Finding Lexicographic Orders for Termination
Proofs in Isabelle/HOL

Lukas Bulwahn, Alexander Krauss, and Tobias Nipkow

Technische Universitdt Miinchen, Institut fiir Informatik
http://www.in.tum.de/~{bulwahn,krauss,nipkow}

Abstract. We present a simple method to formally prove termination
of recursive functions by searching for lexicographic combinations of size
measures. Despite its simplicity, the method turns out to be powerful
enough to solve a large majority of termination problems encountered in
daily theorem proving practice.

1 Introduction

To justify recursive function definitions in a logic of total functions, a termina-
tion proof is usually required. Termination proofs are mainly a technical necessity
imposed by the system, rather than in the primary interest of the user. It is there-
fore much desirable to automate them wherever possible, so that they “get in
the way” less frequently. Such automation increases the overall user-friendliness
of the system, especially for novice users.

Despite the general hardness of the termination problem, a large class of
recursive functions occurring in practice can already be proved terminating using
a lexicographic combination of size measures. One can see this class of functions
as a generalization of the primitive recursive functions.

In this paper, we describe a simple method to generate termination orderings
for this class of functions and construct a termination proof from these orderings.
Unlike the naive enumeration of all possible lexicographic combinations, which
is currently implemented in some systems, we use an algorithm by Abel and
Altenkirch [3] to find the right order in polynomial time.

We subsequently show how, by a simple extension, our analysis can deal
with mutual recursion, including cases where a descent is not present in every
step. When analyzing the complexity of the underlying problem, it turns out
that while there is a polynomial algorithm for the case of single functions, the
presence of mutual recursion makes the problem NP-complete.

We implemented our analysis is Isabelle/HOL, where it can prove termination
of 87% of the function definitions present in the Isabelle Distribution and the
Archive of Formal Proofs [1].

1.1 Overview of the analysis

The analysis consists of four basic steps:

1. Assemble a set of size measures to be used for the analysis, based on the
type of the function argument.

2. For each recursive call and for each measure, try to prove local descent,
i.e. that the measure gets smaller at the call. Collect the results of the proof
attempts in a matrix.

3. Operating only on the matrix from step 2, search for a combination of mea-
sures, which form a global termination ordering. This combination, if it ex-
ists, can be found in polynomial time.

4. Construct the global termination ordering and, using the proofs of local
descent, show that all recursive calls decrease wrt. the global ordering.

1.2 Related Work

The field of automated termination analysis is vast, and continuously attracts
researchers. Many analyses (e.g. [4, 13, 22]) have been proposed in the literature,
and some of them are very powerful. However, these methods are often hard to
integrate, as they apply to different formal frameworks (such as term rewriting),
and their proofs cannot be easily checked independently.

Consequently, the state of the art in the implementations of interactive the-
orem provers is much less developed:

In PVS [16] and Isabelle [15], and Coq [5], no automation exists, and users
must supply termination orderings manually.

HOL4 [7]' and HOL Light [8] provide some automation by enumerating all
possible lexicographic orderings. For functions with more than five or six argu-
ments, this quickly becomes infeasible.

ACL2 [10] uses heuristics to pick a size measure of a single parameter. Lexi-
cographic combinations must be given manually, and are expressed in terms of
ordinal arithmetic.

Recently, a more powerful termination criterion has been proposed for ACL2
[14], based on a combination of the size-change principle [13] and other analyses.
However, the analysis is nontrivial and only available as an axiomatic extension
that must be trusted, as its soundness cannot be justified within ACL2’s first-
order logic.

Inspired by this approach, the second author of the present paper devel-
oped a formalization of the size-change principle in Isabelle [12], which can be
used to show termination for a larger class of functions. While that approach
is more powerful than the one presented here, it is also more complicated and
computationally expensive.

Only HOL4 tries to guess termination orderings for mutually recursive defi-
nitions. But the algorithm is a little ad-hoc and fails on many simple examples.

The algorithm we use in §3.3 to synthesize lexicographic orderings has been
discovered independently but earlier by Abel and Altenkirch [2,3]. Compared to
their work, we do not just check termination but construct object-level proofs
in a formal framework.

! The guessing of termination orderings in HOL4 is unpublished work by Slind, ex-
tending his work on function definitions [20, 21].

2 Preliminaries

We work in the framework of classical higher-order logic (HOL). Many examples
are expressed in the Isabelle’s meta-logic, with universal quantification (/) and
implication (=>). However, the method is not specific to HOL and could easily
be adapted to other frameworks, such as type theory.

2.1 Termination Proof Obligations

General recursion is provided by a function definition package [11], which trans-
forms a definition into a non-recursive form definable by other means. Then
the original recursive specification is derived from the primitive definition in an
automated process.

A termination proof is needed in order to derive the unconstrained recur-
sive equations and an induction rule. Proving termination essentially requires
to show that the call relation (constructed automatically from the definition) is
wellfounded. A common way of doing this is to embed the call relation in another
relation already known to be wellfounded.

As an example, consider the following function implementing the merge op-
eration in mergesort:

merge s || = 15
merge [| ys = ys
merge (z-xs) (y-ys) = ifz <y then z-merge xs (y-ys) else y-merge (z-xs) ys

Here - denotes the Cons constructor for lists and [] is the empty list. In order to
show termination of merge, we must prove the following subgoals:

1. wf R
2. Nz xsyys. ¢ <y = ((zs, yys), (z-zs, y-ys)) € ?R
3. Nzzsyys. ~z <y= ((zas, ys), (z-zs, y-ys)) € ?R

Here, ?R is a schematic variable which may be instantiated during the proof.
Hence, we must come up with a wellfounded relation, for which the remaining
subgoals can be proved. The two curried arguments of merge have been combined
to a pair, hence we can assume that there is only one argument.

In general, if the function has n recursive calls, we get the subgoals

0. wf ?R
1. /\vl...vml. I = (7“1, lhsl) € ?R
n. Nvi...vom,,. I'n = (rn, lhs,) € ?R

Here, r; is the argument of the call, [hs; is the argument on the left hand side of
the equation, and I'; is the condition under which the call occurs. These terms
contain the pattern variables v;...vy,;, which are bound in the goal.

In practice, proving the termination conditions is often straightforward, once
the right relation has been found. Our approach focuses on relations of a certain
form, suitable for a large class of function definitions.

2.2 A Combinator for Building Relations

Isabelle already contains various combinators for building wellfounded relations.
We are going to add one more to this, which particularly suits our needs.

The measures combinator constructs a wellfounded relation from a list of
measure functions, which map function arguments into the natural numbers.
This is a straightforward generalization of the well-known measure combinator
which takes only a single function:

measures :: (a = nat) list = (o X «a) set
measures fs = inv-image (lex less-than) (Aa. map (Af. f a) fs)

While the definition with predefined combinators is a little cryptic, measures
can be characterized by the following rules:

fz<fy

(z, y) € measures (f-fs)

(MEASURES_LESS)

fz<fy (z, y) € measures fs

MEASURES_LE
(z, y) € measures (f-fs) (Q)

And, by construction, the resulting relation is always wellfounded:
wf (measures fs) (MEASURES_WF)

Our analysis will produce relations of the form measures fs for a suitable function
list fs.

3 Finding Lexicographic Orderings

The overall algorithm consists of the four steps mentioned before, addressing
largely orthogonal issues: Generating measure functions (by a heuristic) , proving
local descents (by theorem proving), finding a lexicographic combination (by
combinatorics), and reconstructing the global proof (by engineering).

We will use the previously defined merge function as a running example.

3.1 Step 1: Generating Measure Functions

From the type 7 of the function argument, we generate a set M(7) of measure
functions by a simple scheme:

M(T) = {\x. |z|r} if T is an inductive data type
M(m x 1) ={mofst| me M(r)}U{mosnd| me M(m)}
M(T) ={} if 7 is a type variable or a function type.

For inductive data types, we return the size function |. |7 associated to that
type. Size functions are provided automatically by the definition package for
inductive data types [6]. Product types are special and treated differently, as we
are mainly interested in the measures of the different components. For products,
the measures for the component types are computed recursively and composed
with the corresponding projections.

This scheme basically decomposes (possibly nested) tuples and creates pro-
jection functions measuring the sizes of the components. Components with a
polymorphic or a function type are ignored.

For merge, which operates on a pair of lists, we get the two measure functions:

m1 = (A\z. |fst z|) me = (Az. |snd z|)

In order to handle types which are not inductive data types, the system can
be extended by manually configuring one or more measure functions for them.
For example, a useful measure for the integers is the function returning the
absolute value.

The emphasis on size measures in this step is mainly motivated by the em-
pirical observation that they tend to be very useful for termination proofs. In
fact, the other steps do not depend on the exact nature of the measures and
would work for other measures just as well.

3.2 Step 2: Proving local descents

A local descent is given if a given measure provably decreases at a given recursive
call. For the i-th call and measure m;, this corresponds to the following property:

/\vl...vm. ' — mj; i < mj lhs;

For each call and each measure, we try to prove this conjecture by a suitable
automated method. If this fails, we try to prove the non-strict version instead:

/\Ul...’l)m. ' — m; T < m; lhs;

For the proof attempts, we use Isabelle’s auto method, which combines
rewriting with classical reasoning and some arithmetic. We collect the results
of the proof attempts in a matrix M with M;; € {<,<,?}, where < and <
stand for a successful proof of strict or non-strict descent, and ? denotes a fail-
ure of both proofs. The theorems resulting from successful proofs are stored for
later use.

For the merge example, the resulting matrix is

<<
Mmerge: <<<) .

Using the auto method to solve these goals is a somewhat arbitrary decision,
but it turned out that our proof obligations are routinely solved by this method,
usually by unfolding the size function on constructors and using arithmetic.

Again, it does not matter for the rest of the development, how these goals are
proved, and other methods could be plugged in here, if needed.

If the recursive arguments contain calls to “destructor functions” (like tail or
delete), lemmas about these functions are usually needed in order to prove local
descent. Our method makes use of such lemmas when they are available in the
theory, but discovering and proving them automatically is an orthogonal issue
which we do not address. A method to do this is described by Walther [22].

3.3 Step 3: Finding lexicographic combinations

Recall that the rows in the matrix represent the different recursive calls and the
columns represent the measures. Our problem of finding a suitable lexicographic
order can now be rephrased as follows:

Reorder the columns in the matrix in such a way that each row starts
with a (possibly empty) sequence of <-entries, followed by a <-entry.

Such a permutation of the columns, denoted by a list of column indices, is called
a solution. Usually only a prefix of this list is relevant. Formally, a solution for
a matrix M is a list of indices [c1, ..., ¢n], where for all row indices i, there is
a k, such that M;., = < and for all j <k, M;., = <.

The following algorithm can be used to find solutions:

1. Find a column with at least one < entry and no ? entry and select it as the
new front column. The search fails if no such column exists.

2. Remove all rows where the selected column contains a <-entry, as they can
be considered “solved”. Then also remove the column itself and continue the
search on the resulting matrix.

3. The search is successful when the matrix is empty.

Lemma 1. If the algorithm succeeds, the selected columns are a solution for M.
Proof. By straightforward induction

Note that the algorithm has a choice if more than one column could be
selected in step 1. However, this does not influence the overall success, since a
“wrong” choice cannot lead to a dead-end. This confluence property is illustrated
by the following lemma, whose proof is obvious:

Lemma 2. Let 0 = [c1,...,¢m] be a solution, and ¢ a column which could also
be chosen in step i of the algorithm. Then o’ =[c1,...,Ci—1,C,Ciy. .., Cm] 1S also
a solution.

This confluence property eliminates the need for backtracking on failure,
which is the key to making the algorithm polynomial:

Lemma 3. For an nxm-Matriz, the algorithm uses O(n?*m) comparisons.

Although choosing an arbitrary column never makes the algorithm go wrong,
it may lead to suboptimal solutions. Consider the following 10 x 5-matrix, where
the <-entries were left out for readability:

< ?
< <
< <
< <
M= < <
< <
< <
< <
<<
<<

Naively proceeding from left to right will produce the solution [1,2,3,4],
although the shorter solution [3,4] exists. In systems where proof objects are
stored explicitly, their size can influence efficiency, and it might be worthwhile
to invest some effort here, to keep proofs small.

As a heuristic, it might seem advantageous to always choose the column with
the most <-entries, since this would eliminate the corresponding rows once and
for all. But this greedy strategy would produce the solution [2,1,5,3,4] on the
above matrix, which is even bigger than with the naive strategy.

In fact, finding the shortest solution is much harder than finding just one
solution:

Lemma 4. Given a Matriz M, the optimization problem of finding a minimal
solution for M is NP-hard.

Proof. The optimization version of the NP-hard SET COVER problem [18] can
easily be expressed in a matrix: For a universe U = {x1,...,2,} and a collection
S1,...,5m of subsets of U, construct the n x m-matrix M with M;; = < if
z; € S; and < otherwise. Obviously, every solution for M solves the SET COVER
problem and vice-versa.

Since searching for the smallest solution can be hard, we are happy with
choosing just the first suitable column in our implementation.
For our example Mp,erge, both [1,2] and [2,1] are solutions.

3.4 Step 4: Proof reconstruction

It remains to assemble the pieces and construct a global relation and a global
proof from the solution of the previous step.
From a solution o = [cy,. .., ¢,] we construct the relation

R = measures [me,,...,Me,] -

It is now straightforward to prove the termination goals with the help of the
matrix M and the solution o:

1. Instantiate the schematic variable R by the relation R.

2. Wellfoundedness is trivial by the rule MEASURES_WF.

3. For each call, inspect the matrix in M;., for increasing j. If M;.,, = <,
apply rule MEASURES_LEQ and use the stored theorem from §3.2 to solve its
first premise. When M;., = <, apply rule MEAsures_LEss, and the stored
theorem, which solves the goal.

By construction, the theorems resulting from the proofs in §3.2 exactly match
the premises of MEASURES_LEQ and MEASURES_LESS, respectively.
As an example, consider the merge function again. We get the relation

R = measures [Az. |fst x|, Az. |snd z|]

After instantiating the schematic variable and solving the wellfoundedness,
two subgoals remain:

1. Nz zs y ys.
z <y = ((zs, y-ys), (z-xs, y-ys)) € measures [Az. |fst z|, Ax. |snd z|]

2. Nz xs y ys.
2z <y = ((z-zs, ys), (z-zs, y-ys)) € measures [Az. |fst z|, Az. |snd z|]

Since M71; = <, we can directly apply MEASURES_LESs to the first subgoal:

1. Nz zsyys. ¢ <y=|fst (zs, y-ys)| < |fst (z-zs, y-ys)|
2. Nz xs y ys.
2z <y = ((z-us, ys), (z-zs, y-ys)) € measures [Az. |fst z|, Az. |snd z|]

Now the first subgoal is exactly what we have proved in §3.2, so we can solve it
using the stored theorem.

For the remaining subgoal, we must first apply MEASURES_LEQ, since My, =
<:

L Nwasyys. -0 <y = |fst (zas, ys)| < st (05, ys)]
2. Nzzsyys. ~z < y= ((zzs, ys), (x-xs, y-ys)) € measures [Az. |snd z|]

Again, we solve the first subgoal using the pre-proved theorem. In one additional
step, we can solve the remaining goal using MEASURES_LESs, which finishes the
termination proof.

4 Mutual Recursion

For mutually recursive functions, termination generally has to be proved simul-
taneously. To allow for a uniform treatment, Isabelle internally converts such

definitions into a definition of a single function operating on the sum type, which
is a standard transformation technique (see e.g. [21]).
Consider the functions even and odd, defined by mutual recursion:

even 0 = True
even (Sucn) = oddn
odd 0 = Fulse
odd (Sucn) = evenn

For the termination proof, the function is seen as a single function over the
sum type nat + nat. This leads to to the following proof obligations?:

1. wf R
2. An. (Inr n, Inl (Suc n)) € ?R
3. An. (Inl n, Inr (Suc n)) € ?R

It is not hard to generalize our approach to prove termination for mutual re-
cursions. Unfortunately, we will see that this necessarily destroys the polynomial
time complexity.

4.1 Measures for sum types

In order to use our analysis on these problems, we must be able to generate
measure functions on sum types. Thus we extend the measure generation step
(§3.1) as follows:

M(11 + 12) = {case; my ma | my € M(71), ma € M(72)}

This means that sum measures are built by taking all combinations of the
measures for the component types and combining them with the case combinator
for sum types:

case;r = (a=79) = B=>7 = (a+8=7)

Intuitively, each of the mutually recursive functions gets its own measure,
which is applied to its arguments.

Since even and odd both get only one measure function, casey (Az. |z]) (Az.
|z|) is the only combination, and with this measure the proof is indeed successful.
The other parts of the analysis require no change.

4.2 Ordering the functions

With the measures on sum types, many mutually recursive definitions can be
handled without problems. But the approach fails for definition like the following;:

2 We denote the injection functions for sum types with Inl and Inr. If more than two
functions are defined simultaneously, nested sums will occur.

70 -0
f (Sucn) = gn
gn = Suc (fn)

In the call from ¢ to f, there is no descent, since the only argument is just
passed along. The reason why this definition terminates is not that the argument
decreases, but that in this call, the function decreases, with respect to a suitable
ordering of the functions (here: f < g).

With our sum encoding, it is simple to capture this argument by suitable
measure functions: It suffices to add measure functions which distinguish between
the functions, but are otherwise constant. For f and g, we add the measure case
(Az. 0) (Az. 1). This results in the matrix

u=(2)

In general, it is sufficient to add measures which evaluate to 1 for one of
the functions and to 0 for all others. Mg, (7) describes these measures formally,
again depending only on the argument type 7:

M (11 + 12) = {casey my (Az.0) | my € Mg (1)} U
{caser (Ax.0) ma | ma € Mg (72)}
M (T) = {(Az.1)} if 7 is not a sum type

It is easy to see that with these additional measures (and their lexicographic
combinations, which are formed by the subsequent steps), any partial ordering
between the functions can be captured.

4.3 Complexity of mutual recursion

Taking all combinations of measures for sum types as in §4.1 is a brute-force
strategy and it destroys the polynomial runtime behaviour of the algorithm, since
the number of sum measures is obviously exponential in the number of functions
involved. The question arises, whether we can be a little more intelligent here.

Note in particular that we have introduced some redundancy in the proofs
that are performed in step 2: In a call from f to g, it is completely irrelevant
what measure we assign to h, and sum measures differing only in the components
for functions other than f and g will lead to identical proofs.

It is a better strategy to look at the different calls separately: Consider a call
¢ from f to g (written ¢ : f — g), which corresponds to a goal of the form

Avi...vm. I's = (Ing 4, Ing lhs;) € 2R

Here we write Iny and Ing to abbreviate the compositions of injections cor-
responding to the functions f and g, respectively.

We can now generate separate sets My and M, of measure functions for
f and g separately and try for which choice of my € My and m,; € M, the
following becomes provable:

10

Nvi...vm. I's = mg ri < my lhs;

As before, we try the < version if the proof fails and collect the results in a
matrix. This time we get one matrix M€ for each recursive call ¢, and the rows
and columns of the matrix stand for the Elements of M; and M,. Note that
this information is still polynomial in size.

We must now construct measures on the sum type which are useful to prove
termination. At least one of these sum measures must be such that it increases
in none of the calls. Such a measure would be used first in the construction of
the lexicographic combination.

Abstracting from functions and measures and the like, we have the following
problem, which we call the COMBINATION problem:

Let A and B be finite sets and M C A x A x B x B. Find a mapping
f: A — B such that Va,2’ € A. (z, 2/, f(x), f(z)) ¢ M.

The abstraction is as follows: A is the set of functions, and B is the set of
basic measures, where we assume without loss of generality that the number of
basic measures is the same for all functions (take the maximum!). The set M
encodes the result of the proofs: (f,g,4,7) € M iff for some call ¢ : f — g,
M =7.

Is is a simple exercise to construct a set of functions from an arbitrary CoMm-
BINATION instance to see that finding sum measures is indeed required to solve
this problem.

Lemma 5. The COMBINATION problem is NP-complete.

Proof. We reduce the 3-COLORING problem for graphs (see e.g. [18]) to COMBI-
NATION. For a graph G = (V| E) to be coloured, we define the problem instance

A=V B={Red,Green,Blue} M ={(v,v,¢,c)| (v,v') € E, c € B}.

Now every solution f for COMBINATION is a valid colouring: if (v,v') € E and
f(v) = ¢ we have (v,v,¢,¢) € M and thus f(v') # c. Conversely, every colour-
ing is clearly a valid COMBINATION. Since 3-COLORING is NP-hard, so is our
problem, and since checking a given solution is trivial, it is also NP-complete.

What conclusions can be drawn from this result? First, it shows that the
introduction of mutual recursion really complicates matters, leading to a search
space exponential in the number of functions involved. Second, this complexity
only concerns the search for suitable measures. The number of proof attempts to
be performed by the theorem prover is still polynomial.

While this is interesting from a theoretic view, in practice the number of
functions in a single mutually recursive definition is often quite small, which
makes this approach feasible.

11

5 Examples

5.1 Ackermann Function

The ackermann function, defined by

ack 0 m = Sucm
ack (Suc n) 0 = ackn 1
ack (Suc n) (Suc m) = ackn (ack (Suc n) m)

is easily proved total by our tool. The generated relation is measures [Az. |fst
x|, Az. |snd z|].

5.2 Many parameters

If the function has many parameters, enumerating lexicographic orders becomes
infeasible, as the following example demonstrates. Both HOL4 and HOL Light
fail to prove termination of the following function in reasonable time, while our
method succeeds within a second.

blowup 0 00000000 =
blowup 00000000 (Suci) =
blowup 0 0 00000 (Such)i =
blowup 0 0 0 00 0 (Suc g) hi
blowup 0 0 000 (Suc f) ghi =
blowup 0 0 00 (Suce) fghi
blowup 0 00 (Sucd) efghi =
blowup 0 0 (Succ) defghi
blowup 0 (Sucb) cdefghi
blowup (Suc a) bedefghi

ue (blowup i 4414417 11)
uc (blowup h h h h h h h h 7)

uc (blowup g g gg999ghi)

(
E
uc (blowup ffffffghi)
ucgblowupeeeeefghi)
(
(
(

I
NN UL nn

uc (blowup ddddefghi)
uc (blowup c ccdefghi)
uc (blowup bbcdefghi)
uc (blowup abcdefghi)

5.3 Multiplication by shifting and addition

Pandya and Joseph [17] introduced a new proof rule for total correctness of
mutually recursive procedures. The contribution of this proof rule is a refined
method for proving termination by analysing the procedure call graph. They
motivate their approach with an imperative version of the following example:

prod xy z = ifymod 2 = 0 then eprod x y z else oprod x y z
oprod zyz = eprodz (y — 1) (z + z)
eprod xy z = ify = 0then z else prod (2 x x) (y div 2) z

In the calls from oprod and eprod the second argument decreases but in the calls
from prod all arguments are unchanged. Termination is proved automatically
because one can order the functions such that oprod and eprod are less than
prod.

12

5.4 Pedal and Coast

Homeier and Martin [9] describe an intricate call graph analysis for which Ho-
meier holds a US patent. Their one example is an imperative version of what
they call the bicycling program:

pedal . nat = nat = nat = nat
coast i nat = nat = nat = nat
pedal 0 m ¢ = ¢

pedal n 0 ¢ = c

pedal (Suc n) (Sucm) ¢ = ifn<m

then coast n m (¢ + Suc m)

else pedal n (Suc m) (¢ + Suc m)
coast nm c = ifn<m

then coast n (m — 1) (¢ + n)

else pedal n m (¢ + n)

They claim that termination would be difficult to prove using the rule by Pandya
and Joseph. With our algorithm the proof is automatic: In the call from coast
to pedal, no argument decreases. But by ordering the functions such that pedal
< coast, the proof succeeds. In both examples, ordering the functions (see 4.2)
is essential. A precise analysis of the relationship between all three termination
proof methods is beyond the scope of this paper.

By the way: prod t y 2 = = « y + z and pedal n m ¢ = n * m + ¢ can
be proved (the latter automatically) via the customized induction principles
generated from the function definitions [11].

6 Practical Considerations and Possible Extensions

6.1 Empirical Evaluation

From the existing non-primitive recursive function definitions in the Isabelle
Distribution and the Archive of Formal Proofs [1], our method can find suitable
orderings for 87% of them, usually in less than a second.

The examples where it fails mainly fall in one of the following categories:

1. Definitions which use a customized size function, where some constructors
are weighted more than others. This method is essentially polynomial inter-
pretation, done manually.

2. Functions over naturals or integers, where the argument is increasing but
bounded from above.

3. Examples for “difficult” functions from the documentation, where a domain
specific semantic argument is used for termination.

4. Functions over more powerful set theoretic constructions like ordinals.

5. Functions that aren’t total and thus require special treatment anyway.

13

6.2 Feedback from Failure

If our analysis fails to find a termination proof, this can have several reasons:

1. The function is indeed non-terminating.

2. The function is terminating, but the termination argument is more compli-
cated than just lexicographic combinations of size measures.

3. Lexicographic orders are sufficient, but the automation employed to prove
local descents is not sufficient to derive the required facts, although they are
true.

Of course it is impossible for the system to distinguish between these three
classes of errors. However, instead of just failing, we provide valuable information
to the user by showing the matrix with the proof results. For example, the

<
matrix (j 2) will tell us that there must be something wrong with the second

recursive call. This can be a useful debugging aid, at least if the user has a basic
understanding of how the method works.
A few other enhancements help to improve feedback given to the user:

— When proving local descent, many unprovable goals get simplified to False.
For these cases, giving the matrix the entry F instead of 7 makes it clear
that the <-inequality is clearly false. Apart from output, F and ? are not
treated differently.

— For unsuccessful proof attempts, printing the unfinished proof states can
give the user feedback on lemmas that might be necessary in order for the
proof to work.

— If a row in the matrix does not have a strict descent (<) at all, one could
highlight the corresponding recursive call because it (or its proof) needs
special user attention.

6.3 Using other measure functions

Our measure generation has an emphasis on size measures of data types, When
working on different data, other size functions will be appropriate. We already
mentioned the absolute value of an integer. User-defined types will have their
own notions of structure and size, and our analysis is able to accommodate this,
if users can declare their own measure functions.

Moreover, while the type based choice of measures is simple, this is not the
only possible solution.

In the realm of linear arithmetic, Podelski and Rybalchenko [19] describe
how to synthesize measures (which they call ranking functions) for simple non-
nested while loops. It would be interesting to try to use such a method to generate
measures for our approach, which can then be combined with others (say, from
data types) to more complex termination proofs.

14

6.4 Incremental operation

At the moment, the four steps of our algorithm are executed strictly sequentially.
In particular, all proof attempts have to be finished and the matrix has to be
complete, before the search for the lexicographic combination begins. This sepa-
ration simplifies presentation and implementation, but is otherwise unnecessary.

The structure of the system could be modified in a way that the columns
of the matrix are produced incrementally. Once a column “arrives”, the search
algorithm checks immediately, whether it can be used to solve some of the calls.
Otherwise it must be stored because it could be useful in a later step.

Such an architecture allows for several immediate optimizations:

— Once an ordering is found, no more proofs about other measures have to be
tried.

— If certain rows (=calls) have already been solved by previous measures, they
can be ignored in subsequent proof attempts. Instead, the corresponding
entries can be set immediately to 7, since they will not be used anyway.

These changes do not increase the power of the analysis, but only its effi-
ciency. However, such a lazy strategy would allow us to increase the number
of measure functions to try, without compromising the efficiency of the whole
system for examples where they are not needed.

7 Conclusion

We showed how to automate termination proofs for a large class of practically
relevant function definitions. Our implementation, which is already part of the
Isabelle developer version, is invoked by default for all new function definitions.
This makes the termination proof invisible in many cases, which helps users
concentrate on their actual theorem proving tasks.

References

1. Archive of Formal Proofs. http://afp.sourceforge.net/.

2. A. Abel. foetus — termination checker for simple functional programs. Program-
ming Lab Report, 1998.

3. A. Abel and T. Altenkirch. A predicative analysis of structural recursion. J.
Functional Programming, 12(1):1-41, 2002.

4. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theor.
Comput. Sci., 236(1-2):133-178, 2000.

5. G. Barthe, J. Forest, D. Pichardie, and V. Rusu. Defining and reasoning about
recursive functions: a practical tool for the Coq proof assistant. In Functional and
Logic Programming (FLOPS’06), LNCS 3945. Springer, 2006. To Appear.

6. S. Berghofer and M. Wenzel. Inductive datatypes in HOL - lessons learned in
formal-logic engineering. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and
L. Théry, editors, Theorem Proving in Higher Order Logics, TPHOLs ‘99, LNCS
1690, pages 19-36. Springer, 1999.

15

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

M. Gordon and T. Melham, editors. Introduction to HOL: A theorem proving
environment for higher order logic. Cambridge University Press, 1993.

J. Harrison. The HOL Light theorem prover. http://www.cl.cam.ac.uk/users/
jrh/hol-light.

P. V. Homeier and D. F. Martin. Mechanical verification of total correctness
through diversion verification conditions. In J. Grundy and M. C. Newey, edi-
tors, TPHOLs, volume 1479 of Lecture Notes in Computer Science, pages 189-206.
Springer, 1998.

M. Kaufmann, P. Manolios, and J. S. Moore. Computer-Aided Reasoning: An
Approach. Kluwer Academic Publishers, June 2000.

A. Krauss. Partial recursive functions in higher-order logic. In U. Furbach and
N. Shankar, editors, Automated Reasoning, Third International Joint Conference,
LNATIT 4130, pages 589-603. Springer, 2006.

A. Krauss. Certified size-change termination. In F. Pfenning, editor, CADE-21,
LNCS 4603, pages 460—-476. Springer, 2007. To appear.

C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for
program termination. In ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 81-92, 2001.

P. Manolios and D. Vroon. Termination analysis with calling context graphs. In
T. Ball and R. B. Jones, editors, CAV, volume 4144 of Lecture Notes in Computer
Science, pages 401-414. Springer, 2006.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. LNCS 2283. Springer, 2002.

S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In
D. Kapur, editor, CADE, Springer LNCS 607, pages 748-752, 1992.

P. Pandya and M. Joseph. A Structure-directed Total Correctness Proof Rule for
Recursive Procedure Calls. The Computer Journal, 29(6):531-537, 1986.

C. H. Papadimitriou. Computational Complezxity. Addison-Wesley, New York,
1994.

A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear
ranking functions. In B. Steffen and G. Levi, editors, VMCAI, volume 2937 of
Lecture Notes in Computer Science, pages 239-251. Springer, 2004.

K. Slind. Function definition in Higher-Order Logic. In J. von Wright, J. Grundy,
and J. Harrison, editors, Theorem Proving in Higher Order Logics, TPHOLs 96,
LNCS 1125, pages 381-397. Springer, 1996.

K. Slind. Reasoning About Terminating Functional Programs. PhD thesis, Institut
fiir Informatik, TU Miinchen, 1999.

C. Walther. On proving the termination of algorithms by machine. Artif. Intell.,
71(1):101-157, 1994.

16

