
Pattern Minimization Problems over Recursive Data Types

Alexander Krauss
Technische Universität München, Institut für Informatik

Boltzmannstr. 3, 85748 Garching, Germany
http://www.in.tum.de/˜krauss

Abstract
In the context of program verification in an interactive theorem
prover, we study the problem of transforming function definitions
with ML-style (possibly overlapping) pattern matching into mini-
mal sets of independent equations. Since independent equations are
valid unconditionally, they are better suited for the equational proof
style using induction and rewriting, which is often found in proofs
in theorem provers or on paper.

We relate the problem to the well-known minimization problem
for propositional DNF formulas and show that it is ΣP

2 -complete.
We then develop a concrete algorithm to compute minimal patterns,
which naturally generalizes the standard Quine-McCluskey proce-
dure to the domain of term patterns.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]

General Terms Theory, Verification

Keywords Complexity, Pattern Matching, Theorem Proving

1. Introduction
Pattern matching plays an important role in functional languages,
where it is used as a structured and concise way of expressing
complex branching behaviour. Its power is best demonstrated by
the Haskell fragment given in Fig. 1 (due to Okasaki (1999)), which
implements the rebalancing operation for red-black trees.

Here, a complex series of primitive tests is expressed in just
four seemingly symmetric equations, plus a default case. A large

This is the author’s version of the work. It is posted here by permission of ACM
for your personal use. Not for redistribution. The definitive version appears in the
proceedings of ICFP’08.
ICFP’08, September 22–24, 2008, Victoria, BC, Canada.
Copyright c© 2008 ACM 978-1-59593-919-7/08/09. . . $5.00

data Color = R | B
data Tree a = E | T Color (Tree a) a (Tree a)

balance :: Tree a → Tree a

balance (T B (T R (T R a x b) y c) z d) = (T R (T B a x b) y (T B c z d))
balance (T B (T R a x (T R b y c)) z d) = (T R (T B a x b) y (T B c z d))
balance (T B a x (T R (T R b y c) z d)) = (T R (T B a x b) y (T B c z d))
balance (T B a x (T R b y (T R c z d))) = (T R (T B a x b) y (T B c z d))
balance t = t

Figure 1. Pattern matching in the balance function

part of the elegance attributed to functional programming is due to
this powerful construct.

However, when looking closely, the elegance is misleading:
Since patterns have a top-to-bottom semantics and the above pat-
terns overlap, the four cases in the definition are not at all symmet-
ric: If we reorder the first four equations, we get a different func-
tion. Moreover, nontrivial computation is necessary to determine
the set of inputs which will be handled by the default case.

This is all fine if we just want to run the program, since all
the technical details are handeled by the compiler. However, when
reasoning statically about the code (e.g. to verify its correctness
in a theorem prover like Isabelle/HOL (Nipkow et al. 2002)), the
complexity is back: the equations as written above are unsuitable
for equational reasoning, since they are not valid independently:
obviously, balance t = t is not universally true.

To reason equationally, we must first disambiguate the speci-
fication by removing overlap between the different clauses, thus
recovering the set of equations that was actually “meant”. Figure
2 demonstrates this step on a small example function. The equa-
tion sep a xs = xs in Fig. 2(a) is not a theorem (otherwise sep
would be just a projection), and needs to be instantiated to the cases
that do not overlap with the first equation. The resulting equations,
given in Fig. 2(b) can then be used independently as rewrite rules.

In other words, we are considering the transformation of a
functional program with overlapping patterns into a term rewrite
system, where rules can be applied in any order.

This disambiguation step reveals the real complexity of the
balance operation. If we split up naively, we end up with a total
of 91 (!) equations. Although most of the patterns that arise are not
actually red-black trees, since the usual invariant does not hold,
they must be generated at that point, since they belong to the
specification of the balance function, which is defined on the free
datatype Tree in general. In general, this disambiguation can lead
to an exponential blowup.

In this paper, we study how to do this transformation in a way
that the number of resulting equations is minimal. This is particu-
larly important, as the size of the specification criticallye influences
the size and complexity of subsequent proofs: e.g. induction proofs

sep a (x : y : ys) = x : a : sep a (y : ys)
sep a xs = xs

(a) Original equations

sep a (x : y : ys) = x : a : sep a (y : ys)
sep a [] = []
sep a [x] = [x]

(b) Modified equations

Figure 2. Disambiguation of a function

about a recursive function usually split up into as many cases as
there are defining equations.

After pinpointing the underlying problem, we exhibit a nice
correspondence to the well-known problem of minimizing boolean
formulas. This link allows us to prove that we are indeed dealing
with a hard optimization problem (it is ΣP

2 -complete) (§3). Then
we describe a method for finding minimal patterns, which is in-
spired by known results on boolean minimization and generalizes
the classical Quine-McCluskey algorithm (McCluskey 1956) (§4).
We implemented a prototype of the algorithm in Haskell. Despite
the discouraging complexity results, it performs reasonably well on
the problem sizes we encounter in theorem proving practice (§5).

2. Notation and Problem definition
We now introduce the necessary notation to state the pattern min-
imization problem formally. Since function types and polymor-
phism are not relevant for pattern matching, we can pretend that we
live in a monomorphic first-order language, and work with many-
sorted first order terms for a fixed set of sorts S and a finite sorted
signature Σ.

For pattern matching, only constructor terms are relevant, so
we just assume that all function symbols in Σ are data type con-
structors. Then the sort-indexed family of terms (Ts)s∈S is defined
inductively as usual. A term is called linear or a pattern, if no vari-
able occurs more than once. Ps denotes the set of patterns of sort
s and Gs denotes the set of ground terms (i.e. terms without vari-
ables). We write Σs for the sets of constructors for values of sort
s.

Since patterns must be linear and we are only concerned with
matching, we can replace all variables by the wildcard symbol
∗. Formally, the wildcard carries a sort annotation (∗s), such that
the sort of a term is always uniquely defined. However, we will
liberally drop sort annotations that are clear from the context.

We write t � q if t is an instance of q (and t ≺ q if it is a proper
instance). Given a pattern p, we can express its “semantics” as the
set of all ground instances:

[p] := {g ∈ G | g � p} .
For finite sets of patterns we set [P] :=

S
p∈P [p].

Computing the intersection p∧ q of two patterns is a degenerate
case of unification. Note that this is a partial operation: if the
patterns are disjoint, we write p∧q = ⊥. We write sup(p, q) for the
supremum with respect to�: E.g. sup(f(a, ∗), f(∗, b)) = f(∗, ∗).
More generally, (Ps ∪{⊥},�) is a complete lattice, a special case
of the subsumption lattice for terms described by Huet (Huet 1980).

For the examples and constructions in this paper, we implicitly
assume that Σ contains the constructors T and F for booleans, 0
and Suc for naturals and suitable constructors for n-tuples, written
〈·, ·, ·〉. We ignore currying in this paper and assume that function
arguments are always tupled. For example, the patterns of the func-
tion in Fig. 2(a) are written {〈∗,Cons(∗,Cons(∗, ∗))〉, 〈∗, ∗〉}.

Observe that we may have [p] = [q] and p 6= q: For example,
[C(∗, . . . , ∗)] = [∗] if C is the only constructor of the given sort1.
To resolve this ambiguity, we define dpe = sup {q ∈ P | [q] =
[p]}. Note that dpe can easily be computed from p.

2.1 Pattern minimization and complement
We can now state the problems formally and relate them to the
informal discussion above. As usual, optimization problems are
stated as decision problems:

DISAMBIGUATION: Given patterns p1, . . . , pn and an inte-
ger k, are there sets of patterns P1, . . . , Pn, such that for
each i ∈ {1, . . . , n}, [Pi] = [pi] \

Si−1
j=1[pj], and the total

number of patterns in P1, . . . , Pn is less than k?

Note that we do not require that all the resulting patterns be
non-overlapping. Within one group Pi, the patterns may overlap,
since they are stemming from the same equation (with the same
right hand side).

To approach this problem, we study some related problems
which are slightly simpler to express, like that of building a com-
plement:

PAT COMPLEMENT: Given a finite set P of patterns and an
integer k, is there a set Q of at most k patterns, such that
[Q] = G \ [P]?

The related problem of just minimizing a set of patterns is given
as follows:

MIN PAT: Given a finite set P of patterns and an integer k,
is there a set P ′ of at most k patterns, such that [P ′] = [P]?

Technical note: For the complement-like problems, the bound k
must be given in unary notation. This avoids that we merely mea-
sure the output complexity. A set of patterns can grow exponen-
tially under complementation, so any algorithm computing it must
take exponential time. If k is in unary, then the size of the comple-
mented patterns is again polynomial in the size of the input, and we
are measuring the complexity of the actual optimization process,
not its result. The same technique is used by Umans et al. (2006).

Example 1. With the following patterns over the datatype
data T = A | B | C , disambiguation must lead to an exponential
blowup:

〈A,∗ ,∗ ,∗ ,∗〉
〈∗ ,A,∗ ,∗ ,∗〉
〈∗ ,∗ ,A,∗ ,∗〉
〈∗ ,∗ ,∗ ,A,∗〉
〈∗ ,∗ ,∗ ,∗ ,A〉
〈∗ ,∗ ,∗ ,∗ ,∗〉

It is easy to see that the last pattern stands for all value com-
binations that do not contain A. But this set of values cannot be
expressed compactly by some patterns, since any pattern that has a
wildcard at some position cannot be a candidate for the last equa-
tion because it would match a term having an A at that position.
Thus, the patterns for the default case cannot have any wildcards,
and therefore we need all combinations of B and C.

While the above example demonstrates a blowup that is un-
avoidable, the following (artificial) example shows that, in theory,
an optimization can even save us from an exponential blowup:

1 This implies that we model a language where pattern matching cannot
trigger any possibly non-terminating computations. This is true for strict
languages, and for total languages like Isabelle/HOL.

Example 2. For a given n ∈ N, we construct a function with
n(n−1)

2
boolean arguments, and with n equations. We assign in-

dices 1 . . . n to the equations, and we associate a pair (i, j) with
1 6 i < j 6 n to each argument position. Now, equation k has
at argument position (i, j) the pattern T, if k = i and F if k = j.
Otherwise there is a wildcard pattern ∗.

For n = 3, this construction yields a variation of the diagonal
function (cf. Wadler 1987):

diagonal :: Bool → Bool → Bool → Int

diagonal T T = 1
diagonal F T = 2
diagonal F F = 3

Since the equations i and j obviously have different patterns at
argument position (i, j), they are all disjoint. Hence the optimal
disambiguation is to leave everything as it is. However, the naive
disambiguation fails to recognize this and produces exponentially
many equations.

Now let us look at the relationship between the different prob-
lems. Obviously PAT COMPLEMENT cannot be any harder than DIS-
AMBIGUATION, as we can see from the balance example: A catch-
all pattern in the end will be replaced by the complement of the
preceding patterns.

The following lemma shows that the two problems are actually
equivalent:

Lemma 3. DISAMBIGUATION can be reduced (in P-time) to PAT
COMPLEMENT.

Proof. We do a reduction between the optimization problems,
showing how to disambiguate optimally if we can compute mini-
mal complements.

We first show how we can use PAT COMPLEMENT to subtract a
set of patterns Q from a pattern p:

First computeQ′ = {p∧ q | q ∈ Q, p∧ q 6= ⊥}. Now consider
all the positions where p has a wildcard and call them π1, . . . , πn.
Since the patterns in Q′ are instances of p, they can only differ at
these positions. We remove the outer structure and replace it by a
tuple: Q′′ = {〈q|π1 , . . . , q|πn〉 | q ∈ Q′}. We can now solve PAT
COMPLEMENT for Q′′ to compute the minimal pattern set C with
[C] = G \Q′′. We obtain the result of the subtraction by adding the
term structure of p again:R = {p[c1, . . . , cn] | 〈c1, . . . , cn〉 ∈ C}.
Since C is minimal, R must also be minimal.

DISAMBIGUATION is now easily reduced to multiple subtrac-
tions.

Let us demonstrate the above reduction of subtraction to com-
plementation by a small example: Consider the datatype

data T = A | B Nat | C (Nat ,Nat)

and suppose we want to compute

〈C(∗, ∗), ∗ 〉
− 〈C(0, 0), A 〉
− 〈 ∗ , B(Suc(∗))〉

If we want to subtract the first and second from the third pattern,
we first compute the intersections, obtaining

〈C(∗, ∗), ∗ 〉
− 〈C(0, 0), A 〉
− 〈C(∗, ∗), B(Suc(∗))〉

We remove the outer term structure and replace it by a tuple.
The first pattern is now a universal pattern, hence we have reduced

the problem to computing the complement:

〈 ∗ , ∗ , ∗ 〉
− 〈 0 , 0 , A 〉
− 〈 ∗ , ∗ , B(Suc(∗)) 〉
= 〈Suc(∗) , ∗ , A 〉

〈 ∗ , Suc(∗) , A 〉
〈 0 , 0 , B(0) 〉
〈 ∗ , ∗ , C(∗, ∗) 〉

After that, we just add the outer structure 〈C(·, ·), ·〉 again, and
obtain the result of the subtraction.

3. Complexity Results
In this section, we will show that pattern minimization problems
can encode the well known-problem of minimizing boolean for-
mulas in Disjunctive Normal Form (DNF).

This problem has already recieved a lot of attention, as it is
crucial for the design of digital circuits. Many exact and heuristic
methods have been studied, the most well-known probably being
the classical algorithm by Quine & McCluskey (McCluskey 1956),
on which we will base our pattern minimization algorithm in §4.

Despite the high practical importance, the exact complexity of
the problem has only recently been settled, when Umans proved
it ΣP

2 -complete in his PhD thesis (Umans 2000). The complexity
class ΣP

2 belongs to the polynomial hierarchy and contains the
problems that can be solved by a nondeterministic Turing machine
with access to a SAT oracle that it can use to solve NP-complete
problems in a single step2. ΣP

2 can be seen as “one level up” from
NP, and its canonical complete problem is QSAT2, the satisfiability
problem for formulas of the form ∃~x∀~y. φ(~x, ~y) where ~x and
~y are vectors of boolean-valued variables. (For more details, see
Papadimitriou 1994)

The DNF minimization problems can be stated as follows:

MINIMUM EQUIVALENT DNF (MIN DNF): Given a DNF for-
mula φ and an integer k, is there a DNF formula equivalent
to φ with at most k terms3?

SHORT CNF: Given a formula φ in Conjunctive Normal
Form (CNF) and an integer k in unary notation, is there a
DNF formula equivalent to φ with at most k terms?

Both problems are known to be complete for ΣP
2 (Schaefer and

Umans 2002).
The central idea in showing that MIN PAT is ΣP

2 -complete is that
DNF formulas can be mapped to patterns:

Definition 4. Let φ be a boolean DNF formula with variables v1
through vn. It has the form φ = t1 ∨ . . . ∨ tk, where each ti is a
conjunction of literals, which we view as a set. Then

E(φ) = { 〈p1
1, . . . , p

n
1 〉 , . . . , 〈p1

k, . . . , p
n
k 〉 }

where

pj
i =

8><>:
T if vi ∈ Literals(tj)
F if ¬vi ∈ Literals(tj)
∗ otherwise

For example E(v1v̄3 ∨ v̄2v3) = {〈T, ∗,F〉, 〈∗,F,T〉}.
Obviously, φ(b1, . . . , bn) is true iff 〈b1, . . . , bn〉 ∈ [E(φ)].

2 This is strictly more than the “guessing” facility of nondeterminism, since
it can also detect when no solution exists.
3 In the terminology of boolean minimization, the word term specifically
means a disjunct in a DNF. They should not be confused with the first-order
terms that we use as patterns.

Theorem 5. (1) Deciding whether a given set of patterns P is
incomplete (i.e. [P] 6= [∗]) is NP-hard.

(2) MIN PAT is ΣP
2 -hard.

(3) PAT COMPLEMENT is ΣP
2 -hard.

Proof. We reduce from the related boolean problems using the
embedding from Definition 4.

(1) Reduction from SAT: Let φ be in CNF. Using deMorgan’s laws
we produce the DNF formula ψ equivalent to ¬φ. Then

[E(ψ)] 6= [∗] ⇔ ψ is not a tautology
⇔ φ is satisfiable.

(2) Reduction from MIN DNF.
(3) Reduction from SHORT CNF, again interpreting the CNF for-

mula as a negated DNF formula.

The incompleteness problem is interesting, since it is actually
solved by most compilers of functional languages, which can issue
a warning when the patterns of a function definition do not cover all
cases. However, the exponential behaviour of the implementations
does not seem to pose any problems, since the problem instances
are usually small.

By a simple guess-and-check argument, we can show that MIN
PAT and PAT COMPLEMENT are also contained in ΣP

2 :

Lemma 6. The equivalence problem of two pattern sets is in co-
NP.

Proof. For given sets of patterns P and P ′, we can nondetermin-
istically choose a ground term, and check if it is either covered by
both P and P ′ or by none of them.

Theorem 7. MIN PAT and PAT COMPLEMENT are ΣP
2 -complete.

Proof. To show that MIN PAT ∈ ΣP
2 , note that a nondeterministic

Turing machine with access to a SAT oracle can solve our problem
as follows: For a given input P and integer k, it nondeterminis-
tically guesses a pattern set P ′ of size k. It remains to check if
[P] = [P ′]. Due to Lemma 6, this can be done by the SAT oracle.

For PAT COMPLEMENT ∈ ΣP
2 , a similar argument works. Then,

with Thm. 5 we have completeness for both problems.

4. A Minimization Algorithm
In this section, we will describe an algorithm which computes
minimal patterns. We will focus on the MIN PAT problem first,
but with simple modifications (sketched later), we can also use the
procedure to solve the other problems.

Again, our algorithm arises from the analogy to boolean mimiza-
tion. It is in fact a generalization of the well-known Quine-
McCluskey method (McCluskey 1956).

In short, the Quine-McCluskey procedure proceeds as follows
to minimize a formula φ:

(1) Write φ in canonical disjunctive normal form, i.e. as a disjunc-
tion of “minterms”. These are products (i.e. conjunctions) of lit-
erals where each variable occurs either positively or negatively.
Minterms correspond to the entries in the truth table where φ
becomes true.

(2) From the minterms, constuct the “most general terms that imply
φ”, that is, conjunctions of literals that imply φ, but when one
literal is removed, the result does not imply φ. These terms are
called prime implicants.

(3) Find a minimal subset of prime implicants that covers all
minterms of φ. Then the minimized formula is the sum (dis-
junction) of these prime implicants.

Example 8.

(1) Consider the following formula in canonical disjunctive normal
form:

φ = x̄ȳz̄w̄ ∨ x̄yz̄w̄ ∨ xȳz̄w̄ ∨ x̄yz̄w ∨ x̄yzw̄ ∨
xȳz̄w ∨ xȳzw̄ ∨ x̄yzw ∨ x̄ȳzw̄ ∨ xyzw

The terms of the disjunction are the (positive) minterms. They
correspond to entries in the truth table for φ.

(2) The prime implicants are those terms that cannot be generalized
further without leaving φ.

{x̄z̄w̄, ȳz̄w̄, xȳz̄, xȳw̄, xz̄w, x̄y, yw}
(3) By choosing a minimal set of prime implicants that cover all the

minterms, we obtain a minimized formula.

φ = xȳw̄ ∨ xz̄w ∨ x̄y
Step (1), which is often implicit in textbook descriptions (Katz

and Borriello 2005; McCluskey 1986), means that we basically
start from the full truth table of the function. Note that the number
of minterms is generally exponential in the size of φ.

The exact method of combining the minterms to prime impli-
cants in Step (2) is often only vaguely described in textbooks, and
if it is described, the algorithm often takes exponential time. How-
ever, Strzemecki (1992) showed that this step can be done in poly-
nomial time.

Finally, it remains to solve a covering problem in Step (3),
which is known to be NP-hard (even in the particular instances
arising here (Umans et al. 2006)).

In the following, we will see that this algorithm can be extended
to the more general problem on patterns.

We adapt some terminology from boolean minimization: For a
fixed pattern-set P and a pattern p, we say that p is an implicant
iff [p] ⊆ [P]. An implicant is called prime, iff none of its proper
generalizations is an implicant.

Obviously, a minimal covering can be constructed from the
prime implicants: Any other patterns in a minimal covering could
simply be generalized to some prime implicant.

4.1 Minterms
Our more general setting is different in one important aspect:

In the boolean case, the base set we are considering is just
the finite product space {0, 1}n, whereas the set underlying our
patterns is a possibly infinite set of terms. So it is not immediately
clear what corresponds to the “truth table” of a boolean function.

However, the nature of pattern matching is still finitary in a
certain sense, which allows us to generalize the boolean methods.
The idea is to define inductively a set of terms, depending on
the patterns we want to minimize, which behaves similarly to the
product space.

These terms, called minterms, are mutually non-overlapping
and cover all of G. Furthermore, they respect the structure of P ,
in the sense that for a minterm m and a p ∈ P either m � p or
m ∧ p = ⊥.

Definition 9 (Projection). For P ⊆ Ps, C ∈ Σs and i 6
arity(C), we define the projection

ΠC,i(P) =

(
{pi | C(p1, . . . , pn) ∈ P} ∪ {∗} if ∗ ∈ P
{pi | C(p1, . . . , pn) ∈ P} otherwise

For example, Π〈〉,2({〈∗,Suc(∗)〉, 〈0, ∗〉}) = {Suc(∗), ∗}, and
ΠSuc,1({0,Suc(0),Suc(∗)}) = {0, ∗}.

Definition 10 (Minterms). A pattern set P ⊆ Ps is called trivial,
iff P = {} or P = {∗}. We compute the set of minterms MT (P)
recursively as follows:

MT (P) =

8><>:
{∗} if P = ∅ or P = {∗}S

C∈Σs
C(MT (ΠC,1(P)), . . . ,MT (ΠC,n(P)))

otherwise

Note that above the constructor C is lifted to sets:

C(A1, . . . , An) = {C(a1, . . . , an) | a1 ∈ A1 . . . an ∈ An}
For example, MT (0) = {0} ∪ Suc(MT (ΠSuc,1({0})))
= {0} ∪ Suc(MT (∅)) = {0,Suc(∗)}.

We divide the set of minterms into positive ones that lie within
[P] and negative ones that are outside:

M+
P = {m ∈MT (P) | ∃p ∈ P. m � p}

M−
P = MT (P) \M+

P

Example 11. For P = {〈Suc(0), ∗〉, 〈∗, 0〉}, we have

M+
P = {〈Suc(0), 0〉, 〈Suc(0),Suc(∗)〉,

〈0, 0〉, 〈Suc(Suc(∗)), 0〉}

M−
P = {〈0,Suc(∗)〉, 〈Suc(Suc(∗)),Suc(∗)〉} .

Defined like this, minterms satisfy the following properties:

Lemma 12 (Properties of minterms). Let p ∈ P and m ∈
MT (P).

(1) The elements ofMT (P) are pairwise disjoint, and [MT (P)] =
G.

(2) If m ∧ p 6= ⊥ then m � p
(3) [m] ⊆ [P] iff ∃p ∈ P.m � p
(4) For any pattern set A ⊆ Ps, we have

[A] ⊆ [P] ⇐⇒ ∀m ∈M−
P .∀a ∈ A. m ∧ a = ⊥

Proof. (1) Simple induction
(2) By induction on p. For p = ∗ the statement is trivial. If

p = C(p1, . . . , pn), then ∗ /∈ MT (P) and thus m must
also start with a constructor. Since m ∧ p 6= ⊥, we know
that m = C(m1, . . . ,mn) with mi ∈ MT (ΠC,i(P)) and
mi ∧ pi 6= ⊥. By induction hypothesis we get mi � pi for
each i, and thus m � p.

(3) For the forward implication, assume [m] ⊆ [P]. Since [m]
cannot be empty, m must overlap with at least one element of
P , and we can apply (2). The reverse implication is immediate.

(4) Obvious, since [M−
P] = G \ [P].

Hence we can see MP as a partitioning of G, where each
partition is represented by a minterm. Moreover, the partitioning
is fine enough to be compatible with the shape of [P].

Note that part (4) of the above lemma enables us to check
algorithmically, if a given pattern (or set of patterns) is an implicant.
This check will be required in the next sections.

4.2 Constructing Prime Implicants
The next step in the Quine-McCluskey procedure requires finding
the prime implicants of the boolean formula.

In textbooks this is often done by repeatedly joining minterms
to larger terms, until a fixpoint is reached. However, this procedure
can have exponential runtime, which is unnecessary.

Strzemecki (1992) describes how to obtain prime implicants in
polynomial time. Unfortunately, the paper is a little hard to read

due to a lot of nonstandard and redundant notation. However, it can
be reduced to a few simple ideas, which generalize nicely to our
pattern world.

Lemma 13. Let p be an implicant for P and m ∈M+
P a minterm

such that m � p. Then there exists a minterm m′ ∈M+
P , such that

[p] = [sup(m,m′)].

Proof. We proceed by induction on m.
If m = ∗, choose m′ = ∗.
Assumem = C(m1, . . . ,mn). If p = ∗, we simply choose any

m′ ∈ M+
P whose topmost constructor is different from C. If this

doesn’t exist, then C must be the only constructor of the respective
sort and we know that [p] = [C(∗, . . . , ∗)] and we proceed as if p
had that form.

If p = C(p1, . . . , pn), we have mi ≺ pi, and the mi are
minterms. Applying the induction hypothesis we obtain minterms
m′

i ∈ MΠC,i(P), such that pi = sup(mi,m
′
i). We get m′ =

C(m′
1, . . . ,m

′
n) ∈MP . And obviously sup(m,m′) = p.

Corollary 14. Every prime implicant can be written as dsup(m,m′)e
with some m,m′ ∈M+

P

This implies a simple polynomial-time algorithm for finding all
prime implicants: Build the suprema of all possible pairs of positive
minterms and remove those patterns that are not implicants (using
Lemma 12(4)) or instances of others.

4.3 Essential Prime Implicants
A prime implicant is called essential, if it covers a minterm not
covered by any other prime implicant. Since essential prime impli-
cants must necessarily appear in the minimal covering, it is a useful
optimization to generate them first. After this, only the remaining
minterms must be covered by other prime implicants.

Also here, we can generalize Strzemecki’s work, redefining the
relevant notions for our framework:

Definition 15. Informally, the set G(t) of simple generalizations
of t is the set of terms obtained from t by replacing exactly one
non-wildcard subterm by ∗.

Formally, G(t) is defined recursively as follows:

G(∗) = {}

G(C(t1, . . . , tn)) = {∗} ∪
n[

i=1

C(t1, . . . , G(ti), . . . , tn)

Lemma 16. If s ≺ t then t is the supremum of some subset of
G(s).

Proof. Informally, for each missing constructor in t compared to
s, we include the corresponding element of G(s) in the subset.
Formally, use induction.

Definition 17 (Neighborhood terms). For given P and m ∈ M+
P ,

we define the neighborhood term of m by RP (m) = sup {g ∈
G(m) | [g] ⊆ [P]}.

Lemma 18. Let m ∈ M+
P and r = RP (m). If [r] ⊆ [P], then it

is an essential prime implicant.

Proof. Assume that r = RP (m) is an implicant. In order to see that
r is prime, we show that every implicant i which contains m must
be subsumed by r. So fix i with m � i and [i] ⊆ [P]. If i = m,
then obviously i � r. Otherwise we have m ≺ i, and Lemma 16
yields i = supG for some G ⊆ G(m). Since i is an implicant,
each element of G must also be, and thus i � RP (m) = r. Since

i was arbitrary, we know that any prime implicant containing m
must be equal to r, and thus r is essential (to cover m).

In fact, all essential prime implicants have the above form:

Lemma 19. Every essential prime implicant equals RP (m) for
some m ∈M+

P .

Proof. Let e be an essential prime implicant. Then there exists an
m � e,m ∈ M+

P covered by no other prime implicant. Then e
is an upper bound for {g ∈ G(m) | [g] ⊆ [P]}, which implies
RP (m) � e. Since e is an implicant, we have [RP (m)] ⊆ [P].
Applying the above lemma, we get the reverse inequality e �
RP (m), and thus e = RP (m).

So, to compute all essential prime implicants, we have to com-
pute RP (m) for every m ∈ M+

P , and filter out those that are not
implicants.

4.4 Overall Algorithm
Given a pattern set P to minimize, we proceed as follows:

(1) Compute M+
P and M−

P .

(2) Compute the essential prime implicantsE, as described in §4.3,
and determine the set M̄ = {m ∈M+

P | [m] * [E]}.

(3) Compute the set N of nonessential prime implicants (contain-
ing minterms from M̄) as described in §4.2.

(4) Find a covering of M̄ by a subset N ′ of N .

(5) Return E ∪N ′.

Note that if we want to minimize the complement instead, we
can just swap the roles of M+

P and M−
P . For DISAMBIGUATION,

we just partition the minterms into n classes, one for each of the
original equations, and perform the following steps for each of the
classes accordingly.

5. Implementation and Experiments
We implemented a prototype of the above procedure in Haskell
and tested it on a small suite of examples stemming from user-
contributed theories to the library of the Isabelle/HOL prover. From
232 definitions, we filtered out those that just use trivial pattern
matching on one of the arguments, without any nesting. The 97
remaining examples were minimized by our prototype in less than 3
seconds on a 1.2 GHz laptop, and no individual example took more
than half a second to process. In 16% of the cases, an improvement
over the naive disambiguation method could be made.

This indicates that minimization is feasible and occasionally
useful for definitions occurring in theorem proving practice. How-
ever, such figures always require a good amount of scepticism, as
the sample is influenced by the restrictions of previous Isabelle
versions. It reflects what people could already do, not what they
would like to do. In particular, some functions in the developments
of arithmetic decision procedures (Chaieb 2006, 2008) were devel-
oped in a way that tries to avoid excessive blowup.

In the following, we present three interesting examples in more
detail:

Balance Our initial example, the balancing function for red-black
trees, has five equations, which split up to 91, when done naively.
Our minimization algorithm computes a minimum number of 59
patterns.

data Nat = Z | S Nat -- Written as numerals below
data Val = Nv Int | Bv Bool | Undef

interp :: Nat → [Val] → Val

interp 0 [] = Nv 0 -- Zero
interp 1 [Nv n] = Nv (n + 1) -- Succ
interp 2 [Nv m,Nv n] = Nv (m + n) -- Plus
interp 3 [] = Bv True -- True
interp 4 [Bv b] = Bv (¬ b) -- Not
interp 5 [Bv b1 ,Bv b2] = Bv (b1 ∨ b2) -- Or
interp 6 [Nv n1 ,Nv n2] = Bv (n1 < n2) -- Less
interp = Undef

Figure 3. Interpreter function

Interpreter Function Consider the function interp given in Fig. 3.
This is a somewhat crude specification of an interpreter for a sim-
plistic expression language. Operator names are modeled as natural
nunbers. Values are either booleans, numerical values or undefined

This specific example was given to the author by Tobias Nip-
kow, complaining that Isabelle produced too many equations, when
disambiguating the definition. Slind’s implementation (Slind 1999)
produced either 36 or 39 cases, depending on the order of argu-
ments of the function. By manual inspection, we were able to ex-
press the function in just 31 equations, which we were sure was the
optimal solution. Only a few months later, when the algorithm pre-
sented here was implemented, the computer proved us wrong when
it produced just 25 equations.

Numadd Our third example is a function that operates on a repre-
sentation of arithmetic expressions and is used as part of a decision
procedure for Presburger arithmetic. Figure 4 shows the pattern
matching used here. Unfortunately, in this example the minimiza-
tion brings no improvement over naive disambiguation: The set of
256(!) resulting equations resulting from the naive disambiguation
is already minimal.

6. Discussion
6.1 Related work
Although the problem is simple to state and natural, it has, up to
our knowledge, never been studied systematically.

Previously, Isabelle/HOL, as well as the HOL4 prover (Gordon
and Melham 1993), removed overlap from pattern matching in a
slightly ad-hoc manner (a procedure implemented by Slind (1999)),
with no attempt to minimize the result. The wish to improve on this
is what led us to this research.

To our knowledge, the only complexity result related to ML-
like pattern matching is given in an unpublished extendend abstract
by Baudinet and MacQueen (1985). It states that the problem of
compiling a sequence of patterns in to a decision tree (i.e. a case
expression) of minimal size, is NP-complete. Our transformation
is different, since it produces a set of equations again, and not a
decision tree. It is somewhat remarkable that this puts the problem
into a different complexity class.

There has been a fair amount of research on pattern match com-
pilation (Augustsson 1985; Wadler 1987; Fessant and Maranget
2001, and others), but it is hard to compare this work with ours,
since it has the goal of producing code that can be implemented
efficiently, either in the form of a case tree or of some kind of back-
tracking automaton. Our optimization problem is different, due to
the focus on the equational view.

6.2 Other possible applications
While this work was motivated by a theorem proving application,
the problem of pattern minimization is a general one, and there
could be other applications. Disambiguating an equational specifi-
cation into independent equations could be of use in a form of par-
allel pattern matching, where one tries to match with different pat-
terns simultaneously (say, in different threads). Note however, that
such a form of parallel matching differs from the usual meaning
of the term: Usually (e.g. in the work of While and Field (2005)),
different components of the same pattern are matched concurrently,
in order to let the match fail when any of the components fails to
match.

In contrast, unambigous pattern sets in our sense would allow
to compute the matches of different equations in parallel. In a
lazy language, prime implicants, being the most general patterns
describing a certain set of values, would probably play an important
role.

These are however just vague ideas and it is not clear if they
could be exploited to make some improvement in the area of im-
plementation of functional languages.

6.3 Alternative encodings
In the theorem proving context, one could also try to find alternative
logical representations for overlapping patterns, instead of instanti-
ating patterns until they no longer overlap. For example, the second
equation of the sep function in Fig. 2(a) could also expressed as a
conditional equation with quantifiers:

(∀x y ys. xs 6= (x : y : ys)) =⇒ sep a xs = xs

One could also imagine a special matching construct that serves as
a “native” representation of clausal function definitions in the logic.

However, the extra complexity introduced by such constructions
makes proofs more technical and destroys the purely equational
view, which is very common in the informal proofs from the litera-
ture on functional programming (see e.g. Hughes 1995 or Thomp-
son 1999). Also, the automated reasoning tools would need to be
adapted to deal with such constructions.

For this reason, this paper focused on the optimization oppor-
tunities (and their limits) on purely equational specifications, for
which appropriate reasoning tools are already in place.

7. Conclusion
We identified several minimization problems on term patterns as
they are used in functional programming languages, and proved
that they are complete for ΣP

2 . We showed how an algorithm
similar to the well-known Quine-McCluskey method can be used
to solve these problems.

This work was motivated by the need to disambiguate specifi-
cations of recursive functions, transforming them to a form suitable
for equational reasoning (i.e. term rewrite systems) in the theorem
prover Isabelle/HOL. In this context, keeping the size of the spec-

ification small can be important, as it influences the size and com-
plexity of proofs.

Our implementation performs reasonably well on the problems
we currently encounter in theorem proving practice, but two is-
sues remain: First, there exist examples (such as Numadd above)
where the blowup is unavoidable, and the mininimization does not
save us from getting overly large equational specifications. Second,
for larger examples, the computational complexity of the problem
might make exact minimization practically intractable. Then, one
could try to apply heuristic methods. Here, we expect the methods
developed for boolean minimization to be applicable in our context.

Although our main motivation is to reason about functional pro-
grams in a theorem prover, our results might be relevant for other
areas, since they naturally generalize results on boolean minimiza-
tion.

Another interesting question is, whether one can also do the
encoding of §3 in the reverse direction, i.e. encode a given pat-
tern minimization problem into a boolean formula and read off
the solution from the minimized formula. Then we could readily
use existing high-performance boolean minimizers (e.g. ESPRESSO
(Brayton et al. 1984)) to solve our pattern problems. From ΣP

2 -
completeness, we know that there must be such an encoding, but
we could not find a natural one. The main problem here is that the
pattern problems contain more structure, which may be destroyed
during boolean minimization.

Acknowledgments
I want to thank the anonymous reviewers for their patience and
the very detailed comments. Clemens Ballarin, Amine Chaieb and
Tobias Nipkow also commented on previous drafts of this paper.

References
Lennart Augustsson. Compiling pattern matching. In FPCA’85, pages 368–

381, 1985.
Marianne Baudinet and David MacQueen. Tree pattern matching

for ML. URL http://www.smlnj.org/compiler-notes/
85-note-baudinet.ps. Unpublished, 1985.

R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-
Vincentelli. Logic Minimization Algorithms for VLSI Synthesis. Kluwer
Academic Publishers, Boston, MA, 1984.

Amine Chaieb. Verifying mixed real-integer quantifier elimination. In
Ulrich Furbach and Natarajan Shankar, editors, Automated Reason-
ing, Third International Joint Conference, LNAI 4130, pages 528–540.
Springer, 2006. ISBN 3-540-37187-7.

Amine Chaieb. Automated methods for formal proofs in simple arithmetics
and algebra. PhD thesis, Technische Universität München, Germany,
April 2008.

Fabrice Le Fessant and Luc Maranget. Optimizing pattern matching. In
ICFP, pages 26–37, 2001.

Michael Gordon and Tom Melham, editors. Introduction to HOL: A theorem
proving environment for higher order logic. Cambridge University Press,
1993.

data Nat = Z | S Nat
data T = C Nat | Bound Nat | Neg T | Add T T | Sub T T | Mul Nat T

numadd :: T → T → T

numadd (Add (Mul c1 (Bound n1)) r1) (Add (Mul c2 (Bound n2)) r2) = ... -- right hand sides omitted
numadd (Add (Mul c1 (Bound n1)) r1) t = ...
numadd t (Add (Mul c2 (Bound n2)) r2) = ...
numadd (C b1) (C b2) = ...
numadd a b = ...

Figure 4. Numadd

Gérard Huet. Confluent reductions: Abstract properties and applications to
term rewriting systems. J. ACM, 27(4):797–821, 1980.

John Hughes. The Design of a Pretty-printing Library. In J. Jeuring and
E. Meijer, editors, Advanced Functional Programming, volume 925 of
LNCS. Springer Verlag, 1995.

Randy H. Katz and Gaetano Borriello. Contemporary Logic Design. Pren-
tice Hall, 2005.

E. J. McCluskey. Logic Design Principles. Prentice Hall, 1986.
E. J. McCluskey. Minimization of boolean formulas. Bell Lab. Tech. J., 35

(6):1417–1444, Nov 1956.
Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL

— A Proof Assistant for Higher-Order Logic. LNCS 2283. Springer,
2002.

Chris Okasaki. Red-black trees in a functional setting. J. Funct. Program.,
9(4):471–477, 1999.

Christos H. Papadimitriou. Computational Complexity. Addison-Wesley,
New York, 1994.

Markus Schaefer and Christopher Umans. Completeness in the polynomial-
time hierarchy: Part I: A compendium. SIGACTN: SIGACT News (ACM
Special Interest Group on Automata and Computability Theory), 33,
2002.

Konrad Slind. Reasoning About Terminating Functional Programs. PhD
thesis, Institut für Informatik, TU München, 1999.

Tadeusz Strzemecki. Polynomial-time algorithms for generation of prime
implicants. J. Complexity, 8(1):37–63, 1992.

Simon Thompson. Haskell: The Craft of Functional Programming (2nd
Edition). Addison-Wesley, 1999.

Christopher Umans. Approximability and completeness in the polynomial
hierarchy. PhD thesis, University of California, Berkeley, 2000.

Christopher Umans, Tiziano Villa, and Alberto L. Sangiovanni-Vincentelli.
Complexity of two-level logic minimization. IEEE Trans. on CAD of
Integrated Circuits and Systems, 25(7):1230–1246, 2006.

Philip Wadler. Efficient compilation of pattern-matching. In S. L. Pey-
ton Jones, The Implementation of Functional Programming Languages,
chapter 5. Prentice-Hall International, 1987.

Lyndon While and Tony Field. Optimising parallel pattern-matching by
source-level program transformation. In Vladimir Estivill-Castro, edi-
tor, ACSC, volume 38 of CRPIT, pages 239–248. Australian Computer
Society, 2005. ISBN 1-920682-20-1.

