object-logic of Isabelle. It provides classical higher-order logic, based on Church’s
simple theory of types [29]. Apart from the support for type classes and over-
loading [113], Isabelle/HOL is compatible with the other major implementations
of higher-order logic, namely HOL4 [44] and HOL Light [51]. Its semantics is
given by a mapping into ZFC set theory [44].

The type bool is used for object-level propositions, with the object-level
connectives ∧, ∨, −→, ∀ , ∃ , etc. Booleans are coerced to meta-level propositions
using the embedding Trueprop :: bool ⇒ prop, which is usually hidden by the
syntax layer. Object level equality is denoted by = :: α ⇒ α ⇒ bool.

HOL provides two choice operators: The definite description operator THE
:: (α⇒ bool)⇒ α works as a binder and is axiomatized as (THE x . x = a) = a.
Hilbert’s choice operator SOME is stronger, as it does not require the description
to be unique. It is axiomatized by P a =⇒ P (SOME x . P x). We will not
use the latter operator, but the former plays an important role when turning a
relation into a function.

Since HOL is embedded into Pure and both languages have their own set of
logical connectives (

∧
, =⇒, ≡ vs. ∀ , −→, =), new users are often confused

about when to use which. Fortunately, the intricacies arising from the differences
between object- and meta-logic are irrelevant for this work, and the reader is
invited to ignore the diffences between the two levels. All the methods that we
develop work equally well in a system that has just one level of logic.

1.3. Isabelle/HOL 7

Inductive predicates and datatypes The inductive package [89] automates the
definition of inductive predicates using the Knaster-Tarski fixed-point theorem.
It provides the appropriate introduction, elimination, and induction rules. ML-
style inductive datatypes are implemented by the datatype package [14], which
also provides a combinator for primitive recursion over each newly-defined type.
Many basic types like list are defined like this, and others like nat are char-
acterized as datatypes a posteriori, which makes the datatype infrastructure
available for them, too.

Products and Sums The types of products α × β and sums α + β are so com-
mon that they deserve special mentioning. Values of product type are pairs,
written in pair notation (x , y). Arbitrary tuples are represented by nested
products, which has the odd side effect that (x , (y , z)) and (x , y , z) are indis-
tinguishable.

Sum types denote disjoint unions, with the injections Inl :: α ⇒ α + β and
Inr :: β ⇒ α + β. Case distinction over sums is expressed using the eliminator

sum-case :: (α ⇒ γ) ⇒ (β ⇒ γ) ⇒ α + β ⇒ γ

which satisfies the equations

sum-case f g (Inl a) = f a
sum-case f g (Inr b) = g b

Sets and Relations In the typed set theory of HOL, the type α set is just an
abbreviation for the predicate type α ⇒ bool, and hence x ∈ S is equivalent to
S x, and {x . P x} is equivalent to P. Isabelle provides standard set-theoretic
notation, which requires no further introduction. However, we should mention
the syntax for general set comprehensions

{f x y |x y . P x y}

which corresponds to standard mathematical notation, except that the variables
x and y are explicitly bound after the vertical bar. Internally, this notation
expands to

{u. ∃ x y . u = f x y ∧ P x y} .

Relations are represented as sets of pairs, and the composition of two rela-
tions is defined as follows:

R ◦ S = {(x , z). ∃ y . (x , y) ∈ S ∧ (y , z) ∈ R}

The argument order arises from the analogy to function composition. It looks
counterintuitive at first, and the literature (especially in term rewriting) often
uses the opposite argument order. However, we adopt the definition above,
which is present in the Isabelle library.

Wellfoundedness A relation is wellfounded if it satisfies the principle of well-
founded induction:

wf R =
(∀P . (∀ x . (∀ y . (y , x) ∈ R −→ P y) −→ P x) −→ (∀ x . P x))

8 Chapter 1. Introduction

An alternative characterization is that every nonempty set has a minimal ele-
ment:

wf R = (∀Q x . x ∈ Q −→ (∃ z∈Q . ∀ y . (y , z) ∈ R −→ y /∈ Q))

The most important property of a wellfounded relation is the wellfounded in-
duction rule, which will be the basis of the function definitions in chapter 2:

wf r
∧

x . (
∧

y . (y , x) ∈ r =⇒ P y) =⇒ P x

P a

Since wellfounded relations are a critical ingredient for the function defini-
tions and termination proofs, we briefly mention some basic construction prin-
ciples for them. First of all, the empty relation is wellfounded, and wellfound-
edness is preserved by subsets:

wf ∅
wf R =⇒ S ⊆ R =⇒ wf S

We can construct new wellfounded relations by taking the inverse image of an
arbitrary mapping into some wellfounded relation:

inv-image R f = {(x , y). (f x , f y) ∈ R}
wf R =⇒ wf (inv-image R f)

An important instance of this construction is given by the measure combinator,
which takes the inverse image of the standard order on natural numbers:

measure :: (α ⇒ nat) ⇒ (α × α) set
measure = inv-image {(x , y). x < y}

Wellfoundedness is not preserved by arbitrary unions, as we can easily see
from the simple example {(0 , 1)} ∪ {(1 , 0)}. However, under some conditions
we may conclude that the union of two wellfounded relations is wellfounded.
The following property will be very important for termination proofs:

Lemma 1.1 (Union Lemma). wf R =⇒ wf S =⇒ S ◦ R ⊆ R =⇒ wf (R ∪ S)

Another important lemma also describes the interaction beween wellfounded-
ness, union and composition:

Lemma 1.2 (Composition Lemma). wf (R ∪ S) = wf (R ◦ R ∪ R ◦ S ∪ S)

In particular, note the following consequence of this lemma (with S 6= ∅):

Lemma 1.3 (Self Composition Lemma). wf R = wf (R ◦ R)

Reduction Pairs Our definition of wellfoundedness deals with strict relations
≺. Sometimes we must also talk about their weak counterparts �, which are
sometimes, but not always, the reflexive closure of ≺. Clearly, � cannot be
wellfounded in our sense, as it is usually reflexive. The relevant property is that
� is compatible with ≺ in the sense that � ◦ ≺ ⊆ ≺ holds. This is formalized
in the notion of a reduction pair:

reduction-pair (R, S) = (wf R ∧ S ◦ R ⊆ R)

1.4. Functional Programming in HOL 9

Inverse images preserve this property, so we can build new reduction pairs using
inverse images and measures:

rp-inv-image (R, S) f = (inv-image R f , inv-image S f)
reduction-pair (R, S) =⇒ reduction-pair (rp-inv-image (R, S) f)
measure-rp = rp-inv-image ({(x , y). x < y}, {(x , y). x ≤ y})

Lists and Multisets Lists are defined as an inductive datatype with the con-
structors Nil ([]) and Cons (:). The function set :: α list ⇒ α set forms the set
of the elements of a list. The type α multiset formalizes finite multisets, which
we write as {| x , y , z |}. Multiset union is denoted by +. The function set-of ::
α multiset ⇒ α set converts multisets into sets.

1.4 Functional Programming in HOL

The similarities of higher-order logic and functional programming become evi-
dent when we look at the definition of a recursive function, such as list reversal:

rev :: α list ⇒ α list

rev [] = []
rev (x :xs) = rev xs @ [x]

This HOL definition is identical to the corresponding Haskell program, except
for a minor syntactic variation: List concatenation is written @ instead of ++.

Likewise, datatype definitions are very similar in both worlds, and the type
system of HOL, ML, and Haskell are based on the same foundations. Isabelle
also has a notion of type classes [113] that has recently been extended to match
Haskell type classes more closely [49].

Exploiting these similarities, Isabelle provides a code generator that trans-
lates HOL specifications to functional programs in one out of several supported
target languages (currently SML, Haskell and OCaml are supported). The code
generator was developed by Haftmann [48], extending earlier work by Berghofer
[13].

This suggests a simple approach to verifying functional programs by repre-
senting them directly as recursively defined HOL functions. The properties of
interest can then be proved in Isabelle, and code generation turns the specifica-
tion into an executable program. As sloganized by Nipkow [81]:

HOL = Functional Programming + Logic.

However, despite the striking similarities on the surface, functional programs
and HOL specifications are fundamentally different in some important aspects.

Operational semantics: Evaluation The operational semantics of a functional
language is typically expressed as an evaluation relation→P , which defines how
terms are evaluated in the context of a program P . This relation specifies the
order of evaluation (strict or lazy) and defines the operational meaning of the
language primitives. There is no such operational semantics for higher-order
logic, other than the β-reduction of the underlying lambda-calculus, which is
far too restricted to be called a programming language.

10 Chapter 1. Introduction

What comes closest to evaluation in HOL is equational rewriting, also known
as simplification. Given a set of equations, Isabelle’s simplifier rewrites a term
s repeatedly, until a normal form t is reached, which produces a proof of s =
t. Unlike in functional languages, this form of simplification can rewrite with
equations of arbitrary origin and form, as opposed to just using the defining
equations, which have a restricted form. For example, the associativity law (a
+ b) + c = a + (b + c) cannot be used as a defining equation in a functional
program, but poses no problems to the simplifier.

Logically, the code generation facilities described above are nothing more
than a variation of simplification that is less general but faster, as it uses the
programming language implementation as a reduction engine. This evaluation
mechanism is sound in the sense that any evaluation in the target language
corresponds to a chain of rewriting steps in HOL [48].

Note that the generated code is evaluated with the evaluation strategy of
the target language. This means that the same HOL term may exhibit very
different behaviour depending on the target language. For example, if ack is
the Ackermann function and take n xs extracts the first n elements from a list xs,
the term take 2 (map (λn. ack n n) [1 , 2 , 15]) will quickly yield a result when
evaluated in Haskell, while ML will get lost in the evaluation of ack 15 15, which
is not needed for the result. We can also construct examples that terminate
under lazy evaluation and run forever when evaluated strictly. Since evaluating
with different strategies may lead to different termination behaviour, there is
no fixed notion of termination in higher-order logic. This will be particularly
important in Chapter 3.

Denotational Semantics: Function spaces In the standard model, the HOL
function type σ ⇒ τ includes all total functions from σ to τ in the set-theoretic
sense. Excluding partial functions ensures that f x is meaningful for any x. As
there is no built-in notion of undefinedness, partiality must be modelled ex-
plicitly. This can be done using relations instead of functions, option types or
underspecification, which we discuss below. A survey of the modelling tech-
niques for partiality in logics of total functions is given by Müller and Slind
[78].

Denotational semantics for functional languages is commonly described using
notions from domain theory [2]. Here, terms denote values of domains, which
are complete partial orders (cpos), where the ordering relation v intuitively
means “less defined or equal to”. The least element ⊥ denotes a diverging
computation.

In domain theory the function space σ → τ denotes the type of continuous
functions between the domains of σ and τ . A model of a recursive definition is
then given as a least solution of a fixed-point equation.

For example, the recursive SML definition

fun f (n : int) = (if n = 3 then 1 else f (n + 1))

denotes the least fixedpoint of the functional F, defined as F f x = (if n = 3
then 1 else f (n + 1)), which results in the function

f(n) =

{
3 if n ≤ 3
⊥ otherwise.

1.5. Structure of this thesis 11

There is no equivalent HOL function, since there exists no value ⊥ :: int other
than the integers, unless a flat domain is modelled explicitly, as it is done in
HOLCF [77]. However, this particular fixed-point equation has other solutions,
as we shall see below.

Modelling Partiality by Underspecification Underspecification means to re-
place a partial function by an arbitrary total completion. We can model the
partial function f above by introducing an unspecified constant u :: int. Such
an unspecified value is always safe to introduce, and we can use it to define f
by f n = (if n ≤ 3 then 3 else u). Now we can prove that this function satis-
fies the recursive equation above, but it is still underspecified, since we cannot
determine the value of f 4 from the specification. In fact, f stands for a whole
class of functions.

Underspecification can be a convenient device for handling partiality, but
the unspecified value u that we introduced does not always behave like ⊥: For
example, in order to show that f 3 is defined, we might like to show that f 3
6= u. However, since u is unspecified, it may well be equal to 3, and thus this
statement is unprovable.

The discussion above may lead to the impression that HOL is strictly less
expressive than functional languages, due to the lack of partial functions. How-
ever we can also express things in HOL that cannot be written in functional
languages, since they are not programs. One of the shortest examples is prob-
ably the following function, where xs[i] denotes the i -th element of list xs, and
concat denotes concatenation of a list of lists:

pcp xs ys =
(∃ is. is 6= [] ∧

concat (map (λi . xs[i]) is) = concat (map (λi . ys[i]) is))

The function describes Post’s Correspondance Problem, which is undecidable.

1.5 Structure of this thesis

Although all research presented in this thesis is driven by just one goal —
improving the tool support for function definitions — the three main chapters
are essentially independent. They cover three main aspects of the problem:
constructing functions (ch. 2), proving their termination (ch. 3), and handling
pattern matching (ch. 4). The tools and ideas developed there are then used to
build another tool (ch. 5), which is not directly related to function definitions,
but targets the automatic derivation of induction schemes.

To economize on the reader’s cognitive stack space, each of the main chapters
comes with its own introduction and discussion of related work.

One last warning This presentation does not always show our tools in exactly
the same way as they were implemented. Rather, it describes a certain idealized
state, to which the implementation should eventually converge. Reality is always
different, and readers who intend to work with the implementation on a level
below the standard user interface should be aware of this. Nevertheless, all
presented methods are real, and the differences to the implementation are only
minor.

12 Chapter 1. Introduction

Chapter 2

Function definitions

Contents
2.1 Introduction . 13

2.2 The Process of Definition 16

2.3 Termination Proofs 21

2.4 Nested Recursion 23

2.5 Extraction of Recursive Calls and Congruence Rules 26

2.6 Extensions . 30

2.7 Further Examples 32

2.8 Limitations . 37

2.9 Related Work . 39

2.1 Introduction

In this chapter, we describe the foundations and mechanics of a definition prin-
ciple for partial recursive functions in Isabelle/HOL. From a recursive specifica-
tion, our package defines a partial function (modeled as an underspecified total
function), together with a set describing the function’s domain. On the domain,
the defined function coincides with the specification. The provided proof rules
allow convenient reasoning about such partial functions, as is common practice
for total functions [81].

As a pleasant side effect of handling partiality, our approach naturally sup-
ports nested recursive definitions, which have posed technical problems for a
long time [99, 64]. Most of these difficulties disappear entirely in our setting,
since the explicit domain cleanly separates partial correctness from termination
properties.

2.1.1 Motivation

Partiality

As an example of a partial recursive function, we define an interpreter for a
minimalistic imperative language. Such an interpreter must be partial, since the
interpreted program might loop and this non-termination cannot be detected.

13

14 Chapter 2. Function definitions

However we would expect to be able to prove termination for certain classes of
programs — for example, the class of all programs without while loops.

The language is modelled in a straightforward manner. Variable names and
values are simply natural numbers, and environments map variables to values.
For simplicitly, a shallow embedding is used for expressions, instead of modeling
their syntax. They are just mappings from environments to values:

types
var = nat
val = nat
env = var ⇒ val
exp = env ⇒ val

The datatype of commands is defined as follows:

datatype com =
Assign var exp
| Seq com com
| If exp com com
| For exp com
| While exp com

The execution of a command yields a transformation on the environment. In
the equations below, f (x := y) denotes function update, and fun-pow denotes
function exponentiation.

exec :: com ⇒ env ⇒ env

exec (Assign v exp) e = e(v := exp e)
exec (Seq c1 c2) e = exec c2 (exec c1 e)
exec (If exp c1 c2) e = if exp e 6= 0 then exec c1 e else exec c2 e
exec (For exp c) e = fun-pow (exp e) (exec c) e
exec (While exp c) e = if exp e = 0 then exec (While exp c) (exec c e) else e

In Isabelle 2005 and earlier, the definition of exec cannot be made. The attempt
leads to an unsolvable termination proof obligation.

As a workaround, we can always extend a partial function to a total one: If
we know that the function terminates under certain conditions, this check can
be added to the function body, returning a dummy value if the check fails:

f x = (if 〈guard〉 then 〈body〉 else dummy)

Then f can be defined as a total function. But this is unsatisfactory as a general
method for two reasons:

First, the termination guard must be known at definition time. If it turns
out later that this condition was too restrictive, we must change the definition
of the function. Restricting the definition of our interpreter to a certain subclass
of terminating programs (e.g., programs without while loops) is certainly inade-
quate. So we would have to find a condition that covers all possible terminating
programs, which is at least not obvious, and certainly not always executable.

Second, the workaround changes the body of the function. Introducing the
termination guard, which is alien to the functional specification, is inelegant

2.1. Introduction 15

and may cause difficulties when executable code is to be extracted from the
definition at a later stage.

In contrast, our package allows to define exec as a partial function and later
prove its termination on the values we need.

Nested recursion

Functions with nested recursive calls are notoriously difficult to define and rea-
son about. The central problem is that the termination proof for such functions
requires some reasoning about partial correctness properties beforehand.

As a classic example, consider the following definition of the constant zero
function on natural numbers:

Z n = (if n = 0 then 0 else Z (Z (n − 1)))

For the termination of the outer call, we would usually prove that n 6= 0 =⇒
Z (n − 1) < n. Since the function always returns zero, this is certainly true,
but seems difficult to prove before the function is “properly” defined. We can
identify two problems here:

1. If the system requires the termination proof to be conducted before the
function symbol Z is even introduced in the logic, it is difficult to support
nested recursion, since the termination goal can not even be stated. Defini-
tional packages do not have this problem, since definitions are transformed
into a non-recursive form and can be introduced into the logic immedi-
ately without proof. The challenge is then to derive the desired properties
afterwards.

2. After stating the termination goal, we need to prove it, and this requires
reasoning principles for the function. But the main tool, namely functional
induction, is usually not available at that point, since it depends on the
termination of the function. We solve this by making a restricted version
of functional induction available from the very beginning. Using that rule,
proofs for partial correctness properties are simple and natural.

2.1.2 An overview of the approach

Starting from the specification of a function f, the package inductively defines
its graph Gf and its domain domf , following the recursive structure of the
definition. Using the definite description operator, the graph is turned into a
total function f, which models the specified partial function on the domain.

Then the package proves that Gf actually describes a function on domf , i.e.
that function values exist and are unique. Then it automatically derives the
original recursion equations and an induction rule. The rules are constrained by
premises of the form t ∈ domf , that is, they describe the function’s behaviour
on its domain only. Despite these constraints, they allow convenient reason-
ing about the function, even before its termination is established. To support
natural termination proofs, the package provides a special termination rule, in
addition to the domain rules.

16 Chapter 2. Function definitions

2.2 The Process of Definition

This section describes the definitional core of the package. We ignore extra fea-
tures like pattern matching, currying and mutual recursion for now and restrict
our attention to the essential ingredients. Extensions will be discussed in §2.6.

We start with the recursive specification given as input by the user as a fixed
point equation of a functional F, which he would like to get back as a theorem
in the end:

f x = F f x

2.2.1 Recursive calls in a higher-order setting

First of all, we need to analyze the definition and extract the recursive calls.
A recursive call can be written [Γ ; r], where r is the argument of the call,

and Γ is a context that specifies when the call occurs. In general, Γ can contain
both bound variables and assumptions.

For example, the definition

f n = (if n = 0 then 0 else f (n − 1))

has a recursive call [n 6= 0 ; n − 1].
If we have higher-order recursion, the case becomes more complicated. Con-

sider a datatype of n-ary trees:

datatype α tree = Node α (α tree list)

We can define a function mirror :: α tree ⇒ α tree as follows:

mirror (Node a ts) = Node a (map mirror (rev ts))

Here, mirror is passed as an argument to map, so we do not see immediately
what the argument of the recursive call is. The answer is that the call can be
described by [

∧
x . x∈set (rev ts) ; x]. This means that calls may occur at any

element of the list rev ts. Of course, some knowledge about map is required to
come up with this description of the recursive call.

For the extraction of recursive calls, we use a procedure due to Slind [97, 98],
which employs congruence rules to deal with higher-order recursion. The details
of this extraction process are not relevant for the understanding the rest of the
package, and we defer the description of the algorithm to §2.5. For the moment,
we care only about the property that the recursive calls must satisfy:

Definition 2.1 (Congruence Condition). For a functional F and the recursive
calls [Γ1 ; r1], . . . , [Γk ; rk], the congruence condition is the implication

(Γ1 =⇒ f r1 = f ′ r1) =⇒
. . . =⇒ (Γk =⇒ f rk = f ′ rk) =⇒ F f x = F f ′ x .

Intuitively, this condition states that it is enough to know how a function f
behaves at the recursive calls in order to compute F f x. The values of f on all
other inputs do not influence the result. So we assume for now that we have a
procedure to extract calls from the recursive equation, such that the congruence
condition holds.

The congruence condition is always trivially satisfied by the single recursive
call [

∧
x . ; x], where it degenerates into the vacuous

2.2. The Process of Definition 17

(
∧

x . f x = f ′ x) =⇒ F f x = F f ′ x.

We could actually define any function from this, but it would be of little use:
As we will see, the set of recursive calls also determines the definition of the
domain of the function. In this case, the domain would always be empty.

2.2.2 Defining the graph, the function, and the domain

From the functional specification, we generate the inductive definition of a re-
lation Gf , which represents the graph of the function. Assume that we have
extracted the recursive calls [Γ1 ; r1], . . . , [Γk ; rk]. The relation Gf is then
defined inductively by the following rule:

(Γ[h/f]
1 =⇒ (r[h/f]

1 , h(r[h/f]
1)) ∈ Gf) . . . (Γ[h/f]

k =⇒ (r[h/f]
k , h(r[h/f]

k)) ∈ Gf)
(x , F h x) ∈ Gf

(GI)

In Γ[h/f] etc., the function variable h is substituted for the function symbol f .
Intuitively, we add the pair (x , F h x) to Gf for a fresh function variable h.
The premises express that h coincides with Gf on all recursive calls.

Compared with a naive relational description, which would invent a new
variable for the result of each recursive call, we use a single function variable
h, which is constrained to the graph on all recursive calls. Inventing separate
variables for the recursive calls would require additional bookkeeping and lead
to problems with higher-order recursion.

After introducing Gf using the package for inductive definitions, we can
already define the function f itself, using HOL’s definite description operator:

f = (λx . THE y . (x , y) ∈ Gf)

We now have the definition, but it is not yet usable. We need to prove that
it actually satisfies the specification. An important reasoning tool will be the
domain of the function. It is defined inductively, too:

Γ1 =⇒ r1 ∈ domf . . . Γk =⇒ rk ∈ domf

x ∈ domf

(domf -intro)

This definition is structurally similar to the definition of Gf , but it is simpler,
since it only talks about the function arguments, not the values. Also note that
the function variable h is not used here, since f is already defined at this point.
(Recall that in the case of nested recursion, some of the recursive calls may
mention f.)

2.2.3 The relation is a function

We now have to show that the relation Gf describes a function on domf :

x ∈ domf =⇒ ∃ !y . (x , y) ∈ Gf

The proof of this property is performed automatically for each definition. The
following proof sketch illustrates the structure of the derivation:

18 Chapter 2. Function definitions

We use induction on domf . For some fixed x ∈ dom, the induction hypothe-
sis ensures that the property holds on all recursive calls. Splitting into existence
and uniqueness, and using the fact that the unique value is denoted by f, we get
for each recursive call [Γi ; r i]:

Γi =⇒ (r i, f r i) ∈ Gf (ihyp-ex i)∧
z . Γi =⇒ (r i, z) ∈ Gf =⇒ z = f r i (ihyp-uni)

Now, the ihyp-ex i are exactly the premises the introduction rule for G. Hence
we get the existence part (x , F f x) ∈ G.

For the uniqueness part, we must show that this is the only possible value
of the function. We assume another y with (x , y) ∈ G. By inversion on G we
know that y = F h x for some h, and that h follows G on the recursive calls.
Hence we get Γi =⇒ h r i = f r i for each recursive call. It remains to apply the
congruence property and conclude that F f x = F h x, which proves uniqueness.

2.2.4 Deriving simplification and induction rules

Having established that function values exist and are unique on the domain, we
prove the original recursion equation and an induction rule. The equation is
just as given in the original specification, but guarded by a domain condition:

x ∈ domf =⇒ f x = F f x

Deriving the recursion equation is now simple: From uniqueness we know that
(x , y) ∈ Gf implies f x = y, and we have already proved the required relation
in the existence part of the previous proof. We can reuse it after lifting it out
of the induction context, which is technical but straightforward.

The partial induction rule follows the structure of the recursion: In each
case, the property may be assumed on the arguments of the recursive calls, but
the final inductive result is restricted to domf :∧

x . x ∈ domf =⇒ (Γ1 =⇒ P r1) =⇒ . . .

=⇒ (Γk =⇒ P rk) =⇒ P x

a ∈ domf =⇒ P a
(pinductf)

This rule is very similar to the induction principle that comes with domf,
which looks like this:∧

x . (Γ1 =⇒ r1 ∈ domf) =⇒ (Γ1 =⇒ P r1) =⇒ . . .

=⇒ (Γk =⇒ rk ∈ domf) =⇒ (Γk =⇒ P rk) =⇒ P x

a ∈ domf =⇒ P a
(domf -induct)

The first rule is easily derived from the second, but it is better suited for
automation, since the premise x ∈ domf is useful to unfold a call f x, which
would normally occur in an actual induction.

The induction rule typically does not mention the function f. In a concrete
induction, the function usually occurs in the instantiation of P. However, when
the recursion is nested, then the function already appears in the induction rule,
in some of the Γi or r i.

2.2. The Process of Definition 19

With the proof of the partial simplification and induction rules, the actual
definition process is completed: The rules provide adequate means for reasoning
about the function. In particular, we can now establish the properties we might
need for a termination proof. We will see in §2.4 that this is very useful when
dealing with nested recursion.

2.2.5 Simple Examples

The following simple examples illustrate the behaviour of the package. For each
function, we give the extraced recursive calls, the definitions of the graph and
the domain, and the generated simplification and induction rules.

The Fibonacci function

Recursive equation:

fib n = (if n ≤ 1 then n else fib (n − 1) + fib (n − 2))

Extracted calls:

[¬ n ≤ 1 ; n − 1], [¬ n ≤ 1 ; n − 2]

Graph:

¬ n ≤ 1 =⇒ (n − 1 , h (n − 1)) ∈ Gfib
¬ n ≤ 1 =⇒ (n − 2 , h (n − 2)) ∈ Gfib

(n, if n ≤ 1 then n else h (n − 1) + h (n − 2)) ∈ Gfib

Domain:

¬ n ≤ 1 =⇒ n − 1 ∈ domfib ¬ n ≤ 1 =⇒ n − 2 ∈ domfib

n ∈ domfib

Simplification and induction rules:

n ∈ domfib =⇒
fib n = (if n ≤ 1 then n else fib (n − 1) + fib (n − 2))∧

n. n ∈ domfib =⇒
(¬ n ≤ 1 =⇒ P (n − 1)) =⇒
(¬ n ≤ 1 =⇒ P (n − 2)) =⇒ P n

a ∈ domfib =⇒ P a

Nested zero

We now define the nested zero function from §2.1.1. Observe that the nested
recursion does not make our definitions circular. The definition of domZ below
may refer to Z, which is already defined.

Recursive equation:

Z n = (if n = 0 then 0 else Z (Z (n − 1)))

20 Chapter 2. Function definitions

Extracted calls:

[n 6= 0 ; n − 1], [n 6= 0 ; Z (n − 1)]

Graph:

n 6= 0 =⇒ (n − 1 , h (n − 1)) ∈ GZ
n 6= 0 =⇒ (h (n − 1), h (h (n − 1))) ∈ GZ

(n, if n = 0 then 0 else h (h (n − 1))) ∈ GZ

Domain:

n 6= 0 =⇒ n − 1 ∈ domZ n 6= 0 =⇒ Z (n − 1) ∈ domZ

n ∈ domZ

Simplification and induction rules:

n ∈ domZ =⇒ Z n = (if n = 0 then 0 else Z (Z (n − 1)))∧
n. n ∈ domZ =⇒

(n 6= 0 =⇒ P (n − 1)) =⇒
(n 6= 0 =⇒ P (Z (n − 1))) =⇒ P n

a ∈ domZ =⇒ P a

The partial function findzero

The function findzero (f , n) returns the smallest value n ′ ≥ n such that f n ′ =
0. If no such value exists, the function diverges.

Recursive equation:

findzero (f , n) = (if f n = 0 then n else findzero (f , Suc n))

Extracted calls:

[f n 6= 0 ; (f , Suc n)]

Graph:

f n 6= 0 =⇒ ((f , Suc n), h (f , Suc n)) ∈ G fz

((f , n), if f n = 0 then n else h (f , Suc n)) ∈ G fz

Domain:

f n 6= 0 =⇒ (f , Suc n) ∈ domfz

(f , n) ∈ domfz

Simplification and induction rules:

(f , n) ∈ domfz =⇒
findzero (f , n) = (if f n = 0 then n else findzero (f , Suc n))∧

f n. (f , n) ∈ domfz =⇒ (f n 6= 0 =⇒ P (f , Suc n)) =⇒ P (f , n)

(f ′, n ′) ∈ domfz =⇒ P (f ′, n ′)

2.3. Termination Proofs 21

The function that is always undefined

The package even lets us define the function that never terminates. However,
the results are not very interesting:

Recursive equation:

U x = U x + 1

Extracted calls:

[; x]

Graph:

(x , h x) ∈ GU

(x , h x + 1) ∈ GU

Domain:

n ∈ domU

n ∈ domU

Simplification and induction rules:

x ∈ domU =⇒ U x = U x + 1∧
x . x ∈ domU =⇒ P x =⇒ P x

a ∈ domU =⇒ P a

Both the graph and the domain are just the empty set, and hence the simpli-
fication and induction rules are just instances of ex falso quodlibet. The incon-
sistency of the equation U x = U x + 1 is avoided by the precondition x ∈
domU .

2.3 Termination Proofs

All results obtained from the partial simplification and induction rules will con-
tain domain conditions of the form t ∈ domf . It is thus desirable to prove more
about domf , which is the objective of a termination proof. Often, our goal will
be to show that a function is total, that is, any value is element of domf . For
partial functions, we will usually be interested in a certain subset.

While the definition process we saw above is fully automated and works
for any function definition, we cannot expect such complete automation for
termination proofs, since termination is undecidable.

Our primary goal here is to provide a clear and simple interface for integrat-
ing automated tools without requiring a deep knowledge of the inner workings
of the function package. Moreover, since automated tools can always fail, we
also need to provide a simple interface to the user, who may need to perform
the termination proof interactively. TFL did not provide such an interface,
which required artificial workarounds when the termination proof required user
intervention.

22 Chapter 2. Function definitions

2.3.1 Elementary proofs, using the definition of the domain

The definition of the domain that we gave in the previous section is already a
very natural description of the termination behaviour of the function. It is not
hard to do a termination proof with just the domain introduction rule and a
suitable induction principle.

For example, we can show that fib is total by simple complete induction,
using the domain introduction rules. Here is a detailed manual proof in Isar:

lemma fib-terminates: n ∈ fib-dom
proof (induct n rule: less-induct) — Induction over the natural numbers

fix n assume IH :
∧

m. m < n =⇒ m ∈ fib-dom

show n ∈ fib-dom
by (rule fib-dom.intros) (auto intro: IH)

qed

2.3.2 Termination proofs using relations

The standard technique for proving that a function is total, is to provide a
wellfounded relation R and show that all recursive calls are decreasing w.r.t.
R. In previous approaches, the specified relation was also used for the actual
function definition. Although our definition principle does not require user-
specified relations, we can still support them as a way to prove termination.
This is acomplished by the following rule, provided by our package for fib:

wf R∧
n. ¬ n ≤ 1 =⇒ (n − 1 , n) ∈ R

∧
n. ¬ n ≤ 1 =⇒ (n − 2 , n) ∈ R

∀ x . x ∈ domfib

With this rule, a termination proof can be done by giving a wellfounded
relation and a proof that every recursive call is decreasing. Of course, this is
just what is going on in the induction proof above, but here the induction is
implicit in the relation R. This makes it easier to automate the proof, as the
decrease conditions are often inequalities that are relatively easy to show once
a suitable relation is found.

Here is the general form of this rule, which we call the termination rule:

wf R
∧

x . Γ1 =⇒ (r1, x) ∈ R . . .
∧

x . Γk =⇒ (rk, x) ∈ R

∀ x . x ∈ domf

The proof of the termination rule is just a wellfounded induction over R,
performed automatically for each function definition.

The user usually applies the termination rule indirectly via a custom method
called relation, which instantiates the rule with a user-specified relation. Proving
the resulting inequalities is a one-liner if the function is as simple as fib. To
establish its termination using the relation less-than = {(x , y). x < y}, the
user just writes

termination fib — set up termination goal
by (relation less-than) auto — prove it

2.4. Nested Recursion 23

2.3.3 Simplification and induction rules revisited

When we have proved that the function is total, the domain conditions in the
recursive equation and induction rule become obsolete, once the termination
proof is finished. It is now easy to project them away, and we obtain what
we call the total recursive equations and the total induction rule. These rules
become the primary tools for reasoning about the function.

For partial functions, we can replace the abstract domain domf by a concrete
set D, for which we have proved termination. Note that in order to replace domf

in the premises of the induction rule, we must also show that D is downward
closed under R, since the induction principle is only valid if calls on elements of
D only recurse on elements of D.1 In practice, this is often simple. For partial
functions it is however often easier to derive the right induction rule directly
using the method that will be describen in Chapter 5.

2.3.4 Integration of automated tools

Since proving termination of a function is just like proving a lemma, we have a
clear interface for integrating automated termination provers. What we require
is just a tactic that is able to solve goals of a certain form, given by the premises
of the termination rule. In chapter 3, we will show that it is indeed possible to
implement nontrivial termination provers as tactics.

2.4 Nested Recursion

Nested recursive definitions have recursive calls that depend on the results of
other recursive calls. Thus, we usually need to prove some property about the
behviour of the function before we can establish its termination. Here we are
facing an apparent circularity, since the induction rule that we would like to use
depends on termination.

Slind’s TFL provides a “provisional induction rule” [99] to solve nested ter-
mination goals. This rule is basically a severely mangled functional induction
rule, where the unsolved termination conditions become part of the function
body. With TFL’s second definition principle, relationless definition, this be-
comes even more difficult. The provisional induction rule can help with termi-
nation proofs, but this is often quite inelegant due to the structure of the rule.
Slind already observes these shortcomings [99]:

We regard our results on relationless definition of nested recursion
as only partly satisfactory. The specified recursion equations and
induction theorems are automatically derived, which is good; how-
ever, the termination proof using the provisional induction theorem
and recursion equations for the auxiliary function is usually clumsy
and hard to explain.

1For example, we cannot use the set of even numbers in our Fibonacci example. Although
the function does terminate on all even numbers, the modified induction principle would be
invalid.

24 Chapter 2. Function definitions

As an alternative approach, Krstić and Matthews [64] propose the notion of
inductive invariants to describe properties of a function f in terms of an input-
output relation, without the need to explicitly mention f. They show how such
an inductive invariant can be used to prove f ’s termination.

But this comes at a high cost, since establishing an inductive invariant is
comparatively hard: The proof of an inductive invariant corresponds to a well-
founded induction, and to be able to apply the induction hypothesis, we must
show that the arguments in the inner recursive calls are decreasing. This means
that we must anticipate parts of the termination proof to establish the inductive
invariant.

Instead, we would like to be able to use functional induction, which is gen-
erally simpler2. Giesl [41] shows that this approach is sound: We may prove
lemmas by functional induction and then use them (in a certain way) in the
termination proof of the same function. The argument is that anything proved
by functional induction is “partially true”, i.e., it holds for all values for which
the function terminates. Then, a close look reveals that at the positions where
the lemmas are needed, we know that this condition holds, since the inner recur-
sive calls are proved first. But since Giesl’s informal proofs include statements
like “P holds for all x where f terminates”, it was previously not clear how to
formalize them in a logic like HOL, where “termination” has no direct corre-
spondence.

Fortunately, our framework provides adequate tools to express such notions,
since termination is modeled by membership in the domain. Given the nested
zero function Z from in §2.1.1, we can state and prove that Z returns zero
whenever it terminates:

lemma Z-zero: x ∈ domZ =⇒ Z x = 0
by (induct rule: pinductZ) auto

The proof is just as simple as if we already knew that the function is total:
Induction and simplification, but using the partial induction and simplification
rules. Then termination of Z is equally simple, using mathematical induction
and the domain introduction rules, making use of the lemma to show termination
of the outer recursive call:

lemma Z-terminates: x ∈ domZ
proof (induct x rule: less-induct)

fix x assume IH :
∧

y . y < x =⇒ y ∈ domZ
show x ∈ domZ
proof cases

assume x = 0 thus x ∈ domZ by (auto intro: domZ-intro)
next

assume x 6= 0
with IH have (x − 1) ∈ domZ by auto
hence Z (x − 1) = 0 by (rule Z-zero)
hence Z (x − 1) ∈ domZ by (auto intro: domZ-intro)

2To compare wellfounded induction with functional induction, it is an interesting exercise
to add even more nesting to the nested-zero example by changing the definition to Z n = (if
n = 0 then 0 else Z (Z (Z (Z (n − 1))))), and then trying to prove the lemma ∀n. Z n =
0 once by nat-induction, where the property can be assumed on smaller arguments and once
by functional induction, where the property can be assumed on the arguments of all recursive
calls.

2.4. Nested Recursion 25

from 〈(x − 1) ∈ domZ〉 and 〈Z (x − 1) ∈ domZ〉

show x ∈ domZ by (auto intro: domZ-intro)
qed

qed

This shows that our aproach separates the partial correctness proof (Z re-
turns zero if it terminates) and the termination proof (Z terminates), which
makes reasoning very natural. In §2.7, we give more examples of nested recur-
sions.

2.4.1 A termination rule for nested recursion

We now have another look at the termination rule from §2.3.2. For the nested-
zero function Z, we get the rule

wf R∧
n. n 6= 0 =⇒ (n − 1 , n) ∈ R

∧
n. n 6= 0 =⇒ (Z (n − 1), n) ∈ R

∀ x . x ∈ domZ

Now the second termination condition involves the function Z. We would
like to use the lemma x ∈ domZ =⇒ Z x = 0 to prove that the outer call
is decreasing. But with this rule, we cannot do this, since we cannot assume
termination of the inner call.

The following variant of the termination rule solves the problem:

wf R
^

n. n 6= 0 =⇒ (n − 1 , n) ∈ R^
n. n 6= 0 =⇒ n − 1 ∈ domZ =⇒ (Z (n − 1), n) ∈ R

∀ x . x ∈ domZ

By the new assumption, marked with a box, we can now use the fact that
the inner call terminates for proving that the outer call is decreasing. This is
just enough to apply the lemma and conclude that the outer call is decreasing,
since we are just left with the trivial goal n 6= 0 =⇒ 0 < n.

This new termination rule reduces the termination proof for Z to

termination Z
by (relation less-than) (auto simp only : Z-zero)

2.4.2 Proving the nested termination rule

The system proves the nested termination rule automatically by wellfounded
induction on the relation R. In the body of the induction we need to prove
x ∈ domf under the assumption

∧
z . (z , x) ∈ R =⇒ z ∈ domf . Using the

introduction rule for domf , it is sufficient to show Γi =⇒ r i ∈ domf for each
recursive call. Now we proceed from the innermost call to the outer calls. By
assumption, we have for the innermost call Γ1 =⇒ (r1, x) ∈ R and by induction
hypothesis we have Γ1 =⇒ r1 ∈ domf . Now we can use this fact to strengthen
the assumptions for the outer recursive calls, and proceed in the same way. The
outermost calls come last, and for them we can assume termination of all inner
calls.

26 Chapter 2. Function definitions

2.5 Extraction of Recursive Calls and Congruence
Rules

The definition process described in §2.2 assumed an algorithm to extract the
recursive calls from the right-hand side of an equation. In this section, we de-
scribe the extraction process, which takes a term and produces a set of recursive
calls [Γ1 ; r1], . . . , [Γk ; rk] such that the associated congruence condition
is provable.

For the first-order case, such an extraction was already given by Boyer and
Moore [23], but, as we have seen, higher-order recursion produces some dif-
ficulties, which were solved by Slind [98], who invented a generic extraction
procedure that is parametrized by congruence rules. Our extraction is essen-
tially the same, and our main motivation for presenting it here is to make this
thesis more self-contained.

Note that the extraction of calls critically influences the definition of the
domain of the function and hence the termination proof obligations and the in-
duction principle that the definition produces. Hence it is sometimes important
for users to develop a basic understanding of this process.

2.5.1 Congruence rules

Congruence rules are used in contextual rewriting to accumulate context from
the structure of a term. For example, when rewriting the then-part of an if-
then-else expression, we may use the condition as a local assumption. In the
else part, we may assume its negation.

This knowledge, which exploits a property of if, is not hardcoded in the
rewriter, but expressed by a congruence rule:

c = c ′ c ′ =⇒ t = t ′ ¬ c ′ =⇒ e = e ′

(if c then t else e) = (if c ′ then t ′ else e ′)
(if-cong)

In its very characteristic form, the congruence rule can be interpreted as a
recipe for rewriting an expression of the form if c then t else e: First, rewrite the
condition to some c ′, then rewrite the then and else part, under the assumption
c ′ or ¬ c ′, respectively.

Similar congruence rules exist for control structures like case or let, for
higher-order combinators like map and filter, and also for bounded quantifiers
like ∀ ·∈·. The congruence rules tell the contextual rewriter how to extend the
context when traversing the term. Figure 2.1 shows congruence rules for other
commonly used constructs. It is worth noting that some of the rules not only
introduce new assumptions in the context but also bind new variables. For ex-
ample, the rule for map introduces a variable x, which is constrained to be an
element of the list.

2.5.2 Extracting calls

The extraction can now be described as a recursive algorithm that traverses a
term t and incrementally builds a context, starting from the empty context:

1. If t does not contain f, then there are no more calls and we can stop.

2.5. Extraction of Recursive Calls and Congruence Rules 27

xs = ys
^

x . x ∈ set ys =⇒ f x = g x

map f xs = map g ys
(map-cong)

A = B
^

x . x ∈ B =⇒ P x = Q x

(∀ x∈A. P x) = (∀ x∈B. Q x)
(Ball-cong)

f = g x = y

f x = g y
(app-cong)

M = N
^

x . x = N =⇒ f x = g x

Let M f = Let N g
(let-cong)

P = P
′

P
′

=⇒ Q = Q
′

(P ∧ Q) = (P
′ ∧ Q

′
)

(conj-cong)

^
x . f x = g x

(λx . f x) = (λx . g x)
(lam-cong)

x = y y = 0 =⇒ a = b
^

n. y = Suc n =⇒ f n = g n

(case x of 0 ⇒ a | Suc n ⇒ f n) = (case y of 0 ⇒ b | Suc n ⇒ g n)
(nat-case-cong)

Figure 2.1: Congruence rules for commonly used constants

2. If t has the form f r, then we have the recursive call [Γ ; r]. Continue
with the extraction on subterm r, in the same context.

3. Otherwise, try if any of the congruence rules can be applied. If so, then
we have one branch for each premise in the congruence rule. The current
context Γ is extended with the context from that premise.

The last two congruence rules that are tried are always app-cong and lam-cong.
This ensures that the last case always works: Any application is just split into
two parts by app-cong, and if a term still contains f, but is not applied, then we
can apply lam-cong.

The extraction algorithm can be seen as a process of contextual rewriting
to prove the congruence condition. Congruence rules are used to build up the
right context for the recursive calls.

Example 2.2. We reconsider the function mirror given in §2.2. The extraction
process is illustrated by a tree. Each node consists of a context and a term,
written Γ ` t. At the root we have the complete right-hand side of the equation
and the empty context. Then the term is split into components via congruence
rules:

` Node (map mirror (rev xs))

app-cong

` Node ` map mirror (rev xs)

map-cong

` rev xs
∧

t . t∈set (rev xs) ` mirror t∧
t . t∈set (rev xs) ` t

Since there is no special congruence rule for the Node constructor, the
app-cong rule is applied, and it simply splits the application in two parts. The
Node constructor on the left-hand side is uninteresting, since there is no recur-
sive call here. On the right hand side, we have map mirror (rev xs), which

28 Chapter 2. Function definitions

now matches the map-cong rule. Following the structure of that rule, we get
two branches, one for rev xs, which is again uninteresting, and one for mirror
t, which now appears in a context extended by a new variable t and an as-
sumption t ∈ set (rev xs). At this point, we have found a recursive call, since
mirror is now fully applied. We continue this search on the subterm t, where it
immediately terminates, since there are no more occurrences of mirror.

If the rule map-cong were not present, we would still get a tree, but it would
instead look like this:

` Node (map mirror (rev xs))

app-cong

` Node ` map mirror (rev xs)

app-cong

` map mirror

app-cong

` map ` mirror

lam-cong∧
t . ` mirror t∧

t . ` t

` rev xs

Now the extracted recursive call would be [
∧

x . ; x], which is not helpful, as
we have seen.

This example demonstrates that the extraction mechanism depends on the
configuration via congruence rules, which encode instructions for dealing with
higher-order constructs. This has the advantage that it makes the package very
flexible. The disadvantage however is that users sometimes need to know how
the extraction works, in order to feed it the right congruence rules.

The result of the extraction process is a set of calls [Γ1 ; r1], . . . , [Γk ; rk].
This set is used in the definition process as we have seen in §2.2. In particular
it determines the definition of the graph and the domain and, as a consequence,
the form of the induction rule and the termination proof obligations.

The way the calls are constructed guarantees that the congruence condition
given in §2.2 is provable automatically. The straightforward proof simply follows
the tree structure above.

2.5.3 Congruence rules and evaluation order

Higher-order logic differs from functional programming languages in that it has
no built-in notion of evaluation order. A program is just a set of equations, and
it is not specified how they must be evaluated. However, when reasoning about
termination of recursive functions, an implicit notion of evaluation order sneaks
in. The evaluation order is specified by the congruence rules we are using. For
example, consider the following simple recursion on natural numbers:

2.5. Extraction of Recursive Calls and Congruence Rules 29

f n = (n = 0 ∨ f (n − 1))

Whether this is a total function or not depends on how we interpret ∨. We
could use the semantics known from ML, where orelse and andalso are strict in
the left argument but non-strict in the right one. Then the function terminates
because n 6= 0 implies n − 1 < n. However, if the disjunction is strict in both
arguments we get nontermination. (Recall that on natural numbers, n − 1 may
be equal to n if n is zero.)

HOL itself does not make this distinction, since there is no explicit notion
of undefinedness. Instead, the congruence rules that we use to extract the re-
cursive calls will determine which function we get out. Without any congruence
rules, the extraction will regard disjunction as strict in both arguments, and
our function has the empty domain. However, we can give a congruence rule
for disjunction that gives it the behaviour known from ML:

P = P ′ ¬ P ′ =⇒ Q = Q ′

(P ∨ Q) = (P ′ ∨ Q ′)
(disj-cong)

Now the definition of f above gives us the total function we expect. The
termination proof will use the extra condition that we obtained from the con-
gruence rule.

However, as evaluation is not a hard-wired concept, we could just turn ev-
erything around by declaring a different congruence rule:

¬ Q ′ =⇒ P = P ′ Q = Q ′

(P ∨ Q) = (P ′ ∨ Q ′)
(disj-cong2)

This would allow us to make the reverse definition:

f n = (f (n − 1) ∨ n = 0)

This already shows that the congruence rules that we need might depend
on the function we are defining. Note that the meaning of disjunction does not
change.

One could argue that disj-cong2 is unnatural, and that disj-cong should be
enabled by default. Adding this rule will always make the termination proof
simpler, since the recursive calls are restricted by an extra condition. However,
as another consequence we get a weaker induction rule. Consider for example
a function that checks if some element in a list satisfies some (fixed) predicate
test :

testany [] = False
testany (x :xs) = test x ∨ testany xs

Obviously, testany terminates just by structural recursion over the list, so
disj-cong is not needed here. If we still add it, the function is not changed,
but in the induction rule, the inductive hypothesis is now guarded by a condi-
tion:

P []
∧

x xs. (¬ test x =⇒ P xs) =⇒ P (x :xs)

P a

30 Chapter 2. Function definitions

When we do induction with this rule, we will always have to show ¬ test x
before we can apply the induction hypothesis. So in this case we get a better
induction principle by avoiding the unnecessary congruence rule. Of course, for
this example we can just use standard list induction, but in other situations the
custom induction rule might be important.

These examples show that, in general, there is no “best” or “complete” set
of congruence rules. The default setup in Isabelle is rather conservative, relying
on the user to manually add rules when needed. Nonetheless, the basic set of
predefined congruence rules often proves sufficient.

2.6 Extensions

The core recursion infrastructure described above is already quite powerful. In
this section we describe some useful extensions: default values, tail recursion,
pattern matching, mutual recursion and currying.

2.6.1 Default values

Recall that we model partial functions as underspecified total functions. Outside
their domain, we cannot determine their value. Sometimes this is not desirable,
as there may be a natural completion of the function that better suits the needs
of the application. For example, a function that returns values of an option
type coud be completed to return None in such cases.

Here, we note the difference between the algorithm that is specified by the
recrsive equations and the function that we define in the logic. While the
algorithm cannot return anything when it does not terminate, the function
actually has a value, and we can specify that value (which we call the default
value) at definition time.

The only change that is needed is to replace the description operator THE
which we used to define the function (cf. §2.2.2) by a variant that takes a default
value:

THE-default :: α ⇒ (α ⇒ bool) ⇒ α
THE-default d P = (if ∃ !x . P x then THE x . P x else d)

Then we can define functions with a user-specified default value d, which may
even depend on x. We can then derive the following theorem:

x /∈ dom =⇒ f x = d x

To motivate the use of default values, consider a function that checks some kind
of certificate:

checker :: cert ⇒ bool

The implementation of checker may be a very complicated algorithm, for which
we can only prove partial correctness. Hence we have a theorem

c ∈ domchecker =⇒ checker c =⇒ P c

2.6. Extensions 31

for some interesting property P.
Now, if we can define checker such that it returns False when given a value

that is not in the domain, then we can remove the domain condition from the
above theorem, which can make subsequent reasoning simpler:

checker c =⇒ P c

Note that default values are just a logical concept and have no operational
meaning. If the function checker is run on something outside its domain, it
will still loop instead of returning False. However, we have a theorem that it is
equal to False, logically. Here the difference between the logical view and the
algorithmic view of recursive function becomes very apparent.

2.6.2 Tail recursion

The partial simplification rules generated by the function package are guarded
by domain conditions. If the function does not always terminate, it is usually not
possible to remove them (recall the example U x = U x + 1, which is obviously
inconsistent). However, there is an important special case for which unguarded
recursion equations are derivable even for partial functions. This is the case
when the function is tail-recursive, a fact that was first noticed and exploited
by Manolios and Moore [68]. In HOL, tail-recursive functions could previously
be defined by instantiating a while combinator, but that was a tedious manual
process.

While it would be possible to automate the definition of tail-recursive func-
tions using a while combinator, it turns out that we can achieve the same effect
with the definition framework presented here, by deriving the unconstrained sim-
plification rules afterwards. For this we use the default value feature described
above, and give the function an arbitrary default value d that is independent
from the input.

Now, the unconstrained recursion equation f x = F f x can be proved as
follows: For x ∈ dom, we just need to apply the partial simplification rule.
Consider the case x /∈ dom. By tail recursion we know that F f x = f (g x), for
some expression g. Now g x cannot be in dom, since otherwise x would also be
in dom. Since both x and g x are not in dom, we have f x = d = f (g x) = F f
x which is our recursive equation.

This reasoning can be automated, and thus we can provide unconstrained
recursion equations for the user, if the function is tail-recursive.

One important motivation for removing the domain conditions even for par-
tial functions is that Isabelle/HOL’s code generator can only handle uncondi-
tional equations. When we are able to derive them as theorems, then we can use
all the existing code generation facilities [13, 48] to convert our Isabelle/HOL
specifications to ML or Haskell programs. Note that this translation only pre-
serves partial correctness, as the resulting code may be nonterminating.

2.6.3 Pattern matching

An extension of high practical importance is the support for definitions with
pattern matching, where functions are not specified by a single equation f x

32 Chapter 2. Function definitions

= F f x, but in terms of multiple equations with patterns. This extension is
complex enough that we describe it in a chapter of its own (ch. 4).

2.6.4 Mutual recursion and currying

Our package implements mutual recursion by first reducing it to simple recursion
on a suitable sum type. This is a very simple reduction, and it is already
described by Slind [98], so we just give a small example: The functions even
and odd with the equations

even 0 = True
even (Suc n) = odd n
odd 0 = False
odd (Suc n) = even n

are reduced to a single function even-odd :: nat + nat ⇒ bool with the equa-
tions

even-odd (Inl 0) = True
even-odd (Inl (Suc n)) = even-odd (Inr n)
even-odd (Inr 0) = False
even-odd (Inr (Suc n)) = even-odd (Inl n)

Then the individual functions are defined as
even n = even-odd (Inl n)
odd n = even-odd (Inl n)

and we easily derive the original recursive equations from this.
We must also produce an appropriately modified induction principle. The

(total) induction rule for even and odd involves two induction predicates P and
Q :

P 0∧
n. Q n =⇒ P (Suc n) Q 0

∧
n. P n =⇒ Q (Suc n)

P a ∧ Q a

We can handle currying in a similar way: If a function has multiple argu-
ments, we first define the corresponding uncurried function which takes a tuple.
From that function we then define the curried function and derive the equations.

These transformations can be used as wrappers around the core of the pack-
age. They reduce currying and mutual recursion to simple functions, such that
the rest of the definition infratsructure just needs to handle a single function
with one argument.

2.7 Further Examples

In this section, we want to present some more examples that demonstrate how
the partial induction rule simplifies reasoning about nested recursive and partial
functions. Some of these examples use pattern matching, which we have not
discussed yet. It will be the subject of Chapter 4.

2.7. Further Examples 33

2.7.1 Nested list reversal

The following function defines list reversal in an uncommon way that does not
need any auxiliary function or additional parameter. It was given to the author
as a challenge problem by Konrad Slind, and it is probably more of a puzzle
than a sensible implementation.

Rev [] = []
Rev (x :xs) = case Rev xs of [] ⇒ [x] | y :ys ⇒ y :Rev (x :Rev ys)

In fact, proving that Rev is equivalent to Isabelle’s built-in function rev is just a
straightforward functional induction. But the nesting made this function hard
to define and reason about with previous tools. Using the partial induction rule,
we can jump forward and prove that Rev is equal to rev on its domain:

lemma Rev-eq-rev [simp]: xs ∈ domRev =⇒ Rev xs = rev xs
by (induct xs rule: pinductRev) (auto split : list .splits)

This is so easy because the induction rule is tailored to the recursive structure
of the function. Now, using this lemma, termination is not hard to prove,
since much about rev is already known (in particular, length (rev xs) = length
xs). The termination order can be found automatically, so we just invoke the
automated termination prover, which will be presented in Chapter 3:

termination by lexicographic-order

2.7.2 McCarthy’s 91 function

The ninety-one function is a well-known challenge problem due to John Mc-
Carthy:

f91 n = (if 100 < n then n − 10 else f91 (f91 (n + 11)))

The termination argument relies on the following lemma:

lemma f91-estimate:
n ∈ domf91 =⇒ n < f91 n + 11

by (induct rule: pinduct f91) auto

Now we can proceed with a manual termination proof, which we give in Isar
notation. Note how the assumption n + 11 ∈ domf91 is used for the outer call
to discharge the hypothesis of the lemma:

termination
proof

let ?R = measure (λx . 101 − x) — The termination relation used
show wf ?R ..

fix n :: nat assume ¬ 100 < n — Assumptions for both calls

thus (n + 11 , n) ∈ ?R by simp — Inner call

assume inner-trm: (n + 11) ∈ domf91 — Outer call
with f91-estimate have n + 11 < f91 (n + 11) + 11 .
with 〈¬ 100 < n〉 show (f91 (n + 11), n) ∈ ?R by simp

qed

34 Chapter 2. Function definitions

2.7.3 First order unification

A standard example of nested recursion is a unification algorithm on a simple
first-order term language. This example was already presented by Slind [99],
who in turn adapted it from Manna and Waldinger [67]. There are also other
formalizations of unification, e.g. by Paulson [88]. Our claim is that we are
the first to present a framework where the definition of the function and the
reasoning about it are really natural, and not obfuscated by restrictions imposed
by the tools. In the following description we focus on this aspect and do not
discuss the formalization in detail. The complete theory can be found in the
Isabelle 2009 distribution.

In our formalization, terms can be variables, constants and applications of
one term to another:

datatype α trm =
Var α
| Const α
| App (α trm) (α trm) (infix · 60)

Substitutions are modeled as association lists mapping variables to terms. The
(parallel) application of a substitution σ to a term t is written t / s, and we
omit its straightforward definition. Composition of substitutions is written σ2

◦ σ1.
The unification function has the following definition:

unify (Const c) (M · N) = None
unify (M · N) (Const c) = None
unify (Const c) (Var v) = Some [(v , Const c)]
unify (M · N) (Var v) =
(if occ (Var v) (M · N) then None else Some [(v , M · N)])
unify (Var v) M = (if occ (Var v) M then None else Some [(v , M)])
unify (Const c) (Const d) = (if c = d then Some [] else None)
unify (M · N) (M ′ · N ′) =
(case unify M M ′ of None ⇒ None
| Some ϑ ⇒

case unify (N / ϑ) (N ′ / ϑ) of None ⇒ None
| Some σ ⇒ Some (ϑ ◦ σ))

occ u (Var v) = False
occ u (Const c) = False
occ u (M · N) = u = M ∨ u = N ∨ occ u M ∨ occ u N

Note that the nesting of the recursion is not directly of the form unify (. . .
unify(. . .) . . .). Instead the calls are connected via their contexts: The assump-
tion unify M M ′ = Some ϑ occurs in the context of the second call.

To demonstrate how the partial induction rule simplifies reasoning, we prove
partial correctness of the unification algorithm first:

(M , N) ∈ domunify unify M N = Some σ

MGU σ M N

The proof is by induction using the partial induction rule unify .pinduct. Figure
2.2 shows the full proof.

2.7. Further Examples 35

lemma unify-partial-correctness:
(M , N) ∈ domunify =⇒ unify M N = Some σ =⇒ MGU σ M N

proof (induct M N arbitrary : σ rule: pinductunify)
case (7 M N M ′ N ′ σ) — The interesting case

then obtain ϑ1 ϑ2
where unify M M ′ = Some ϑ1 and unify (N / ϑ1) (N ′ / ϑ1) = Some ϑ2
and [simp]: σ = ϑ1 ◦ ϑ2
and MGU-inner : MGU ϑ1 M M ′

and MGU-outer : MGU ϑ2 (N / ϑ1) (N ′ / ϑ1)
by (auto split : option.split-asm)

show MGU σ (M · N) (M ′ · N ′)
proof — We have a unifier:

from MGU-inner and MGU-outer
have M / ϑ1 = M ′ / ϑ1 and N / ϑ1 / ϑ2 = N ′ / ϑ1 / ϑ2

by (auto simp: MGU-def Unifier-def)
thus M · N / σ = M ′ · N ′ / σ by simp

next — The unifier is most general:
fix σ ′ assume M · N / σ ′ = M ′ · N ′ / σ ′

hence M / σ ′ = M ′ / σ ′ and Ns: N / σ ′ = N ′ / σ ′ by auto

with MGU-inner obtain δ where eqv : σ ′ =s ϑ1 ◦ δ
by (auto simp: MGU-def Unifier-def)

from Ns have N / ϑ1 / δ = N ′ / ϑ1 / δ
by (simp add : eqv-dest [OF eqv])

with MGU-outer obtain % where eqv2 : δ =s ϑ2 ◦ %
by (auto simp: MGU-def Unifier-def)

have σ ′ =s σ ◦ %
by (rule eqv-intro, auto simp: eqv-dest [OF eqv] eqv-dest [OF eqv2])

thus ∃ δ. σ ′ =s σ ◦ δ ..
qed

qed (auto split : split-if-asm) — Solve the remaining cases automatically

Figure 2.2: Partial correctness of unify

36 Chapter 2. Function definitions

In order to prove termination of the function, we need to establish two
properties which have to do with occurrences of variables. First, substitutions
produced by unify never introduce new variables (we omit the trivial definition
of vars-of):

(M , N) ∈ domunify unify M N = Some σ

vars-of (t / σ) ⊆ vars-of M ∪ vars-of N ∪ vars-of t

Second, if unify returns a substitution σ, then σ is either the identity substi-
tution (=s denotes equivalence of substitutions) or it eliminates a variable v,
which means that for any term t, t / σ no longer contains v.

(M , N) ∈ domunify unify M N = Some σ

(∃ v∈vars-of M ∪ vars-of N . ∀ t . v /∈ vars-of (t / σ)) ∨ σ =s []

These lemmas are again proved by partial induction, where the recursive case
is the interesting one. Again, the partiality has no influence on the structure of
the induction proof.

The termination proof then merely puts these results together, using the
lexicographic combination of the measures λ(M , N). card (vars-of M ∪ vars-of
N) and λ(M , N). size M . We then get total correctness as a corollary, since
we now know that (M , N) ∈ domunify always holds.

2.7.4 Depth-first search

In ongoing work, Berghofer and Reiter are formalizing various constructions on
finite automata. Their formalization also includes an abstract specification of
depth-first search in directed graphs, which is developed in an axiomatic context
(using Isabelle’s locale mechanism [8]), such that it can later be instantiated to
different representations of the graph that is searched and the data structure
that collects the results. The depth-first search formalization is loosely based
on a previous formalization by Nishihara and Minamide [75, 82]. A similar
formalization in HOL4 is given by Owens and Slind [84].

The graph is modelled abstractly by a type node and the functions

succs :: node ⇒ node list (successor nodes)
is-node :: node ⇒ bool (wellformedness predicate)

Not every value of type node is necessarily a node in the graph, and the predicate
is-node models the set of valid nodes, which must be finite. For a valid node,
the function succs returns the list of successors.

During the traversal, nodes are collected in a data structure of another ab-
stract type C, which behaves like a set of nodes:

empt :: C (empty collection)
ins :: node ⇒ C ⇒ C (insert operation)
memb :: node ⇒ C ⇒ bool (membership test)
invariant :: C ⇒ bool (collection invariant)

The axioms that describe these operations are given in Fig. 2.3. The advan-
tage of working with an abstract specification of graphs and collections is that
the algorithm can be instantiated later with concrete data structures suited for
the particular applications, e.g., matrices and BDDs.

The depth-first search function is defined as follows:

2.8. Limitations 37

is-node x =⇒ is-node y =⇒ invariant S =⇒ ¬ memb y S
=⇒ memb x (ins y S) = (x = y ∨ memb x S)

is-node x =⇒ ¬ memb x empt

is-node x =⇒ ∀ y∈set (succs x). is-node y

invariant empt

is-node x =⇒ invariant S =⇒ ¬ memb x S =⇒ invariant (ins x S)

finite is-node

Figure 2.3: Axiomatic context for the depth-first search algorithm

dfs :: C ⇒ node list ⇒ C

dfs S [] = S
dfs S (x :xs) =
(if memb x S then dfs S xs else dfs (ins x S) (succs x @ xs))

Even though the axiomatization ensures that the graph is finite, dfs is a
partial function, since the behaviour of ins and succs is only specified when
the invariants is-node and invariant are satisfied. Otherwise they may return a
value that leads to nontermination of dfs.

However, termination of dfs S xs can be proved if invariant S and ∀ x∈xs.
is-node x hold. Moreover, tail-recursion ensures that unconditional equations
can be generated.

2.7.5 Pseudo-division for multivariate polynomials

As another example of a partial function, we refer to Chaieb’s formalization
of multivariate polynomials [28]. That formalization includes a definition of
pseudo-division, which is an inherently partial operation, since it only terminates
if the polynomials are normalized. Using our definition facilities, Chaieb was
able to introduce the pseudo-division function, and prove the relevant properties.
Moreover, since the function is tail recursive, it can be executed and used as
part of a reflected decision procedure.

2.8 Limitations

In this section, we briefly discuss some general limitations of our package.

2.8.1 Higher-order nesting

We have seen how our package gracefully handles higher-order and nested re-
cursion. However, by combining the two, we can take the difficulty to a new
level and make the automation fail. Here is a simple example — yet another
silly way of defining the constant zero function:

zero n = fun-pow n zero 0

38 Chapter 2. Function definitions

It is easy to see that zero 0 = id 0 = 0 and hence zero n = zero (zero (. . . (zero
0) . . .) = 0. The problem is that we cannot give a useful congruence rule for
fun-pow, the function exponentiation. Intuitively, we would like to express that
in fun-pow n f x, the function f is called on the values fun-pow i f x for all i <
n. But this contains the very same pattern again, which makes the extraction
of recursive calls loop.

This example shows that the extraction of recursive calls using congruence
rules is just an approximation that works well in practice but may also fail.

We can circumvent this problem by expanding the higher-order recursion
into a mutual recursion by adding the recursion equations for fun-pow to the
definition of zero:

zero n = zeropow n 0

zeropow 0 x = x
zeropow (Suc n) x = zero (zeropow n x)

Then we no longer need a congruence rule and can proceed in the normal way
to prove termination of the mutual and nested recursion.

2.8.2 Undefinedness does not propagate

If we expect that the domain domf models the set of values where of f termi-
nates, it can be a little surprising to see that for the function

g x = U x

the associated domain domg is the universal set, although g calls U, whose
domain is empty. The reason is that domg arises from the analysis of the
recursion in the definition of g, and a non-recursive function always terminates
in our sense.

It is possible to change the analysis to a more global one, where the domain of
g would also depend on the domain of U. However, recall that the we introduced
the domain primarily to simplify partial correctness proofs and not as a faithful
model of termination with respect to some evaluation mechanism. Note that to
obtain the latter, we would also have to settle on a fixed evaluation order and
a fixed set of congruence rules.

It seems that the practical benefit of getting stronger induction and simpli-
fication rules outweighs the somewhat unintuitive property that undefinedness
does not propagate.

2.8.3 Other forms of recursion

There are other forms of recursive definitions that are not based on wellfounded
recursion. One example is corecursion, where the output of a function is a
coinductive datatype, which can be infinite.

For example, the function

from n = n:from (Suc n)

defines an infinite sequence of numbers. Note that this can only work for coin-
ductive lists, not for normal inductive ones, which are finite by construction.

2.9. Related Work 39

Wellfounded recursion cannot define functions like from, and other tools
would be required to introduce them.

2.9 Related Work

General recursion in proof assistants Generating termination conditions and
induction schemes from recursive function definitions was first done by Boyer
and Moore in NQTHM [23], the predecessor of ACL2 [60]. Today, ACL2 still
works in essentially the same way: Functions must be proved total at definition
time by giving the appropriate measure, which can sometimes be inferred by
the system. As opposed to a definitional extension, recursion is built into the
system itself and must be trusted. As ACL2 uses first-order logic, there is no
higher-order recursion or congruence rules. ACL2 also supports the definition
of (possibly partial) tail-recursive functions [68]. Then no termination proof is
needed.

Both Isabelle and HOL4 [44] include (different versions of) the definitional
recursion package TFL, a work by Slind [97, 98]. TFL supports the definition of
total recursive functions by using the specialized fixed-point combinator wfrec
and a wellfounded relation given by the user. Proving termination amounts
to showing that the relation is wellfounded and recursive calls are decreasing.
Optionally, termination arguments can be deferred by replacing the relation by
its specification using a choice operator.

HOL Light [51] provides a similar mechanism, also based on a fixed-point
combinator. Furthermore, by a clever combination with tail recursion, termi-
nation proof obligations only arise from non-tail calls, even if the function as
a whole is not tail recursive. The drawback of this approach is that no induc-
tion principles can be generated. There is no general support for higher-order
recursion.

In Coq [15], a recent package by Barthe, Forest, Pichardie, and Rusu [9]
allows definitions in a manner similar to TFL. However, nested and higher-order
recursion are not supported.

Partiality and domain predicates The idea of generating an explicit descrip-
tion of a function’s domain emerged many times.

Finn, Fourman, and Longley [38] describe how partial functions can be ax-
iomatized consistently in a total higher-order logic, by having their equations
guarded by domain predicates. The domain predicates are again specified by
recursive equations, but (as is justified semantically), a domain predicate for
the domain predicate is not required.

Dubois and Donzeau-Gouge [34] replace the recursive domain with an induc-
tive one, which makes the approach (in principle) amenable to implementation
as a definitional extension to Coq. However, they did not provide an implemen-
tation.

Giesl [42] studies the use of functional induction for partial functions, and
shows that it is applicable and useful. The partial induction rule is similar to

40 Chapter 2. Function definitions

the one we are using, and is proved sound with respect to the semantics of
programs. As this employs a modified notion of truth for formulae, it is not
directly applicable to higher-order logic, whose semantics is fixed. However,
Giesl managed to extend existing induction provers with his calculus with little
effort.

Bove and Capretta [19, 21] investigate how general recursion can be inte-
grated into type theory, which by default only admits structural recursion. The
idea of the approach is to produce an inductively defined domain predicate
from the function specification, and then define the actual function by struc-
tural recursion on that inductive predicate. This approach also underlies the
implementation of Coq’s Function package [9]. The disadvantage is that there
is no general type of partial recursive functions, but instead each function has
its own private type of the form σ → domf σ → τ . Either impredicativity
or a coinductive construction [22] can be used to overcome this. Note that in
our simply-typed framework this is not an issue, since partial functions are just
underspecified total functions (of type σ → τ).

A different approach for dealing with non-termination is to work in a logic
that features a “native” notion of partiality. One such logic is domain theory,
where any computable function can easily be defined, since general fixed points
exist. On the other hand, resoning in domain theory comes with a certain
overhead, since induction is restricted to admissible predicates. This leads to
additional admissibility and definedness proof obligations that can make rea-
soning harder.

Nested recursion Nested recursion is currently not well-supported in theo-
rem provers. Slind’s TFL package provides some support using a provisional
induction rule [99], but the resulting proof obligations are clumsy.

The approach sketched by Dubois and Donzeau-Gouge [34] supports a user-
specified post condition that can encode the property required for the termi-
nation proof of a nested recursive definition. Later, Krstić and Matthews [64]
suggested a very similar notion they called inductive invariant. Inductive in-
variants are given by the user at definition time and are used to approximate the
results of nested recursive call to make the termination proof work. However,
no convenient reasoning principles are given for them, and one must resort to
general wellfounded induction, which is more awkward to use than functional
induction.

In our approach, such properties are simply expressed as ordinary lemmas
about possibly partial functions, constrained by a domain predicate and prov-
able by the partial induction rule. This follows Giesl’s approach [41, 42], but
it does not require a new notion of truth, since all constructions happen in
standard HOL.

Bove and Capretta [20] can only support nested recursion by defining the
domain and the function simultaneously, which requires the underlying theory
to support simultaneous inductive-recursive definitions as described by Dybjer
[35]. In contrast, our classical setting avoids this issue, since the domain is
not required for the function definition but only introduced for the purpose of
convenient reasoning.

Chapter 3

Termination Proofs

Contents
3.1 Introduction . 41

3.2 Related Work . 45

3.3 Measure Functions 52

3.4 Proving Local Descent 55

3.5 Simple Termination Proofs and Lexicographic De-
scent . 56

3.6 Control Flow: Dependency Graph Analysis 58

3.7 Mutual Recursion 60

3.8 Data Flow: Size-Change Termination with Cer-
tificates . 63

3.9 Implementation and Practical Considerations . . 72

3.10 Full Size-Change Termination 76

3.1 Introduction

In this chapter, we will develop automated techniques to solve the termination
proof obligations that arise from function definitions.

There exists a large body of research on automating termination proofs,
and many fully-automated provers have been developed. We will discuss the
most important approaches in §3.2, but first we briefly point out some notable
differences between the requirements that most existing termination provers
were designed for and our specific setting.

Interactive Environment Although we are interested in automation, our
theorem proving environment is interactive. This means that we should
not just fail completely when we meet a problem that cannot be solved
automatically, but be prepared to take hints from the user in some form,
which help to continue the proof.

Furthermore, the termination problems that we are trying to solve are
not isolated. While automated provers typically take the program as their
only input and have to discover the proof that with no other information,

41

42 Chapter 3. Termination Proofs

our termination problems live in a rich theory, which may already provide
many relevant lemmas. This is an advantage, because using such lemmas
is certainly easier than rediscovering them and proving them on-the-fly.
But we need a mechanism that allows feeding this information to the
termination prover.

No operational semantics It is slightly peculiar that our language does not
have a notion of evaluation. How are we to prove termination of something
that does not run? The answer is that we must solve the wellfoundedness
proof obligations arising in the previous chapter. Although it is helpful
for our intuition that they correspond the termination of a function, they
are just normal Isabelle goals that must be proved.

Conventional termination criteria are normally justified against the seman-
tics of the programming language: They come with a soundness theorem
that states that if the criterion is satisfied, then the program will eventu-
ally halt on every input. Since HOL programs are never actually run, we
cannot even state such a theorem. Instead we already work with a more
abstract description of programs: the call relation that we want to prove
wellfounded.

Proof Generation Instead of using a criterion that is proved sound against
some program semantics, we strictly adhere to the LCF approach by pro-
ducing an explicit proof of the respective wellfoundedness property. It is
therefore not sufficient that our method is sound, but it must produce a
formal proof for each instance, which is checked by the Isabelle kernel. In
his thesis, Chaieb discusses three different ways of accomplishing this [28],
and all three variants (derived rules, reflection, certificates) will be used
in this chapter.

As we have already seen for function definitions, the advantage of produc-
ing formal proofs is that an external (pen-and-paper) soundness proof is
not necessary. As long as the system accepts the proofs produced by the
tools, we can be sure that they are correct. Therefore, this chapter will
contain very little meta-theoretic material.

3.1.1 Termination goals

The termination goals that we would like to solve have the following form:

0 . wf ?R
1 .
∧

v1. . . vm1 . Γ1 =⇒ (r1, l1) ∈ ?R
...

n.
∧

v1. . . vmn . Γn =⇒ (rn, ln) ∈ ?R

The schematic variable ?R denotes a wellfounded relation that needs to be
supplied in the proof. The remaining subgoals simply state that the arguments
of recursive calls must decrease with respect to ?R.

We call this format of termination goal the open format. The open format
is convenient for interactive proofs, which usually first instantiate ?R with an

3.1. Introduction 43

explicit relation. Typically, proving the wellfoundedness and decrease condition
is then straightforward.

However, for the purpose of automation, we prefer the closed format, which
has no schematic variable and provides more flexibility for refinement and sim-
plification:

wf ({ (r1, l1) | v1. . . vm1 . Γ1 }
∪ . . .
∪ { (rn, ln) | v1. . . vmn . Γn })

Here, each recursive call is expressed by a relation comprehension, and we must
prove that their union is wellfounded.

Both formats of termination goals are equivalent and it is easy to convert
automatically between one and the other. Given an open goal, we convert it
to a closed one by substituting the union of comprehensions for ?R. Then the
subgoals 1 . – n. can be discharged, since they are true by construction. What
remains is the wellfoundedness part: a closed goal. Conversely, we convert a
closed goal to the open format using the rule wf R =⇒ S ⊆ R =⇒ wf S.

Having in mind where they originate from, we frequently refer to the individ-
ual relation comprehensions { (r i, l i) | v1. . . vmi . Γi } as calls. As a convention,
we denote calls by upper-case letters C, D, etc. We say that a relation R is com-
patible with a call C iff C ⊆ R.

For two calls C and D, we can form their composition C ◦ D, which intu-
itively expresses the call C which is immediately followed by D. Interestingly,
the composition of two calls can again be written as a call:

{(a y , b y) |y . P y} ◦ {(c x , d x) |x . Q x} =
{(c x , b y) |x y . d x = a y ∧ Q x ∧ P y}

This equation looks wrong at first, but the reader may want to compare this
with the definition of relation composition on page 7.

For a termination goal wf (C 1 ∪ . . . ∪ Cn :: (τ × τ) set), we call τ the
domain type of the goal.

Example 3.1. We examine the termination goals arising from a concrete recur-
sive function. The merge function below combines two sorted lists to a new
sorted list:

merge xs [] = xs
merge [] (y :ys) = y :ys
merge (x :xs) (y :ys) = if x ≤ y then x :merge xs (y :ys) else y :merge (x :xs) ys

In open format, the termination goal is as follows:

1 . wf ?R
2 .
∧

x xs y ys. x ≤ y =⇒ ((xs, y :ys), (x :xs, y :ys)) ∈ ?R
3 .
∧

x xs y ys. ¬ x ≤ y =⇒ ((x :xs, ys), (x :xs, y :ys)) ∈ ?R

Converting the goal into the closed format, we obtain

1 . wf ({((xs, y :ys), (x :xs, y :ys)) |x xs y ys. x ≤ y} ∪
{((x :xs, ys), (x :xs, y :ys)) |x xs y ys. ¬ x ≤ y})

In the rest of this chapter, we will use the closed format exclusively.

44 Chapter 3. Termination Proofs

3.1.2 Overview

Our approach for solving these termination goals consists of several components:

Generating measures By means of a configurable set of rules, we collect a set
of measure functions that map the domain type into the natural numbers.
For inductive datatypes, default measure functions are produced by the
system. For other types, measures can be declared explicitly.

Proving local descent For the different calls and the generated measures, we
try to derive local descent properties automatically. Local descent ex-
presses that a certain measure decreases at a certain call (but it may
increase again at another call, hence the attribute local). These proper-
ties are proved using existing automation in Isabelle. The information
about local descent is later used in various ways to search for termination
arguments.

Finding termination arguments to simplify the goal Given the local de-
scent proofs, we now search for possibilities to simplify the goal. We look
for calls that are strictly decreasing in a certain sense, specified by a
so-called reduction pair. We may then remove these calls from the goal,
provided that the remaining calls are weakly decreasing in the same sense.
Reduction pairs are built from the measures, using local descent proper-
ties.

From these components, we obtain a termination prover that is already very
useful in practice. To this we add two more advanced techniques that further
increase the power of the prover:

Using control flow information Another way of simplifying the goal is to
use information about the control flow. This information is represented
in the form of a control-flow graph. By splitting the graph in its strongly
connected components, we can apply a divide-and-conquer strategy to
obtain multiple independent subgoals that are simpler than the original
one.

Using data flow information Taking into account the data flow in the ter-
mination problem, we employ a version of the size-change principle to find
stronger termination arguments, also in the form of reduction pairs. This
method makes use of a SAT solver to generate the orderings.

We will describe the different steps in a termination proof as a calculus of
rules operating on termination goals in closed format. Each rule application
produces a (possibly empty) set of subgoals of the same form, and we apply
rules until no more subgoals are left — a mode of operation which is familiar to
every Isabelle user.

In standard Isabelle terminology, our rules are tactics, since the term rule
is used for meta-level theorems. However, we prefer to see our proof steps as
high-level rules, which also expresses the idea that they are related.

3.2. Related Work 45

3.2 Related Work

Due to its importance and inherent difficulty, automated termination proving
attracts many researchers from different areas. Many approaches have been
developed, and doing them all justice is far beyond the scope of this thesis. In
the following discussion, we concentrate on approaches that either influenced
the method we develop for Isabelle or that have been formalized or applied in
a theorem prover.

3.2.1 Termination of term rewrite systems

In the context of term rewriting, termination has been studied intensively in
the last decade. Many automated termination provers for term rewrite systems
were developed (e.g., [43, 53, 61]) and they compete in a regular termination
competition [102].

The formalism of term rewrite systems is attractive for studying termination
problems, since it is a very simple model of computation, but, unlike Turing
machines, is still relatively abstract, and there is an intuitive correspondence to
functional programming.

Notation. We consider untyped first-order terms over a fixed signature. A
term rewrite system (TRS) R is a set of pairs (l, r) written as l → r, where l
and r are terms. If we view R as a relation, then its closure under contexts and
substitutions is written →R and called the rewrite relation induced by R. We
say that R terminates if →R is wellfounded.

The topmost function symbol in a term is calles its root symbol. We say that
a function symbol is defined if it is the root symbol of the left-hand side of some
rule in R. Function symbols that are not defined are called constructors.

Reduction and simplification orders. One standard way of proving termina-
tion of a TRS is to exhibit a reduction order >, which is a wellfounded order
on terms that is closed under contexts and substitution. If it can be shown
that R ⊆ >, then also →R ⊆ >, and hence R terminates. This gives a natural
termination criterion: Given a reduction order, we must only check that each
rule in R is compatible with it.

A simplification order is a reduction order that has the subterm property,
i.e., � ⊆ > for the proper subterm relation �. For simplification orders, well-
foundedness directly follows from the subterm property and the closure under
context and substitution. Many popular orders like the lexicographic path order
and the Knuth–Bendix order fall into this class [7]. However, although simplifi-
cation orders are popular for termination proofs, many interesting TRSs are not
compatible with a simplification order. These TRSs are said to be not simply
terminating.

Dependency pairs Dependency pairs, introduced by Arts and Giesl [4], are a
technique to handle TRSs that are not simply terminating. Instead of directly
embedding R in a simplification order, a set of dependency pairs is first gener-
ated, which can then be analyzed further using techniques that would fail when
used on R directly.

46 Chapter 3. Termination Proofs

The set of dependency pairs (DPs) of R is defined as

DP (R) = {l] → t] | l→ r ∈ R,
t is a subterm of r with a defined root symbol }

Here, t] is just the term t whose root symbol is marked with a], to distinguish
it from a normal function symbol. Dependency pairs can again be viewed as
a rewrite system over an extened signature that adds a marked version f] for
every defined function symbol f .

When R is interpreted naively as a functional program, dependency pairs
model the recursive calls. The central idea is that it suffices to make sure that
there is no infinite sequence of such calls.

A (finite or infinite) sequence of dependency pairs s1 → t1, s2 → t2, . . . is
called a chain if there is a substitution σ, such that σ(ti)→∗R σ(si+1) for all i.

Chains model sequences of recursive calls as they can occur during a re-
duction. The dependency pairs correspond to recursive calls at the top-level.
Between them, there may be further→R-reductions leading to the next top-level
call. Since the dependency pair symbols f] are distinct from normal function
symbols, the intermediate →R-reductions always occur below the root symbol.
A TRS terminates if and only if there are no infinite chains.

Although the property of having no infinite chains is just as undecidable
as termnation itself, it is often easier to prove automatically using standard
simplification orders or other common techniques. The reason is that it now
suffices when the rules of R are compatible with ≥ instead of >, and only the
dependency pairs must be compatible with >. Here, ≥ must be a preorder that
is closed under contexts and substitutions, > must be wellfounded and closed
under substitutions, and ≥ ◦ > ◦ ≥ ⊆ >. Such a pair of relations (>,≥) is
called a reduction pair.

Operationally, if we have a reduction pair, such that certain DPs are com-
patible with >, and the remaining DPs and the rules of R are compatible with
≥, then the strictly decreasing DPs can be removed. The result is a smaller
problem with can be attacked using other reduction pairs or entirely different
methods.

Dependency graphs The dependency graph of a TRS R is the graph with the
nodes DP (R) and an edge between two DPs, if they form a chain (of length
two). The dependency graph serves as a simple model of control flow and allows
the decomposition of a termination problem into smaller parts: if it has more
than one strongly connected component (SCC), these can be treated separately.

Since it is undecidable in general whether two DPs form a chain, the de-
pendency graph is usually approximated using some safe heuristic. The most
commonly used heuristic simply checks if the right hand side of one DP and the
left hand side of the other DP are unifiable after replacing all defined symbols
with fresh variables and renaming the variables apart.

Dependency pair proofs do not produce a simple characterization of a well-
founded order compatible with all rewrite rules. Instead, they have a goal-
oriented structure, where the problems are successively reduced to simpler ones,
until they have disappeared.

Example 3.2. Consider the following nonsensical TRS that we want to prove

3.2. Related Work 47

terminating using dependency pairs:

f(n, 0)→ 0
f(0, s(m))→ f(s(f(s(m), s(m))), s(m))

f(s(n), s(m))→ s(f(n,m))

The set of dependency pairs is

(1) f](0, s(m))→ f](s(m), s(m))

(2) f](0, s(m))→ f](s(f(s(m), s(m))), s(m)))

(3) f](s(n), s(m))→ f](n,m)

and the dependency graph looks like this:

(1) (3) (2)

There is only one strongly connected component, so we cannot split the problem
into pieces at this point. Now, we note that the second argument is decreasing
(3) and stays the same in the other dependency pairs. In rewriting, this is
formalized by a subterm ordering and a so-called argument filtering that selects
the second argument. The rules of the TRS itself are also weakly decreasing
in this order, so we may remove (3) from the dependency pairs. Now two
dependency pairs remain, but the dependency graph no longer has any nontrivial
SCCs:

(1) (2)

Since there is no edge here, there cannot possibly be a loop, and we are done.
If we are used to the idea that we must always find decreasing orders, this step
is remarkable, since no order is needed explicitly.

Comparison with Isabelle There is an obvious similarity between the notion
of dependency pairs and the calls that form our termination goals: They both
correspond to recursive calls in an obvious, albeit informal, functional program-
ming interpretation.

However, some notable differences are hidden under the syntactic similari-
ties:

Deep vs. shallow Most importantly, TRS termination proofs produce well-
founded relations on terms. The term rewrite system itself, the depen-
dency pairs, and notion of reduction orders are all relations on first-order
terms over some fixed signature.

In contrast, the calls in our termination goals are relations on values of a
certain HOL type, which is the domain type of the function we are defining.
These values may be natural numbers, lists or anything else, and although
they are represented by Isabelle terms in the system, there is no notion
of term inside the logic. Hence, even the basic definitions underlying the
methods from rewriting are not meaningful anymore. For example, we

48 Chapter 3. Termination Proofs

cannot express what it means for a relation on natural numbers to be
closed under substitution.

This difference is essentially that of syntax vs. semantics and deep vs.
shallow embedding, and the difference is not only technical: Giesl [40]
shows that naively using term orderings for functional programs is even
unsound.

Background theory Isabelle termination goals are interpreted relative to a
background theory, which gives meaning to the constants involved in the
goal.

A DP problem is interpreted relative to a term rewrite system R, which
serves the same purpose, but is syntactically restricted to rewrite rules.
Hence, a TRS termination prover can analyze R, and use this informa-
tion in the proof. In contrast, an Isabelle theory may contain arbitrarily
complex definitions, using a variety of specification mechanisms, such as
simple equations, inductive definitions, choice operators, or just an axiom-
atization. As a consequence, the possibilities for analyzing the background
theory are very limited.

Equality The notion of a chain in the dependency pairs approach allows arbi-
trary rewrite steps below the root symbol between two consecutive DP-
steps which happen at the root symbol. In the Isabelle termination goals,
this role is taken by the equality in the background theory.

The differences in the semantic foundations of both frameworks may appear
as just a philosophical concern. But they directly influence the architecture of
termination proofs: In our shallow setting, term orders like the lexicographic
path order (LPO) cannot be used in the way they are used in rewriting, since
they cannot be expressed inside the logic, unless restricted to a fixed type.

Formalizations of term rewriting Two major formalizations of term rewriting
have been developed in Coq, both with the aim of certifying termination proofs
for term rewrite systems.

The first is the CoLoR project [18] (Coq Library on Rewriting), which is a
large formalization of various concepts from rewriting with a focus on termina-
tion. It formalizes different term languages including first-order variadic terms,
first-order terms over signatures, strings, and simply-typed lambda terms.

The library contains formal versions of the results underlying the depen-
dency pair method. To support graph decomposition, algorithms that compute
strongly connected components have been formalized. As base orders (reduc-
tion pairs), the library supports polynomial interpretations, different forms of
matrix interpretations and the recursive path order.

This setup enables proof reconstruction from certificates produced by an
automated termination prover: The automated prover produces certificates fol-
lowing a simple grammar, which are then interpreted by a tool called Rainbow,
which produces Coq source files. Using the library, the proofs can then be
checked in a fully automated way.

The A3PAT project on the integration of interactive and automated provers
goes a similar way with the Coccinelle library [31]. However, recognizing the
overhead of formalizing the graph decomposition algorithms, the authors choose

3.2. Related Work 49

A B

G1

G2

G1:

1 1

2 2

3

G2:

1 1

2 2

3

Figure 3.1: A simple size-change problem

a different approach: Instead of working with a deep embedding of rewrite sys-
tems, dependency pairs, and graphs, they are represented as inductive relations.
This approach avoids formalizing the graph algorithms, since the computations
are done on the tactic level [33]. Similar to CoLoR, a tool is provided to convert
proof traces from an automated prover into Coq scripts.

In comparison, the approach presented in this chapter is “even more shal-
low” that that of Coccinelle, since not only graphs and relations use shallow
embeddings, but also the terms are not a dedicated data type, but general Is-
abelle/HOL expressions. Due to the inherent gap between shallow and deep
embedding, proving termination of recursive functions defined in the logic itself
is currently not possible in either of the rewriting-based approaches.

3.2.2 Size-Change Termination

“A program is size-change terminating iff every infinite execution of the program
would cause an infinite descent in some well-founded data value.” Although its
first presentation by Lee, Jones and Ben-Amram [66] was in the context of a
simple functional language, this criterion, called size-change termination (SCT),
is independent from the actual language or programming paradigm used.

We emphasize this generality, which leads to a neat abstraction boundary in
our design, by using slightly more general terminology than the original paper.

SCT abstracts from the actual program by viewing it as a set of control
points and transitions between them, forming a directed graph (the control
graph). Each control point has a finite set of abstract data positions associated
with it, which can be seen as slots where runtime data is passed around.

Each transition is labeled with a size-change graph, which carries informa-
tion about the sizes of data. Size-change graphs are usually drawn as bipartite
graphs, whose nodes are the data positions of the transition’s origin and des-
tination control point. There are two kinds of edges: A strict edge, written
p q, expresses that the value at data position q (after the transition) is
always smaller than the value at position p (before the transition). A non-strict
or weak edge, written p q, means that it is smaller or equal. The absence
of an edge means that the value may become larger or the relative sizes are un-
known. Figure 3.1 shows a simple size-change instance consisting of two control
points A and B, with two and three data positions, respectively.

By connecting the size-change graphs along a control flow path, the data
flow becomes visible. Chains of such connected edges are called threads. A
thread has infinite descent iff it contains infinitely many strict edges.

50 Chapter 3. Termination Proofs

A B

G1, G5

G2

G3 G5

G1:

1 1

2 2

3

G2:

1 1

2 2

3

G3 = G1 ◦G2:

1 1

2 2

G4 = G2 ◦G1:

1 1

2 2

3 3

G5 = G1 ◦G4:

1 1

2 2

3

Figure 3.2: Transitive closure of the simple size-change problem

Definition 3.3. A control graph C satisfies SCT iff every infinite path has a
thread with infinite descent.

The example in Fig. 3.1 satisfies SCT, since the only infinite path isA,B,A,B, . . .
and it has a thread going through data positions 1, 2, 1, 2, . . ., which has infinite
descent.

SCT is decidable:

Theorem 3.4. A control graph C satisfies SCT iff for every edge in C+ of the
form p

G−→ p with G = G ◦G, G has an edge of the form i i.

Here, C+ is the transitive closure of C. The theorem above suggests an
algorithm which simply computes the transitive closure and checks the required
property.

Figure 3.2 shows the transitive closure of the size-change problem from
Fig. 3.1, where it is easy to check that the relevant graphs (G3, G4) have a
strict self-edge. We omit details such as the definition of graph composition for
the moment and refer to our formalization in §3.10.

Since SCT is a purely combinatorial graph problem, generating size-change
problems from programs is a separate issue. Here lies the power of the abstrac-
tion: Since nothing is said about what the control points and data positions
actually are, the criterion applies to different kinds of programs. The original
paper treated simple functional programs, and used functions as control points.
Function calls were the transitions, and the data positions were given by the
sizes of the function arguments. For imperative programs, one can take program
instructions as control points and program variables as data positions as it is
done by Avery [6].

Other interpretations are equally valid, as long as (a) infinite executions
of the program correspond to infinite paths in the control graph, and (b) the
information in the size-change graphs reflects actual size changes in some well-
founded data domain. Then a non-terminating execution implies an infinitely
decreasing sequence of data values, which is impossible.

3.2. Related Work 51

SCT has already been applied to term rewriting as well and combined with
dependency pairs [103, 104].

Since the size-changes graphs encode knowledge about the data flow in the
program, a suitable analysis is required to derive this information. Lee, Jones,
and Ben-Amram had a syntactic size analysis in mind, but in fact we have the
choice of weapons here, and we will use theorem proving, which does very well
on this task.

Together with the relatively compact and self-contained theory, it is the gen-
erality and abstraction of the size-change principle, which makes it particularly
suited for integration with theorem provers.

Some excitement was generated by a recent approach to termination proofs
of low-level systems code like device drivers, implemented in the Terminator
tool [32]. The approach of Terminator is based on the fact that a union
of wellfounded relations is wellfounded, provided that the whole relation is also
transitive — a consequence of Ramseys theorem. This is exploited by generating
a whole set of orderings and then using proving that in every execution path from
a program point p to itself there is a decrease in at least one of the orderings.
The reader might notice the similarity to size-change termination (cf. Thm. 3.4).
However, the size-change principle works on abstracted programs in the form of
size-change problems where everything is finite, and the transitive closure can
therefore be constructed explicitly. Terminator does not use this abstraction
and employs model checking techniques to show that R+ ⊆ S1 ∪ . . .∪Sn, where
R is the transition relation of the program, and Si are wellfounded orders.
Although the underlying abstract theory was formalized in Isabelle by Meng et
al. [73] and in HOL4 by Hurd [58], the overall approach could not yet be applied
in a theorem proving context, since there is no obvious equivalent to the model
checking techniques.

3.2.3 Termination proofs in interactive theorem provers

Compared to the area of term rewriting, termination proof automation in inter-
active theorem provers is much less developed:

In PVS [85] and Coq [15], no automation exists, and users must supply
termination orderings manually. HOL41 [44] and HOL Light [51] provide some
automation by enumerating all possible lexicographic orderings. For functions
with more than five or six arguments, this quickly becomes infeasible. ACL2 [60]
uses heuristics to choose a size measure of a single parameter. Lexicographic
combinations must be given manually, and are expressed in terms of ordinal
arithmetic.

Recently, a more powerful termination criterion has been proposed for ACL2
[69], based on a combination of the size-change principle [66] and other analyses.
However, the analysis is nontrivial and only available as an axiomatic extension
that must be trusted.

1The guessing of termination orderings in HOL4 is unpublished work by Slind

52 Chapter 3. Termination Proofs

3.3 Measure Functions

Since we center termination proofs around the notion of “becoming smaller”,
we must develop a suitable notion of size. We will always use natural numbers
and their natural order < to measure the size of data items. We use measure
functions m :: τ ⇒ nat to assign a size to values of type τ . A measure function
m gives rise to a wellfounded relation (measure m) :: (τ × τ) set.

The special role of the natural numbers is an arbitrary design choice, and
any type with a wellfounded relation could be used for measuring size. Although
it would be more general to use ordinal numbers, which can express more forms
of descent directly, it is more practical to use natural numbers:

• To be able to prove any descents for conrete termination problems, we
would need to automate at least parts of ordinal arithmetic. Isabelle/HOL
currently has no support for this. In contrast, natural numbers are well-
supported already, which makes our local descent proofs work out of the
box.

• The lower expressive power of measure functions into nat is compensated
when we combine them to more powerful relations.

3.3.1 Collecting Measure Functions

We provide an interface for the declaration of formation rules that specify how
to build measure functions for use in a termination proof. For simplicity, the
measure synthesis process is guided only by the domain type of the termination
problem. This is only a very crude analysis, but since the generated measure
functions are only candidates for use in a proof, it is a useful choice in practice.

To express formation rules for measure functions, we define a predicate on
functions:

is-measure :: (α ⇒ nat) ⇒ bool

This predicate is defined inductively with the sole introduction rule is-measure f ,
such that it trivially holds for any function. It is logically meaningless, but it
can be used to express the formation rules for measure functions in HOL itself.
For example, we can specify that the function (nat o abs) :: int ⇒ nat, which
takes the absolute value and coerces it to type nat, should be used as a measure
on integers:

is-measure (nat ◦ abs)

This rule is just a normal lemma marked with the attribute [measure-function].
Its proof is trivial.

The rules can also be conditional, allowing more flexible specifications. The
following two rules specify that in order to measure a pair, we can measure
either the left or the right component:

is-measure f =⇒ is-measure (λp. f (fst p))
is-measure f =⇒ is-measure (λp. f (snd p))

3.3. Measure Functions 53

In order to generate measure functions for a given type τ , the termination
prover can use the standard resolution infrastructure, by setting up a schematic
goal

is-measure (?f :: τ ⇒ nat)

and applying the formation rules backwards in Prolog style, which successively
instantiates the schematic variable ?f. Unlike normally, where we are satisfied
with the first proof we find, we enumerate all proofs, which corresponds to an
enumeration of measure functions.

While the rule-based measure generation is very flexible, it is easily broken
by supplying bad rules. For example, if we were to give

is-measure f =⇒ is-measure f

we would make the derivations loop immediately. It is the user’s responsibility
to declare only well-behaved rules. In particular, the set of solutions must be
finite, and no solution may have any schematic variables.

Adding more measure functions can only increase the power of the termi-
nation prover, but we pay for this with a larger search space. Some rules are
particularly expensive, as they can lead to an exponential blowup in the number
of measure functions. For example, we could measure products by the sum of
the measures of their components:

is-measure f =⇒ is-measure g =⇒ is-measure (λ(x , y). f x + g y)

Now if we have a large product α1 × . . . × αn, and each type αi generates
two measure functions, this rule generates a total of 2n different combinations,
which may be prohibitive.

3.3.2 Size functions for inductive datatypes

For each inductive datatype definition, Isabelle automatically defines a corre-
sponding size function using primitive recursion. Below is the size function for
lists:

list-size [] = 0
list-size (x :xs) = list-size xs + Suc 0

Note that the non-recursive constructor [] has size zero. This is an arbitrary
choice motivated by the historical development. It has the advantage that the
size of a natural number is the number itself and the size of a list is its length.

The definition of list-size above is “shallow” in the sense that it only counts
the constructors in the spine of the list, but ignores the actual elements. This
is often just what we want, as it captures structural recursion on lists.

However, a technical issue arises in the presence of nested datatypes. Con-
sider the datatype of n-ary trees:

datatype α tree = Node α (α tree list)

How should we define the size of such a tree? Since the Node constructor takes
a list, it is tempting to simply define

tree-size (Node v xs) = list-size xs + Suc 0

54 Chapter 3. Termination Proofs

This definition does not capture the recursive structure of trees, since list-size
ignores the recursive occurrences of subtrees, which we should be counted as
well.

So the size of an α tree list must apparently be measured differently than
that of an α list. Before Isabelle 2007, this was done by producing a new
function tree-list-size with the expected behaviour. The functions tree-size and
tree-list-size are then mutually recursive:

tree-list-size [] = 0
tree-list-size (x :xs) = tree-size x + tree-list-size xs + Suc 0

tree-size (Node v xs) = tree-list-size xs + Suc 0

From these definition we get a useful size measure. The problem is that we also
need a lemma that connects the two functions:

x ∈ set xs =⇒ tree-size x < tree-list-size xs

This lemma requires induction and had to be stated and proved manually before
any termination proofs over trees would work — an unpleasant situation.

A better solution is to add an extra function parameter to list-size which is
used to measure the elements of the list:

gen-list-size :: (α ⇒ nat) ⇒ α list ⇒ nat

gen-list-size f [] = 0
gen-list-size f (x :xs) = f x + gen-list-size f xs + Suc 0

We can then define the simpler function list-size as gen-list-size (λx . 0). The
advantage is that we can also use gen-list-size in the definition of tree-size:

tree-size (Node v xs) = gen-list-size tree-size xs + Suc 0

This definition is equivalent to the previous one, but it no longer requires mutual
recursion and the somewhat ad-hoc tree-list-size. As a practical benefit, the
lemma above now becomes generic and no longer mentions trees:

x ∈ set xs =⇒ f x < gen-list-size f xs

This generic lemma applies to all datatypes that use recursion under the type
constructor list. It is part of the standard library, together with similar lemmas
about products and options.

The generated size functions are automatically declared as measures using
the mechanism described above. Not all of these measures are always useful
though: For non-recursive types like the product type, the size function is the
constant zero function. A better measure function can of course still be declared
manually.

Generalized size functions of the type gen-list-size are not declared as mea-
sure functions automatically, since they can lead to an exponential search space
if the type has arity greater than one. For the the common case of lists, we
declare the rule manually:

is-measure f =⇒ is-measure (gen-list-size f)

Example 3.5. For domain type τ = int × nat list, the formation rules described
above produce the measure functions λp. (nat ◦ abs) (fst p), λp. list-size (snd
p), and λp. gen-list-size nat-size (snd p). Note that nat-size is just the identity.

3.4. Proving Local Descent 55

3.4 Proving Local Descent

The type-based measure synthesis produces candidates for measure functions.
To determine whether a measure is actually helpful with a given termination
problem, we have to see whether it makes some calls decreasing.

For a call C = {(r , l) | v1. . . vm. Γ}, the strict descent property with respect
to a pair of measures (m1,m2) is the formula∧

v1. . . vm. Γ =⇒ m2 r < m1 l ,

and the weak descent property is∧
v1. . . vm. Γ =⇒ m2 r ≤ m1 l .

Unsurprisingly, the descent properties are undecidable, and we cannot expect a
general checker for them.

If we were developing a stand-alone termination prover, we would now face
the problem of finding a syntactic criterion about r, l, and Γ (e.g., a structural
subterm property) that implies descent for some fixed measures. If the check is
positive, we must produce a proof of the descent property.

Now, since we live in the Isabelle framework, which provides ample proof
automation, we can use the available generic tools for this task. For checking
descent, we simply state the strict descent property and invoke the auto method.
If the proof succeeds, we store the theorem for later use. If it fails, we try the
same for the weak descent property. If this also fails, we conservatively assume
that the conditions do not hold.

This strategy of trial-and-error proving is somewhat unusual, and we have
not seen it in other contexts. Relying on the available infrastructure has two
notable advantages:

First, the auto method, which combines simplification with classical reason-
ing and arithmetic, has been subject to extensive tuning, since it is one of the
most widely-used methods in the system. Thus it is likely to be more effec-
tive than a specialized prover, since the form of decrease conditions is relatively
general.

Second, since the method can be configured with additional rule declarations,
we obtain a simple way of supplying lemmas to the descent prover. Descents
that are not provable on their own may become provable when using an existing
lemma. This is a crucial feature, since the descent conditions may refer to
arbitrary user-defined concepts.

Due to the specific structure of the descent condition, it helps to add some
rules to the simplification set of the automated prover. Many of these rules are
normally not added since they increase the search space and may slow down
simplification. However, since local descent proofs are typically not very large,
we can pay this price for the improved automation. Figure 3.3 lists these rules.

Result matrices For each call C, the results of the proofs are stored in a matrix
MC , with MC

i,j ∈ {<,≤, ?}, indexed by the measure functions. The entries <
and ≤ stand for a successful strict or weak descent proof, and ? denotes a failure
of both proofs.

Example 3.6. Recall the merge function from §3.1.1, and let us suppose that
the measure generation process has produced the functions m1 = (λp. list-size

56 Chapter 3. Termination Proofs

(
∧

x . x ∈ set xs =⇒ f x < g x) =⇒ gen-list-size f xs ≤ gen-list-size g xs
x ∈ set xs =⇒ y ≤ f x =⇒ y ≤ gen-list-size f xs
x ∈ set xs =⇒ y < f x =⇒ y < gen-list-size f xs
prod-size f g p = f (fst p) + g (snd p) + Suc 0
m ≤ n =⇒ m < Suc n
x < y =⇒ x ≤ y
x ≤ z =⇒ x ≤ y + z
x ≤ y =⇒ x ≤ y + z
x < z =⇒ x < y + z
x < y =⇒ x < y + z

Figure 3.3: Extra simplification rules for local descent proofs

(fst p)) and m2 = (λp. list-size (snd p)). The strict descent property for the
first call and (m1, m1) is∧

x xs y ys. x ≤ y =⇒ list-size (fst (xs, y :ys)) < list-size (fst (x :xs, y :ys)) .

This is easily proved automatically by simplifying with fst (a, b) = a and then
unfolding list-size on the right-hand side, which results in a statement that is
trivial for the built-in arithmetic:∧

x xs y ys. x ≤ y =⇒ list-size xs < list-size xs + Suc 0

If we take the measure combination (m2, m2), strict descent is not provable,
but weak descent is. For the combination (m1, m2), none of the conditions is
provable. Here is an attempt to prove weak descent:∧

x xs y ys. x ≤ y =⇒ list-size (fst (xs, y :ys)) ≤ list-size (snd (x :xs, y :ys))

This time, simplification yields∧
x xs y ys. x ≤ y =⇒ list-size xs ≤ list-size ys + Suc 0 ,

where we are stuck and must abandon the proof attempt.
Collecting the results of all proofs yields the following local descent matrices:

MC1 =
(
< ?
? ≤

)
MC2 =

(
≤ ?
? <

)

3.5 Simple Termination Proofs and Lexicographic
Descent

Up to now, we were just collecting the necessary information to find a termina-
tion proof, but we have not yet touched the goal. In this section, we introduce
two simple rules to build termination proofs from the information we have.

The first rule is used to conclude the proof when we are done and no more
calls are left:

Rule 3.7 (Trivial goal). The goal wf ∅ is trivial and can be discharged imme-
diately.

3.5. Simple Termination Proofs and Lexicographic Descent 57

The second rule is more interesting:

Rule 3.8 (Reduction Pair). Given a reduction pair (R, S), we may remove
calls from the goal that are compatible with R, provided that the remaining calls
are compatible with S.

The formal justification for this step is the following straightforward consequence
of the union lemma (Lemma 1.1):

reduction-pair (R, S) C ⊆ R D ⊆ S wf D
wf (C ∪ D)

To apply the rule, we must find a useful reduction pair, which is the creative
part of termination proving. For now, we will use only reduction pairs that arise
from single measure functions. In §3.8, more sophisticated reduction pairs will
be used.

In the results of the local descent proofs, we look for a measure m, such that
MC
m,m = < for at least one call C, and MC′

m,m ∈ {<,≤} for all the other calls.
Then we use measure-rp m as a reduction pair. The premises C ⊆ R and D ⊆
S of the lemma above follow directly from the local descent properties that we
have already proved.

Example 3.9. We continue with the merge example, where the goal is still in its
initial form:

1 . wf ({((xs, y :ys), (x :xs, y :ys)) |x xs y ys. x ≤ y} ∪
{((x :xs, ys), (x :xs, y :ys)) |x xs y ys. ¬ x ≤ y})

From the descent matrices we can see that we can use the measure m1 to remove
C 1, since MC1

1,1 = < and MC2
1,1 = ≤. The premises of the reduction pair lemma

are easily reduced to the local descent properties, e.g.,

{((xs, y :ys), x :xs, y :ys) |x xs y ys. x < y} ⊆ fst (measure-rp (λp. list-size (fst p)))

;
∧

x xs y ys. x < y =⇒ ((xs, y :ys), (x :xs, y :ys)) ∈ fst (measure-rp (λp. list-size (fst p)))

;
∧

x xs y ys. x < y =⇒ list-size (fst (xs, y :ys)) < list-size (fst (x :xs, y :ys))

Here we just had to unfold the definition of measure and the comprehension to
reduce the inclusion to the statement that we have already proved. We discharge
this goal using the stored local descent theorem.

Now there is just one call left:

1 . wf {((x :xs, ys), (x :xs, y :ys)) |x xs y ys. ¬ x ≤ y}

We solve this call in the same way as the first one, but using the measure m2 this
time. This reduces the goal to wf ∅, which we then discharge using Rule 3.7.

A note on nested functions The calls above did not contain references to
functions other than constructors, this is not always the case, since recursive
calls may contain arbitrary user-defined functions (often called nested functions,
but not in the sense of §2.4). Then, lemmas about these functions are required
that express that, e.g., the functions never increase the size of their arguments.
A typical example is the inequality

58 Chapter 3. Termination Proofs

list-size (filter P xs) ≤ list-size xs

Such lemmas usually require induction, and we make no attempt to discover
and prove them automatically.

However, the local descent proofs will use these lemmas, if they are already
present in the theory. Here we are very much in the tradition of automated
proof tools in Isabelle, which rely heavily on their configuration and lemmas in
the background theory.

Walther [111] describes techniques for discovering and proving such lemmas
automatically in a first-order setting, using a specialized estimation calculus.
The dependency pairs method deals with nested functions implicity by requiring
that reduction pairs must also be compatible with the rules of R (or rather, a
certain subset).

However, both approaches have an implicit closed world assumption: They
require that the definitions of the nested functions follow a certain form that
can be analyzed. In an open logical framework like Isabelle, this is not true
in general. Nevertheless, in many cases, lemmas about nested functions could
probably be speculated and proved automatically, which would further improve
the methods presented here. However, we do not adress this problem further,
and rely on the user to provide the relevant lemmas about nested functions.

The method we have developed up to this point already supports lexicographic
descent naturally, since we can apply Rule 3.8 multiple times, each time with a
different reduction pair. This approach is implemented in Isabelle as the method
lexicographic-order2. In the following sections, we develop other approaches,
which improve upon this basic approach.

3.6 Control Flow: Dependency Graph Analysis

In this section we will analyze the control flow inherent in a termination problem
by using a form of abstract control flow graph which, following terminology
from term rewriting, is called the dependency graph. The dependency graph is
a graph between calls. Two calls C and D are connected with an edge, if C can
be immediately followed by D.

3.6.1 Building the Dependency Graph

To determine whether a call can follow another, we employ a similar trial-and-
error strategy as we did for local descent in §3.4. For each combination of two
calls, we set up the goal

C ◦ D = ∅

which expresses that a transition in C can never be followed by a transition
in D. If we can prove the goal (again using auto), the resulting theorem is

2The implementation of lexicographic-order is actually different, but equivalent. It works
on open goals instead of closed ones, constructing a lexicographic termination order explicitly
[26]. It was implemented before the more general framework using closed goals existed.

3.6. Control Flow: Dependency Graph Analysis 59

our justification for not putting the respective edge in the dependency graph.
Otherwise we are conservative and draw an edge.
Example 3.10. Consider the artificial function bar, which has has two modes:
Depending on a boolean flag, either the first or the second argument decreases:

bar True (Suc n) m = bar True n (Suc m)
bar True 0 m = bar False 0 m
bar False n (Suc m) = bar False (Suc n) m
bar False n 0 = n

The corresponding termination problem has three calls (C 1 ∪ C 2 ∪ C 3):

wf ({((True, n, Suc m), (True, Suc n, m)) |n m. True} ∪
{((False, 0 , m), (True, 0 , m)) |m. True} ∪
{((False, Suc n, m), (False, n, Suc m)) |n m. True})

We obtain the following dependency graph:

{((True, n, Suc m), (True, Suc n, m)) |n m. True}

{((False, 0 , m), (True, 0 , m)) |m. True}

{((False, Suc n, m), (False, n, Suc m)) |n m. True}

For each edge that is absent from the graph, we have proved a property of the
form C ◦ D = ∅ as justification. Again, we rely on available automation for the
proofs. For example, here is the proof of C 2 ◦ C 1 = ∅:

{((False, 0 , m), (True, 0 , m)) |m. True} ◦
{((True, n, Suc m), (True, Suc n, m)) |n m. True}
= {((True, n ′, Suc m ′), (True, 0 , m)) |m m ′ n ′.
(True, Suc n ′, m ′) = (False, 0 , m)}

= {((True, n ′, Suc m ′), (True, 0 , m)) |m m ′ n ′.
True = False ∧ Suc n ′ = 0 ∧ m ′ = m}

= {((True, n ′, Suc m ′), (True, 0 , m)) |m m ′ n ′. False}
= ∅

3.6.2 Decomposition

The dependency graph above reflects the control flow of bar. There are two
separate loops, and for a termination proof, we should be able to treat them
independently. We introduce the following rule to do just that.

Rule 3.11 (Decomposition). If the dependency graph of the goal is not strongly
connected, we can split the goal into independent subgoals, corresponding to the
strongly connected components (SCCs) of the dependency graph.

The decomposition rule is formally justified by the union lemma. If we have
more than one SCC, we can always partition the calls in to an upper part U
and a lower part L, such that no call in the upper part is reachable from the
lower part, i.e.,

60 Chapter 3. Termination Proofs

L ◦ U = ∅ .

In particular, this implies L ◦ U ⊆ U, which is the premise of the union lemma.
Using this lemma, we split the termination goal in two independent subgoals.
We can repeat this step until we have separated all SCCs.

Example 3.12. Continuing with the example above, we use Rule 3.11 to split
the termination problem in three parts. First, we split off U = C 1 from L =
C 2 ∪ C 3. We have to show that (C 2 ∪ C 3) ◦ C 1 = ∅, which follows from the
dependency graph using distributivity. Now we have two independent subgoals.
The subgoal wf (C 2 ∪ C 3) can be treated in the same way, and we end up with
the proof where all calls are separated:

1 . wf {((True, n, Suc m), (True, Suc n, m)) |n m. True}
2 . wf {((False, 0 , m), (True, 0 , m)) |m. True}
3 . wf {((False, Suc n, m), (False, n, Suc m)) |n m. True}

3.6.3 Trivial calls

After splitting the problem into its strongly connected components, we may
end up with a call that is not reachable from itself. This corresponds to a
dependency graph with a single node and no edge. Intuitively, we do not need
to consider such calls, as they cannot lead to nontermination:

Rule 3.13 (Trivial Call). A goal with a single call that is not reachable from
itself can be discarded.

Formally, we use the self-composition lemma (Lemma 1.3) to reduce the goal
wf C to wf (C ◦ C). Since there is no edge, we know that C ◦ C = ∅, which
is trivially wellfounded.

In our running example, Rule 3.13 allows us to drop C 2.

3.7 Mutual Recursion

As we have seen in §2.6.4, the function package reduces mutually recursive
functions to a single function on a sum type. Thus, the termination goal for
mutually recursive functions involves relations over that sum type.

For example, the following goal arises from the definition of even and odd :

1 . wf ({(Inr n, Inl (Suc n)) |n. True} ∪
{(Inl n, Inr (Suc n)) |n. True})

In general, a call from f to g in a mutual recursive definition has the form
{ (Inj g r i, Inj f l i) | v1. . . vmi . Γi }, where Inj f and Inj g denote the injections
that map the argument of the functions f and g into the sum type. They consist
of compositions of the basic injections Inl and Inr.

The easiest way of supporting mutual recursion is by ignoring it and keeping
the analysis unmodified. All we have to do is declare a rule to generate measure
functions on sum types. An obvious candidate is the following rule, which
combines two measures on α and β, respectively, and yields a measure on α + β.

is-measure f =⇒ is-measure g =⇒ is-measure (sum-case f g)

3.7. Mutual Recursion 61

For the type nat + nat this rule produces the measure sum-case nat-size nat-size,
which is just fine for even and odd. Intuitively, it generates all measures for each
of the individual functions, and then builds all possible combinations. As we
mentioned earlier, this approach is very expensive: The number of measures it
produces is exponential in the size of the sum type.

Recall that the number of proof attempts that we have to perform to check
for local descent is quadratic in the number of measures. Since proof attempts
are relatively expensive, the use of the rule above is already problematic for
three or four mutually recursive functions with a few arguments each. Thus,
trying to avoid the exponential behaviour is clearly a good investment.

3.7.1 Avoidable exponential blowup

Concerning the number of proof attempts, the exponential blowup can be avoided,
since trying all measure combinations is highly redundant: In a call from f to
g, it is completely irrelevant what measure we assign to all other functions, and
sum measures differing only in components other than f and g will not change
the outcome of this particular descent proof.

It is a better strategy to treat the outermost sum type structure as special.
If the domain type has the form

τ1 + τ2 + . . . + τn

we produce a separate set of measures Mi for each component τ i.
For the local descent proofs we now remove the injections from the calls,

and directly insert the measures that we have generated for the respective sum
component. So for the call { (Inj g r , Inj f l) | v1. . . vm. Γ } we construct the
local descent goal∧

v1. . . vm. Γ =⇒ m2 r < m1 l

where m1 ∈ Mf and m2 ∈ Mg. The goal for weak descent is analogous.
As before, we build a matrix for each recursive call, where we collect the

results of local descent proofs. The difference is that the matrices are no longer
square matrices but rectangular, since different sets of measures may be used
depending on the domain type of the different functions. This approach avoids
the exponential blowup, while still collecting exactly the same information.

3.7.2 Unavoidable exponential blowup

Finding a suitable global measure on the sum type that works for all calls is
now a purely combinatorial task. Abstracting from functions and measures and
the like, we have the following problem:

Assignment: Given finite sets F and M , and a relation R ⊆ F ×
F ×M ×M , is there a mapping f : F → M such that ∀x, x′ ∈ F.
(x, x′, f(x), f(x′)) ∈ R?

The abstraction is as follows: F is the set of functions, and M is the set of
basic measures, where we assume without loss of generality that the number of
basic measures is the same for all functions (e.g., by taking the maximum). The

62 Chapter 3. Termination Proofs

relation R encodes the constraints given by the local descent proofs: (f, g, i, j) ∈
R iff for some call C from f to g, MC

ij ∈ {<,≤}, (or MC
ij = <, if that call should

be strictly decreasing).
The Assignment problem has the typical structure of an NP-complete prob-

lem, and indeed it is:

Lemma 3.14. The Assignment problem is NP-complete.

Proof. We give a reduction from the 3-colouring problem for graphs, which
asks if the nodes of a given graph can be marked with three colours, such that
any two adjacent nodes get different colours. This problem is known to be
NP-complete [87].

For a graph G = (V,E), we define the problem instance

F = V, M = {Red,Green,Blue}, R = {(v, v′, c, c′) | (v, v′) /∈ E ∨ c 6= c′}.

Now every solution f for Assignment is a valid colouring: If (v, v′) ∈ E and
f(v) = c we have (v, v′, c, c) /∈ R and thus f(v′) 6= c. Conversely, every colouring
is clearly a valid Assignment. Thus our problem is NP-hard, and since checking
a given solution is trivial, it is also NP-complete.

The following lemma shows that any instance of Assignment can actually arise
from a termination goal, hence our problem is not overly general:

Lemma 3.15. For any instance of Assignment, there is a termination prob-
lem that can be simplified using a combination of measures, if and only if the
combination problem has a solution.

Proof. Given an instance (F,M,R) of Assignment, we produce a termination
problem with n = |F | functions, each taking k = |M | arguments of type nat.
Thus the domain type of the termination problem is an n-fold sum of k-fold
products. We use the measures m1, . . . ,mk where mi is the projection of a
k-tuple on the ith argument.

For each pair f, g ∈ F , we construct the call

C fg = { (Inj g (min S1, . . . , min Sm), Inj f (x 1, . . . , xm)) | x 1. . . xm. True }

where S i abbreviates the finite set of all x j such that (f, g, i, j) ∈ R. Further-
more, we pick an arbitrary function f ∈ F and add the call

C< = { (Inj f (x 1, . . . , xm), Inj f (Suc x 1, . . . , Suc xm)) | x 1. . . xm. True }.

For any assignment of measures to functions, the call C< is strictly decreas-
ing. The call C fg is weakly decreasing for exactly those pairs of measures mi

(assigned to f) and mj (assigned to g) where (f, g, i, j) ∈ R.

This result shows that mutually recursive functions add a new source of
complexity to the termination proving task, since the measures used for the
different functions must accomodate the data flow between them, which is an
NP-complete problem. Strictly speaking, these issues are not really connected
to mutual recursion at all, since the sum types could also appear explicitly in
the definition of a single function. However, such a definition would not be very
natural.

Fortunately, the times when NP-completeness was a synonym for “abandon
all hope. . . ” are gone, especially when the main problem we are working at is

3.8. Data Flow: Size-Change Termination with Certificates 63

undecidable. Clearly, the Assignment problem above wants to be encoded into
SAT and given to the latest SAT solver, which can handle such combinatorial
problems best. In the next section, we will do this, but with a problem that is
more general. After that, finding combinations for sum types is an instance of
that problem.

3.8 Data Flow: Size-Change Termination with Cer-
tificates

The termination prover we have developed so far does not handle functions that
permute their arguments in a recursive call. Consider the following function
taken from the original paper on size-change termination [66]:

perm m n r =
(if 0 < r then perm m (r − 1) n
else if 0 < n then perm r (n − 1) m else m)

Here is the corresponding termination goal:

1 . wf ({((m, r − 1 , n), (m, n, r)) |m n r . 0 < r} ∪
{((r , n − 1 , m), (m, n, r)) |m n r . ¬ 0 < r ∧ 0 < n})

If we use the projections as measures as usual, we can derive the following local
descent matrices:

MC1 =

 ≤ ? ?
? ? <
? ≤ ?

 MC2 =

 ? ? ≤
? < ?
≤ ? ?


Our current way of building reduction pairs only uses the information at the

diagonals of the call matrices, but this is not sufficient for this example. What
we need is a combination of the individual measures.

For this particular goal, the measure λ(x , y , z). x + y + z is obviously suffi-
cient, and declaring an appropriate measure formation rule will help. However,
we will now develop a more general method.

Like in the previous section, we are facing a data flow problem, since we
need a way to track what happens to the values in the recursive calls. This
information, which we have represented as matrices, can also be depicted as
size-change graphs, which nicely visualize the data flow:

C1 C2

C1:

1 1

2 2

3 3

C2:

1 1

2 2

3 3

The control graph of the size-change problem above has a node for each func-
tion in the mutual recursion (here we have only one). Every edge corresponds
to a call in the termination problem. The data positions associated with each

64 Chapter 3. Termination Proofs

control point represent the measures. The size-change graph for a call contains
the same information that we have previously encoded in a matrix.

Note that the control graph in this size-change instance is not the depen-
dency graph we studied before: Here, calls are represented as edges, not as
nodes. In a graph-theoretic sense, the dependency graph is dual to the control
graph used here (possibly with some edges missing due to the finer approxima-
tion). As we shall see later, this is not the only way of building size-change
problems from termination goals, but it is the simplest one and it allows for
easy proof reconstruction.

The reader may want to check that the size-change problem above actually
satisfies SCT. Using Thm. 3.4, this involves computing the transitive closure
which produces quite a number of graphs, corresponding to the different ways
of permuting the arguments. The property is easier to see using Def. 3.3 directly:
In this problem instance, any infinite path has exactly three infinite threads that
are never interrupted. At each position, exactly one of the threads has a strict
edge. Thus, there must be one thread that has infinitely many strict edges.

3.8.1 Certificates for size-change termination?

Things would be simplest if we could generate short certificates of some kind,
which prove that a function is size-change terminating, and which can be easily
checked. This is the case for the reduction pairs we used so far: Using the local
descent properties it is easy to check that the calls are decreasing. One would
wish that we could construct reduction pairs for size-change termination in a
similar way.

However, a complexity argument shows that such certificates are unlikely to
exist, due to the PSPACE-hardness result for SCT [66]:

Corollary 3.16. If there were certificates proving x ∈ SCT that could be checked
in polynomial time, then PSPACE = NP, which complexity theorists find un-
likely [87].

Proof. Assume that such certificates exist, then SCT ∈ NP by a simple guess-
and-check argument. But SCT is PSPACE-hard, thus PSPACE ⊆ NP.

If we assume that proof checking is polynomial in the size of the proof, this
means that any certificates must be of exponential size. Of course this does
not exclude that there could be certificates that are long but still conceptually
simple.

Lee [65] gives an explicit construction of a global measure function for a
size-change problem. However, the construction is triple-exponential in size.
Recently, this could be reduced to single-expontential complexity [12], which is
still not very attractive as a certificate scheme.

3.8.2 SCNP = SCT in NP

Instead of using full size-change termination, we restrict ourselves to a subset
of SCT that lies in NP and is consequently called SCNP. The restriction was
proposed by Ben-Amram and Codish [11], and they show how to use a SAT-
solver to produce certificates in the form of mappings into certain wellfounded

3.8. Data Flow: Size-Change Termination with Certificates 65

orders. A formal termination proof must then only check that each call is
decreasing. By definition, the class SCNP contains the SCT instances that
admit such certificates. Since this definition is a little unnatural, it is perhaps
more appropriate to view SCNP as an incomplete decision procedure for SCT,
instead of an independent problem class. Experimenting on two test suites,
Ben-Amram and Codish show that SCNP is quite powerful: It solves all size-
change problems in the test suites, except for those intentionally constructed as
counterexamples.

Lifted orders: max, min, and multiset

SCNP uses extensions of wellfounded relations to finite sets and multisets.
Given a wellfounded relation R :: (α × α) set, we can define a wellfounded

relation max-ext R :: (α set × α set) set, such that a set X is smaller than Y,
iff the greatest element of X is smaller than the greatest element of Y. Since a
maximal element may not exist and be uniquely defined for arbitrary relations,
we instead formulate the definition as follows:

Definition 3.17 (Max Extension).
max-ext R =
{(X , Y). finite X ∧ finite Y ∧ Y 6= ∅ ∧ (∀ x∈X . ∃ y∈Y . (x , y) ∈ R)}

The proof that this extension preserves wellfoundedness is a four-level nested
induction, and can be found in the Isabelle library.

Lemma 3.18. wf R =⇒ wf (max-ext R)

Similarly, we define the min extension of a relation. Compared to max, the
order of quantification is reversed, and surprisingly we need no finiteness con-
ditions. The intuitive reason is that infinite sets always have minimal elements,
but not maximal ones.

Definition 3.19 (Min Extension).
min-ext R = {(X , Y) |X Y . X 6= ∅ ∧ (∀ y∈Y . ∃ x∈X . (x , y) ∈ R)}

Lemma 3.20. wf R =⇒ wf (min-ext R)

The third extension is the multiset extension, which is well-known from the
literature, and its formalization is already present in Isabelle. Here a relation R
is lifted to multisets instead of sets:

Definition 3.21 (Multiset Extension).
mult1 R =
{(N , M).
∃ a M0 K .

M = M0 + {|a|} ∧ N = M0 + K ∧ (∀ b. b ∈# K −→ (b, a) ∈ R)}
ms-ext R = (mult1 R)+

Lemma 3.22. wf R =⇒ wf (ms-ext R)

We refer to Baader and Nipkow [7] for a discussion of the multiset order.
Note that (X , Y) ∈ max-ext R implies (mset X , mset Y) ∈ ms-ext R, where

mset coerces sets to multisets. It seems that one would never need the max-
extension in a termination proof, since the multiset extension is stronger. But

66 Chapter 3. Termination Proofs

the picture changes when we look at the non-strict counterparts. For example,
{2 , 1 , 1} ≤ {2 , 1} when compared with the max-order, but {|2 , 1 , 1 |} > {|2 ,
1 |} in the multiset order.

Ben-Amram and Codish also use a fourth order they call the dual multi-
set order, but experiments show that it contributes very little to the power of
the approach, and we decided not to use it, since proof reconstruction for it
is technically more involved. This is because the dual multiset order is only
wellfounded for a fixed bound on the number of elements in the multiset.

Level mappings

Instead of measure functions into nat, SCNP uses so-called level mappings:

lev :: τ ⇒ (nat × nat) set/multiset

These functions map an argument x :: τ into a set or multiset of pairs. The first
component of such a pair is a measure function applied to x, and the second
component is a fixed natural number which is called a tag. The pairs are ordered
lexicographically, and this order on pairs is now lifted using one of the extensions
max-ext, min-ext, or ms-ext.

Example 3.23. The termination proof for the function perm above works with
the multiset ordering and the level mapping

λ(m, n, r). {|(m, 0), (n, 0), (r , 0)|}.

That is, we map each triple to a multiset of three components. The tags are
always zero here (which means that they play no role in this example). With
this ordering, both calls are strictly ms-decreasing.

If the size-change problem has multiple program points, a level mapping on
the sum type is composed from level mappings on the individual types using
sum-case.

It is easy to see that SCNP subsumes the measure combination approach
we described in the previous section for mutual recursive functions: An inter-
pretation that assigns a simple measure to each of the functions corresponds
to singleton sets, which can be compared with, e.g., the max-extension. Ben-
Amram and Codish prove that it is also NP-complete [11].

3.8.3 SAT encoding

Our SCNP solver uses the SAT encoding described by Ben-Amram and Codish.
This encoding produces a formula which contains additional constraints of the
form a < b or a ≤ b, where a and b are special variables ranging over natural
numbers up to a fixed bound. These constraints encode the relationships be-
tween the tags, and are easily compiled to plain SAT using binary encodings
[30]. Table 3.1 lists the different kinds of propositional variables used in the
SAT encoding, together with their intended meaning.

Given a set of calls C, we produce the following constraints: First, we expect
from a solution that all graphs are weakly decreasing and at least one call is
strictly decreasing:

3.8. Data Flow: Size-Change Termination with Certificates 67

eCi>j Expresses that in call C, the we have a strict descent from the
ith to the jth data position, taking both the information in the
size-change graph and the tags into account.

eCi≥j The same, but for weak descent.

spi Indicates that the data position i is selected for the (multi)set of
control point p.

strictC Indicates that call C is strictly decreasing.

weakC Indicates that call C is weakly decreasing.

γCi,j Indicates that position i is used to “cover” position j in the mul-
tiset order. It may either a) cover multiple positions strictly, or
b) cover a single position weakly. (unused for max and min order)

εCi Indicates that case a) above is true for position i. (unused for
max and min order)

tagpi Numerical variable; represents the tag associated with control
point p and data position i.

Table 3.1: Variables for encoding SCNP into SAT.

Descent constraints: ∧
C∈C

weakC ∧
∨
C∈C

strictC

The results of the local descent proofs, visualized by the size-change graphs, are
encoded by the following formula, for each C ∈ C, going from program point p
to q, where there are n data positions for p and m for q.

Graph constraints:

∧
1≤i≤n
1≤j≤m

(
(eCi>j ↔ (MC

ij = <) ∨ (MC
ij = ≤) ∧ (tagpi > tagqj))

∧ (eCi≥j ↔ (MC
ij = <) ∨ (MC

ij = ≤) ∧ (tagpi ≥ tag
q
j))

)

The remaining constraints further describe the variables strictC and weakC , by
encoding the requirements of the max -, min- or ms orders. We add one of the
following constraint sets, depending on what order we are searching for.

The constraints for the max and min orders directly correspond to the defi-
nitions of the respective orders (Defs. 3.17 and 3.19), where the quantifiers are
represented as finite conjunctions and disjunctions.

Max order constraints:

weakC ↔
∧

1≤j≤m

sqj → ∨
1≤i≤n

(spi ∧ e
C
i≥j)


strictC ↔

∧
1≤j≤m

sqj → ∨
1≤i≤n

(spi ∧ e
C
i>j)

 ∧ ∨
1≤i≤n

spi

68 Chapter 3. Termination Proofs

Min order constraints:

weakC ↔
∧

1≤i≤n

spi → ∨
1≤j≤m

(sqj ∧ e
C
i≥j)


strictC ↔

∧
1≤i≤n

spi → ∨
1≤j≤m

(sqj ∧ e
C
i>j)

 ∧ ∨
1≤j≤m

sqj

The encoding of the multiset order uses the following idea: If (X , Y) ∈ ms-ext
R, then each element of X must be “covered” by an element of Y. An element
y may either cover multiple elements x if y > x, or it may cover one element
such that y ≥ x. In the formula below, the operator ⊕ abbreviates that exactly
one of the set of variables should be true.

Multiset order constraints:

weakC ↔
∧

1≤j≤m

(sqj →
∨

1≤i≤n

γCi,j)

strictC ↔
∨

1≤i≤n

(spi ∧ ¬ε
C
i)

∧
1≤i≤n
1≤j≤m

γCi,j → spi ∧ s
q
j ∧ e

C
i≥j ∧ (¬εCi ↔ eCi>j)

∧
1≤i≤n

spi → εCi → ⊕{γCi,j |1 ≤ j ≤ m}

Collecting all the constraints, we obtain a SAT instance that we can pass to
an off-the-shelf SAT solver. Thanks to the work of Weber [112], Isabelle already
provides an interface to several high-performance SAT-solvers, including zChaff
[76] and MiniSAT [36]. In our setup, the SAT solver is invoked multiple times,
once for each order.

3.8.4 Proof reconstruction

From a satisfying assignment we obtain from the SAT solver, we can directly
extract the necessary information that serves as a certificate. The proof recon-
struction requires:

1. The type of extension (max, min or ms) for which we found a solution.

2. The level mapping, consisting of the (multi)set for each program point.
We can read this from the values of the sip-variables and the tags.

3. The calls that are strictly decreasing (strictC). These calls will be removed
from the termination goal.

4. A covering function for each call, which maps argument positions to other
argument positions, they cover (or are covered by).

Put differently, the information in the certificate contains all the instances for
the “existential quantifiers” in the propositional encoding.

3.8. Data Flow: Size-Change Termination with Certificates 69

Definition of the relations

The following relations play a role in the proof reconstruction:

lex< = {((a, b), (c, d)) |a b c d . a < c ∨ a ≤ c ∧ b < d}
lex≤ = lex< ∪ Id
max< = max-ext lex<
max≤ = max-ext lex≤ ∪ {(∅, ∅)}
min< = min-ext lex<
min≤ = min-ext lex≤ ∪ {(∅, ∅)}
ms< = ms-ext lex<
ms≤ = ms< ∪ Id

It is not hard to show that (max<, max≤), (min<, min≤), and (ms<, ms≤) are
reduction pairs.

We now take the inverse image of one of these reduction pairs under the level
mapping. Hence we must show that the individual calls are strictly or weakly
decreasing.

Proving max- or min-descent

Proving that two given sets are max-decreasing amounts to showing that for
each x ∈ X there is a y ∈ Y such that x < y. The mapping from x to y is
part of the certificate, so proof reconstruction merely consists of applying the
following introduction rules in a controlled manner:

finite Y Y 6= ∅
(∅, Y) ∈ max<

y ∈ Y (x , y) ∈ lex< (X , Y) ∈ max<
({x} ∪ X , Y) ∈ max<

In a concrete goal, the sets X and Y are always enumerations of the form {x ,
y , z , . . . }, and the rules above can be applied in a syntax-directed way. At each
application of the rule for nonempty sets, the variable y must be instantiated
with an element of Y, which is selected by the certificate. Hence, the subgoals
finite X and X 6= ∅ are easily discharged, since X is always a concrete set.

Proofs for weak descent and for the min order are similar using analogous
rules given in Fig. 3.4.

Proving multiset descent

Multiset descent can be reduced to max-descent as follows. If (A, B) ∈ ms<,
then A and B can be expressed as Z + A ′ and Z + B ′, where (A ′, B ′) ∈ max<.

Since the size-change abstraction uses only inequalities, we cannot express
that the Z -parts on both sides are actually equal. However, it is sufficient if
they satisfy the following relation, which is the pairwise lifting of lex≤:

({||}, {||}) ∈ pairwise≤

(x , y) ∈ lex≤ (X , Y) ∈ pairwise≤
({|x |} + X , {|y |} + Y) ∈ pairwise≤

This gives us the following introduction rule for strict multiset-descent, where
the function set-of converts multisets to plain sets:

(Z , Z ′) ∈ pairwise≤ (set-of A, set-of B) ∈ max<
(Z + A, Z ′ + B) ∈ ms<

70 Chapter 3. Termination Proofs

Rules for max<:

finite Y Y 6= ∅
(∅, Y) ∈ max<

y ∈ Y (x , y) ∈ lex< (X , Y) ∈ max<
({x} ∪ X , Y) ∈ max<

Rules for max≤:

finite X
(∅, X) ∈ max≤

y ∈ YS (x , y) ∈ lex≤ (XS , YS) ∈ max≤
({x} ∪ XS , YS) ∈ max≤

Rules for min<:

X 6= ∅
(X , ∅) ∈ min<

x ∈ XS (x , y) ∈ lex< (XS , YS) ∈ min<
(XS , {y} ∪ YS) ∈ min<

Rules for min≤:

(X , ∅) ∈ min≤

x ∈ XS (x , y) ∈ lex≤ (XS , YS) ∈ min≤
(XS , {y} ∪ YS) ∈ min≤

Rules for ms<:

(Z , Z ′) ∈ pairwise≤ (set-of A, set-of B) ∈ max<
(Z + A, Z ′ + B) ∈ ms<

Rules for ms≤:

(Z , Z ′) ∈ pairwise≤ (set-of A, set-of B) ∈ max<
(Z + A, Z ′ + B) ∈ ms≤

(Z , Z ′) ∈ pairwise≤
(Z + {||}, Z ′ + {||}) ∈ ms≤

Rules for pairwise≤:

({||}, {||}) ∈ pairwise≤

(x , y) ∈ lex≤
({|x |}, {|y |}) ∈ pairwise≤

(x , y) ∈ lex≤ (X , Y) ∈ pairwise≤
({|x |} + X , {|y |} + Y) ∈ pairwise≤

Rules for lex< and lex≤:

a < b
((a, s), (b, t)) ∈ lex<

a ≤ b s < t
((a, s), (b, t)) ∈ lex<

a < b
((a, s), (b, t)) ∈ lex≤

a ≤ b s ≤ t
((a, s), (b, t)) ∈ lex≤

Figure 3.4: Introduction rules for SCNP proof reconstruction

3.8. Data Flow: Size-Change Termination with Certificates 71

The information in the certificate tells us exactly how the multisets decompose
in the two parts. Before applying the introduction rule above, we must rewrite
the goal using associativity and commutativity, to bring the element of the
multiset in the right order.

Reconstruction for weak multiset order is similar. The rules are given in
Fig. 3.4.

Example 3.24. For the function perm, we show that the first call is strictly
ms-decreasing:

1 . 0 < r =⇒
({|(m, 0), (r − 1 , 0), (n, 0)|}, {|(m, 0), (r , 0), (n, 0)|})
∈ ms<

We rewrite the multisets using associativity and commutativiy to bring them in
the form to apply the introduction rule for ms<:

1 . 0 < r =⇒
({|(m, 0), (n, 0)|} + {|(r − 1 , 0)|},
{|(m, 0), (n, 0)|} + {|(r , 0)|})
∈ ms<

After applying the induction rule, we get two subgoals:

1 . 0 < r =⇒
({|(m, 0), (n, 0)|}, {|(m, 0), (n, 0)|}) ∈ pairwise≤

2 . 0 < r =⇒ (set-of {|(r − 1 , 0)|}, set-of {|(r , 0)|}) ∈ max<

We apply the introduction rules for pairwise≤ and unfold set-of :

1 . 0 < r =⇒ ((m, 0), (m, 0)) ∈ lex≤
2 . 0 < r =⇒ ((n, 0), (n, 0)) ∈ lex≤
3 . 0 < r =⇒ ({(r − 1 , 0)}, {(r , 0)}) ∈ max<

Then we apply the introduction rules for lex≤:

1 . 0 < r =⇒ m ≤ m
2 . 0 < r =⇒ 0 ≤ 0
3 . 0 < r =⇒ n ≤ n
4 . 0 < r =⇒ 0 ≤ 0
5 . 0 < r =⇒ ({(r − 1 , 0)}, {(r , 0)}) ∈ max<

Now, subgoals 1 and 3 are the local descent properties that we have already
proved. Subgoals 2 and 4 are inequalities between number literals and are
discharged using arith. For the last subgoal, we apply the second introduction
rule for max<, instantiating y with (r , 0):

1 . 0 < r =⇒ ((r − 1 , 0), r , 0) ∈ lex<
2 . 0 < r =⇒ (∅, {(r , 0)}) ∈ max<

Then, using the introduction rule for lex<, we can apply a local descent property
again. The last subgoal is solved with the first introduction rule for max<, whose
premises are trivial.
Fortunately, these tedious proofs are fully automated in a tactic.

72 Chapter 3. Termination Proofs

3.9 Implementation and Practical Considerations

3.9.1 Strategies

It is easy to see that the little calculus we have introduced is confluent: The
three rules for reduction pairs, decomposition, and trivial calls can be applied
in any order. In particular, after removing some calls using reduction pairs, the
dependency graph may fall apart into smaller SCCs again. Whenever different
reduction pairs are applicable (possibly removing different calls), we can make
an arbitrary choice, and the other reduction pairs will still be applicable in the
next step. So it is always safe to use any applicable rule, and we need not
backtrack if we get stuck. The calculus is also terminating, since every rule
application makes the goal smaller3.

We implemented two strategies, which are now available as proof methods
in Isabelle: The method lexicographic-order implements the basic approach pre-
sented in §3.5, which basically constructs lexicographic combinations of measure
functions. In particular, it does not use graph decomposition or SCNP.

The dependency graph decomposition (§3.6) and SCNP approach (§3.8) are
combined in a single method with the brand name sizechange, although the
cryptic dp-scnp would be technically more correct. The sizechange method is
strictly more powerful than lexicographic-order.

Performance While the order in which the different methods are applied has
no influence on the power of the overall termination prover, it can make a
difference in performance. The following considerations turned out to be useful
to minimize the time spent on finding the proof:

• In a call from a function to itself (as opposed to another function in a
mutual recursion), the local descent matrix entries outside the diagonal
will only be interesting for functions with permuted arguments. Since
these functions are currently rare, it can save time to omit the derivation
of these entries in a first round and try to find a termination proof with the
rest of the information. If that fails, the procedure can be repeated with
the full information. This can save many calls to auto, which is potentially
expensive.

• The SAT solving for SCNP is notably faster (we measured a factor of five)
if no tags are used. However only a few problems require tags. Thus tags
are turned off in the first round.

• For problems that do not need graph decomposition, deriving the depen-
dency graph is just wasted time. Thus, the required theorems are only
proved after the first round of SCNP got stuck.

However, this kind of tuning is based on relatively little experimental data,
together with a lot of guesswork, and the current setup should be revisited
when more experience with the sizechange method is available.

3Since this is a chapter on termination, here is the rigorous argument: A termination goal
state consists of multiple independent subgoals, each consisting of a set of calls. Assign to
each subgoal the number of its calls, and collect these counters in a multiset. Now each rule
leads to a smaller proof state with respect to the multiset order.

3.9. Implementation and Practical Considerations 73

3.9.2 Examples

Ackermann function

The Ackermann function, defined by the equations

ack 0 m = Suc m
ack (Suc n) 0 = ack n 1
ack (Suc n) (Suc m) = ack n (ack (Suc n) m)

is easily proved total by lexicographic-order.

Many parameters

Both HOL4 and HOL Light fail to prove termination of the following function in
reasonable time, because they enumerate all possible lexicographic combinations
of parameters, which is impracticable for functions with many parameters. In
contrast, lexicographic-order succeeds within a second, since it solves one call
at a time, with no exponential explosion.

blowup 0 0 0 0 0 0 0 0 0 = 0
blowup 0 0 0 0 0 0 0 0 (Suc i) = Suc (blowup i i i i i i i i i)
blowup 0 0 0 0 0 0 0 (Suc h) i = Suc (blowup h h h h h h h h i)
blowup 0 0 0 0 0 0 (Suc g) h i = Suc (blowup g g g g g g g h i)
blowup 0 0 0 0 0 (Suc f) g h i = Suc (blowup f f f f f f g h i)
blowup 0 0 0 0 (Suc e) f g h i = Suc (blowup e e e e e f g h i)
blowup 0 0 0 (Suc d) e f g h i = Suc (blowup d d d d e f g h i)
blowup 0 0 (Suc c) d e f g h i = Suc (blowup c c c d e f g h i)
blowup 0 (Suc b) c d e f g h i = Suc (blowup b b c d e f g h i)
blowup (Suc a) b c d e f g h i = Suc (blowup a b c d e f g h i)

Multiplication by shifting and addition

Pandya and Joseph [86] introduced a new proof rule for total correctness of
mutually recursive procedures. The contribution of this proof rule is a refined
method for proving termination by analysing the procedure call graph. They
motivate their approach with an imperative version of the following example:

prod x y z = if y mod 2 = 0 then eprod x y z else oprod x y z
oprod x y z = eprod x (y − 1) (z + x)
eprod x y z = if y = 0 then z else prod (2 ∗ x) (y div 2) z

In the calls from oprod and eprod the second argument decreases but in the
calls from prod all arguments are unchanged. The termination proof in Isabelle
first removes the decreasing calls. Then the dependency graph has no cycles
any longer.

Pedal and Coast

Homeier and Martin [54] describe a nontrivial graph analysis, and their main
example is an imperative version of what they call the bicycling program:

74 Chapter 3. Termination Proofs

pedal :: nat ⇒ nat ⇒ nat ⇒ nat
coast :: nat ⇒ nat ⇒ nat ⇒ nat

pedal 0 m c = c
pedal n 0 c = c
pedal (Suc n) (Suc m) c = if n < m

then coast n m (c + Suc m)
else pedal n (Suc m) (c + Suc m)

coast n m c = if n < m
then coast n (m − 1) (c + n)
else pedal n m (c + n)

They claim that termination would be difficult to prove using the rule by Pandya
and Joseph. In our framework, the problem is no more difficult. Again it is
solved using dependency graph decomposition.

Polynomial addition

The following example comes from a formalization of a descision procedure
for equalities in a commutative ring, adapted from similar work in Coq [46]
(the Isabelle version was done by Bernhard Häupler). The function adds two
polynomials, represented by a datatype with three constructors Pc, Pinj and
PX, whose meaning need not concern us here:

add (Pc a) (Pc b) = Pc (a + b)

add (Pc c) (Pinj i P) = Pinj i (add P (Pc c))

add (Pc c) (PX P i Q) = PX P i (add Q (Pc c))

add (Pinj x P) (Pinj y Q) =
(if x = y then mkPinj x (add P Q)
else if y < x then mkPinj y (add (Pinj (x − y) P) Q)

else add (Pinj y Q) (Pinj x P))

add (Pinj x P) (PX Q y R) =
(if x = 0 then add P (PX Q y R)
else if x = 1 then PX Q y (add P R)

else PX Q y (add (Pinj (x − 1) P) R))

add (PX P1 x P2) (PX Q1 y Q2) =
(if x = y then mkPX (add P1 Q1) x (add P2 Q2)
else if y < x

then mkPX (add (PX P1 (x − y) (Pc 0)) Q1) y (add P2 Q2)
else add (PX Q1 y Q2) (PX P1 x P2))

add (Pinj i P) (Pc c) = add (Pc c) (Pinj i P)

add (PX P i Q) (Pc c) = add (Pc c) (PX P i Q)

add (PX Q y R) (Pinj x P) = add (Pinj x P) (PX Q y R)

In the underlined cases the function just calls itself with permuted arguments.
This avoids duplicating the code from other clauses — a sensible programming
pattern for commutative functions. However, without an analysis dealing with

3.9. Implementation and Practical Considerations 75

argument permutation, it would be hard to get the definition accepted by Is-
abelle, since even specifying a termination order manually is nontrivial. In the
original version, the definition contains the duplicated cases instead, to avoid
this problem.

Note that such duplication does not only concern the function specification,
but will turn up again in induction proofs about the function, as the induction
rule is generated from the definition. This leads to redundant cases, whose
analogous proofs have to be copy-and-pasted.

Our implementation proves termination automatically, using the multiset
order and graph decomposition.

3.9.3 Evaluation

To evaluate our approach, we tested our termination prover on all non-primitive
recursive function definitions in the Isabelle Distribution and the Archive of
Formal Proofs [1]. The results can be summarized as follows:

1. The large majority (87%) of the termination problems can be solved with
the simpler method lexicographic-order.

2. Using the more refined analyses of the sizechange method, only a handful
of additional problems can be solved.

First of all, this is a big success, given the fact that previously all termina-
tion proofs had to be done manually. A possible explanation for the fact that
sizechange cannot show its strengths on the available data could be that users,
knowing about Isabelle’s limitations in that area, tried to avoid function defi-
nitions that would require a difficult manual termination proof, and used other
modeling techniques like inductive relations instead. It remains to see whether
this changes now that the method is generally available in Isabelle. But the add
function discussed above already shows the potential of size-change termination.
The examples where the automated termination proof fails mainly fall in one of
the following categories:

1. Definitions which use a customized size function, where some constructors
are weighted more than others. This method is essentially polynomial
interpretation, done manually.

2. Functions over naturals or integers, where the argument is increasing but
bounded from above.

3. “Difficult” functions, where a domain specific semantic argument is used
for termination. The unification algorithm from §2.7.3 is such an example.

4. Functions over more powerful set theoretic constructions like ordinals.

5. Functions that are not total and require special treatment anyway.

76 Chapter 3. Termination Proofs

3.9.4 Feedback from failure

If our analysis fails to find a termination proof, this can have several reasons:

1. The function is indeed non-terminating.

2. The function is terminating, but the termination argument is not captured
by the measure functions used or the ways they are combined.

3. Some local descent proof did not go through although the corresponding
property is true. The reason for that can be an inherent weakness of the
automation employed or simply a missing lemma.

Of course it is impossible for the system to distinguish between these three
classes of errors. However, instead of just failing, we can provide valuable infor-
mation to the user by showing the matrices which summarize the local descent
proofs. The user can then compare the results with his expectations. For un-
successful attempts, printing the unfinished proof states can give feedback on
lemmas that may be necessary to complete the proof. This is a useful debugging
aid, but requires a basic understanding of how the termination prover works.

3.10 Full Size-Change Termination

The SCNP approach produces nice certificates, but it cannot handle all instances
of SCT. In this section we describe how the size-change principle in its full gener-
ality can be used for termination proofs in Isabelle. Unlike the certificate-based
approach of SCNP, we use a reflected decision procedure, whose correctness is
formalized within the logic itself. Using tactics, a concrete termination problem
can be automatically converted to a size-change instance, modelled as a graph
inside HOL, which serves as input to the decision procedure.

The approach presented in this section has not been integrated into Isabelle,
although the formalization is available in the distribution. Integrating it seems
not worth the effort for three resons:

• It is an all-or-nothing approach that either solves a termination goal com-
pletely or fails, but never simplifies it, which makes it less modular than
the other methods.

• The current decision procedure on graphs is only an inefficient prototype,
which scales very poorly. This could be fixed by implementing and veri-
fying a procedure using better data structures.

• Most importantly, all practical termination problems we encountered so
far that are solved by SCT are also solved by SCNP. We can construct
problems that require foll SCT, but they do not occur in user theories we
have seen.

Nevertheless we find it worthwhile to present the full criterion, since the
reflection-based approach differs considerably from the other ones, and since
the formalization of the criterion is interesting in its own right.

3.10. Full Size-Change Termination 77

3.10.1 Formalization

Kleene algebras

The core of SCT checking is the computation of a transitive closure, so we start
by defining an axiomatic type class of Kleene algebras, which provide the most
general structure for such an operation. With this approach, the formulation of
the algorithm is kept separate from the concrete data structures, which allows
very abstract reasoning using just simple algebraic laws. Since our graphs will be
special Kleene algebras, the corresponding theorems simply follow as instances.

Following the axiomatization by Kozen [62], Kleene algebras are idempotent
semirings with an order defined as (a ≤ b) = (a + b = b). Additionally, they
include a star-operation satisfying the following four laws:

1 + aa∗ ≤ a∗ ax ≤ x =⇒ a∗x ≤ x
1 + a∗a ≤ a∗ xa ≤ x =⇒ xa∗ ≤ x

These axioms follow from a stronger property, called *-continuity:

ab∗c = (SUP n. abnc)

where bn denotes iterated multiplication. We define transitive closures as a+ =
a∗a.

In the literature, general transitive closures are often described using closed
semirings. Kleene algebras are slightly more general: Every closed semiring is
a *-continuous Kleene algebra. However, our formalization does not use this
generality, as our instances are closed semirings as well.

Graphs

We represent directed edge-labeled graphs as ternary relations. Hence, graphs
may have self-edges, and between two nodes there may be several edges:

datatype (α, β) graph = Graph ((α × β × α) set)

Instead of using relations directly, we wrap graphs into their own type construc-
tor. This allows us to use type classes to overload common notation for graph
composition (written as multiplication), exponentiation and transitive closure.
We write x e−−→

G
y if G has an edge between nodes x and y, which is labeled

with e. If we do not care about the label, we just write x −→
G

y.

If the type of the edges has a multiplication and unit operation, these can
be lifted to graphs, preserving the monoid structure:

p b−−−−→
GH

q = ∃ k e e ′. p e−−→
G

k e ′−−→
H

q ∧ b = ee ′

p b−−→
1

q = p = q ∧ b = 1

With addition defined as set union, we get a semiring structure with additive
and multiplicative identity. Moreover, by taking union and intersection for
supremum and infimum, graphs form a complete lattice and we can define the
star operation as G∗ = (SUP n. Gn). It is then not hard to show that graphs
form a (*-continuous) Kleene algebra.

78 Chapter 3. Termination Proofs

Paths

We represent infinite paths as sequences of node-edge pairs, using the following
type abbreviations:

types
α sequence = nat ⇒ α
(α, β) ipath = (α × β) sequence

The paths of a graph G are characterized by the predicate has-ipath:

has-ipath :: (α, β) graph ⇒ (α, β) ipath ⇒ bool

has-ipath G p = (∀ i . fst (p i)
snd (p i)−−−−−−→

G
fst (p (Suc i)))

We also need to talk about finite paths and relate them to infinite paths (by
taking sub-paths, and constructing infinite paths from finite loops). We omit
these details, as they are straightforward.

Size-change graphs

Size-change graphs have two kinds of edges, labeled< and≤. We use the natural
numbers as node labels. Control graphs have size-change graphs as their edges.

datatype scg-edge = LESS (<) | LEQ (≤)

types
scg = (nat , scg-edge) graph
control-graph = (nat , scg) graph

Given an infinite path in the control graph, a thread is a sequence of natural
numbers denoting argument positions for every node in the path, such that
there are corresponding connected edges. A thread is descending if it contains
infinitely many strict edges:

is-desc-thread :: nat sequence ⇒ (nat , scg) ipath ⇒ bool

is-desc-thread ϑ p =
((∃n. ∀ i≥n. ϑ i −−−−−−→

snd (p i)
ϑ (Suc i)) ∧

(∃∞i . ϑ i <−−−−−−−→
snd (p i)

ϑ (Suc i)))

Note that threads may also start at a later point in the path. Now the size-
change property is defined as

SCT C = (∀ p. has-ipath C p −→ (∃ϑ. is-desc-thread ϑ p))

The second characterization, which will be proved equivalent, is the basis of the
size-change algorithm:

SCT ′ C = (∀n G . n G−−−→
C+

n ∧ GG = G −→ (∃ p. p <−−→
G

p))

With these prerequisites we can state the main equivalence result, which corre-
sponds to [66, Thm. 4]:

Theorem 3.25. finite-cg C =⇒ SCT C = SCT ′ C

3.10. Full Size-Change Termination 79

The condition finite-cg C expresses that the control graph and all its size-change
graphs are finite. In the original development it is implicit, since graphs are finite
by definition.

The formal proof of Thm. 3.25 can be found in the Isabelle library. It consists
of about 1200 lines of Isar proof script, mainly following the informal proof by
Lee, Jones and Ben-Amram [66], but with many parts spelled out in much more
detail. Like in the informal version, the proof uses Ramsey’s Theorem, which
is already present in Isabelle’s library (the formalization is due to Paulson and
Ridge).

3.10.2 Reflecting size-change problems

We must now connect the abstract graph property SCT with the termination
goals that we are trying to solve. To that aim, we internalize the representation
of calls, which makes it accessible to functions defined in HOL.

We define the notion of a call descriptor, which is a triple (Γ, r , l) describing
a call. All three components have a function type, as they may depend on
variables. The function mk-call maps a call descriptor to the familiar relation
comprehension:

types (α, γ) call = (γ ⇒ bool) × (γ ⇒ α) × (γ ⇒ α)

mk-call :: (α, γ) call ⇒ (α × α) set

mk-call (Γ, r , l) = {(r v , l v) |v . Γ v}

We can easily express calls that have multiple variables by encoding them as a
tuple, e.g.,

mk-call (λ(x , y). Γ x y , λ(x , y). r x y , λ(x , y). l x y) =
{(r x y , l x y) |x y . Γ x y}

For a list of call descriptors, we define mk-rel cs = (
⋃

c∈set cs mk-call c).
Given a termination goal wf (C 1 ∪ . . . ∪ Cn), we can easily convert it to

wf (mk-rel [c1, . . . , cn]), where c1, . . . , cn are call descriptors. This reification
process cannot be defined inside the logic, but must be implemented in a tactic.
The only technical challenge is finding a suitable tuple type for γ, which must
be a product large enough to contain the variables of each call. The equivalence
to the original version simply follows by unfolding the definitions of mk-rel and
mk-call.

To each call (i.e. each control point in the graph), we assign a list of measure
functions, which correspond to the data positions. We do this in the usual way,
using the procedure from §3.3.1.

The following type abbreviation simplifies the following presentation a little:

types
α measure = α ⇒ nat

Approximating the control graph

We will now show how to build a size-change problem corresponding to a list of
call descriptors. We could follow the same path as in §3.8, where we produced a

80 Chapter 3. Termination Proofs

size-change graph for every call. However, there is another way of constructing
a size-change problem, which was first described by Thiemann and Giesl [103]
when they applied SCT to term rewriting: It is often beneficial to use the
dependency graph as the control graph, since it gives a finer approximation of
the control flow. This means that the calls become nodes of the control graph
instead of edges.

For the SCNP approach, this was less important since that approach could be
combined with dependency graph decomposition. However, the present mono-
lithic technique benefits from this additional precision.

For two call descriptors Ci and Cj , the predicate no-step is true if a Ci-call
can never be followed by a Cj-call:

no-step :: (α,γ) call ⇒ (α,γ) call ⇒ bool

no-step c c ′ = (mk-call c ◦ mk-call c ′ = ∅)

If we can prove no-step ci cj , then we can be sure that these calls can never
occur in sequence. Otherwise we must add an edge between i and j to our
control graph. This edge will carry a size change graph which approximates the
size change behaviour of the call.

The predicates step< and step≤ capture strict and non-strict decrease of
measures from one call to the next:

step< :: (α,γ) call ⇒ (α,γ) call ⇒ α measure ⇒ α measure ⇒ bool
step≤ :: (α,γ) call ⇒ (α,γ) call ⇒ α measure ⇒ α measure ⇒ bool

step< (Γ1, r1, l1) (Γ2, r2, l2) m1 m2 =
(∀ q1 q2. Γ1 q1 ∧ Γ2 q2 ∧ r1 q1 = l2 q2 −→ m2 (l2 q2) < m1 (l1 q1))

step≤ (Γ1, r1, l1) (Γ2, r2, l2) m1 m2 =
(∀ q1 q2. Γ1 q1 ∧ Γ2 q2 ∧ r1 q1 = l2 q2 −→ m2 (l2 q2) ≤ m1 (l1 q1))

Now consider a size-change graph G and functions M 1 and M 2 which assign
measures to the data positions of C 1 and C 2. We say that G approximates the
pair of calls if the claimed inequalities are actually satisfied by the respective
measures. This is expressed by the approx predicate:

approx :: scg ⇒ (α,γ) call ⇒ (α,γ) call
⇒ (nat ⇒ α measure) ⇒ (nat ⇒ α measure) ⇒ bool

approx G C 1 C 2 M 1 M 2 =
(∀ i j . (i <−−→

G
j −→ step< C 1 C 2 (M 1 i) (M 2 j)) ∧

(i ≤−−→
G

j −→ step≤ C 1 C 2 (M 1 i) (M 2 j)))

Now, a control graph C is a sound description of a given list of call descriptors
and measure functions if between any two calls either no step is possible or C
contains the corresponding edge with a size-change graph approximating the
call combination4:

sound-desc :: control-graph ⇒ (α,γ) call list ⇒ (nat ⇒ α measure) list ⇒ bool

4Recall that xs[i] denotes the ith element of the list xs.

3.10. Full Size-Change Termination 81

sound-desc A D M =
(∀n<list-size D .
∀m<list-size D .

no-step D[n] D[m] ∨ (∃G . n G−−→
A

m ∧ approx G D[n] D[m] M[n] M[m]))

Now, it is straigtforward to prove the following:

Theorem 3.26. sound-desc C D M =⇒ SCT C =⇒ wfP (mk-rel D)

With this theorem, which is basically a formal version of the results by
Manolios and Vroon [69], we are able to prove wellfoundedness of a relation
provided we can express it in terms of a list of call descriptors and find an C
which satisfies SCT and is a sound estimation of the relation.

Building size-change problems

It is not hard to build a custom proof tactic to construct C and prove sound-desc
C D M :

• For each pair of calls C i and C j , try to prove no-step C i C j .

• If this succeeds, no edge needs to be added to C.

• If it fails, construct a size-change graph G, by proving as many of the
step< and step≤ estimations as possible. For each successful proof, the
corresponding edge can be added to the G.

For the “try to prove . . . ” steps in the above algorithm, we again simply
call the method auto.

3.10.3 Implementation prototype

Finally, an algorithm for checking the predicate SCT ′must be implemented and
proved correct. We will present a naive implementation without any optimiza-
tions. The prototype limits the performance of our system, but it is sufficient
to explain the ideas and demonstrate the overall approach.

We can use Isabelle’s code generator to translate the algorithm into ML.
The code generator can now also translate definitions involving type classes,
which are compiled into dictionaries as it is done in Haskell compilers. Up to
Isabelle 2007, the code generation framework also supported the execution of
functions involving (finite) sets, which were compiled to lists. By using this
functionality, it took just a few steps to produce a working prototype from our
specification. Unfortunately, support for this extension had to be dropped when
the representation of sets was changed.

Recall that our definition of graph composition involves existential quantifi-
cation, which is not executable as such. However, graph composition can be
made executable by proving the following equations and making them available
to the code generator:

edges-match ((n, e, m), (n ′, e ′, m ′)) = (m = n ′)
connect-edges ((n, e, m), (n ′, e ′, m ′)) = (n, ee ′, m ′)
(Graph G)(Graph H) =

Graph (connect-edges ‘ {x ∈ G × H . edges-match x})

82 Chapter 3. Termination Proofs

Note that the bounded comprehension and the image operation (‘) are exe-
cutable, as they are compiled to an expression involving map and filter.

The following function, overloaded on the type class of Kleene algebras,
computes transitive closures by a simple iteration:

mk-tcl A X = (if XA ≤ X then X else mk-tcl A (X + XA))

Note that mk-tcl need not always terminate. However, since the SCT prob-
lems we consider are always finite, termination can be proved for these cases.
By induction we can prove that mk-tcl computes transitive closures of finite
graphs:

finite-cg A =⇒ mk-tcl A A = A+

Then the following function checks SCT ′:

test-SCT A =
(let T = mk-tcl A A
in ∀ (n, G , m)∈dest-graph T .

n 6= m ∨
GG 6= G ∨ (∃ (p, e, q)∈dest-graph G . p = q ∧ e = <))

where dest-graph (Graph G) = G.

We prove that the function is correct:

Theorem 3.27. finite-cg C =⇒ SCT ′ C = test-SCT C

Note that the bounded universal and existential quantifiers in the definition
of test-SCT do not prevent code generation: They are translated to the cor-
responding predicates on lists. Hence, test-SCT can be translated to ML and
executed.

3.10.4 The complete procedure

Connecting the results of the previous subsections, we obtain a method to solve
Isabelle termination goals using the unrestricted size-change principle:

• Recast the goal to the form wf (mk-rel [c1, . . . , cn]), where c1, . . . , cn
are call descriptors.

• Assign measures to each call, and, following the steps outlined in §3.10.2,
construct a size-change problem C.

• Apply Thm. 3.26. It remains to prove SCT C.

• Apply Thm. 3.25. By construction, C is finite, so it remains to show SCT ′

C.

• Apply Thm. 3.27, obtaining an executable goal.

• Evaluate the goal to True, either using the simplifier (which is currently
only feasible for very small examples), or by translating to ML first (which
requires Isabelle 2007, as pointed out above).

Chapter 4

Pattern Matching

Contents
4.1 Introduction . 83

4.2 General Pattern Matching 84

4.2.1 Compatibility and Completeness 86

4.2.2 Implementation using a matching combinator 87

4.3 Pattern Disambiguation and Minimization 89

4.3.1 Notation and Problem definition 90

4.3.2 Complexity Results 93

4.3.3 A Minimization Algorithm 95

4.3.4 Implementation and Experiments 100

4.3.5 Discussion . 101

4.4 Related Work . 103

4.1 Introduction

Pattern matching plays an important role in functional languages, where it is
used as a structured and convenient notation for expressing complex branching
behaviour. In this chapter we aim to provide support for this style of definition.

The approach discussed in Chapter 2 allows the definition of functions by a
single fixed-point equation of the form f x = F f x. With pattern matching, our
specification now consists of several conditional equations:∧

vs1. C 1 vs1 =⇒ f (p1 vs1) = r1 f vs1

...∧
vsn. Cn vsn =⇒ f (pn vsn) = rn f vsn

In each equation, pi is the pattern, r i is the right-hand side, and C i is a condi-
tion. The function f may occur on the right-hand sides as a recursive call, but
not in the patterns or conditions.

Figure 4.1 shows various specifications that are instances of this scheme. We
will use them as examples in the following discussion.

83

84 Chapter 4. Pattern Matching

Pattern matching in functional programming In functional programming,
pattern matching is usually restricted to datatypes: Only datatype construc-
tors and variables are allowed in the patterns pi. This ensures that they can be
compiled into efficient tests. Some languages also allow simple invertible arith-
metic expressions such as n + k, where k is a constant1. Haskell and OCaml, but
not Standard ML, also support side conditions (called guards). In our schema,
the conditions C i play this role.

The meaning of overlapping patterns is always sequential : If more than
one pattern matches the input value, then the topmost equation “wins”. If
the patterns are incomplete, that is, none of them matches the input value, a
runtime error occurs. Writing incomplete patterns is sometimes considered bad
style, and compilers can issue a warning when detecting them.

Pattern matching in equational specifications The setting of defining HOL
functions satisfying the specification schema above is different in two important
points, a bad one (1) and a good one (2):

(1) The sequential interpretation of patterns is fundamentally incompatible
with the semantics of our specification scheme in HOL, where each equa-
tion must hold individually.

(2) As computation is not a concern at definition time, we need not restrict
the form of the patterns for the sake of executability and can allow a much
wider class of patterns.

The function sep in Fig. 4.1(a) illustrates (1): Written with sequential seman-
tics in mind, is is a perfectly valid functional program, which inserts a fixed
element between eny two elements of a list. But as a HOL specification, it is
inconsistent: The second equation states that the function is a projection on
the second argument, which contradicts the first equation. The inconsistency
can easily be removed by specializing xs to the instances [] and [x] in the second
equation. However, we will discuss situations where the fix is much less obvious.
Overlapping patterns are not always inconsistent, as the functions gcd and And
in Fig. 4.1(d) show: Despite some overlap in the patterns, there is no way to
deduce an inconsistency.

Point (2) is much less problematic: Since functions need not be executable,
we can drop the syntactic restrictions on the form of the patterns and also allow
definitions like in Fig. 4.1(c): Such definitions are perfectly fine as mathematical
specifications, but there is no functional language that would admit them.

4.2 General Pattern Matching

In this section we show how to support definitions following the general schema
above by encoding them using a special matching combinator. To ensure that
the specification is consistent, we generate two proof obligations: a compatibility
and a completeness condition.

The proof of compatibility and completeness cannot be automated in general,
and must be provided by the user as the fair price to pay for the expressivity

1The inclusion of (n + k)-patterns in Haskell was highly controversial [55], as it introduces
some subtleties in combination with overloading.

4.2. General Pattern Matching 85

sep a (x :y :ys) = x :a:sep a (y :ys)
sep a xs = xs

(a) Inconsistent overlapping specification

gcd x 0 = x
gcd 0 y = y
x < y =⇒ gcd (Suc x) (Suc y) = gcd (Suc x) (y − x)
¬ x < y =⇒ gcd (Suc x) (Suc y) = gcd (x − y) (Suc y)

(b) gcd with conditional equations

even (2 ∗ n) = True
even (2 ∗ n + 1) = False

(c) Complex patterns

datatype three-valued-logic = T | F | X

And T p = p
And p T = p
And p F = F
And F p = F
And X X = X

(d) Consistent overlap

Figure 4.1: Examples of definitions with pattern matching

86 Chapter 4. Pattern Matching

of general pattern matching. However, there is a money-back guarantee, as we
must only pay when we really use that extra generality: For disjoint datatype
patterns, both conditions can be proved fully automatically.

4.2.1 Compatibility and Completeness

The compatibility condition expresses that if a value matches more than one pat-
tern, then all corresponding right-hand sides yield the same function value. In
other words, the equations are not contradictory, and the situation in Fig. 4.1(a)
cannot occur. For each pair of clauses i and j, we have the following condition:∧

vsi vsj ′. pi vsi = pj vsj ′ =⇒ C i vsi =⇒ C j vsj ′ =⇒ r i f vsi = r j f vsj ′

Note that this condition is trivially satisfied if the patterns are disjoint.
The completeness condition expresses that every value matches at least one

pattern. It has the form of an elimination rule:∧
vs1. x = p1 vs1 =⇒ C 1 vs1 =⇒ P

. . .
∧

vsn. x = pn vsn =⇒ Cn vsn =⇒ P

P

Although not required for consistency, the completeness condition justifies the
case distinction which is part of the induction rule. The elimination rule format
is appropriate for the natural deduction approach of Isabelle, but many humans
find the following equivalent format more readable:

(∃ vs1. x = p1 vs1 ∧ C 1 vs1) ∨ . . . ∨ (∃ vsn. x = pn vsn ∧ Cn vsn)

The compatibility condition does not require a specialized method, since it
is routinely solved by auto, using the distinctness and injectivity properties of
datatype constructurs.

We provide a method pat-completeness, which proves completeness condi-
tions for datatype patterns by nested case distinctions over the datatypes in-
volved. The TFL package already performs essentially the same proof internally
[98, §3.4.2].

Example 4.1. For the function And as defined in Fig. 4.1(d) the following com-
pleteness condition arises, and is proved automatically:∧

p. x = (T , p) =⇒ P∧
p. x = (p, T) =⇒ P

∧
p. x = (p, F) =⇒ P∧

p. x = (F , p) =⇒ P x = (X , X) =⇒ P

P

Note that some of the equations overlap. But compatibility is still easy to prove.
Here the condition for the first and the second equation:∧

p p ′. (T , p) = (p ′, T) =⇒ p = p ′

Example 4.2. The function even from Fig.4.1(c) produces the following com-
patibility condition:

4.2. General Pattern Matching 87

∧
n. x = 2 ∗ n =⇒ P

∧
n. x = 2 ∗ n + 1 =⇒ P

P

This goal cannot be solved with datatype reasoning. But we can convert it from
elimination rule format to the object-logic statement (∃n. x = 2 ∗ n) ∨ (∃n.
x = 2 ∗ n + 1) which can be solved automatically since it falls in the realm of
presburger arithmetic. Likewise, the compatibility conditions can be fed into a
decision procedure.

4.2.2 Implementation using a matching combinator

To support function definitions with general pattern matching, the definition
principles described in Chapter 2 can be generalized without major surprises,
and the current function package implements this generalization: The inductive
definitions of the graph and the domain have n clauses instead of one, and the
individual recursive equations are derived from these definitions with the help
of the compatibility conditions.

In this section, we take a different route: Instead of generalizing the defi-
nition facilities, we will show how a definition with general pattern matching
can be reduced to a pattern-free one, which can then be treated as usual. This
encoding suggests a two-stage approach, which separates the treatment of re-
cursion and pattern matching, and is thus easier to understand and maintain
in the long run. However, the current implementation is still monolithic and
handles pattern matching and recursion together. In future work, we hope to
make the implementation more modular, based on the following construction.

We define a general matching combinator MATCH :

MATCH :: (γ ⇒ bool × α × β) ⇒ (α ⇒ β) ⇒ α ⇒ β

MATCH M d x =
(if ∃ !r . ∃ v . M v = (True, x , r)
then THE r . ∃ v . M v = (True, x , r) else d x)

We call the argument M a matching clause, which should be of the form λv . (C
v , p v , r v) where C is a condition, p is a pattern, and r is the corresponding
result. The MATCH combinator takes a value x, and matches it against a
matching clause M. The match succeeds iff the result r v is unique for all choices
of v satisfying x = p v and C v. In this case, the invocation of MATCH returns
the result. Otherwise, the default value d x is returned. By nesting MATCH
expressions, we can describe sequences of matching clauses.

A matching clause λv . (C v , p v , r v) does not tell us how to effectively
compute the result of the match. However, it captures the logical essence of
pattern matching.

Using MATCH, a definition following our schema can be encoded as a single
equation as follows:

88 Chapter 4. Pattern Matching

∧
vs1. C 1 vs1 =⇒ (Γ11 =⇒ P r11) =⇒ . . . =⇒ (Γ1k1

=⇒ P r1k1
)
=⇒ P (p1 vs1)

...∧
vsn. Cn vsn =⇒ (Γn1 =⇒ P rn1) =⇒ . . . =⇒ (Γnkn

=⇒ P rnkn
)

=⇒ P (pn vsn)
P a

Figure 4.2: Induction rule for specifications with pattern matching

f x =
MATCH (λ(vs1). (C 1 vs1, p1 vs1, r1 f vs1))
(MATCH . . .

...
(MATCH (λ(vsn). (Cn vsn, pn vsn, rn f vsn))
(λx . undefined)). . .) x

Here, (λ(vsi). . . .) denotes an abstraction over a tuple of variables. Recall that
undefined is an unspecified constant.

Example 4.3. The gcd function from Fig. 4.1(b) can be written using the MATCH
combinator as follows:

gcd x y =
MATCH (λx . (True, (x , 0), x))
(MATCH (λy . (True, (0 , y), y))

(MATCH (λ(x , y). (x < y , (Suc x , Suc y), gcd (Suc x) (y − x)))
(MATCH

(λ(x , y). (¬ x < y , (Suc x , Suc y), gcd (x − y) (Suc y)))
(λx . undefined))))

(x , y)

This definition can be processed by the function package in the normal way,
provided that a suitable congruence rule for MATCH is present. It remains to
derive the original specification from this definition.

Proving the original equations We now show how the ith conditional equation∧
vsi. C i vsi =⇒ f (pi vsi) = r i f vsi

can be derived from the pattern-free definition with the help of the compatibility
condition.
Proof sketch. We unfold the definition of f in the goal.
Case i = 1: We must show that the first match succeeds, i.e., ∃ !r . ∃ us. C 1 us ∧
p1 us = p1 vs1 ∧ r1 us = r. Existence is trivial with r = r1 vs1 and us = vs1.
Uniqueness is a direct consequence of the compatibility condition for i = j = 1.
Case i > 1: This case is simple if the match fails, because we can the remove
the outermost use of MATCH and proceed in the same way with the following
matching clauses until we encounter the right one. However, the match may

4.3. Pattern Disambiguation and Minimization 89

datatype color = R | B
datatype α rbt = E | T color (α rbt) α (α rbt)

balance :: α rbt ⇒ α rbt

balance (T B (T R (T R a x b) y c) z d) = T R (T B a x b) y (T B c z d)
balance (T B (T R a x (T R b y c)) z d) = T R (T B a x b) y (T B c z d)
balance (T B a x (T R (T R b y c) z d)) = T R (T B a x b) y (T B c z d)
balance (T B a x (T R b y (T R c z d))) = T R (T B a x b) y (T B c z d)
balance t = t

Figure 4.3: Pattern matching in the balance function

also succeed if the ith clause overlaps with the first. However, in that case, the
compatibility condition implies that the result of the match will nevertheless be
equal to r i vsi.

Induction rule for pattern matching The structure of the pattern matching
specification is also reflected in the induction rule, which has one case for each
equation. This built-in case distinction leads to proofs that have the same
structure.

Figure 4.2 shows the total induction rule, where [Γi1 ; r i1], . . . , [Γik i
; r ik i

]
are the recursive calls extracted from the ith equation. The right-hand sides
of the equations, which were also denoted by r above, do not appear in the
induction rule.

4.3 Pattern Disambiguation and Minimization

We have already demonstrated the problems with sequential pattern matching
on the function sep in Fig. 4.1(a). To obtain a consistent HOL specification,
we must first disambiguate the equations by removing overlap between the dif-
ferent clauses, thus recovering the set of equations that was actually meant. In
other words, we are considering the transformation of a functional program with
overlapping patterns into a term rewrite system, where rules can be applied in
any order.

Slind’s TFL package implements this disambiguation as part of the compila-
tion of pattern matching case expressions. As the leaves of the case expression
correspond to mutually disjoint patterns, an unambiguous specification can be
generated from the case expression.

However, this approach has some weaknesses: First, the size of the resulting
specification is not minimal. Second, the form and size of the result can depend
on irrelevant details like the order of the function’s arguments. This is because
the algorithm internally needs to choose a variable on which to do a case split,
and it always chooses the first variable. Sometimes, choosing a different variable
would lead to a simpler set of equations.2

Fig. 4.3 shows a spectacular instance of the problem. The balance function
(due to Okasaki [83]) implements an operation used for rebalancing red-black

2Lucas Dixon implemented a postprocessing operation that mitigates this effect by merging
equations again that have been split too much. However, even then the results are not always
minimal.

90 Chapter 4. Pattern Matching

trees. Its heavy use of pattern matching is part of the reason why it is much
more elegant than implementations in an imperative language. Here, a complex
series of primitive tests is expressed in just four equations that look symmetric,
plus a default case.

Unfortunately, all the elegance is suddenly gone when we make the specifi-
cation disjoint by instantiating it in the same way as we have seen for is-empty.
If we split up using Slind’s algorithm, we end up with a total of 91 (!) equa-
tions. Although many of the patterns that arise correspond to ill-formed trees
that violate the red-black tree invariant, they must be generated at that point,
since they belong to the specification of the balance function, which is defined
on the whole free datatype rbt. In general, this disambiguation can lead to an
exponential blowup.

In this section, we study how to perform this transformation in a way that
the number of resulting equations is minimal. This is particularly important,
as the size of the specification critically influences the size and complexity of
subsequent proofs: e.g., induction proofs about a recursive function usually split
up into as many cases as there are defining equations.

After pinpointing the underlying problem, we exhibit a nice correspondence
to the well-known problem of minimizing boolean formulas. This link allows
us to prove that we are indeed dealing with a hard optimization problem (it
is ΣP2 -complete). Then we describe a method for finding minimal patterns,
which is inspired by known results on boolean minimization and generalizes
the classical Quine-McCluskey algorithm [71]. We implemented a prototype
of the algorithm in Haskell. Despite the discouraging complexity results, its
performance is acceptable on the problem sizes we encounter in practice, but in
some instances the blowup in the number of equations is unavoidable.

4.3.1 Notation and Problem definition

We must introduce some notation to be able to describe the pattern minimiza-
tion problem formally. Since function types and polymorphism are not relevant
for pattern matching, we can pretend that we live in a monomorphic first-order
language and work with many-sorted first-order terms for a fixed set of sorts S
and a finite sorted signature Σ. Note that this notion of sorts has nothing to do
with the sorts used in Isabelle’s type-class mechanism. Sort are most similar to
types, but they have no structure.

For pattern matching, only constructor terms are relevant, so we assume
that all function symbols in Σ are constructors. Then the sort-indexed family
of terms (Ts)s∈S is defined inductively as usual. A term is called a linear term
or a pattern if no variable occurs more than once. Ps denotes the set of patterns
of sort s and Gs denotes the set of ground terms (i.e., terms without variables).
We write Σs for the sets of constructors for values of sort s.

Since patterns must be linear and we are only concerned with matching,
we can replace all variables by the wildcard symbol ∗. Formally, the wildcard
carries a sort annotation (∗s), such that the sort of a term is always uniquely
defined. However, we liberally drop sort annotations that are clear from the
context.

We write s � t if s is an instance of t (and s ≺ t if it is a proper instance,
i.e., s 6= t). Given a pattern p, we can express its semantics as the set of all

4.3. Pattern Disambiguation and Minimization 91

ground instances:
[p] := {g ∈ G | g � p}

For finite sets of patterns we set [P] :=
⋃
p∈P [p].

Computing the intersection p ∧ q of two patterns is a degenerate case of
unification. Intersection is a partial operation: if the patterns are disjoint, we
write p ∧ q = ⊥, although ⊥ itself is not a pattern. We write sup(p, q) for
the supremum with respect to �: E.g. sup(f(a, ∗), f(∗, b)) = f(∗, ∗). More
generally, (Ps ∪ {⊥},�) is a complete lattice, a special case of the subsumption
lattice for terms described by Huet [56].

For our examples and constructions, we implicitly assume that Σ contains the
constructors T and F for booleans, 0 and Suc for naturals and suitable construc-
tors for n-tuples, written 〈·, · · · , ·〉. We ignore currying for the presentation and
assume that function arguments are always tupled. For example, the patterns
of the function in Fig. 4.1(a) are written {〈∗,Cons(∗,Cons(∗, ∗))〉, 〈∗, ∗〉}.

Observe that we may have [p] = [q] and p 6= q: For example, [C(∗, . . . , ∗)] =
[∗] if C is the only constructor of the given sort. To resolve this ambiguity, we
define dpe = sup {q ∈ P | [q] = [p]}. Note that dpe can easily be computed
from p.

Pattern minimization and complement

We can now state the problems formally and relate them to the informal discus-
sion above. As usual, optimization problems are stated as decision problems:

Disambiguation: Given patterns p1, . . . , pn and an integer k, are
there sets of patterns P1, . . . , Pn, such that for each i ∈ {1, . . . , n},
[Pi] = [pi] \

⋃i−1
j=1[pj], and the number of patterns in P1 ∪ . . .∪Pn is

less than k?

Note that we do not require that all the resulting patterns be non-overlapping.
Within one group Pi, the patterns may overlap, since they are stemming from
the same equation (with the same right-hand side).

To approach this problem, we study some related problems which are slightly
simpler to express, like that of building a complement:

Pat Complement: Given a finite set P of patterns and an integer
k, is there a set Q of at most k patterns, such that [Q] = G \ [P]?

The related problem of just minimizing a set of patterns is given as follows:

Min Pat: Given a finite set P of patterns and an integer k, is there
a set P ′ of at most k patterns, such that [P ′] = [P]?

Technical note: For the complement-like problems, the bound k must be given in
unary notation. This avoids that we merely measure the output complexity. A
set of patterns can grow exponentially under complementation, so any algorithm
computing it must take exponential time. If k is in unary, then the size of the
complemented patterns is again polynomial in the size of the input, and we are
measuring the complexity of the actual optimization process, not its result. The
same technique is used by Umans [106].

92 Chapter 4. Pattern Matching

Example 4.4. With the following patterns over a type with three nullary con-
structors A, B, and C, disambiguation must lead to an exponential blowup:

〈A,∗ ,∗ ,∗ ,∗〉
〈∗ ,A,∗ ,∗ ,∗〉
〈∗ ,∗ ,A,∗ ,∗〉
〈∗ ,∗ ,∗ ,A,∗〉
〈∗ ,∗ ,∗ ,∗ ,A〉
〈∗ ,∗ ,∗ ,∗ ,∗〉

It is easy to see that the last pattern stands for all value combinations that do
not contain A. But this set of values cannot be expressed compactly by some
patterns, since any pattern that has a wildcard at some position cannot be a
candidate for the last equation because it would match a term having an A at
that position. Thus, the patterns for the default case cannot have any wildcards,
and therefore we need all combinations of B and C.

While the example above demonstrates a blowup that is unavoidable, the fol-
lowing contrived example shows that, in theory, an optimization can sometimes
save us from an exponential blowup:

Example 4.5. For a given n ∈ N, we construct a function with n(n−1)
2 boolean

arguments, and with n equations. We assign indices 1, . . . , n to the equations
and associate a pair (i, j) with 1 6 i < j 6 n to each argument position. Now
equation k has at argument position (i, j) the pattern T, if k = i and F if k = j.
Otherwise there is a wildcard pattern ∗.

For n = 3, this construction yields a variation of the diagonal function (cf.
Wadler [110]):

diagonal :: Bool → Bool → Bool → Int
diagonal T T = 1
diagonal F T = 2
diagonal F F = 3

Since the equations i and j have different patterns at argument position (i, j),
they are all disjoint. Hence the optimal disambiguation is to leave everything
as it is. However, the naive disambiguation fails to recognize this and produces
exponentially many equations.

Now let us look at the relationship between the different problems. Clearly
Pat Complement cannot be any harder than Disambiguation, as we can see
from the balance example: A catch-all pattern in the end will be replaced by
the complement of the preceding patterns.

The following lemma shows that the two problems are actually equivalent:

Lemma 4.6. Disambiguation can be reduced (in P-time) to Pat Comple-
ment.

Proof. We do a reduction between the optimization problems, showing how to
disambiguate optimally if we can compute minimal complements.

We first show how we can use Pat Complement to subtract a set of patterns
Q from a pattern p:

First compute Q′ = {p∧q | q ∈ Q, p∧q 6= ⊥}. Now consider all the positions
where p has a wildcard and call them π1, . . . , πn. Since the patterns in Q′ are
instances of p, they can only differ at these positions. We remove the outer

4.3. Pattern Disambiguation and Minimization 93

structure and replace it by a tuple: Q′′ = {〈q|π1 , . . . , q|πn
〉 | q ∈ Q′}. We can

now solve Pat Complement for Q′′ to compute the minimal pattern set C
with [C] = G \Q′′. We obtain the result of the subtraction by adding the term
structure of p again: R = {p[c1, . . . , cn] | 〈c1, . . . , cn〉 ∈ C}. Since C is minimal,
R must also be minimal.

Disambiguation is now easily reduced to multiple subtractions.

Let us demonstrate this reduction by a small example: Consider the datatype
datatype T = A | B nat | C (nat× nat)
and suppose we want to compute

〈C(∗, ∗), ∗ 〉
−〈C(0, 0), A 〉
−〈 ∗ , B(Suc(∗))〉

To subtract the third and second from the first pattern, we first compute the
intersections, obtaining

〈C(∗, ∗), ∗ 〉
−〈C(0, 0), A 〉
−〈C(∗, ∗), B(Suc(∗))〉

We remove the outer term structure that is common to all terms and replace it
by a tuple. The first pattern is now a universal pattern, hence we have reduced
the problem to computing a complement:

〈 ∗ , ∗ , ∗ 〉
−〈 0 , 0 , A 〉
−〈 ∗ , ∗ ,B(Suc(∗)) 〉
=〈Suc(∗) , ∗ , A 〉
〈 ∗ ,Suc(∗) , A 〉
〈 0 , 0 , B(0) 〉
〈 ∗ , ∗ , C(∗, ∗) 〉

After that, we just add the outer structure 〈C(·, ·), ·〉 again, and obtain the result
of the subtraction.

4.3.2 Complexity Results

We now show that our pattern minimization problems can encode the well
known-problem of minimizing boolean formulas in Disjunctive Normal Form
(DNF).

This problem has already recieved a lot of attention, as it is crucial for
the design of digital circuits. Many exact and heuristic methods have been
studied, the most well-known probably being the classical algorithm by Quine
& McCluskey [71], on which we will base our pattern minimization algorithm
in §4.3.3.

Despite the high practical importance, the exact complexity of the problem
has only recently been settled, when Umans proved it ΣP2 -complete in his PhD
thesis [107]. The complexity class ΣP2 belongs to the polynomial hierarchy and
contains the problems that can be solved by a nondeterministic Turing machine
with access to a SAT oracle that it can use to solve NP-complete problems in

94 Chapter 4. Pattern Matching

a single step3. ΣP2 can be seen as “one level up” from NP, and its canonical
complete problem is QSAT2, the satisfiability problem for formulas of the form
∃~x ∀~y. φ(~x, ~y) where ~x and ~y are vectors of boolean-valued variables. (For more
details, see Papadimitriou [87].)

The DNF minimization problems can be stated as follows:

minimum equivalent dnf (min dnf): Given a DNF formula φ
and an integer k, is there a DNF formula equivalent to φ with at
most k terms4?

short cnf: Given a formula φ in Conjunctive Normal Form (CNF)
and an integer k in unary notation, is there a DNF formula equiva-
lent to φ with at most k terms?

Both problems are known to be complete for ΣP2 [94].
The central idea in showing that Min Pat is ΣP2 -complete is that DNF

formulas can be mapped to patterns:

Definition 4.7. Let φ be a boolean DNF formula with variables v1 through vn.
It has the form φ = t1∨ · · ·∨ tk, where each ti is a conjunction of literals, which
we view as a set. Then

E(φ) = { 〈p1
1, . . . , p

n
1 〉 , . . . , 〈p1

k, . . . , p
n
k 〉 }

where

pji =


T if vi ∈ Literals(tj)
F if ¬vi ∈ Literals(tj)
∗ otherwise

For example E(v1v̄3 ∨ v̄2v3) = {〈T, ∗,F〉, 〈∗,F,T〉}.
Clearly, φ(b1, . . . , bn) is true iff 〈b1, . . . , bn〉 ∈ [E(φ)].

Theorem 4.8 (Lower Bounds).

1. Deciding whether a given set of patterns P is incomplete (i.e. [P] 6= [∗])
is NP-hard.

2. Min Pat is ΣP2 -hard.

3. Pat Complement is ΣP2 -hard.

Proof. We reduce from the related boolean problems using the embedding from
Definition 4.7.

1. Reduction from SAT: Let φ be in CNF. Using De Morgan’s laws we pro-
duce the DNF formula ψ equivalent to ¬φ. Then

[E(ψ)] 6= [∗] iff ψ is not a tautology iff φ is satisfiable.

3This is more powerful than the “guessing” facility of nondeterminism, since it can also
detect when no solution exists.

4In the terminology of boolean minimization, the word term specifically means a disjunct
in a DNF. They should not be confused with the first-order terms that we use as patterns or
even Isabelle terms.

4.3. Pattern Disambiguation and Minimization 95

2. Reduction from min dnf.

3. Reduction from short cnf, again interpreting the CNF formula as a
negated DNF formula.

The incompleteness problem is interesting, since it is actually solved by
most compilers of functional languages, which can issue a warning when the
patterns of a function definition do not cover all cases. However, the exponen-
tial behaviour of the implementations does not seem to pose any difficulties in
practice, since the problem instances are usually small.

By a simple guess-and-check argument, we can show that Min Pat and Pat
Complement are also contained in ΣP2 :

Lemma 4.9. The equivalence problem of two pattern sets is in co-NP.

Proof. For given sets of patterns P and P ′, we can nondeterministically choose
a ground term, and check whether it is either covered by both P and P ′, or by
none of them.

Theorem 4.10. Min Pat and Pat Complement are ΣP2 -complete.

Proof. To show that Min Pat ∈ ΣP2 , note that a nondeterministic Turing ma-
chine with access to a SAT oracle can solve our problem as follows: For a given
input P and integer k, it nondeterministically guesses a pattern set P ′ of size
k. It remains to check if [P] = [P ′]. Due to Lemma 4.9, this can be done by the
SAT oracle.

For Pat Complement ∈ ΣP2 , a similar argument works. Then, with Thm. 4.8
we have completeness for both problems.

4.3.3 A Minimization Algorithm

Exploiting the similarity to boolean mimization, we can develop an algorithm
that computes minimal patterns. The algorithm is a generalization of the well-
known Quine-McCluskey method [71]. We focus on the Min Pat problem first,
but with simple modifications, we can also use the procedure to solve Pat
Complement and Disambiguation.

The Quine-McCluskey algorithm proceeds as follows to minimize a formula
φ:

1. Write φ in canonical disjunctive normal form, i.e., as a disjunction of
“minterms”. These are products (i.e. conjunctions) of literals where each
variable occurs either positively or negatively. Minterms correspond to
the entries in the truth table where φ becomes true.

2. From the minterms, constuct the “most general terms that imply φ”, that
is, conjunctions of literals that imply φ, but when one literal is removed,
the result does not imply φ. These terms are called prime implicants.

3. Find a minimal subset of prime implicants that covers all minterms of φ.
Then the minimized formula is the disjunction of these prime implicants.

Example 4.11.

96 Chapter 4. Pattern Matching

1. Consider the following formula in canonical disjunctive normal form:

φ = x̄ȳz̄w̄ ∨ x̄yz̄w̄ ∨ xȳz̄w̄ ∨ x̄yz̄w ∨ x̄yzw̄ ∨
xȳz̄w ∨ xȳzw̄ ∨ x̄yzw ∨ x̄ȳzw̄ ∨ xyzw

The terms of the disjunction are the (positive) minterms. They correspond
to entries in the truth table for φ.

2. The prime implicants are those terms that cannot be generalized further
without leaving φ:

{x̄z̄w̄, ȳz̄w̄, xȳz̄, xȳw̄, xz̄w, x̄y, yw}

3. By choosing a minimal set of prime implicants that cover all the minterms,
we obtain a minimized formula:

φ = xȳw̄ ∨ xz̄w ∨ x̄y

Step 1, which is often implicit in textbook descriptions [59, 72], means that we
basically start from the full truth table of the function. Note that the number
of minterms is typically exponential in the size of φ.

The exact method of combining the minterms to prime implicants in Step 2
is often only vaguely described in textbooks, and if it is described, the algorithm
often takes exponential time. However, Strzemecki showed [101] that this step
can be done in polynomial time.

Finally, it remains to solve a covering problem in Step 3, which is known to
be NP-hard (even in the particular instances arising here [106]).

In the following, we will see that this algorithm can be extended to the more
general problem on patterns.

We adapt some terminology from boolean minimization: For a fixed pattern-
set P and a pattern p, we say that p is an implicant iff [p] ⊆ [P]. An implicant
is called prime if none of its proper generalizations is an implicant.

Obviously, a minimal covering can be constructed from the prime implicants:
Any other patterns in a minimal covering could simply be generalized to some
prime implicant.

Minterms

Our more general setting is different in one important aspect: In the boolean
case, the base set we are considering is just the finite product space {0, 1}n,
whereas the set underlying our patterns is a possibly infinite set of terms. So
it is not immediately clear what corresponds to the “truth table” of a boolean
function.

However, the nature of pattern matching is still finitary in a certain sense,
which allows us to generalize the boolean methods. The idea is to define induc-
tively a set of terms, depending on the patterns we want to minimize, which
behaves similarly to the product space.

These terms, called minterms, are mutually non-overlapping and cover all of
G. Furthermore, they respect the structure of P , in the sense that for a minterm
m and a pattern p ∈ P either m � p or m ∧ p = ⊥.

4.3. Pattern Disambiguation and Minimization 97

Definition 4.12 (Projection). For P ⊆ Ps, C ∈ Σs and i 6 arity(C), we
define the projection

ΠC,i(P) =

{
{pi | C(p1, . . . , pn) ∈ P} ∪ {∗} if ∗ ∈ P
{pi | C(p1, . . . , pn) ∈ P} otherwise

For example, Π〈〉,2({〈∗,Suc(∗)〉, 〈0, ∗〉}) = {Suc(∗), ∗}, and ΠSuc,1({0,Suc(0),Suc(∗)}) =
{0, ∗}.

Definition 4.13 (Minterms). We compute the set of minterms MT (P) recur-
sively as follows:

MT (P) =


{∗} if P = ∅ or P = {∗}⋃
C∈Σs

C(MT (ΠC,1(P)), . . . ,MT (ΠC,n(P)))
otherwise

Note that above the constructor C is lifted to sets:

C(A1, . . . , An) = {C(a1, . . . , an) | a1 ∈ A1 . . . an ∈ An}

For example, MT (0) = {0} ∪ Suc(MT (ΠSuc,1({0}))) = {0} ∪ Suc(MT (∅)) =
{0,Suc(∗)}.

We divide the set of minterms into positive ones that lie within [P] and
negative ones that are outside:

M+
P = {m ∈MT (P) | ∃p ∈ P. m � p}

M−P = MT (P) \M+
P

Example 4.14. For P = {〈Suc(0), ∗〉, 〈∗, 0〉}, we have

M+
P = {〈Suc(0), 0〉, 〈Suc(0),Suc(∗)〉,

〈0, 0〉, 〈Suc(Suc(∗)), 0〉}

M−P = {〈0,Suc(∗)〉, 〈Suc(Suc(∗)),Suc(∗)〉} .

Defined like this, minterms satisfy the following properties:

Lemma 4.15 (Properties of minterms). Let p ∈ P and m ∈MT (P).

(a) The elements of MT (P) are pairwise disjoint, and [MT (P)] = G.

(b) If m ∧ p 6= ⊥ then m � p

(c) [m] ⊆ [P] iff ∃p ∈ P.m � p

(d) For any pattern set A ⊆ Ps, we have

[A] ⊆ [P] ⇐⇒ ∀m ∈M−P . ∀a ∈ A. m ∧ a = ⊥

Proof.

(a) Simple induction

98 Chapter 4. Pattern Matching

(b) By induction on p. For p = ∗ the statement is trivial. If p = C(p1, . . . , pn),
then ∗ /∈ MT (P) and thus m must also start with a constructor. Since
m ∧ p 6= ⊥, we know that m = C(m1, . . . ,mn) with mi ∈ MT (ΠC,i(P))
and mi ∧ pi 6= ⊥. By induction hypothesis we get mi � pi for each i, and
thus m � p.

(c) For the forward implication, assume [m] ⊆ [P]. Since [m] cannot be empty,
m must overlap with at least one element of P , and we can apply (b). The
reverse implication is immediate.

(d) Obvious, since [M−P] = G \ [P].

Hence we can see MP as a partitioning of G, where each partition is repre-
sented by a minterm. Moreover, the partitioning is fine enough to be compatible
with the shape of [P].

Note that Lemma 4.15(d) enables us to check algorithmically if a given
pattern (or set of patterns) is an implicant. This check will be required in the
next sections.

Constructing Prime Implicants

The next step in the Quine-McCluskey procedure requires finding the prime
implicants of the boolean formula.

In textbooks this is often done by repeatedly joining minterms to larger
terms, until a fixpoint is reached. However, this procedure can have exponential
runtime, which is unnecessary.

Strzemecki describes how to obtain prime implicants in polynomial time
[101]. Unfortunately, the paper is a little hard to read due to a lot of nonstandard
and redundant notation. However, it can be reduced to a few simple ideas, which
generalize nicely to our pattern world.

Lemma 4.16. Let p be an implicant for P and m ∈ M+
P a minterm such that

m � p. Then there exists a minterm m′ ∈M+
P , such that [p] = [sup(m,m′)].

Proof. We proceed by induction on m.
If m = ∗, choose m′ = ∗.
Assume m = C(m1, . . . ,mn). If p = ∗, we simply choose any m′ ∈ M+

P

whose topmost constructor is different from C. If this doesn’t exist, then C
must be the only constructor of the respective sort and we know that [p] =
[C(∗, . . . , ∗)] and we proceed as if p had that form.

If p = C(p1, . . . , pn), we have mi ≺ pi, and the mi are minterms. Applying
the induction hypothesis we obtain minterms m′i ∈ MΠC,i(P) such that pi =
sup(mi,m

′
i). We get m′ = C(m′1, . . . ,m

′
n) ∈ MP . And clearly sup(m,m′) =

p.

Corollary 4.17. Every prime implicant can be written as dsup(m,m′)e with
some m,m′ ∈M+

P

This implies a simple polynomial-time algorithm for finding all prime impli-
cants: Build the suprema of all possible pairs of positive minterms and remove
those patterns that are not implicants (using Lemma 4.15(d)) or instances of
others.

4.3. Pattern Disambiguation and Minimization 99

Essential Prime Implicants

A prime implicant is called essential if it covers a minterm not covered by any
other prime implicant. Since essential prime implicants must necessarily appear
in the minimal covering, it is a useful optimization to generate them first. After
this, only the remaining minterms must be covered by other prime implicants.

Also here, we can generalize Strzemecki’s work, redefining the relevant no-
tions for our framework:

Definition 4.18. Informally, the set G(t) of simple generalizations of t is the
set of terms obtained from t by replacing exactly one non-wildcard subterm by ∗.

Formally, G(t) is defined recursively as follows:

G(∗) = {}

G(C(t1, . . . , tn)) = {∗} ∪
n⋃
i=1

C(t1, . . . , G(ti), . . . , tn)

Lemma 4.19. If s ≺ t then t is the supremum of some subset of G(s).

Proof. Informally, for each missing constructor in t compared to s, we include
the corresponding element of G(s) in the subset. Formally, use induction.

Definition 4.20 (Neighbourhood terms). For given P and m ∈M+
P , we define

the neighbourhood term of m by RP (m) = sup {g ∈ G(m) | [g] ⊆ [P]}.

Lemma 4.21. Let m ∈M+
P and r = RP (m). If [r] ⊆ [P], then r is an essential

prime implicant.

Proof. Assume that r = RP (m) is an implicant. In order to see that r is prime,
we show that every implicant i which contains m must be subsumed by r. So
fix i with m � i and [i] ⊆ [P]. If i = m, then obviously i � r. Otherwise we
have m ≺ i, and Lemma 4.19 yields i = supG for some G ⊆ G(m). Since i is
an implicant, each element of G must also be, and thus i � RP (m) = r. Since
i was arbitrary, we know that any prime implicant containing m must be equal
to r, and thus r is essential to cover m.

In fact, the converse also holds and all essential prime implicants have the form
above:

Lemma 4.22. Every essential prime implicant equals RP (m) for some m ∈M+
P .

Proof. Let e be an essential prime implicant. Then there exists an m � e,m ∈
M+
P covered by no other prime implicant. Then e is an upper bound for {g ∈

G(m) | [g] ⊆ [P]}, which implies RP (m) � e. Since e is an implicant, we
have [RP (m)] ⊆ [P]. Applying the above lemma, we get the reverse inequality
e � RP (m), and thus e = RP (m).

So, to compute all essential prime implicants, it suffices to compute RP (m) for
every m ∈M+

P , and filter out those that are not implicants.

100 Chapter 4. Pattern Matching

Overall Algorithm

Given a pattern set P to minimize, we proceed as follows:

1. Compute M+
P and M−P .

2. Compute the essential prime implicants E, as described in §4.3.3, and
determine the set M̄ = {m ∈M+

P | [m] * [E]}.

3. Compute the set N of nonessential prime implicants (containing minterms
from M̄) as described in §4.3.3.

4. Find a covering of M̄ by a subset N ′ of N .

5. Return E ∪N ′.

Note that if we want to minimize the complement instead, we can just swap
the roles of M+

P and M−P . For Disambiguation, we just partition the minterms
into n classes, one for each of the original equations, and perform the other steps
for each of the classes accordingly.

4.3.4 Implementation and Experiments

We implemented a prototype of the procedure in Haskell and tested it on a small
suite of examples stemming from user-contributed theories to the library of the
Isabelle/HOL prover. From 232 definitions, we filtered out those that just use
trivial pattern matching on one of the arguments, without any nesting. The 97
remaining examples were minimized by our prototype in less than 3 seconds on
a 1.2 GHz laptop, and no individual example took more than half a second to
process. In 16% of the cases, an improvement over the disambiguation method
implemented in TFL could be made.

This indicates that minimization is feasible and occasionally useful for defi-
nitions occurring in theorem proving practice. However, such figures always
require a good amount of scepticism, as the sample is influenced by the restric-
tions of previous Isabelle versions. It reflects what people could already do, not
what they would like to do. In particular, some functions in the developments
of arithmetic decision procedures [27, 28] were developed in a way that tries to
avoid excessive blowup.

In the following, we briefly present three interesting examples:

Balance Our initial example, the balancing function for red-black trees, has
five equations, which split up to 91 with TFL. Our minimization algorithm
computes a minimum number of 59 patterns.

Interpreter Function The function interp in Fig. 4.4 arises from a crude in-
terpreter for a simplistic expression language. Operator names are modeled as
natural numbers (and here the number literals just abbreviate terms built from
0 and Suc). Values are either booleans, numerical values or undefined. We
omitted the right-hand sides since they are not relevant for the matching.

This specific example was given to the author by Tobias Nipkow, complain-
ing that Isabelle produced too many equations, when disambiguating the defi-
nition. TFL produced either 36 or 39 cases, depending on the order of function

4.3. Pattern Disambiguation and Minimization 101

datatype val = Nv nat | Bv bool | Undef

interp :: nat ⇒ val list ⇒ val

interp 0 [] = . . .
interp 1 [Nv n] = . . .
interp 2 [Nv m, Nv n] = . . .
interp 3 [] = . . .
interp 4 [Bv b] = . . .
interp 5 [Bv b1 , Bv b2] = . . .
interp 6 [Nv n1 , Nv n2] = . . .
interp k xs = . . .

Figure 4.4: Interpreter Function

datatype T = C nat | Bound nat | Neg T | Add T T | Sub T T | Mul nat T

numadd :: T ⇒ T ⇒ T

numadd (Add (Mul c1 (Bound n1)) r1) (Add (Mul c2 (Bound n2)) r2) = . . .
numadd (Add (Mul c1 (Bound n1)) r1) t = . . .
numadd t (Add (Mul c2 (Bound n2)) r2) = . . .
numadd (C b1) (C b2) = . . .
numadd a b = . . .

Figure 4.5: Numadd

arguments. By manual inspection, we were able to express the function in just
31 equations, which we firmly believed was the optimal solution. Only a few
months later, when the algorithm presented here was implemented, the com-
puter proved us wrong when it produced just 25 equations.

Numadd Our third example is a function that operates on a representation of
arithmetic expressions and is used as part of a decision procedure for Presburger
arithmetic. Figure 4.5 shows the pattern matching used here. Unfortunately, in
this example the minimization brings no improvement over TFL’s disambigua-
tion: The set of 256 (!) resulting equations is already minimal.

4.3.5 Discussion

Our implementation performs reasonably well on problems from Isabelle theo-
ries. There are however two issues: First, there exist examples (such as Numadd
above) where the blowup is unavoidable, and the mininimization does not save us
from getting overly large equational specifications. Second, for larger examples,
the computational complexity of the problem might make exact minimization
practically intractable. Then, one could try to apply heuristic methods, and we
expect the methods developed for boolean minimization to be applicable in this
context.

Alternative encodings

Given the fact that minimization cannot always ensure a short disambiguation,
it seems that the only definite solution to the pattern explosion problem is

102 Chapter 4. Pattern Matching

to find alternative logical representations for overlapping patterns, instead of
instantiating them to remove the overlap. For example, the second equation of
the sep function in Fig. 4.1(a) could also be expressed as a conditional equation
with quantifiers:

(
∧
x y ys. xs 6= (x : y : ys)) =⇒ sep a xs = xs

In general, any equation would have preconditions that ensure that no earlier
pattern matches the given input. With this construction, the increase in speci-
fication size would be quadratic in the worst case instead of exponential.

With proper tool support it is also imaginable to use the definitions us-
ing MATCH directly for reasoning — as a “native” representation of clausal
function definitions in higher-order logic.

However, the extra complexity introduced by such a construction makes
proofs more technical and destroys the purely equational view, which is very
common in the informal proofs from the literature on functional programming
(see e.g. Hughes [57] or Thompson [105]). In particular, all automated reasoning
tools would need to be adapted to deal with such a representation.

For this reason, we focused on the optimization opportunities (and their
limits) on purely equational specifications at this point, for which appropriate
reasoning tools are already in place.

Open questions

Although our main motivation is to reason about functional programs in a the-
orem prover, our results might be relevant for other areas, since they naturally
generalize results on boolean minimization.

Disambiguating an equational specification into independent equations could
be of use in a form of parallel pattern matching, where several patterns are
matched simultaneously (say, in different threads). This form of parallel match-
ing differs from the usual meaning of the term, where different components of
the same pattern are matched concurrently, in order to let the match fail when
any of the components fails to match [116]. In contrast, unambigous pattern
sets in our sense would allow to compute the matches of different equations in
parallel. In a lazy language, prime implicants, being the most general patterns
describing a certain set of values, would probably play an important role, since
they are general enough not to trigger an unnecessary evaluation.

These are however just vague ideas and it is not clear if they could be
exploited to make some improvement in the area of implementation of functional
languages.

Another interesting question is whether one can also do the reverse encod-
ing of §4.3.2, i.e. encode a given pattern minimization problem into a boolean
formula and read off the solution from the minimized formula. Then we could
readily use existing high-performance boolean minimizers (e.g. Espresso [24])
to solve our pattern problems. From ΣP2 -completeness, we know that there
must be such an encoding, but we could not find a natural one. The main
problem here is that the pattern problems contain more structure, which may
be destroyed during boolean minimization.

4.4. Related Work 103

4.4 Related Work

Encoding pattern matching in terms of other language elements is also possible
in functional languages, and a beautiful description of such an encoding is given
by Rhiger [93]. Our encoding is different in that it is not executable, but uses
the description operator, which allows a more general class of patterns.

Although the pattern minimization problem we consider is simple to state
and natural, it has, up to our knowledge, never been studied systematically. The
only complexity result related to ML-like pattern matching that we are aware of
is given in an unpublished extendend abstract by Baudinet and MacQueen [10].
It states that the problem of compiling a sequence of patterns in to a decision
tree (i.e. a case expression) of minimal size is NP-complete. Our transformation
is different, since it produces a set of equations again, and not a decision tree.
It is remarkable that this puts the problem into a different complexity class.

There has been a fair amount of research on pattern match compilation
[5, 110, 37], but it is hard to compare this work with ours, since it has the goal
of producing code that can be implemented efficiently, either in the form of a
case tree or of some kind of backtracking automaton. Our optimization problem
is different, due to the focus on the equational view.

104 Chapter 4. Pattern Matching

Chapter 5

Induction Schemes

Contents
5.1 User-Specified Induction Rules 105

5.2 The General Format 106

5.3 Internal Derivation 109

5.4 Example Applications 109

5.5 Multiple Induction Predicates 112

5.1 User-Specified Induction Rules

In this last and rather short chapter, we put the previously developed methods
into a slightly different context, and show that parts of the machinery developed
for function definitions and termination proofs can also be used for proving user-
specified induction principles automatically.

The function package already derives induction rules for function definitions,
which are built to mirror the recursive structure of the function that was ex-
tracted by the mechanism described in §2.5. This often works well, but in some
cases the generated rules are not optimal for certain tasks and a custom rule
would be more convenient or more powerful.

In the following we present a proof procedure that derives a wide class of in-
duction rules automatically from simpler parts. It generalizes the process that is
used internally in the function package, but since it is also useful independently,
we make it available to the user as a method called induct-scheme.

It is not uncommon that users of Isabelle derive their own induction rules
if the rules provided by packages are suboptimal for some reason. Working in
a higher-order logic simplifies this task, since induction rules are just normal
theorems instead of axiom schemes that must be justified extra-logically, as in
first-order logic. However, proving induction rules by hand is difficult because
of their complex structure: Three levels of nested implications are not unusual,
and a proof of an induction rule typically relies on another induction rule, pos-
sibly instantiating it with a structured formula. This can be a daunting task
for beginners, and even experts must stare at the nested arrows for a while
before they get the proof right. The task is further complicated by the lack of

105

106 Chapter 5. Induction Schemes

automation, since the standard tools are not very helpful with proofs of this
type.

The idea of induct-scheme is to reduce a goal that states an induction rule to
simpler goals that express the different aspects of the induction: case distinction,
wellfoundedness, and invariant preservation. This has two advantages: First,
the resulting proof obligations are structurally simpler and easier to prove than
the original one. Second, and more importantly, they have a form that is much
better suited for automation, and which can often be solved fully automatically.

Unlike the function package, which extracts recursive calls from a function
in a heuristic manner that requires careful configuration, induct-scheme has no
heuristic component. It merely mechanizes a transformation that is well-defined
and entirely predictable.

5.2 The General Format

The general format of the induction rules that we can derive is given by the
following schema1:

∆1 =⇒ (Γ1,1 =⇒ P r1,1) =⇒ · · · =⇒ (Γ1,m1 =⇒ P r1,m1) =⇒ P p1

...
...

∆n =⇒ (Γn,1 =⇒ P rn,1) =⇒ · · · =⇒ (Γn,mn
=⇒ P rn,mn

) =⇒ P pn

I x =⇒ P x

Note that only x and the induction predicate P in the schema above are
logical variables. The other symbols are schema variables that represent the
terms or contexts that appear in a concrete rule. However, the contexts ∆i and
Γi,j often contain other variables. The induction has n cases that correspond
to its premises. Each case consists of a context ∆i, a conclusion P pi, and a set
of induction hypotheses, each possibly with its own context. There may also be
global conditions I x, which act like an invariant and constrain the induction
to a subset of the whole type. Syntactically, I x is a (possibly empty) list of
conditions that refer to x. It is not a context, since it cannot bind new variables.

This already looks quite complicated, but it is not the whole story yet,
since it describes only rules with a single induction predicate that takes a single
argument. Induction rules with multiple induction predicates of arity greater
than one will be discussed later, but they add only technical complexity and
nothing fundamentally new.

To get a feel for the rule schema, let us look at some small instances:
Example 5.1. Here is the well-known structural induction for natural numbers:

P 0
∧

n. P n =⇒ P (Suc n)

P n

The first case has an empty context ∆1, no recursive call and the pattern 0. In
the second, ∆2 binds a variable n, p2 = Suc n, and there is one recursive call
r2,1 = n whose context Γ2,1 is empty. There are no global conditions.

1 After careful consideration of alternatives, we use the following slightly subtle terminol-
ogy: Following the crowd in automated reasoning, we employ the term induction scheme to
refer to an induction rule, i.e., a theorem with a predicate variable. In contrast, the term
schema refers to a description of the syntactic format of such rules.

5.2. The General Format 107

Example 5.2. The following induction rule shows a property for all even num-
bers:

P 0
∧

n. even n =⇒ P n =⇒ P (Suc (Suc n))

even x =⇒ P x

Here, the global condition I x is even x. We have a zero case and a case for Suc
(Suc n), and the context of the second case, ∆2, now carries an extra assumption
even n.

5.2.1 Proof obligations

To derive an instance of the schema we have presented, the induct-scheme
method demands a proof of three proof obligations, two of which are famil-
iar from the previous chapters:

Case completeness Case completeness states that the cases in the induction
rule cover all values:

I x ∆1 =⇒ x = p1 =⇒ R . . . ∆n =⇒ x = pn =⇒ R

R

This is exactly the completeness condition that we have used in §4.2 to define
functions with pattern matching, except for the additional premise I x.

The compatibility condition that was needed for the consistency of function
definitions is not relevant for induction rules, since patterns may overlap freely.

Wellfoundedness Wellfoundedness ensures that there is no circularity in the
induction. For every induction hypothesis, we generate the relation

Ci,j = {(ri,j , pi) | ∆i ∧ Γi,j} .

The proof obligation is that the union of these relations is wellfounded:

wf (C 1 ,1 ∪ · · · ∪ C 1 ,m1 ∪ · · · ∪ C n,1 ∪ · · · ∪ C n,mn)

As another déjà vu, this proof obligation is a termination goal in closed form
(c.f. §3.1.1), and we have already worked for a whole chapter on solving this
class of goals automatically.

Invariant preservation If the induction rule is conditional, we must make sure
that the condition is also true for the arguments of the induction hypothesis:

∆i =⇒ Γi,j =⇒ I ri,j

Since I may consist of multiple conditions, it is nicer to use the elimination rule
format, which keeps it on the left-hand side of the arrow:

∆i =⇒ Γi,j =⇒ (I ri,j =⇒ R) =⇒ R

Example 5.3. For the structural induction rule for nat, the following proof obli-
gations are generated:

Case completeness:

108 Chapter 5. Induction Schemes

x = 0 =⇒ P
∧

n. x = Suc n =⇒ P

P

Wellfoundedness:

wf {(n, Suc n) |n. True}

Invariant preservation:∧
n. R =⇒ R

Modulo variable renaming, the case completeness condition is identical with
the case distinction rule for the datatype nat. Wellfoundedness is a very simple
termination proof obligation, and the invariant preservation condition is vacuous
and not even presented to the user.

Example 5.4. For our second example above, the induction rule about even, we
must prove the following conditions:

Case completeness:

even x x = 0 =⇒ P
∧

n. x = Suc (Suc n) =⇒ P

P

Wellfoundedness:

wf {(n, Suc (Suc n)) |n. even n}

Invariant preservation:∧
n. even n =⇒ (even n =⇒ R) =⇒ R

Case completeness states that any even number is either zero or the successor of
the successor of an even number. If the even predicate was defined inductively,
this is just its elimination rule. Wellfoundedness is unexciting and the invariant
preservation is again trivial, although we have an invariant this time. But the
context ∆2 explicitly states that n (the argument of the induction hypothesis)
is even, so again we have nothing to prove.

These small examples are a little boring, since they just derive very sim-
ple rules that are present in the system anyway. However, the power of the
induct-scheme method lies in its flexibility concerning the actual syntactic form
of the rule.

Example 5.5. Let us derive an induction rule over type α list list. In the induc-
tion step, we would like to have a hypothesis for shorter lists and one for lists
whose first sublist is shorter and the other lists are unchanged:

P []∧
xs xss.

(
∧

yss. list-size yss < list-size (xs:xss) =⇒ P yss) =⇒
(
∧

zs. list-size zs < list-size xs =⇒ P (zs:xss)) =⇒
P (xs:xss)

P a

5.3. Internal Derivation 109

Pattern completeness is again just a property of the list datatype, preservation
is not required, and the wellfoundedness proof obligation is the following:

wf ({(yss, xs:xss) |xs xss yss. list-size yss < list-size (xs:xss)} ∪
{(zs:xss, xs:xss) |xs xss zs. list-size zs < list-size xs})

It is proved automatically by lexicographic-order, using a lexicographic combi-
nation of the measures list-size and gen-list-size list-size. Thus, the complete
proof of this custom induction rule consists of a single line, which is idiomatic
for proofs of induction rules:

by induct-scheme (pat-completeness, lexicographic-order)

5.3 Internal Derivation

We now sketch how the method works internally. After analyzing the goal to
find the instantiation of the schema variables, it builds the relation

R = C 1 ,1 ∪ · · · ∪ C 1 ,m1 ∪ · · · ∪ C n,1 ∪ · · · ∪ C n,mn

which is the basis of the following induction proof, that derives the induction
rule from the case completeness, wellfoundedness and invariant preservation
conditions:

Proof. We assume the premises that correspond to the cases; let us call them
the step rules. The implication I x =⇒ P x is proved by wellfounded induction
over x using the relation R, which is wellfounded by assumption.

For a fixed x, we assume I x and the induction hypothesis∧
z . (z , x) ∈ R =⇒ I z =⇒ P z.

Our goal is to show P x. We apply the case completeness condition as an
elimination rule and obtain n cases. In the ith case, the assumptions are ∆i

and x = pi, and we must prove P pi.
We now consider the recursive calls in turn. From the construction of R, it

follows that Γi ,j =⇒ (r i ,j, pi) ∈ C i ,j ⊆ R, and the induction hypothesis implies
Γi ,j =⇒ I r i ,j =⇒ P r i ,j. The invariant preservation condition implies that we
can remove the condition I r i ,j. We repeat this for every call and can finally
apply the step rule to obtain P pi, which completes the proof of the ith case.

5.4 Example Applications

This section presents some interesting applications of the induct-scheme method,
which shows how it can simplify the life of Isabelle users.

5.4.1 Huffman’s algorithm: Consistent trees

Our first example comes from Blanchette’s formalization of the textbook proof
of Huffman’s algorithm [17]. His primary datatype is a binary tree:

datatype α tree = Leaf nat α
| InnerNode nat (α tree) (α tree)

110 Chapter 5. Induction Schemes

∧
w b b a. P (Leaf w b b) a∧
w t1 t2 a.
consistent t1 =⇒
consistent t2 =⇒
alphabet t1 ∩ alphabet t2 = ∅ =⇒
a ∈ alphabet t1 =⇒
a /∈ alphabet t2 =⇒
P t1 a =⇒ P t2 a =⇒ P (InnerNode w t1 t2) a∧
w t1 t2 a.
consistent t1 =⇒
consistent t2 =⇒
alphabet t1 ∩ alphabet t2 = ∅ =⇒
a /∈ alphabet t1 =⇒
a ∈ alphabet t2 =⇒
P t1 a =⇒ P t2 a =⇒ P (InnerNode w t1 t2) a∧
w t1 t2 a.
consistent t1 =⇒
consistent t2 =⇒
alphabet t1 ∩ alphabet t2 = ∅ =⇒
a /∈ alphabet t1 =⇒
a /∈ alphabet t2 =⇒
P t1 a =⇒ P t2 a =⇒ P (InnerNode w t1 t2) a

consistent t =⇒ P t a

Figure 5.1: Induction rule for consistent trees

A predicate consistent :: α tree ⇒ bool models trees that satisfy a certain
invariant. The whole algorithm works only with consistent trees and many
relevant properties fail if this invariant is violated.

To simplify proofs by structural induction over consistent trees, Blanchette
uses the custom induction rule given in Fig. 5.1. This rule has two advantages
over the standard induction rule: First, the assumption alphabet t1 ∩ alphabet
t2 = ∅, which follows from consistency, is immediately available in each case.
Second, an extra case distinction is built into the rule to distinguish whether
the symbol a occurs in the left, the right, or none of the subtrees. The case that
it occurs in both is missing — it is impossible for consistent trees.

This rule (and another similar one) drastically simplifies the rest of the
development, since the reasoning would otherwise have to be done manually in
each of the numerous induction proofs. Using the custom rule, many of these
proofs become one-liners.

The induction rule itself is easy to prove, too: After applying induct-scheme,
only a single case distinction must be done manually for the case complete-
ness. The other conditions are solved automatically by lexicographic-order and
fastsimp. In contrast, the manual proof of the same rule takes several pages.

5.4. Example Applications 111

∧
S . invariant S =⇒ P S []∧
S x xs.
invariant S =⇒
is-node x =⇒
∀ y∈set xs. is-node y =⇒
(memb x S =⇒ P S xs) =⇒
(¬ memb x S =⇒ P (ins x S) (succs x @ xs)) =⇒ P S (x :xs)

invariant S =⇒ ∀ x∈set xs. is-node x =⇒ P S xs

Figure 5.2: Induction rule for depth-first search

5.4.2 Depth-first search

We consider again the abstract version of depth-first search that we already saw
in §2.7.4. Although an induction principle for dfs can be obtained from the
partial induction rule that arises from the definition, it is actually simpler to
prove it straight away using induct-scheme. This gives the best control over the
form of the rule, which is given in Fig. 5.2.

In this case the proof is not automated, and the wellfoundedness condition
is the hardest part. It corresponds to a termination proof of dfs for any well-
formed input.

5.4.3 Strong nominal induction

The nominal datatype package [108] provides an advanced infrastructure for
reasoning about data structures that involve binders, e.g., terms in the lambda
calculus. When modelling lambda terms as a nominal datatype, terms that
differ only in the naming of bound variables are identified.

The induction rule for nominal datatypes is stronger than the normal datatype
rule: In the lambda case, we may assume that the name of the bound variable
is fresh with respect to a freshness context z which we may choose when we
apply the rule. This freshness context formalizes what is known as the variable
convention and avoids name clashes that would require explicit renaming:∧

v z . P z (Var v)∧
s t z . (

∧
z . P z s) =⇒ (

∧
z . P z t) =⇒ P z (App s t)∧

v t z . v] z =⇒ (
∧

z . P z t) =⇒ P z (Lam [v].t)

P z t

The nominal package derives this rule automatically for each datatype in a
nontrivial automated proof. However, the rule also conforms to our schema,
so we can use induct-scheme to prove it. This leads to the following proof
obligations:∧

v za. z = za =⇒ t = Var v =⇒ P∧
s ta za. z = za =⇒ t = App s ta =⇒ P∧
v ta za. v] za =⇒ z = za =⇒ t = Lam [v].ta =⇒ P

P

112 Chapter 5. Induction Schemes

wf ({((zb, s), (za, App s ta)) |s ta za zb. True} ∪
{((zb, ta), (za, App s ta)) |s ta za zb. True} ∪
{((zb, ta), (za, Lam [v].ta)) |v ta za zb. v] za})

The case completeness condition is a form of strong elimination rule for the
datatype, which also has the freshness context, but is conceptually simpler,
since there is no induction involved. The inductive argument is captured by the
wellfoundedness condition, which is simple and can be proved automatically,
provided that a size function on lambda-terms is present.

As the nominal package already provides this specific induction rule, there
is no need for proving it again, but the example shows the generality of our
schema. Moreover, as soon as a small variation of the basic rule is needed, e.g.,
a simultaneous induction over two terms, then induct-scheme may turn out to
be useful.

5.5 Multiple Induction Predicates

We now give the extended schema for rules with multiple induction predicates
P1, . . . , Pk taking multiple arguments each. To keep the presentation readable,
we write the arguments as a vector x̄i:

∆1 =⇒ (Γ1,1 =⇒ Pj1,1 r̄1,1) =⇒ · · · =⇒ (Γ1,m1 =⇒ Pj1,m1
r̄1,m1) =⇒ Pi1 p̄1

...
...

∆n =⇒ (Γn,1 =⇒ Pjn,1 r̄n,1) =⇒ · · · =⇒ (Γn,mn
=⇒ Pjn,mn

r̄n,mn
) =⇒ Pin p̄n

(I1 x̄1 =⇒ P1 x̄1) . . . (Ik x̄k =⇒ Pk x̄k)

This rule has one conclusion for each induction predicate.2 The different pred-
icates may range over different types and have their own conditions I1, . . . , Ik
attached to them. Each of the cases has one of the induction predicates in the
conclusion, but its inductive hypotheses can refer to other induction predicates.

Example 5.6. The following induction rule is a simple instance of the extended
schema above:

P 0
Q 0∧

n. P n =⇒ Q (Suc n)∧
n. Q n =⇒ P (Suc n)

P x Q x

Introducing multiple induction predicates and multiple variables is a con-
ceptually straightforward extension, as they are easily encoded using products
(for multiple variables) and sums (for multiple predicates), and the induction
proof presented in §5.3 works in essentially the same way, with some more book-
keeping. The reader will notice the similarity to the treatment of curried and
mutually recursive function definitions (§2.6.4); in fact, the example above is
the induction rule for the mutually recursive definition of even and odd.

2We interpret multiple conclusions as a conjunction. In Isabelle, a rule with multiple
conclusions is expressed as a set of rules.

5.5. Multiple Induction Predicates 113

The proof obligations produced by induct-scheme for this class of rules are
similar to the previous ones: Instead of one, we now get k proof obligations
for case completeness, each of them asserting that the cases for the respective
induction predicate are complete. In the wellfoundedness condition, the internal
representation is exposed, and we must prove wellfoundedness of a relation over
sums of products — a proof obligation as it arises from mutually recursive
functions. The invariant preservation conditions are as expected: For each
recursive call we must prove the invariant of the respective induction predicate.

114 Chapter 5. Induction Schemes

Chapter 6

Conclusion

The results in this thesis are centered around the goal of making function defi-
nitions in Isabelle/HOL easier, more powerful, and more fun, while retaining
the safety of the definitional approach.

6.1 New Toys

The implementation of the techniques we have described is now available to
users of Isabelle as a collection of commands and proof methods, which give a
nice summary of our results from a practical viewpoint:

• A command function, which introduces recursive functions and supports
all complications: partiality, nested recursion, mutual recursion, general
pattern matching, and tail recursion. Compared to existing approaches,
we have increased both the expressive power (by supporting partial func-
tions and more general pattern matching) and the convenience in formal
reasoning (by supporting nested recursive definitions naturally).

• A command fun, which invokes function, followed by automated methods
to solve the pattern matching and termination proof obligations. This
command provides a convenient shorthand notation that provides full au-
tomation for the most common cases.

• A method lexicographic-order, which solves termination proof obligations
using lexicographic combinations of measure functions. The method is
sufficient for a large majority of the termination problems occurring in
theorem proving practice.

• A method sizechange, which implements a stronger termination prover
using dependency graph decomposition and the size-change principle. It
can handle functions with more complicated control and data flow.

• A method induct-scheme, which proves induction rules from simpler proof
obligations that are better suited for automation, which considerably sim-
plifies proofs of custom induction rules.

115

116 Chapter 6. Conclusion

Our implementation is the principal tool for working with general recursive
functions in Isabelle/HOL since version 2007. It is documented in a tutorial
[63].

It should be mentioned that the improved automation is not only helpful
for users, but also facilitates the implementation of other tools. For instance,
translating function definitions from other languages into Isabelle theories is now
much easier, since the function package hides the details of the construction from
the translation tools. In particular, no termination relation has to be specified
for the definitions1. Two examples of such translation tools are Haskabelle[52],
which converts Haskell programs into Isabelle theories, and Ott [96], which
translates language specifications from a custom notation to various formalisms,
including Isabelle/HOL theories. Both tools use the function package for making
definitions and rely on the automated termination prover.

Most of the methods that we have described are not specific to Isabelle,
and our techniques for proving termination (especially the simple approach of
lexicographic-order) are likely to be adopted by other systems, since they can
be implemented with relatively little effort.

Open Problems However, some issues remain and recursive function defini-
tions will continue to be difficult in some cases:

• The pattern matching explosion we discussed in §4.3 is an obstacle for
the verification of programs that make heavy use of complicated pattern
matching. As we have shown, minimizing the number of equations is
expensive and does not help in some cases.

• The discrepancy between the domain predicate and actual termination be-
haviour is at least unusual. In particular, when generating code, reasoning
about the termination behaviour in the target language is impossible.

• The extraction mechanism for recursive calls (§2.5) cannot cope with all
definitions, and definitions that use some advanced of higher-order pro-
gramming techniques (like certain forms of continuation-passing style)
cannot be supported.

All these issues are ultimately rooted in the subtle semantic differences be-
tween higher-order logic and programming languages. After all, the slogan HOL
= Functional Programming + Logic must be taken with a grain of salt.

Some of these issues could be overcome at least partly: The pattern matching
explosion can be avoided by moving away from purely equational specifications
and using conditional equations as we sketched in §4.3.5. By using a fixed set
of congruence rules and making undefinedness propagate, the domain predicate
could be modified to agree with the termination behaviour for a fixed set of con-
structs (say, if, let, and case) in some fixed target language. However, this would
sacrifice the generality of the approach. To support all function definitions with
no exceptions, one must probably move to an entirely different representation,
e.g., HOLCF [77].

1Not surprisingly, such a translation is inherently incomplete unless it is known that all
translated functions can be handled by the termination prover. However, the user can always
add a manual termination proof later if necessary.

6.2. Future Work 117

6.2 Future Work

We now briefly discuss some ideas for future work:

Recursion in a monad Monads are commonly used in Haskell to model certain
computational aspects of programs, such as updatable state, exceptions, nonde-
terminism, and other nontrivial control flow behaviour [91]. Although general
monads cannot be expressed in HOL due to the lack of constructor polymor-
phism, specific monads are becoming a popular modeling device [100, 25].

Defining functions over a monadic type can pose new difficulties for recur-
sive function definitions. For example, consider the function traverse, which
traverses a list stored on a monadic heap:

datatype α node = Empty | Node α (α node ref)

traverse :: α node ⇒ α list Heap
traverse Empty = return []
traverse (Node x r) = do tl ← !r ;

xs ← traverse tl ;
return (x:xs)

Since the recursion does not happen on the arguments of the function but rather
on an encapsulated state, the function package cannot support it. To define the
function we must break the monad abstraction and expose the underlying state.
Furthermore, the function is partial, since the list on the heap may be infinite
or cyclic.

However, there is also a simple and elegant solution, which is based on
the fact that in a monad with a left zero (that is, an element 0 that satisfies
(0 �= f) = 0), there is a total model for any recursive function. This is be-
cause the partial function can be completed with 0, which propagates correctly
through the monadic computations.

Using the default value facility (§2.6.1), we have already done this construc-
tion manually for individual functions. However, automating it in a package
would make working with monadic functions much easier than it is now.

Infinite data structures We already mentioned that our approach with well-
founded recursion cannot be used to define functions on infinite data struc-
tures like lazy lists and streams, which would require some form of corecursion.
Matthews [70] describes a construction using converging equivalence relations,
but it has never been automated. Tools that support such definitions would
make coinductive data structures much more attractive for formalizations.

Termination Our termination prover deals well with many termination prob-
lems, and the road becomes steep if we want to improve it further. It seems
that the highest practical benefit could be drawn from using polynomial inter-
pretation on data types. It is possible that methods developed for term rewrite
systems can be adapted to the Isabelle setting. The main obstacle here is that
finding a polynomial interpretation requires an analysis of the goals, which is
hard due to their general form.

118 Chapter 6. Conclusion

Other representations for patterns Representing pattern matching via con-
ditional equations is probably the cleanest solution to the pattern problem, but
it requires that the proof tools of Isabelle/HOL can work well on this represen-
tation. It should be investigated what changes are required for the simplifier to
make such a representation practical.

Bibliography

[1] Archive of Formal Proofs. http://afp.sourceforge.net/.

[2] S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. Gabbay,
and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science
Volume 3, pages 1–168. Oxford University Press, 1994.

[3] O. Ait Mohamed, C. Muñoz, and S. Tahar, editors. Theorem Proving
in Higher Order Logics (TPHOLs 2008), 21st International Conference,
Montreal, Canada, August 18-21, 2008, Proceedings, volume 5170 of Lec-
ture Notes in Computer Science. Springer Verlag, 2008.

[4] T. Arts and J. Giesl. Termination of term rewriting using dependency
pairs. Theoretical Computer Science, 236(1-2):133–178, 2000.

[5] L. Augustsson. Compiling pattern matching. In Functional Programming
Languages and Computer Architecture (FPCA’85), volume 201 of Lecture
Notes in Computer Science, pages 368–381. Springer Verlag, 1985.

[6] J. Avery. Size-change termination and bound analysis. In Hagiya and
Wadler [50], pages 192–207.

[7] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[8] C. Ballarin. Locales and locale expressions in isabelle/isar. In S. Be-
rardi, M. Coppo, and F. Damiani, editors, Types for Proofs and Programs
(TYPES 2003), volume 3085 of Lecture Notes in Computer Science, pages
34–50. Springer Verlag, 2004.

[9] G. Barthe, J. Forest, D. Pichardie, and V. Rusu. Defining and reasoning
about recursive functions: a practical tool for the Coq proof assistant. In
Hagiya and Wadler [50], pages 114 – 129.

[10] M. Baudinet and D. MacQueen. Tree pattern matching for ML. Unpub-
lished. http://www.smlnj.org/compiler-notes/85-note-baudinet.ps, 1985.

[11] A. Ben-Amram and M. Codish. A SAT-based approach to size change
termination with global ranking functions. In C. R. Ramakrishnan and
J. Rehof, editors, Tools and Algorithms for the Construction and Analy-
sis of Systems (TACAS’08), volume 4963 of Lecture Notes in Computer
Science, pages 218–232. Springer Verlag, March 2008.

119

http://afp.sourceforge.net/
http://www.smlnj.org/compiler-notes/85-note-baudinet.ps

120 Bibliography

[12] A. M. Ben-Amram and C. S. Lee. Ranking functions for size-change termi-
nation II. July 2007. International Workshop on Termination (WST’07).

[13] S. Berghofer and T. Nipkow. Executing higher order logic. In P. Callaghan,
Z. Luo, J. McKinna, and R. Pollack, editors, Types for Proofs and Pro-
grams (TYPES 2000), volume 2277 of Lecture Notes in Computer Science,
pages 24–40. Springer Verlag, 2000.

[14] S. Berghofer and M. Wenzel. Inductive datatypes in HOL - lessons learned
in formal-logic engineering. In Bertot et al. [16], pages 19–36.

[15] Y. Bertot and P. Castéran. Interactive theorem proving and program de-
velopment: Coq’Art: the calculus of inductive constructions. Texts in
theoretical computer science. Springer Verlag, 2004.

[16] Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry, editors.
Theorem Proving in Higher Order Logics (TPHOLs ’99), volume 1690 of
Lecture Notes in Computer Science. Springer Verlag, 1999.

[17] J. C. Blanchette. Mechanizing the textbook proof of Huffman’s algorithm.
Journal of Automated Reasoning, 2009. To appear.

[18] F. Blanqui, S. Coupet-Grimal, W. Delobel, S. Hinderer, and A. Ko-
prowski. CoLoR, a Coq library on rewriting and termination. In A. Geser
and H. Söndergaard, editors, International Workshop on Termination
(WST’06), 2006.

[19] A. Bove. General recursion in type theory. In H. Geuvers and F. Wiedijk,
editors, Types for Proofs and Programs (TYPES 2002), volume 2646 of
Lecture Notes in Computer Science, pages 39–58. Springer Verlag, 2002.

[20] A. Bove and V. Capretta. Nested general recursion and partiality in type
theory. In R. J. Boulton and P. B. Jackson, editors, Theorem Proving in
Higher Order Logics (TPHOLs 2001), volume 2152 of Lecture Notes in
Computer Science, pages 121–135. Springer Verlag, 2001.

[21] A. Bove and V. Capretta. Modelling general recursion in type theory.
Mathematical Structures in Computer Science, 15(4):671–708, 2005.

[22] A. Bove and V. Capretta. Computation by prophecy. In S. R. D. Rocca,
editor, Typed Lambda Calculi and Applications (TLCA 2007), volume
4583 of Lecture Notes in Computer Science, pages 70–83. Springer Verlag,
2007.

[23] R. S. Boyer and J. S. Moore. A Computational Logic. Academic Press,
New York, 1979.

[24] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-
Vincentelli. Logic Minimization Algorithms for VLSI Synthesis. Kluwer
Academic Publishers, Boston, MA, 1984.

[25] L. Bulwahn, A. Krauss, F. Haftmann, L. Erkök, and J. Matthews. Im-
perative functional programming in Isabelle/HOL. In Ait Mohamed et al.
[3], pages 134–149.

Bibliography 121

[26] L. Bulwahn, A. Krauss, and T. Nipkow. Finding lexicographic orders for
termination proofs in Isabelle/HOL. In Schneider and Brandt [95], pages
38–53.

[27] A. Chaieb. Verifying mixed real-integer quantifier elimination. In Furbach
and Shankar [39], pages 528–540.

[28] A. Chaieb. Automated methods for formal proofs in simple arithmetics
and algebra. PhD thesis, Institut für Informatik, Technische Universität
München, Germany, January 2008.

[29] A. Church. A formulation of the simple theory of types. J. Symbolic Logic,
pages 56–68, 1940.

[30] M. Codish, V. Lagoon, and P. J. Stuckey. Solving partial order constraints
for LPO termination. In Pfenning [92], pages 4–18.

[31] E. Contejean, P. Courtieu, J. Forest, O. Pons, and X. Urbain. Certifica-
tion of automated termination proofs. In B. Konev and F. Wolter, edi-
tors, Frontiers of Combining Systems (FroCos 07), volume 4720 of Lecture
Notes in Artificial Intelligence, pages 148–162, Liverpool,UK, Sept. 2007.
Springer Verlag.

[32] B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems
code. In M. I. Schwartzbach and T. Ball, editors, Programming Language
Design and Implementation (PLDI’06), pages 415–426. ACM, 2006.

[33] P. Courtieu, J. Forest, and X. Urbain. Certifying a termination criterion
based on graphs, without graphs. In Ait Mohamed et al. [3], pages 183–
198.

[34] C. Dubois and V. Donzeau-Gouge. A step towards the mechanization of
partial functions: domains as inductive predicates. In CADE-15 Workshop
on mechanization of partial functions, 1998.

[35] P. Dybjer. A general formulation of simultaneous inductive-recursive defi-
nitions in type theory. J. Symbolic Logic, 65(2):525–549, 2000.

[36] N. Een and N. Sörensson. An extensible SAT-solver. In G. Goos, J. Hart-
manis, and J. van Leeuwen, editors, Theory and Applications of Satisfi-
ability Testing (SAT 2003), volume 2919 of Lecture Notes in Computer
Science, pages 502 – 518. Springer Verlag, 2003.

[37] F. L. Fessant and L. Maranget. Optimizing pattern matching. In ICFP
2001, pages 26–37, 2001.

[38] S. Finn, M. Fourman, and J. Longley. Partial functions in a total setting.
Journal of Automated Reasoning, 18(1):85–104, 1997.

[39] U. Furbach and N. Shankar, editors. Automated Reasoning, Third Interna-
tional Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17-20,
2006, Proceedings, volume 4130 of Lecture Notes in Artificial Intelligence.
Springer Verlag, 2006.

122 Bibliography

[40] J. Giesl. Termination analysis for functional programs using term or-
derings. In A. Mycroft, editor, Static Analysis (SAS’95), volume 983 of
Lecture Notes in Computer Science, pages 154–171. Springer Verlag, 1995.

[41] J. Giesl. Termination of nested and mutually recursive algorithms. Journal
of Automated Reasoning, 19(1):1–29, Aug. 1997.

[42] J. Giesl. Induction proofs with partial functions. Journal of Automated
Reasoning, 26(1):1–49, 2001.

[43] J. Giesl, R. Thiemann, and P. Schneider-Kamp. Aprove 1.2: Automatic
termination proofs in the dependency pair framework. In Furbach and
Shankar [39], pages 281–286.

[44] M. Gordon and T. Melham, editors. Introduction to HOL: A theorem
proving environment for Higher Order Logic. Cambridge University Press,
1993.

[45] M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A
Mechanised Logic of Computation, volume 78 of Lecture Notes in Com-
puter Science. Springer Verlag, 1979.

[46] B. Grégoire and A. Mahboubi. Proving equalities in a commutative ring
done right in Coq. In J. Hurd and T. F. Melham, editors, Theorem Proving
in Higher Order Logics (TPHOLs 2005), volume 3603 of Lecture Notes in
Computer Science, pages 98–113. Springer Verlag, 2005.

[47] J. Grundy and M. C. Newey, editors. Theorem Proving in Higher Order
Logics, 11th International Conference, TPHOLs’98, Canberra, Australia,
September 27 - October 1, 1998, Proceedings, volume 1479 of Lecture Notes
in Computer Science. Springer Verlag, 1998.

[48] F. Haftmann and T. Nipkow. A code generator framework for Is-
abelle/HOL. Technical Report 364/07, Department of Computer Science,
University of Kaiserslautern, 08 2007.

[49] F. Haftmann and M. Wenzel. Constructive type classes in Isabelle. In
T. Altenkirch and C. McBride, editors, Types for Proofs and Programs
(TYPES 2006), volume 4502 of Lecture Notes in Computer Science.
Springer Verlag, 2007.

[50] M. Hagiya and P. Wadler, editors. Functional and Logic Programming, 8th
International Symposium, FLOPS 2006, Fuji-Susono, Japan, April 24-26,
2006, Proceedings, volume 3945 of Lecture Notes in Computer Science.
Springer Verlag, 2006.

[51] J. Harrison. The HOL Light theorem prover. http://www.cl.cam.ac.uk/
users/∼jrh13/hol-light.

[52] Haskabelle tool. http://isabelle.in.tum.de/haskabelle.

[53] N. Hirokawa and A. Middeldorp. Tyrolean termination tool. In J. Giesl,
editor, RTA, volume 3467 of Lecture Notes in Computer Science, pages
175–184. Springer Verlag, 2005.

http://www.cl.cam.ac.uk/users/~jrh13/hol-light
http://www.cl.cam.ac.uk/users/~jrh13/hol-light
http://isabelle.in.tum.de/haskabelle

Bibliography 123

[54] P. V. Homeier and D. F. Martin. Mechanical verification of total correct-
ness through diversion verification conditions. In Grundy and Newey [47],
pages 189–206.

[55] P. Hudak, J. Hughes, S. L. P. Jones, and P. Wadler. A history of Haskell:
being lazy with class. pages 1–55. ACM, 2007.

[56] G. Huet. Confluent reductions: Abstract properties and applications to
term rewriting systems. J. ACM, 27(4):797–821, 1980.

[57] J. Hughes. The Design of a Pretty-printing Library. In J. Jeuring and
E. Meijer, editors, Advanced Functional Programming, volume 925 of Lec-
ture Notes in Computer Science. Springer Verlag, 1995.

[58] J. Hurd. Proof pearl: The termination analysis of TERMINATOR. In
Schneider and Brandt [95], pages 151–156.

[59] R. H. Katz and G. Borriello. Contemporary Logic Design. Prentice Hall,
2005.

[60] M. Kaufmann, P. Manolios, and J. S. Moore. Computer-Aided Reasoning:
An Approach. Kluwer Academic Publishers, 2000.

[61] A. Koprowski. TPA: termination proved automatically. In Pfenning [92],
pages 257–266.

[62] D. Kozen. On Kleene algebras and closed semirings. In B. Rovan, editor,
Mathematical Foundations of Computer Science (MFCS’90), volume 452
of Lecture Notes in Computer Science, pages 26–47. Springer Verlag, 1990.

[63] A. Krauss. Defining Recursive Functions in Isabelle/HOL. Part of the
Isabelle documentation. http://isabelle.in.tum.de/doc/functions.pdf.

[64] S. Krstić and J. Matthews. Inductive invariants for nested recursion. In
D. A. Basin and B. Wolff, editors, Theorem Proving in Higher Order Log-
ics (TPHOLs 2003), volume 2758 of Lecture Notes in Computer Science,
pages 253–269. Springer Verlag, 2003.

[65] C. S. Lee. Ranking functions for size-change termination. ACM Transac-
tions on Programming Languages and Systems, 2008. to appear.

[66] C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle
for program termination. In Principles of Programming Languages (PoPL
2001), pages 81–92, 2001.

[67] Z. Manna and R. Waldinger. Deductive synthesis of the unification algo-
rithm. Science of Computer Programming, 1:5–48, 1981.

[68] P. Manolios and J. S. Moore. Partial functions in ACL2. Journal of
Automated Reasoning, 31(2):107–127, 2003.

[69] P. Manolios and D. Vroon. Termination analysis with calling context
graphs. In T. Ball and R. B. Jones, editors, Computer Aided Verification
(CAV 2006), volume 4144 of Lecture Notes in Computer Science, pages
401–414. Springer Verlag, 2006.

http://isabelle.in.tum.de/doc/functions.pdf

124 Bibliography

[70] J. Matthews. Recursive function definition over coinductive types. In
Bertot et al. [16], pages 73–90.

[71] E. J. McCluskey. Minimization of boolean formulas. Bell Lab. Tech. J.,
35(6):1417–1444, Nov 1956.

[72] E. J. McCluskey. Logic Design Principles. Prentice Hall, 1986.

[73] J. Meng, L. C. Paulson, and G. Klein. A termination checker for Isabelle
Hoare logic. In B. Beckert, editor, 4th International Verification Workshop
(VERIFY’07), volume 259 of CEUR Workshop Proceedings, pages 104–
118, 2007.

[74] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of
Standard ML, Revised Edition. MIT Press, 1997.

[75] Y. Minamide. Verified decision procedures on context-free grammars. In
Schneider and Brandt [95], pages 173–188.

[76] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an efficient SAT solver. In Design Automation Conference
(DAC 2001), pages 530–535. ACM, 2001.

[77] O. Müller, T. Nipkow, D. von Oheimb, and O. Slotosch.
HOLCF=HOL+LCF. Journal of Functional Programming, 9(2):191–223,
1999.

[78] O. Müller and K. Slind. Treating partiality in a logic of total functions.
The Computer Journal, 40(10):640–652, 1997.

[79] M. Muzalewski. An outline of PC mizar. Technical report, Fondation
Philippe le Hodey, Brussels, 1993.

[80] W. Naraschewski and M. Wenzel. Object-oriented verification based on
record subtyping in higher-order logic. In Grundy and Newey [47], pages
349–366.

[81] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof As-
sistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer
Science. Springer Verlag, 2002.

[82] T. Nishihara and Y. Minamide. Depth first search. In G. Klein, T. Nipkow,
and L. Paulson, editors, The Archive of Formal Proofs. http://afp.sf.net/
entries/Depth-First-Search.shtml, June 2004. Formal proof development.

[83] C. Okasaki. Red-black trees in a functional setting. Journal of Functional
Programming, 9(4):471–477, 1999.

[84] S. Owens and K. Slind. Adapting functional programs to higher-order
logic. Higher-Order and Symbolic Computation, 21(4):377–409, 2008.

[85] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification
system. In D. Kapur, editor, Automated Deduction (CADE-11), volume
607 of Lecture Notes in Computer Science, pages 748–752. Springer Verlag,
1992.

http://afp.sf.net/entries/Depth-First-Search.shtml
http://afp.sf.net/entries/Depth-First-Search.shtml

Bibliography 125

[86] P. Pandya and M. Joseph. A structure-directed total correctness proof
rule for recursive procedure calls. The Computer Journal, 29(6):531–537,
1986.

[87] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, New
York, 1994.

[88] L. C. Paulson. Verifying the unification algorithm in LCF. Science of
Computer Programming, 5:143–170, 1985.

[89] L. C. Paulson. A fixedpoint approach to implementing (co)inductive defi-
nitions. In A. Bundy, editor, Automated Deduction (CADE-12), volume
814 of Lecture Notes in Computer Science, pages 148–161. Springer Verlag,
1994.

[90] L. C. Paulson. Isabelle — A Generic Theorem Prover, volume 828 of
Lecture Notes in Computer Science. Springer Verlag, 1994.

[91] S. Peyton Jones and P. Wadler. Imperative functional programming. In
Principles of Programming Languages (POPL’93), pages 71–84, 1993.

[92] F. Pfenning, editor. Term Rewriting and Applications, 17th International
Conference, RTA 2006, Seattle, WA, USA, August 12-14, 2006, Proceed-
ings, volume 4098 of Lecture Notes in Computer Science. Springer Verlag,
2006.

[93] M. Rhiger. Type-safe pattern combinators. Journal of Functional Pro-
gramming. To appear.

[94] M. Schaefer and C. Umans. Completeness in the polynomial-time hierar-
chy: Part I: A compendium. SIGACT News (ACM Special Interest Group
on Automata and Computability Theory), 33, 2002.

[95] K. Schneider and J. Brandt, editors. Theorem Proving in Higher Or-
der Logics (TPHOLs 2007), volume 4732 of Lecture Notes in Computer
Science. Springer Verlag, 2007.

[96] P. Sewell, F. Z. Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, and
R. Strnisa. Ott: effective tool support for the working semanticist. In
R. Hinze and N. Ramsey, editors, ICFP, pages 1–12. ACM, 2007.

[97] K. Slind. Function definition in Higher-Order Logic. In J. von Wright,
J. Grundy, and J. Harrison, editors, Theorem Proving in Higher Order
Logics (TPHOLs ’96), volume 1125 of Lecture Notes in Computer Science,
pages 381–397. Springer Verlag, 1996.

[98] K. Slind. Reasoning About Terminating Functional Programs. PhD thesis,
Institut für Informatik, Technische Universität München, 1999.

[99] K. Slind. Another look at nested recursion. In M. Aagaard and J. Harrison,
editors, Theorem Proving in Higher Order Logics (TPHOLS 2000), vol-
ume 1869 of Lecture Notes in Computer Science, pages 498–518. Springer
Verlag, 2000.

126 Bibliography

[100] C. Sprenger and D. A. Basin. A monad-based modeling and verification
toolbox with application to security protocols. In Schneider and Brandt
[95], pages 302–318.

[101] T. Strzemecki. Polynomial-time algorithms for generation of prime impli-
cants. J. Complexity, 8(1):37–63, 1992.

[102] Termination competition.
http://termination-portal.org/wiki/Termination Competition.

[103] R. Thiemann and J. Giesl. Size-change termination for term rewriting.
In R. Nieuwenhuis, editor, Rewriting Techniques and Applications (RTA
2003), volume 2706 of Lecture Notes in Computer Science, pages 264–278.
Springer Verlag, 2003.

[104] R. Thiemann and J. Giesl. The size-change principle and dependency pairs
for termination of term rewriting. Appl. Algebra Eng. Commun. Comput.,
16(4):229–270, 2005.

[105] S. Thompson. Haskell: The Craft of Functional Programming (2nd Edi-
tion). Addison-Wesley, 1999.

[106] C. Umans, T. Villa, and A. L. Sangiovanni-Vincentelli. Complexity of
two-level logic minimization. IEEE Trans. on CAD of Integrated Circuits
and Systems, 25(7):1230–1246, 2006.

[107] C. M. Umans. Approximability and completeness in the polynomial hier-
archy. PhD thesis, University of California, Berkeley, 2000.

[108] C. Urban. Nominal techniques in Isabelle/HOL. Journal of Automated
Reasoning, 40(4):327–356, 2008.

[109] C. Urban and S. Berghofer. A recursion combinator for nominal datatypes
implemented in Isabelle/HOL. In Furbach and Shankar [39], pages 498–
512.

[110] P. Wadler. Efficient compilation of pattern-matching. In S. L. Peyton
Jones, editor, The Implementation of Functional Programming Languages,
chapter 5. Prentice-Hall International, 1987.

[111] C. Walther. On proving the termination of algorithms by machine. J.
Artificial Intelligence, 71(1):101–157, 1994.

[112] T. Weber. SAT-based Finite Model Generation for Higher-Order Logic.
PhD thesis, Institut für Informatik, Technische Universität München, Ger-
many, 2008.

[113] M. Wenzel. Type classes and overloading in higher-order logic. In E. L.
Gunter and A. P. Felty, editors, Theorem Proving in Higher Order Logics
(TPHOLs ’97), volume 1275 of Lecture Notes in Computer Science, pages
307–322. Springer Verlag, 1997.

[114] M. Wenzel. Isabelle/Isar — a versatile environment for human-readable
formal proof documents. PhD thesis, Institut für Informatik, Technische
Universität München, Germany, 2002.

http://termination-portal.org/wiki/Termination_Competition

Bibliography 127

[115] M. Wenzel, L. C. Paulson, and T. Nipkow. The Isabelle framework. In
Ait Mohamed et al. [3], pages 33–38.

[116] L. While and T. Field. Optimising parallel pattern-matching by source-
level program transformation. In V. Estivill-Castro, editor, ACSC, vol-
ume 38 of CRPIT, pages 239–248. Australian Computer Society, 2005.

	Introduction
	Contributions
	Interactive Theorem Proving
	Isabelle/HOL
	Functional Programming in HOL
	Structure of this thesis

	Function definitions
	Introduction
	Motivation
	An overview of the approach

	The Process of Definition
	Recursive calls in a higher-order setting
	Defining the graph, the function, and the domain
	The relation is a function
	Deriving simplification and induction rules
	Simple Examples

	Termination Proofs
	Elementary proofs, using the definition of the domain
	Termination proofs using relations
	Simplification and induction rules revisited
	Integration of automated tools

	Nested Recursion
	A termination rule for nested recursion
	Proving the nested termination rule

	Extraction of Recursive Calls and Congruence Rules
	Congruence rules
	Extracting calls
	Congruence rules and evaluation order

	Extensions
	Default values
	Tail recursion
	Pattern matching
	Mutual recursion and currying

	Further Examples
	Nested list reversal
	McCarthy's 91 function
	First order unification
	Depth-first search
	Pseudo-division for multivariate polynomials

	Limitations
	Higher-order nesting
	Undefinedness does not propagate
	Other forms of recursion

	Related Work

	Termination Proofs
	Introduction
	Termination goals
	Overview

	Related Work
	Termination of term rewrite systems
	Size-Change Termination
	Termination proofs in interactive theorem provers

	Measure Functions
	Collecting Measure Functions
	Size functions for inductive datatypes

	Proving Local Descent
	Simple Termination Proofs and Lexicographic Descent
	Control Flow: Dependency Graph Analysis
	Building the Dependency Graph
	Decomposition
	Trivial calls

	Mutual Recursion
	Avoidable exponential blowup
	Unavoidable exponential blowup

	Data Flow: Size-Change Termination with Certificates
	Certificates for size-change termination?
	SCNP = SCT in NP
	SAT encoding
	Proof reconstruction

	Implementation and Practical Considerations
	Strategies
	Examples
	Evaluation
	Feedback from failure

	Full Size-Change Termination
	Formalization
	Reflecting size-change problems
	Implementation prototype
	The complete procedure

	Pattern Matching
	Introduction
	General Pattern Matching
	Compatibility and Completeness
	Implementation using a matching combinator

	Pattern Disambiguation and Minimization
	Notation and Problem definition
	Complexity Results
	A Minimization Algorithm
	Implementation and Experiments
	Discussion

	Related Work

	Induction Schemes
	User-Specified Induction Rules
	The General Format
	Proof obligations

	Internal Derivation
	Example Applications
	Huffman's algorithm: Consistent trees
	Depth-first search
	Strong nominal induction

	Multiple Induction Predicates

	Conclusion
	New Toys
	Future Work

