
Simplifying Automated Data Refinement via

Quotients

Alexander Krauss

July 2011

Abstract

This report gives an overview over problems related to the automatic
transport of theorems from one type to another. Starting from the orig-
inal motivation, data refinement during code generation, we explore the
possibilities and the existing implementations of related mechanisms in
Isabelle. In particular, we show how formalizations over ordinary sets
can be automatically transported over to the isomorphic but executable
copy α Set (commonly known as Cset.set). This approach could be a
cornerstone in a general and practical approach to data refinement.

Moreover, we give some comparison of the existing tools transfer (by
Chaieb and Avigad) and the quotient package (by Kaliszyk and Urban),
exploring the question whether these tools could be unified. This docu-
ment does not present finished solutions in this regard. Rather, its pur-
pose is to give a better understanding of the problems and bring relevant
information together that has been disconnected, hard to find, or undoc-
umented.

1 Motivation: Data Refinement

Isabelle’s code generator can produce executable code from HOL specifications
that have a certain form resembling functional programs. Such specifications
are called executable.

The semantics of code generation is simple: Any reduction t → v in the
generated program is also valid as an equation t = v in HOL (modulo the
translation). In other words, the generated program is a sound rewriting engine
with respect to the original theory. There are no other guarantees such as
termination or any form of completeness.

1.1 Code Generation Scenarios

From a user’s perspective, there are at least four different ways of coming into
contact with code generation. We will refer to them as code generation scenar-
ios:

Program verification The user writes an executable specification and proves
some properties about it. Then, the code generator is invoked explicitly
to write code to a file, which is then used externally, with the knowledge
that it has been verified (although the verification itself is not exported).

1



Ad-hoc testing The user invokes the value command to evaluate some ex-
pressions for testing purposes. This invokes the code generator, together
with a reverse translation for the result.

Random testing The user invokes the quickcheck command to find counterex-
amples for a lemma. This invokes the code generator on the lemma, with
some random value generators (written in HOL) fused in.

Proof by evaluation The user proves an equation t = v by evaluating t to v,
or a statement by evaluating it to True. This is done using a special eval-
uation oracle (and corresponding method), which trusts the correctness
of the code generation and execution.

1.2 What is Data Refinement?

When developing theories, it is usually desirable to express algorithms abstractly
in terms of functions, sets, multisets etc. On the other hand, we expect these
specifications to be executed efficently using data structures like lists or balanced
trees, depending on the application. This step from abstract to concrete data
structures is called data refinement.

Unfortunately, data refinement is harder to accomplish than algorithm re-
finement, i.e., replacing one algorithm with a more efficient one. The latter is
easy, because HOL views equivalent algorithms as the same function (by exten-
sionality), so we can derive, e.g., the equation isort = quicksort and then use
the slow but simple function for proofs and the fast but complicated function
for execution.

For data structures this is not so easy: In HOL, two types cannot be “ex-
tensionally equal” just like two functions that compute the same result. In the
best case, they are isomorphic, but we will see below that this is almost never
the case. Moreover, replacing one type with another also requires replacing the
relevant operations, in such a way that the resulting statement is type correct
(and valid). In particular, specifications are full of function types, but only some
of them are supposed to become balanced trees in the generated code.

1.3 Example: Sets by Distinct Lists

The following example demonstrates all the issues that may arise in the context
of data refinement. Consider the type of sets (represented by α ⇒ bool in
Isabelle), which we want to implement by lists. Let us assume we do not care
about the order of the elements in the list, but we do not want elements to occur
repeatedly. (We call such lists as distinct lists below.) This is not extremely
efficient, but it is simple, does not require an order on the elements, and prevents
performance degradation when the same element is added to a set many times.

Clearly, sets and lists are not isomorphic structures, but the situation is quite
a bit more complicated and depicted in Fig. 1: First, there are unrepresentable
elements: clearly, an infinite set cannot be implemented by a list. Second, there
are illegal representations: the list [0, 0] violates our invariant and thus does
not represent a set (although we could give a meaningful interpretation of such
lists, this need not be the case in general). Finally, an abstract value may have
multiple representations: the set {0, 1} can be expressed by the lists [0, 1] and
[1, 0], and there is no preference for one of them. In other words, between the

2



set of representable elements, and the set of legal representations, we have a
quotient.

In addition, it is a technical restriction of the code generator that data
refinement can only be applied to type constructors α κ, not arbitrary “open
types” like α ⇒ bool . This means that before we can successfully apply the
techniques below, we must first introduce an explicit type constructor α Set ,
which is isomorphic to α⇒ bool . It is a somewhat unfortunate coincidence that
this explicit type constructor was abolished in Isabelle2008 and we must now
introduce it again for code generation. However, even if sets were an explicit
type constructor right from the start, the same problem would apply for maps
(of type α⇒ β option).

To address the data refinement problem situation, Haftmann [2] proposes a
stepwise approach, with several layers between sets and lists, each of which is
closer to the final implementation. Figure 2 shows the different layers (where we
added the extra layer “Implementable subtype”, which is not actually present
in the implementation but helps to understand the nature of the setting).

Theory Reference. Theory HOL/Library/Cset.thy1 defines a copy of sets with
an explicit type constructor Cset.set (which we will continue to call Set for
brevity). Likewise, a copy of maps of type α ⇒ β option, which is called
(α, β) mapping , can be found in HOL/Library/Mapping.thy.

In the following, we describe the data refinement setup from the explicit
type constructor downwards. For these steps, satisfactory solutions exist and
are already implemented. Thus, by importing the appropriate theories, a user
directly obtains executable code for type α Set without further configuration.
The final gap—the connection between the abstract type and the explicit type
constructor—will concern us later.

1.4 Haftmann’s Trick

The connection between α Set to α dlist (i.e., the treatment of both unrepre-
sentable elements and multiple representations) uses what should best be called
Haftmann’s Trick, as it allows the replacement of one type by another one with

1All theory references refer to Isabelle 9959c8732edf.

Implementation type (e.g., α list) Abstract type (e.g., α set)

Legal representations Representable elements

ϕ

Figure 1: Relationship between implementation type and abstract type

3



Abstract type (α⇒ bool)

Explicit type constructor (α Set)

Implementable subset (α finite set)

Invariant type (α dlist)

Representation type (α list)

∼ =
⊆

| quotient

⊇
Figure 2: Intermediate layers used in code generation

surprising ease, based purely on the equational semantics of code generation
outlined above. It was first used in Haftmann’s thesis [1, ch. 4.1] to refine
naive queues to amortized queues, and has found other nice applications in the
meantime (e.g., [5]).

The basic idea is that due to the purely equational view of the generated
code, a datatype is nothing more than a collection of uninterpreted functions—
its constructors. So we are free to pick any constants (of the appropriate types)
and turn them into datatype constructors in the generated code. We call such
constants pseudo-constructors. Like ordinary constructors, they do not carry
any code equations, but other code equations may instead use them in patterns
on the left hand side. There are no particular properties that such pseudo
constructors must satisfy, i.e., they need not be injective or exhaust the type.

Even without these properties, it is easy to convince ourselves that all this
is just fine under our equational interpretation, since all reduction steps in the
program still arise from valid theorems.

In our concrete case, we define a function Set :: α dlist ⇒ α Set , and declare
it as a pseudo-constructor. Thus, in the generated code, the type α Set will
become a datatype, whose elements are in fact dlists. We now derive the code
equations that treat the function Set as a constructor. E.g., for set union we
have

Set A ∪ Set B = Set (Dlist .union A B)

where Dlist .union implements the union on dlist . These equations are easy to
derive.

Theory Reference. A setup of the implementation of α Set by α dlist as de-
scribed here can be found in HOL/Library/Dlist Cset.thy. Similarly, HOL/
Library/RBT Mapping.thy relates (α, β) mapping to red-black trees.

Such setups are tedious to produce, since operations are duplicated on the
different levels and must be related explicitly via lemmas. However, this must
be done only once for each data structure and can therefore be hidden in a
collections library. A user of the data structure can then use the abstract view
only, and gets an efficient implementation for free.

4



1.5 Invariants

The transition from distinct lists down to plain lists is a little more subtle,
semantically, and unlike Haftmann’s Trick above, it requires an extension of the
code generator and its soundness proof, which considers the invariants.

Basically, we must make sure that the functions in the generated code always
preserve the invariant, and this is done by requiring the code equations to have
a certain specific form.

We assume that the invariant type (here, α dlist) and the implementing
type (here α list) are related via two functions Abs :: α list ⇒ α dlist and
Rep :: α dlist ⇒ α list , such that Abs (Rep x) = x holds unconditionally. We
say that x :: α list is invariant iff it satisfies Rep (Abs x) = x. This situation
arises naturally, when the invariant type is defined via typedef.

Now, the code generator accepts special code equations that deviate from
the normal format. Union would be specified by the equation

Rep (Dlist .union xs ys) = List .union (Rep xs) (Rep ys) .

Note that this equation also encodes that List .union preserves the invariant. In
the generated code, this equation is turned into a legal function definition in
the target language.

Dlist.union xs ys = Abs (List.union (Rep xs) (Rep ys))

To prove that this transformation is legal, we must show (on paper, by
induction on the length of a rewrite sequence), that the invariant is preserved
in every rewrite step. However, we do not go into details here.

Theory Reference. A setup of the implementation of distinct lists by normal
lists as described here can be found in HOL/Library/Dlist.thy. Theory HOL/
Library/RBT.thy defines a type of red-black trees (with invariant), and relates
it to an implementation of raw trees, defined in RBT Impl.thy. Again, these
setups are tedious, but end users who merely use the data structures in their
theories do not come in contact with them.

1.6 The Missing Link

The remaining issue is that users of data refinement must still formulate their
programs in terms of the nonstandard types α Set and (α, β) mapping . Reason-
ing support for these types is not very good, since they were introduced only for
code generation. Even if tool support were better, replacing normal sets/maps
by “code generation sets/maps” still contradicts the very idea of data refine-
ment.

An automatic way of transporting theorems and definitions from one type
to another isomorphic one would be a nice solution to this problem. Then, one
could proceed as follows in the program verification scenario:

• The library provides a finished setup of the type α Set , the setup for code
generation as described above, and the transport machinery from α set to
α Set .

• The user writes his programs and proofs using normal sets.

5



τ σ

P f(P )

f

Transport direction (facts)

Figure 3: The transfer setting

• The user defined constants and their code equations are transported to
the executable types. If desired, the properties can also be transported.

In the rest of this report, we investigate existing tool that could help with
this task.

Note on terminology. Throughout this report, we use ther term transport
to refer to the generic idea of moving results from one type to another. This
is mainly becauso the terms transfer and lifting are already used to refer to
specific mechanisms.

2 The Transfer Tool

This section describes the transfer tool developed by Chaieb and Avigad, which
is available in the Isabelle distribution. Originally, transfer was intended to ease
the transition between integers and natural numbers, and despite the generality
of the approach, this remains the only application of the tool up to now, and
its only documentation.

The main virtue of transfer is its remarkable simplicity. It is based on
minimal assumptions, and the implementation is small. However, this also
means that it lacks some desirable features, as we will see below. The tool
is not limited to isomorphisms between types and can in principle transport
theorems from some type σ to a subset of some other type τ . This allows us to
see the positive integers as isomorphic to the natural numbers.

A transfer morphism is given by types σ and τ , a function f :: τ ⇒ σ, and
a predicate P :: τ ⇒ bool . Notably, there are no constraints whatsoever on f
and P , so any function can serve as a morphism, bijective or not. We do not
specify in advance which operations belong to the types in question. This is
done implicitly via a simpset and under user control. However, in the intended
use, the function f is injective (we have an isomorphism between the subsets).
Figure 3 shows the setting. Note that the transport direction is “backwards”,
compared to the morphism f .

6



Example 1. Between types int and nat there are two transfer morphisms. The
first is given by the function nat :: int ⇒ nat and the predicate (λx. x ≥ 0). The
second is given by the function int :: nat ⇒ int and the predicate (λx.True).

Each transfer morphism is associated with a simpset, which contains rewrite
rules describing the interaction between the morphism and the operations on
the types (such as addition and multiplication on nat and int).

When given a theorem, transfer proceeds as follows:

1. Each schematic variable ?x :: σ is instantiated to f (y :: τ), where y is
a fresh variable, which will become schematic in a final export operation.
Moreover, we add the assumption P y for each new variable.

2. The theorem is simplified using the associated simpset. The rules in the
set are oriented such that they propagate the morphism upwards, i.e., we
have rules of the following form:

int x+ int y = int (x+ y)
int x ∗ int y = int (x ∗ y)

(0 :: nat) = int 0

x ≥ 0 =⇒ y ≥ 0 =⇒ nat x+ nat y = nat (x+ y)
x ≥ 0 =⇒ y ≥ 0 =⇒ nat x ∗ nat y = nat (x ∗ y)

(0 :: int) = nat 0

Note that the simplifier will discharge the conditions using the extra as-
sumptions that were added in the previous step. In the end, the morphism
has propagated up the term and will eventually disappear by means of
rules of the form

int x = int y ←→ x = y

x ≥ 0 =⇒ y ≥ 0 =⇒ nat x = nat y ←→ x = y

which are in the same simpset. This is the point where injectivity of
the morphism comes into play,2 even if it was not required for the dec-
laration of the morphism. Similarly, relations like ≤ are replaced by the
corresponding relation on the other type.

Example 2. Consider the simple unit law (?x :: nat)+0 = x. After instantiating
and adding the assumption, we obtain (y :: int) ≥ 0 =⇒ nat y + (0 :: nat) =
nat y. Then the following rewrite sequence produces the final theorem:

(y :: int) ≥ 0 =⇒ nat y + (0 :: nat) = nat y
≡ (y :: int) ≥ 0 =⇒ nat y + nat 0 = nat y
≡ (y :: int) ≥ 0 =⇒ nat (y + 0) = nat y (∗)
≡ (y :: int) ≥ 0 =⇒ y + 0 = y

Note that step (∗) uses a conditional rewrite rule, whose premises must be
discharged recursively.

2At least this seems to be the intended usage. It may be possible to go without injectivity
and replace equality by an equivalence relation instead

7



2.1 Usage of Transfer

To use transfer, one first has to declare a transfer morphism by means of a
vacuous theorem carrying a special attribute. Rules can then be added to the
respective simpset using further attributes. Transporting actual theorems is
done via yet another attribute.

It is not possible to automatically tranfer definitions. Moreover, the tool
works as a forward transformation only and cannot be applied backwards on a
goal. E.g., given a goal over natural numbers, it is not possible to convert it
into a goal over integers.

The tool uses some heuristics for guessing the transfer morphism to be used
from the given theorem. We neglect these user interface issues here.

Theory Reference. The only real usage of transfer in the system is currently the
connection between naturals and positive integers, whose setup can be found in
HOL/Nat Transfer.thy. The number theory development uses this connection
extensively. The same connection is demonstrated by some toy examples in
HOL/ex/Transfer Ex.thy.

2.2 Limitations of Transfer

The desire to keep the transfer tool simple has led to some design decisions that
may have to be revised when missing functionality is added.

First, the approach is essentially first order. The tool is able to replace nat
by int , but cannot replace nat list by int list , or nat ⇒ bool by int ⇒ bool . For
these generalizations, one must be able to construct isomorphims of higher types,
which is outlined in the next section. Note that some modest higher-orderness
can be obtained by adding certain congruence rules to the simpset, but it is
somewhat unclear how far this carries beyond the current usage patterns.

Second, the tool cannot operate on goals. Such a backwards mode of oper-
ation could be added in two ways:

1. Replace plain instantiation by a rewrite step of the form (
∧

(x :: σ). Q x) ≡
(
∧

(y :: τ). P y =⇒ Q (f y). This makes the approach less general, since
it now requires that f is surjective.

2. Generate the new goal externally, assume it as a theorem and apply the
forward transformation in the different direction. Then compose the re-
sulting implication with the original goal. This does not demand surjectiv-
ity, since we are using the reverse direction. However, one must compute
the new goal in advance, which is not possible in the current implementa-
tion, which relies entirely on forward simplification.

Third, the desire to map definitions automatically does not go along with
the view that the user must manually set up the appropriate simplification rules.
More guidance by the system is required here.

Finally, the tool currently does not work with parameterized types, which
is apparently due to a bug in the handling of contexts and types. This can
presumably be fixed.

8



3 Aggregate Isomorphisms

This section sketches how isomorphisms between two types σ and τ (we ignore
paramenterized types for now) give rise to isomorphisms between higher types
that contain σ and τ . This seems to be a standard construction (reference???),
and is necessary to build a transport machinery that is not limited to a first-
order fragment. The quotient package, discussed below, uses a similar approach
to build aggregate equivalence relations over higher types, and we show the
simpler case of isomorphisms here mainly to give some basic understanding of
the ideas behind it.

Note that the setting in the last section was more general, as we actually
considered a subset of type τ . Here, we merely show the simplest setting, where
two types σ and τ are related via total bijections φσ,τ :: σ ⇒ τ and ψσ,τ :: τ ⇒ σ
that are inverses of each other.

The morphisms φ and ψ can be lifted to more complex type expressions in
a canonical way. We call the resulting functions aggregate isomorphisms.

φσ1⇒σ2,τ1⇒τ2 = λf.ψτ1,τ2 ◦ f ◦ φσ1,σ2

ψσ1⇒σ2,τ1⇒τ2 = λf.φτ1,τ2 ◦ f ◦ ψσ1,σ2

φσ1 κ,τ1 κ = mapκ φσ1,τ1

ψσ1 κ,τ1 κ = mapκ ψσ1,τ1

For type constructors κ, the function mapκ denotes the corresponding map
function, e.g. List.map for lists. Such map functions exist for all datatypes, and
could in principle be generated automatically.

The justification for actually calling these bijections ‘isomorphisms’ is that
we can easily add structure to the types in the form of operations. Given a
constant c of some type involving σ and a corresponding constant c′ of some
type involving τ , we can express their relationship as c′ = φ c for the appropriate
aggregate isomorphism φ. If we do not already have c′ we can define it like this.

For example, consider operations f : σ ⇒ σ and f ′ : τ ⇒ τ . The equation
f ′ = φσ⇒σ,τ⇒τ f unfolds to (using extensionality and the definition of the
aggregate isomorphism)

∀x. f ′ x = φσ,τ (f (ψσ,τ x)) ,

and applying ψ on both sides yields the familiar

∀x. ψσ,τ (f ′ x) = f (ψσ,τ x) .

Note that when defining f ′ from f via the aggregate isomorphism, we do
not care what the original definition of f was, and we do not have to create
an “analogous” definition, which could be very complicated. Instead, f ′ can be
defined in terms of f , and the definition of f can later be transported just like
any other theorem.

4 The Quotient Package

The quotient package [4] also includes automation for transporting definitions
and theorems (which is called ‘lifting’ in that context). It can automatically

9



Raw type Quotient type

{x. x ≈ x}

Abs

Transport direction (facts)

Transport direction (goals)

Figure 4: The setting of the quotient package

produce definitions and theorems on the quotient type, given the corresponding
constants and facts on the raw type.

The current implementation assumes that the quotient type was actually
defined via the same package, but generalizing the code to also work for types
defined by other means seems quite easy. However, unlike the transfer tool, it is
assumed that the morphism from the raw type to the quotient type is surjective,
i.e., each element in the quotient type represents an equivalence class of some
relation ≈. Note that the package works with partial equivalence relations (al-
though this view is not completely exposed to users), which arise naturally since
equivalence relations give rise to partial equivalence relations on the function
type. Unlike total equivalence relations, partial equivalence relations are not
reflexive, and we call the set {x. x ≈ x} the domain of the relation. Only values
in the domain correspond to elements in the quotient type, an thus the domain
has the same role as the predicate P in the transfer setting. The morphism
that maps from the raw type to the quotient type is called Abs, in analogy to
typedef. Its inverse Rep is defined automatically using Hilbert’s choice operator.
The situation is shown in Fig. 4.

When we ignore and oversimplify many fine points, the lifting procedure
works roughly as follows. We assume that the theorem is a closed HOL propo-
sition, i.e., no meta-level constructs and no free variables.

• The raw theorem is “regularized”, to bring it into a certain liftable form.

• All constants c are replaced Rep (Abs c), for the aggregate Rep and Abs
functions of the appropriate type. Note that this is not simply a rewrite
step, since the corresponding equation does not hold in general. However,
the equivalence c ≈ Rep (Abs c) does hold, and thus we obtain that
the original proposition is ≈-equivalent to the new one, always using the
relation on the appropriate type. On the outer level, this is just equality,
so the propositions are logically equivalent.

• A final cleaning step simplifies the proposition by unfolding the definitions
of the aggregate morphisms. This creates terms of the form Abs (Rep t)

10



at every application position, which simplify to t, this time using plain
rewriting.

Note that in contrast to transfer, there is no special treatment of outermost
schematic variables. In the fully internalized form, all variables are bound (and
in fact, the regularization step replaces the quantifiers with bounded ones). As
a consequence, bound variables can be treated naturally.

In general, we must know the statement of the theorem that we want to
obtain via lifting, since there are many possibly results in general. However,
there exist heuristics for guessing a suitable proposition.

4.1 Quotient vs. Transfer

Like transfer, the quotient package covers Isomorphisms as a degenerate case,
where the equivalence relation ≈ is equality. Currently, this requires that the
type to which we want to transport theorems was defined as a quotient. Then
we obtain very advanced support, which includes lifting of definitions, a lifting of
goals that can be used as a tactic, and a good support of higher-order situations.

One limitation is that the Abs function must be surjective. This is always
the case when the type is actually a quotient. But it prevents the use of the
lifting machinery to map theorems from nat to int (seeing int as a superset of
a trivial quotient over nat).

It is interesting to note that the transport directions of transfer and quo-
tient are exactly the opposite. While transfer encourages the declaration of the
inverse direction as a separate transfer morphism, this is usually not possible
for quotients.

4.2 Current Technical Limitations

• Currently, the quotient relation must be a dedicated constant. This is
inconvenient when we want to use equality, since it requires an extra con-
stant which must be unfolded frequently (but making the definition a
[simp] rule helps in practice).

• Using quotient definition, one can only lift constants, not arbitrary
terms. This prevents the use of the tool on things like locale parameters
and some definitions in a local theory.

• One cannot turn a type defined by other means into a quotient afterwards.
Similarly, one cannot declare a user-defined constant on the quotient type
as the lifted version of another constant.

5 Closing the Code Generation Gap with Quo-
tients

This section shows how to use the quotient package to close the gap outlined
in §1.6. Recall that we were using a copy of the abstract set type. After the
discussion above, it should be obvious that we should define this type as a
quotient.

11



No manual definitions are made for operations on the new type; instead, we
move over all relevant operations from the original type. This works as expected,
and is much more canonical than the current setup, which involves a combination
of manual transport and reproving. There is no separate reasoning setup. The
preferred way of proving a theorem on the new type is by transporting a theorem
from the old type, which can be done conveniently at any time.

When a specific implementation of sets is chosen (e.g. distinct lists), we
must formulate the corresponding code equations, which are proved on the set
level and then transported over.

Theory Reference. An experimental quotient version of Cset.thy is now avail-
able in the directory HOL/Quotient Examples. It defines the copy α Set of sets
as a trivial quotient, transporting all relevant set operations to the new type.
Theory List Cset.thy sets up code generation via (standard) lists. The rel-
evant code lemmas arise from the same equations on the set level. The code
generation setup for distinct list or trees is not finised yet.

A user who wishes to execute sets as distinct lists implements his algorithm
in terms of α set , making sure that only executable operations are used (in par-
ticular, unbounded set comprehension is not executable). Then, after importing
Dlist Cset.thy, the constants and their code equations can be transported to
type α Set with the help of the quotient package. Since that type is executable
by the library setup, no further configuration is needed for generating code.

From the code generation scenarios outlined in §1.1, the above applies to
the program verification scenario. The other three scenarios work out of the
box in case the term/proposition in question does not mention sets itself. This
is the case when the sets are merely used as an intermediate data structure
and do not show up in the interface of the algorithm itself. If sets are part of
the interface, then the diagnostic commands value and quickcheck, as well as
the evaluation oracle require some adaptation. Essentially, the term/proposition
must be transported over to α Set , and the result (terms for value and quickcheck
and a theorem for evaluation) must be transported back.

6 Work Items and Open Questions

This report concludes with a few things that could be done to improve the
situation for data refinement and transport principles in general.

Streamlining data refinement with better tool setup

1. Using the quotient view of α Set , conduct a major case study, to see if the
method really works for non-trivial cases. In particular, which knowledge
of the concepts underlying quotients are required from a user, and which
can be hidden?

2. Address the restrictions of the quotient package mentioned in §4.2. In
particular, one wants to be able to configure the lifting machinery to work
on quotient types that were defined by other means.

3. Implement a thin wrapper around the quotient package that allows presents
a simpler interface to the data refinement setting. Document its usage.

12



4. A completely different approach could be to try to remove the restriction
in the code generator that data refinement can only be applied to type
constructors. The idea is that one promotes a type synonym to an actually
type constructor in the code generator’s intermediate language. Certain
constants must then be annotated with special type signatures and will
be translated to the new type. That new type takes the role of α Set ,
but it only exists in the intermediate language, not in the logic. In the
rewriting semantics, this does not pose any problems, but technical issues
arise from type classes: basically, we cannot have any class instances for
the new type, since it does not exist from the logical point of view. In
particular, this prevents the reification process (translating ML terms back
into the logic) from working, which is based on a special type class.

One could investigate if these issues could be solved somehow to support
data refinement for open types as well. This would make the type α Set
and the whole transport business obsolete, and users could use α set di-
rectly.

Theory Reference. Based on a preliminary implementation of the above
approach, theory HOL/Library/Executable Set.thy makes sets executable
in terms of lists. However, there is a big warning, telling users not to use
this, duo to the problems sketched above.

Unifying the various transport tools in the system We have already
seen that there is quite some overlap between transfer and the quotient package.
Since neither tool completely subsumes the other, there is the obvious question
whether there exists a common “supremum” which could replace both tools.

Starting from the quotient package, we are thus looking for the following
generalizations:

Non-surjective morphisms The embedding from nat to int is not surjective,
and thus we cannot reinterpret that embedding as a quotient. In princi-
ple, it should be possible to extend the tool to support quotients into a
subset of some type, represented via an explicit predicate, but this is a
nontrivial complication of the implementation. In particular, the equation
Abs (Rep x) = x no longer holds unconditionally. It is unclear whether
this extension is practical.

Unlifting Currently, only one transport direction is supported by the quotient
package. Facts are moved from the raw type to the quotient type. When
we are interested in isomorphisms, the reverse direction is equally useful.
It turns out that the package already proves the equivalence of both ver-
sions internally (except in the regularization step, which we can probably
disregard). Thus it seems straightforward to export this functionality to
the user in an “unlifting” transformation.

However, the story does not end here, as the Isabelle distribution contains
at least two more implementations of transport functionality, which waits to be
revisited and possibly subsumed by a general mechanism:

• To ease the transition between sets and bredicates, Berghofer implemented
two attributes [to set] and [to pred], which basically implement the

13



(un)currying transformation needed to convert between relations of type
(α1 × · · · × αn) set and predicates of type α1 ⇒ · · · ⇒ αn ⇒ bool . This
is of course an isomorphism (or rather: a family of isomorphisms, one for
each arity), and one would expect that there is quite a bit of overlap with
the other tools.

• The formalization of nonstardard analysis contains another transfer tool
that converts goals from nonstandard extensions of arbitrary types to the
original type. This tool was developed by Huffman [3] and predates both
the transfer tool discussed above (with which it shares the name, but
no implementation) and the quotient package. The type of nonstardard
extensions is actually defined (manually) as a quotient, and upon casual
examination, it seems that the transfer principle is nothing but a special-
ized lifting procedure for that quotient. However, more investigation is
required to find out if this is really the case. If it is, the development can
probably be simplified considerably.

Theory Reference. The attributes [to set] and [to pred] are defined in HOL/
Tools/inductive set.ML. The nonstardard analysis transfer principle is set up
in HOL/NSA/StarDef.thy. Huffman’s paper [3] contains a detailed description.

Acknowledgements. Most of the knowledge and ideas presented here were
collected in discussions with Amine Chaieb, Florian Haftmann, Cezary Kaliszyk,
Peter Lammich, Tobias Nipkow, and Andrei Popescu. Cezary deserves special
thanks for explaining many details about the quotient package.

References

[1] F. Haftmann. Code Generation from Specifications in Higher-Order Logic.
PhD thesis, Institut für Informatik, Technische Universität München, Ger-
many, 2009.

[2] F. Haftmann. Data refinement (Raffinement) in Isabelle/HOL, 2010. Draft
manuscript.

[3] B. Huffman. Transfer principle proof tactic for nonstandard analysis. In
NETCA 2005, 2005.

[4] C. Kaliszyk and C. Urban. Quotients revisited for Isabelle/HOL. In W. C.
Chu, W. E. Wong, M. J. Palakal, and C.-C. Hung, editors, ACM Symposium
on Applied Computing (SAC’11), pages 1639–1644. ACM, 2011.

[5] A. Lochbihler. Formalising FinFuns - generating code for functions as data
from Isabelle/HOL. In S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel,
editors, Theorem Proving in Higher Order Logics (TPHOLs 2009), volume
5674 of Lecture Notes in Computer Science, pages 310–326. Springer Verlag,
2009.

14


